Extraplanar Emission-Line Gas in Edge-On Spiral Galaxies. II. Optical Spectroscopy

合集下载

晶体结构缺陷的类型

晶体结构缺陷的类型

二 按缺陷产生旳原因分类
晶体缺陷
辐照缺陷 杂质缺陷
电荷缺陷 热缺陷 非化学计量缺陷
1. 热缺陷
定义:热缺陷亦称为本征缺陷,是指由热起伏旳原因所产生 旳空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷(Frenkel defect)和肖特基缺陷 (Schottky defect)
T E 热起伏(涨落) 原子脱离其平衡位置
面缺陷旳取向及分布与材料旳断裂韧性有关。
面缺陷-晶界
晶界示意图
亚晶界示意图
晶界: 晶界是两相邻晶粒间旳过渡界面。因为相邻晶粒 间彼此位向各不相同,故晶界处旳原子排列与晶内不同, 它们因同步受到相邻两侧晶粒不同位向旳综合影响,而做 无规则排列或近似于两者取向旳折衷位置旳排列,这就形 成了晶体中旳主要旳面缺陷。
-"extra" atoms positioned between atomic sites.
distortion of planes
selfinterstitiallids
Two outcomes if impurity (B) added to host (A):
• Solid solution of B in A (i.e., random dist. of point defects)
OR
Substitutional alloy (e.g., Cu in Ni)
Interstitial alloy (e.g., C in Fe)
Impurities in Ceramics
本章主要内容:
§2.1 晶体构造缺陷旳类型 §2. 2 点缺陷 §2.3 线缺陷 §2.4 面缺陷 §2.5 固溶体 §2.6 非化学计量化合物

岩心荧光 含油级别

岩心荧光 含油级别

岩心荧光含油级别英文回答:Fluorescence in drill cuttings can provide valuable insights into the presence and properties of hydrocarbonsin subsurface formations. Fluorescence is the emission of light by a substance that has absorbed electromagnetic radiation. In the context of drill cuttings, fluorescence is typically caused by the presence of aromatic compounds, which are found in crude oil and natural gas.The level of fluorescence in drill cuttings can be used to assess the oil saturation of the formation from which the cuttings were obtained. Higher levels of fluorescence indicate higher oil saturation. However, it is important to note that other factors, such as the presence of other fluorescent compounds, can also affect the level of fluorescence.In general, the following qualitative scale can be usedto assess the oil saturation of drill cuttings based on their fluorescence:Non-fluorescent: No oil saturation.Weakly fluorescent: Low oil saturation.Moderately fluorescent: Moderate oil saturation.Strongly fluorescent: High oil saturation.It is important to note that this scale is only a general guideline and that the actual oil saturation of a formation may vary depending on a number of factors, such as the type of oil and the formation properties.In addition to assessing oil saturation, fluorescencein drill cuttings can also be used to identify the type of oil present. Different types of oil have different fluorescence characteristics, which can be used to differentiate between them. For example, crude oiltypically has a yellow-green fluorescence, while condensatehas a blue-white fluorescence.Fluorescence in drill cuttings is a valuable tool for formation evaluation. It can be used to assess the oil saturation of a formation, identify the type of oil present, and provide insights into the formation's properties.中文回答:岩心荧光是指岩心在受到光波激发后产生的光。

SL5200单阶紧急氧气供应连接器系列说明书

SL5200单阶紧急氧气供应连接器系列说明书

Porting Configuratione2PW3PWwq wq q IN w OUT e Gauge port(Outlet)¡For UHP gas delivery¡Flow capacity Standard:to 30slpmHF (option):to 130slpm¡Body material:316L SS secondary remelt¡Hastelloy internals available for corrosion resistanceSeries SL5200Single Stage Compact Regulator for Ultra High PurityConnections (Inlet q ,Outlet w )FV4MV4TW4FV6MV6TW6Connections1/4inch face seal (Female)1/4inch face seal (Male)1/4inch tube weld3/8inch face seal (Female)3/8inch face seal (Male)3/8inch tube weldCodeHow to OrderSL52S MFV4FV4022PW Surface finishM V XSurface finish Ra max 10µin.(0.25µm)Standard7µin.(0.18µm)5µin.(0.13µm)CodePorts2PW 3PWPorts 2ports 3portsCode Range options ∗1)No code A Specification Standard Sub-atmosphericCode∗1)Only available with SL5201.Port NumberqweMaterialS SH Body Poppet 316L SS Hastelloy ®C-22Diaphragm316L SSCode Seat materialNo code VS Material PCTFE (Standard)Vespel ®∗4)Code∗4)Not available with SHmaterial.Delivery pressure01020610Delivery pressure0.5to 30psig (0.0034 to 0.2 MPa)1to 60psig (0.007to 0.4 MPa)1to 100psig (0.007 to 0.7 MPa)Code 0.5to 10psig (0.0034to 0.07MPa)Sub-atmospheric (A):100mm Hg absolute to 10 psig(-88kPa to 0.07MPa)316L SSsecondary remelt Operating ParametersDelivery pressureGasSource pressureProof pressure (Inlet)Burst pressureAmbient and operating temperatureCvLeak rate Across the seat leakSurface finishConnectionsSupply pressure effectInstallationInternal volumeMassSL5201२२A100mm Hg absolute to 10 psig (-88kPa to 0.07MPa)Select compatible materials of construction for the gas Vacuum to 150psig (1.0 MPa)500psig (3.4MPa)1000psig (6.9MPa)–40to 160°C (–40 to 71°C)(No freezing) ∗1)0.072x 10-11 Pa·m 3/sec 2x 10-10Pa·m 3/sec ∗2)4x 10-9 Pa·m 3/sec ∗2)Ra max 10µin.(0.25µm)Option:7µin.(0.18µm),5µin.(0.13µm)Face seal, Tube weld 0.20psig (0.0014MPa)rise in delivery pressure per 20psig (0.14MPa) source pressure drop Bottom mount 0.19in 3(3.1cm 3)0.99lbs (0.45kg) ∗3)SL52010.5to 10 psig(0.0034to 0.07 MPa)SL52020.5to 30 psig (0.0034 to 0.2 MPa)SL52101to 100 psig (0.007 to 0.7 MPa)SL52061to 60 psig (0.007 to 0.4 MPa)SpecificationsOption Other Parameters HFCvSupply pressure effect0.150.50psig (0.0035MPa)rise in delivery pressure per 20psig (0.14MPa) source pressure drop OptionHigh flowHigher flow capacity with internal changes only, no change in external dimensions.Changes from the standard type are:SL5201२२A SL5201SL5202SL5210SL5206OptionNo codeHFSpecification High flow(Cv: 0.15)Standard(Cv: 0.07)Code∗1)14to 194°F (–10to 90°C)for Vespel ®seat.∗2)Tested with Helium gas inlet pressure 100 psig (0.7MPa).∗3)Mass,including individual boxed weight, may vary depending on connections or options.Inboard leakageOutboard leakageGauge port (Outlet e )No codeFV4V3L1Connections or Pressure gauge ∗2)psig/bar unit MPa unit No gauge port 1/4inch face seal (Male)1/4 inch face seal (Female)No pressure gauge Withpressure gauge -30in.Hg to 30psig -30in.Hg to 60psig -30in.Hg to 100psig -0.1to 0.2MPa -0.1to 0.4MPa -0.1to 0.7MPa Code∗2)Refer to gauge guide (P.94)for gauge specifications.Pressure gauge unit ∗3)No code MPAUnit psig/barMPa Code ∗3)Pressure gauge unit MPaor psig/bar selectable.However under Japanese regulation, only MPa is available in Japan.¡Sub-atmospheric pressure delivery option ¡Springless design (No poppet spring in the wetted area)24。

Schneider Electric XUSL4E14F031N 产品数据手册说明书

Schneider Electric XUSL4E14F031N 产品数据手册说明书

T h e i n f o r m a t i o n p r o v i d e d i n t h i s d o c u m e n t a t i o n c o n t a i n s g e n e r a l d e s c r i p t i o n s a n d /o r t e c h n i c a l c h a r a c t e r i s t i c s o f t h e p e r f o r m a n c e o f t h e p r o d u c t s c o n t a i n e d h e r e i n .T h i s d o c u m e n t a t i o n i s n o t i n t e n d e d a s a s u b s t i t u t e f o r a n d i s n o t t o b e u s e d f o r d e t e r m i n i n g s u i t a b i l i t y o r r e l i a b i l i t y o f t h e s e p r o d u c t s f o r s p e c i f i c u s e r a p p l i c a t i o n s .I t i s t h e d u t y o f a n y s u c h u s e r o r i n t e g r a t o r t o p e r f o r m t h e a p p r o p r i a t e a n d c o m p l e t e r i s k a n a l y s i s , e v a l u a t i o n a n d t e s t i n g o f t h e p r o d u c t s w i t h r e s p e c t t o t h e r e l e v a n t s p e c i f i c a p p l i c a t i o n o r u s e t h e r e o f .N e i t h e r S c h n e i d e r E l e c t r i c I n d u s t r i e s S A S n o r a n y o f i t s a f f i l i a t e s o r s u b s i d i a r i e s s h a l l b e r e s p o n s i b l e o r l i a b l e f o r m i s u s e o f t h e i n f o r m a t i o n c o n t a i n e d h e r e i n .Product data sheetCharacteristicsXUSL4E14F031NXUSL type 4 - Finger protection - Std sensingrange - Hp = 310 mm, R=14mmProduct availability: Non-Stock - Not normally stocked in distribution facilityMainRange of product Preventa Safety detection Product or component typeSafety light curtain type 4Device short name XUSL4EOutput type2 safety outputs OSSD solid-state PNP arc suppres-sion)Product specific applica-tionFor finger protection [R] Resolution 0.55 in (14 mm)[Sn] nominal sensing distance3.28…19.69 Ft (1…6 m) by cabling 0.00…9.84 ft (0…3 m) by cabling [Hp] Height protected 12.20 in (310 mm)Number of beams 30Type of start / restart Manual Automatic External Device Moni-toring (EDM)Selected by wiringComplementaryDetection system Transmitter-receiver system Response time 5.5 msKit compositionAdjustable mounting bracket(s)1 receiver(s)1 transmitter(s)1 user guide with certificate of conformity on CD-ROM [EAA] effective aperture angle 2.5 ° at 3 mEmissionIR LED 0.000037402 in (950 nm)[Us] rated supply voltage 24 V DC +/- 20 %SupplyPower supply IEC 61496-1Power supply IEC 60204-1[Ie] rated operational current 2 ACurrent consumption42 mA no-load transmitter 83 mA no-load receiver 42 mA transmitter900 mA with maximum load receiver Output current limits 0.4 A safety outputs OSSD Output voltage 24 V Output circuit type DC Maximum voltage drop <0.5 VLocal signalling 1 multi-colour LED transmitter 2 dual colour LEDs receiverElectrical connection 1 male connector M12 5 pins transmitter 1 male connector M12 8 pins receiverFunction availableTestMuting through external safety module XPSLCMUT1160LED display of operating modes and faults Marking CEMaterialAluminium casingPolycarbonate front panel Polypropylene end caps Housing colourRed RAL 3000Fixing mode By fixing bracketsNet weight 1.54 lb(US) (0.7 kg)Offer type Standard distanceEnvironmentDirectives89/336/EEC - electromagnetic compatibility2002/95/EC - RoHS directive98/37/EEC - machinery89/655/EEC - work equipment2002/96/EC - WEEE directiveProduct certifications CULusCETÜVSafety level (correctly wired)Type 4 IEC 61496-1SIL 3 IEC 61508SILCL 3 IEC 62061Category 4 EN/ISO 13849-1PL = e EN/ISO 13849-1Optical characteristic Resistance to light disturbance EN/IEC 61496-2Mission time20 year(s)Safety reliability data PFHd = 1.27E-8 1/h IEC 61508Ambient air temperature for operation-10…55 °C (14…131 °F)-4…131 °F (-20…55 °C)Ambient air temperature for storage-31…158 °F (-35…70 °C)-25…70 °C (-13…158 °F)Relative humidity0…95 % without condensationIP degree of protection IP65IP67Shock resistance10 gn 16 ms IEC 61496-1Vibration resistance0.35 +/- 0.05 mm 10…55 Hz)IEC 61496-1Ordering and shipping detailsCategory22455 - LIGHT CURTAINS - XUSLDiscount Schedule DS2GTIN00785901735632Package weight(Lbs) 1.58 kg (3.49 lb(US))Returnability YesCountry of origin ITOffer SustainabilitySustainable offer status Green Premium productREACh Regulation REACh DeclarationEU RoHS Directive Pro-active compliance (Product out of EU RoHS legal scope)EU RoHS Decla-rationToxic heavy metal free YesMercury free YesRoHS exemption information YesEnvironmental Disclosure Product Environmental ProfileCircularity Profile End Of Life InformationContractual warrantyWarranty18 monthsDimensions Drawings DimensionsBrackets DimensionsMounting and Clearance Mounting and Clearance(1)Insert(2)Bracket(3)Washer(4)Spring washer(5)NutConnections and SchemaWiring DiagramsTransmitter Connections(1)+24 Vdc(2)Configuration_0(3)0 Vdc(4)Configuration_1(5)FEReceiver Connections(1)OSSD1(2)+ 24 V(3)OSSD2(4)Configuration_A(5)K1_K2 Feeback/Restart(6)Configuration_B(7)0 Vdc(8)FEReceiver Configurations and Operating ModesAutomatic Start/RestartWithout External Device Monitoring (EDM) feedback loopWith External Device Monitoring (EDM) feedback loopManual Start/RestartWithout External Device Monitoring (EDM) feedback loop(1)RestartWith External Device Monitoring (EDM) feedback loop(1)RestartConnecting to a Safety Interface1 :Click on Download & Documents2 :Click on Application solutionsTo have all connection schematics concerning our safety module, select "download and document" and download the file "Safety lightcurtains association with safety interfaces"。

2D-CSiC陶瓷基复合材料拉伸试验的声发射特性

2D-CSiC陶瓷基复合材料拉伸试验的声发射特性

试验研究Nirn DOI:10. 11973/wsjc2021010122I>C/SiC陶瓷基复合材料拉伸试验的声发射特性黄豆,吴锦武,汪佳辉(南昌航空大学飞行器工程学院,南昌330063)摘要:对2I>C7SiC'陶瓷基复合材料试样在室温条件下单调拉伸试验和循环拉伸试验的损 伤声发射信号进行研究,利用无监督层次聚类分析方法对单调和循环拉伸试验的声发射信号进行 损伤模式识别,得出了两种拉伸试验下试样都有相同的损伤分类。

对每次单调加/卸栽试验分别进 行应力和声发射信号分析,得到了在循环加栽区间和卸栽区间试样的损伤情况。

对比分析两种拉 伸试验的声发射信号,得到两次试验中首次加栽相同应力时,两个试样有同一种类的声发射损伤信 号,从而说明循环加栽对试样的主要损伤影响较小。

关键词:陶瓷基复合材料;拉伸试验;声发射技术;层次聚类分析中图分类号:TB332;TG115.28 文献标志码:A文章编号:1000-6656(2021)01-0047-06 Acoustic emission characteristics of 2D-C/SiC ceramic matrix composites under tensile testHUANG I)ou. WU Jinwu. WANG Jiahui(School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China) Abstract : Acoustic Emission (AE) signals of 2D-C /SiC ceramic matrix composites under monotonic temsile test and cyclic tensile test at room temperature were studied. The unsupervised hierarchical clustering method was used to identify the damage pattern of AE signals in monotonic and cyclic tensile tests. The stress and acoustic emission signals of each monotonic loading/unloading test were analyzed respectively,and the damage conditions of the samples in the cyclic loading interval and the unloading interval were obtained. By comparing and analyzing the AE signals of the two tensile tests, it is found that when the same stress is first loaded in two tests, the two samples have the same type of AE damage signals, which indicates that the repeated loading has little impact on the main damage of the samples.Key words:ceramic matrix composite;tensile test;acoustic emission technique;hierarchical cluster analysis连续纤维增靭2I>C/SiC陶瓷基复合材料具有 高比强度、高比模量、抗腐蚀、抗氧化和耐高温等特 点,在航空、航天及民用领域应用广泛[12]。

Maya 2009名词词汇中英对照

Maya 2009名词词汇中英对照

引用Maya 2009词汇Incandescence(白炽)Transparency(透明的Color Ramp Input(颜色色彩渐变输入)Light Glow(灯光辉光)Map(贴图)Light Effects(灯光效果)Halo(光晕)Lens Flare(镜头眩光)Optical FX(光学特效)Star Points(星点)Rotation(旋转)Halo Type(光晕类型)Glow Type(辉光类型)Linear(线性)Rim Halo(边缘光晕)Lens Flare Attributes(镜头眩光属性)了Glow Radial Noise(辉光放射杂点)Radial Frequency(放射频率Hypershade(材质超图)Filter Size(滤镜大小)Depth Map ShadowAttributes(深度贴图阴影属性)Resolution(分辨率)Fur(毛皮)Paint Effects(画笔效果)Light Fog(灯光雾)和Hair System(毛发系统)Disk Based Dmaps(基于硬盘的深度贴图)是Add Frame Ext(添加帧扩展)Use Mid Dist(使用中间距离)伪影(artifact)Bias(偏心率)Use Only Single Dmap(只使用单一的深度贴图)View Image(查看图像)Casts Shadows(投射阴影)Receive Shadows(接收阴影)Render Stats(静止渲染)和Use Auto Focus(使用自动焦距)Cone Angle(锥角)Focus(焦距)Panels(面板)Look Through Selected(浏览选取)Samples(采样)Softness(柔和)Disc(圆盘)Reuse Existing Dmap(s)(重新使用现有的深度贴图)Illuminates By Default(默认照明)Light Radius(灯光范围)Shadow Rays(阴影射线)Shadow Rays(阴影射线)Ray Depth Limit(射线深度限定)Simple Paint Effects(简单画笔效果)Fog Shadow Samples(雾阴影采样)2D Offset(二维偏移)Fake Shadow(仿造阴影)Cast Shadows(投射阴影)Fake Shadow(伪阴影)Shadow Diffusion(阴影漫射)Shadow Transp(阴影透明度)Back Shadow(背面阴影)Depth Shadow(阴影深度)Center Shadow(中心阴影)Threshold(阈值)Add To Selected Light(添加到选择的灯光)Render Using(渲染使用)Quality Presets(质量预设)Back Shade Factor(背面投影因子)Self Shade(自投影)Self Shade Darkness(自投影黑暗度)Intensity Multiplier(强度加强器)Import Maya File name of hair file(导入Maya文件毛发文件名)Timeline(时间轴)Set StartPosition(设置起始位置)Display Quality(显示质量)Hair Tube Shader(毛发管道明暗器)Tube Direction(管道方向)Paint Effects To Polygons(画笔效果转到多边形)Convert(转换)Anisotropic(非均匀)Visible In Reflections(可视反射)Filter Size(滤镜大小)Penumbra(半阴影)Interpolation(内插)Smooth(平滑)Set Key(设置关键帧)Graph Editor(图表编辑器)明暗器(shader)Multilister(多重列表)With Shading Group(具有阴影组)Create Render Node(创建渲染节点)Bump Mapping(凹凸贴图)Translucence(半透明度)Translucence Depth(半透明深度)Anisotropic(各向异性的)Diffuse(散射)Translucence Depth(半透明深度)Cosine Power(余弦次方)Eccentricity(离心率)Roughness(粗糙度)Specular Color(镜面颜色)Spread X(X伸展)Spread Y(Y伸展)Fresnel Index(菲涅耳索引)Out Color(输出颜色)Surface Shader(曲面明暗器)Image Plane(图像平面)Ramp Shader(颜色渐变明暗器)Cloth(布料)Perlin noise(柏林杂点)Water(水)Bitmap(位图)Square(正方形)Bright Spread(亮度伸展)Wave Time and Wave Velocity(波纹时间和波纹速率)Wave Amplitude(波纹振幅)Wave Frequency(波纹频率)Sub Wave Frequency(副波纹频率)Concentric Ripple Attributes(同心波纹属性)Number Of Waves(波纹数目)Ocean(海洋)Photon Intensity(光子强度)Ocean System(海洋系统)Fluid Effects(液体效果)Maya Noise(Maya杂点)Exponent(指数)Color Gain(色彩增益)Rock Color(岩石颜色)Snow Color(雪的颜色)Amplitude(振幅)Boundary(边界)Snow Altitude(雪的高度)Snow Dropoff(雪的下降)Snow Slope(雪的倾斜度)Ramps(色彩渐变)Bitmaps(位图)Square(正方形)Grid(栅格)Bulge(膨胀)Checker(棋盘格)Square(正方形)Color Remap(颜色的重贴图)Filter Offset(滤镜偏移)Invert(颠倒)Fluid Texture 3D(三维液体纹理)Granite(花岗岩)贴图分级细化(mipmapping)Blend Mode(混合模式)placement(布置)Create Render Node(创建渲染节点)Mipmap(贴图细化)Bump Depth(凹凸深度)Reflected Color(反射颜色)Projection(投影)random(随机的)natural(自然的)granular(颗粒状的)abstract(抽象的)Create Render Node(创建渲染节点)Brownian Motion(布朗运动)Lacunarity(缺项)Increment(增量)Octaves(倍频程)Weight3d(三维重量)Threshold(阈值)Amplitude(幅度)Billow(巨浪)Num Waves(波浪数量)的Volume Wave(体积波浪)Ratio(变换系数)Depth Max(最大深度)Frequency Ratio(频率变换系数)Depth Max(最大深度)Inflection(变形)Scale(缩放)Origin(原点)Solid Fractal(固体不规则碎片)Animated(动画)Time Ratio(时间变换系数)Fill Texture Seams(填充纹理接缝)Bake Transparency(烘焙透明度)Double Sided(双面)Convert to File Texture(转换到纵列纹理)Anti-Alias(反锯齿)Concentric(同中心的)Cylindrical(圆柱的)Spherical(球形的)Translate(转化)Normal Camera(常规相机)Connection Editor(连接编辑器)Connect Input Of(输入连接)Master Bins(主箱子)Create Empty Bin(创建空箱子)Show Next Graph(显示下一个图表)Clear Before Graphing(制图前清理)Delete Unused Nodes(删除未用节点)Multiply Divide(乘除)Luminance(亮度)Blender(混合器)Stencil(蜡纸)File(纵列)Remap Color(重贴图颜色)Hue(色调)Saturation(饱和度)Lambert(兰伯特)Gamma Correct(Gamma校正)Contrast(对比度)Clamp(夹具)Surface Luminance(曲面亮度)Rotate Frame(旋转帧)UV Ramp(UV色彩渐变)Color Utilit ies(颜色工具)Color Balance(色彩平衡)Saturation(饱和度)Hue(色调)Studio Clear Coat(工作室清理涂层)Distance Between(间距)Ramp Shader(色彩渐变明暗器)Normalized Brightness(标准化亮度)Brightness(亮度)Facing Angle(面向角度)物体空间(Object Space)相机空间(Camera Space)世界坐标空间(World Space)屏幕空间(Screen Space)Eccentricity(离心率)Specular Roll Off(镜面反射强度)Set To Face(设置到表面)Reflected Color(反射颜色)Env Chrome(环境铬合金)Decay Rate(衰减速率)Linear(直线型)Blobby Surface(滴状斑点曲面)Patricle Cloud(粒子云)Lifespan Mode(生命期方式)Volumetric(测定体积)用虹位图(Iris bitmap)Constant(恒量)Lifespan(生命期)fractal(不规则碎片)divisions(分割)Loaded(装载)Unit Conversion(单元转换)Plus Minus Average(加减平均)Reverse(反相)Array Mapper(矩阵贴图)Vector Product(矢量积)Specular Roll Off(高光强度)Old Min(旧的最小值)shadow_begin(阴影起始)Array Mapper(矩阵贴图)Add Dynamic Attributes(添加动态属性)Multi-Pass Rendering(多通道渲染)Status Line(状态行)Blobby Surface(斑点状表面)Ray Direction(射线方向)camera space(相机坐标空间)Cross Product(叉积)Vector Matrix Product(矢量矩阵积)World Matrix(世界坐标矩阵)Freeze Transformation(冻结变形控制)Normal Camera(法线相机)Flipped Normal(翻转法线)Triple Switch(三元转换)Quad Switch(四元转换)Double Switch(双元转换)Mask(蒙板)Glow Spread(雾伸延)Halo Spread(晕伸延)Render Partition(渲染分割)Light Linker(灯光链接器)Light Centric(灯光中央)Tapetum(脉络膜)原点框(origin box)为Chord Length(弦长)CV Curve Tool(可控曲线工具)Rebuild Curve(重建曲线)isoparm(等参线)快速而又随性(quick and dirty)Reverse Surface Direction(翻转曲面方向)Saw Tooth At Poles(电极锯齿)Planar Mapping(平面贴图)Projection Manipulator(投影操纵器)Cylindrical Mapping(圆柱贴图)Projection Center Rotate(投影中心旋转)Channel Box(通道框)marking menu(标识菜单)Polygons(多边形)Delete By Type(根据类型删除)Subdiv Surface(细分曲面)Refine SelectedComponents(精炼选中的元素)Attribute To Paint(绘画属性)Height Field(高度场)Maya Displacement Shader(位移阴影)Solid Fractal(实体分形)Initial Sample Rate(原始采样率)Extra Sample Rate(额外采样率)Bounding Box Scale(边界框尺寸)displacement(位移)胶片板(film back)Safe Title(字幕安全)Film Aspect Ratio(胶片纵横比)Lens Squeeze Ratio(透镜压缩比)和Overscan(过扫描)Film Roll Pivot(胶片卷轴)Frame Padding(画面填充)Shading(遮蔽)Edge Anti-Aliasing(边缘消除锯齿)Multi-Pixel Filtering(多像素滤镜)Motion Blur(运动模糊)Curve Tolerance(弯曲容限)Fill Style(填充类型)Optimize Scene Size Options(优化场景大小选项)Focus Region Scale(聚焦区域刻度)Blur By Frame(每帧模糊)Raytracing(光线追踪)voxels(体元)Recursion Depth(递归深度)Subdivision Power(细分能力)Primitives(分层基元)Leaf Primitives(分层基元)Damping(阻尼)Reflection Specularity(反射镜面)Surface Thickness(曲面厚度)Light Absorbance(光线吸收)Shadow Attenuation(阴影衰减)Chromatic Aberration(彩色像差)Refractions(折射)Sample Lock(封闭采样)Jitter(抖动)Exact(精确型)Static Object Offset(静止物体偏移)Motion Back Offset(运动背面偏移)Shutter(快门)Motion Blur By(运动模糊因子)Irradiance(发光)Caustic And Illumination(焦散线和照明)Emit Photons(发射光子)Reflectivity(反射率)Global Illum Photons(全局照明光子)Exponent(指数)Global Illum Accuracy(全局照明准确度)Global IllumRadius(全局照明范围)Global Illum Scale(全局照明缩放)Rebuild Photon Map(重建光子贴图)Direct Illumination Shadow Effects(直接光照阴影效果)Enable Map Visualizer(启用贴图观察器)Rendering Editors (渲染编辑器)mental ray Map Visualizer(mental ray贴图观察器)Normal Scale(法线缩放)Direction Scale(方向缩放)Point Size(点大小)Normal Scale(法线缩放)Gauss(高斯)Eccentricity(离心率)Refractive Index(折射指数)Shiny(光泽)Transp(透明度)Col(余辉系数)Ior(折射系数)Transmat(透明)Photonic Materials(光子材质)Photon Volumetric Materials(光子测定体积材质)Min Radius(最小半径)Max Radius(最大半径)Final Gather Scale(最终聚焦比例)Trace Reflection(反射追踪)Trace Refraction(折射追踪)Precompute Photon Lookup(光子查找预计算)Ambient Color(环境色)Irradiance Color(发光颜色)Min Sample Level(最小采样水平)Max Sample Level(最大采样水平)的Background Color(背景色)Raytracing(射线追踪)surface point曲面点cameras相机geometry几何体General Utilities(通用应用程序)Distance Between(间距)Particle Utilities(粒子工具)Normalized Brightness(标准化亮度)Surface Luminance(曲面亮度)世界坐标空间(World Space)Normal Camera(常规相机)specular highlight反射高光区disco ball镜球mountain texture山脉纹理preview 预览Presets(预设)Preview Quality(预览质量)Intermediate Quality(中间质量)Production Quality WithTransparency(具有透明度的产品质量)Mesh Gradient(网格渐变)Area Gradient(区域渐变)Edge Style(边缘类型)Outlines(轮廓线)Edge Weight Preset(边的宽度预设)第1章Particles[粒子]1.1 Particle Tool[粒子工具]1.2 Create Emitter[创建粒子发射器]1.3 Emit From Object[物体发射器]1.4 Per-Point Emission Rates[每点发射率]1.5 Make ColIide[制作碰撞]1.6 Particle ColIision Event Editor[粒子碰撞事件编辑器]1.7 Goal[目标]1.8 Instancer(Replacement)[粒子替代]1.9 Sprite Wizard[精灵向导]1.10 Connect to Time[连接Maya时间]第2章Fluid Effects[流体特效]2.1 Create 3D Container[创建3D容器]2.2 Create 2D Container[创建2D容器]2.3 Add/Edit Contents[添加或修改内容]2.3.1 Emitter[发射器]2.3.2 Emit from Object[从物体发射]2.3.3 Gradients[梯度]2.3.4 Paint Fluids Tool[绘制流体工具]2.3.5 With Curve[关联曲线]2.3.6 Initiaf States Options[初始化状态]2.4 Create 3D Container with Emitter[创建带发射器的3D流体容器] 2.5 Create 2D Container with Emitter[创建带发射器的2D流体容器] 2.6 Get Fluid Examples[获取流体例子]2.7 Get Ocean/Pond Examples[获取海洋或池塘例子]2.8 Ocean[海洋]2.8.1 Create Ocean[创建海洋]2.8.2 Add PrevieW Plane[添加预览平面]2.8.3 Create Wake[创建尾迹]2.8.4 Add Ocean Surface Locator[添加海洋表面定位器]2.8.5 Add Dynamic Locator[添加动力学定位器]2.8.6 Add Boat Locator[添加船舶定位器]2.8.7 Add Dynamic Buoy[添加动力学浮标]2.8.8 Float Selected Objects[漂浮所选物体]2.8.9 Make Boats[创建船舶]2.8.10 Make Motor Boats[创建机动船舶]2.9 Pond[池塘]2.9 1 Create Pond[创建池塘]2.9.2 Create Wake[创建尾迹]2.9.3 Add Pond Surface Locator[添加池塘表面定位器]2.9.4 Add Dynamic Locator[添加动力学定位器]2.9.5 Add Boat Locator[添加船舶定位器]2 9 6 Add Dynamic Buoy[添加动力学浮标]2 9 7 FIoat Selected Objects[漂浮所选物体]2 9.8 Make Boats[创建船舶]2 9 9 Make Motor Boats[创建机动船舶]2.10 Extend Fluid[扩展流体]2.11 Edit Fluid Resolution[编辑流体分辨率]2.12 Make Collide[创建碰撞]2.13 Make Motion Field[创建运动场]2.14 Set Initial State[设置初始状态]2.15 Clear Initial State[清除初始状态]2.16 Save State As[储存流体状态]2.17 Create Cache[创建缓存]2.18 Append to Cache[扩展缓存]2.19 Replace Cache Frame[重置缓存帧]2.20 Truncate Cache[裁剪缓存]2.21 Delete Cache[删除缓存]第3章Fields[场]3.1 Air[空气场]3.2 Drag[拖曳场]3.3 Gravity[重力场]3.4 Newton[牛顿场]3.5 Radial[放射场]3.6 Turbulence[扰乱场]3.7 UnIform[统一场]3.8 Vortex[旋涡场]3.9 Volume Axis[体积轴场]3.10 Use Selected as Source of Field[使用所选对象作为场源] 3.11 Affect Selected Object(S)[影响选择的物体]第4章Soft/Rigid Bodies[柔体和刚体]4.1 Create Active Rigid Body[创建主动刚体]4.2 Create Passive Rigid Body[创建被动刚体]4.3 Create Nail Constraint[创建钉子约束]4.4 Create Pin Constraint[创建销约束]4.5 Create Hinge Constraint[创建合页约束]4.6 Create Spring Constraint[创建弹簧约束]4.7 Create Barrier Constraint[创建障碍约束]4.8 Set Active Key[设定主动关键帧]4.9 Set Passive Key[设定被动关键帧]4.10 Break Rigid Body Connections[打断刚体连接]4.11 Create Soft Body[创建柔体]4.12 Create Springs[创建弹簧]4.13 Paint Soft Body Weights Tool[绘画柔体权重工具]第5章Effects[效果]5.1 Create Fire[创建火]5.2 Create Smoke[创建烟]5.3 Create Fi reworks[创建烟花]5.4 Create Lightning[创建闪电]5.5 Create Shatter[创建破碎]5.6 Create Curve Flow[创建曲线流动]5.7 Create Surface Flow[创建表面流动]5.8 Delete Surface Flow[删除表面流动]第6章Solvers[解算器]6.1 Initial State[初始状态]6.1.1 Set for Selected[为选定的动力学对象设定初始状态]6.1.2 Set for AIj Dynamic[为所有的动力学对象设定初始状态] 6.2 Rigid Body Solver Attributes[刚体解算器属性]6.3 Current Rigid Solver[当前刚体解算器]6.4 Create Rigid Body Solver[创建刚体解算器]6.5 Set Rigid Body Interpenetration[设定刚体穿透]6.6 Set Rigid Body Col l ision[设定刚体碰撞]6.7 Memory Caching[内存缓存]6.7.1 Enable[开启内存缓存]6.7.2 Disable[关闭内存缓存]6.7.3 Delete[删除内存缓存]6.8 Create Particle Disk Cache[创建粒子磁盘缓存]6.9 Edit Oversampl ing or Cache Settings[编辑采样值或缓设定] 6.10 interactive Playback[交互回放]第7章Hair[头发]7.1 Create Hair[创建头发]7.2 Scale Hair Tool[缩放头发工具]7.3 Paint Hair Follides[绘画发囊工具17.4 Paint Hair Textures[绘画头发贴图]7.4.1 Baldness[光秃]7.4.2 Hair Oolor[头发颜色]7.4.3 Specula Coiorf高光颜色]7.5 Get Hai r Example[得到头发事例文件]7.6 Display[显示]7.6.1 Current Position[当前位置]7.6.2 Start Position[初始位置]7.6.3 Rest Position[静止位置]7.6.4 Current and Start[当前和初始位置]7.6.5 Current and Rest[当前和静止位置]7.6.6 AII Curves[所有曲线]7.7 Set Start Position[设置起始位置]7.7.1 F rom Current[从当前位置]7.7.2 From Rest[从静止位置]7.8 Set Rest Position[设置静止位置]7.8.1 From Start[从起始位置]7.8.2 From Current[从当前位置]7.9 Modify Curves[修改曲线]7.9.1 Lock Length[锁定长度]7.9.2 Unlock Length[不锁定长度]7.9.3 Straighten[拉直]7.9.4 Smooth[平滑]7.9.5 Curl[卷曲]7.9.6 Bend[弯曲]7.9.7 Scale Curvature[缩放曲率]7.10 Create Constraint[创建约束]7.10.1.Rubber Band[橡皮筋约束]7.10.2 Transform[变换约束]7.10.3 Stick[发夹约束]7.10.4 Hair to Hair[头发到头发约束]7.10.5 Hair Bunch[发束约束]7.10.6 ColIide Sphe re[碰撞球]7.10.7 ColIide Cube[碰撞立方体]7.11 Convert Selection[转换选集]7.11.1 To Follicles[切换到发囊]7.11.2 To Start Curves[切换到初始曲线]7.11.3 To Rest Curves[切换到静止曲线]7 11.4 To Current Positions[切换到当前位置]7.11.5 To Hair Systems[切换到头发系统]7.11.6 To Hair Constraints[切换到头发约束]7.11.7 To Start Curve End CVs[切换到初始曲线的末端CVs]7.11.8 To Rest Curve End CVs[切换到静止曲线的末端CVs]7.11.9 To Start and Rest End CVs[切换到初始和静止曲线的末端CVs] 7.12 Assign Hair System[指定头发系统]7 13 Make Selected Curves Dynamic[使所选曲线成为动力学曲线] 7.14 Make Collide[建立碰撞]7.15 Assign Hair Constraint[分配头发约束]7.16 Assign Paint Effects Brush to Hair[指定画笔特效到头发]7.17 Transplant Hai r[移植头发]7.18 Create Cache[仓I建缓存]7.19 Append to Cache[附加缓存]7.20 Truncate Cache[裁剪缓存]7.21 Deleze Cache[删除缓存]7.22 Delete Entire Hair System[删除整个头发系统]。

物理英文词汇

物理英文词汇

A a.c. generator 交流发电机aberration 光行差,像差absolute index of refraction 绝对折射率absolute refractive index 绝对折射率absolute temperature scale 绝对温标absolute zero 绝对零度absorber 吸收体absorbing power 吸收能力,吸收本领absorptance 吸收比absorption 吸收absorption coefficient 吸收系数absorption line 吸收谱线? absorption spectrum 吸收光谱,吸收谱accelerate 加速acceleration 加速度acceleration due to gravity 重力加速度acceleration-time graph 加速度—时间关系线图accelerator 加速器acceptor 接受体acceptor doping 受体掺杂acceptor impurity 受体杂质accommodation 调节,视觉调节accumulator 蓄电池accuracy 准确度acetate strip 醋酸酯条片achromatic 消色差的achromatic aberration 消色差achromatic condenser 消色差聚光透镜achromatic light 消色差光,白光acoustic blur 声响模糊acoustic board 吸音板,吸声板acoustic navigation 声响导航acoustic pressure 声压acoustics 声学act on 施于action 作用量,作用,作用力action of point 尖端作用activation 激活,活化activation energy 激活能,活化能active nucleus 活性核,放射性核activity 放射强度,放射性adapter 接合器adder 加法器adhesion 附着力,附着,黏附adhesive force 附着力adiabatic 绝热的adiabatic expansion 绝热膨胀adiabatic process 绝热过程aerial 天线? aerial induction 天线调谐电感aerial network 天线网络aerodynamic force 气动力,空气动力aerodynamics 气体动力学,空气动力学aerofoil 机翼agent 剂air blower 吹风器air column 空气柱,气柱air cushion 气垫air damping 空气阻尼air film 气膜air track 气垫导航air wedge 气楔alignment 对准,校整alpha decay α衰变alpha pa rticle α粒子alpha particle scattering analogue α粒子放射模拟alternating current 交流电alternating voltage 交变电压,交流电压alternator 交流发电机altimeter 高度计,测高仪americium ?? ammeter 安培计amorphous 非结晶的,无定形的ampere 安培,安ampere-hour 安培小时,安时amplification 放大,放大率amplifier 放大器amplify 放大amplitude 振幅amplitude modulation 调幅,振幅调剂amyl acetate 醋酸戊酯anaemia 贫血analogue 模拟analogue experiment 模拟实验analogue signal 仿真讯号,非数字讯号analogue-to-digital conversion 模拟转换analyser 检偏振器AND gate 「与」门anemometer 风速计aneroid barometer 无液气压计,空盒气压计angle of contact 接触角angle of deviation 偏向角angle of diffraction 衍射角,绕射角angle of dip 倾角angle of elevation 仰角angle of emergence 出射角angle of incidence 入射角angle of inclination 倾角angle of minimum deviation 最小偏向角angle of projection 投射角angle of reflection 反射角angle of refraction 折射角angle of twist 扭转角angstrom 埃angular acceleration 角加速度angular aperture 孔径张角angular displacement 角位移angular frequency 角频率angular impulse 角冲量angular magnification 角度放大,角放大率angular momentum 角动量,动量矩angular motion 角向运动,角运动angular seed 角速率angular velocity 角速度angular width 角宽度annealing 退火,韧化anode 阳极,正极anomalous expansion 反常膨胀antenna 天线? anticlockwise moment 逆时针力矩antifreeze 防冻剂antinodal line 腹线? antinode 波腹antiparticle 反粒子antiphase 反相,逆相aperture 孔径,口径,孔apparent depth 视深apparent expansion 表观膨胀,视膨胀apparent frequency 表观频率,视频率apparent loss in weight 表观失重apparent weight 表观重量Appleton layer 阿普顿层,F电离层aqueous layer 水层Archimedes? principle 阿基米得原理area 面积argon 氩armature 电枢artificial disintegration 人工蜕变artificial radioactivity 人工放射astable 非稳态的astable circuit 非稳态电路astable multivibrator 非态多谐振荡器astigmatism 像散,散光astronomical telescope 天文望远镜at infinity 在无穷远处at rest 静止atmosphere 大气,大气层,大气压atmospheric pressure 大气压强atom 原子atomic bomb 原子弹atomicbond 原子键atomic density 原子密度atomic diameter 原子直径atomic energy 原子能atomic mass 原子质量atomic mass unit 原子质量单位atomic model 原子模型atomic nucleus 原子核atomic number 原子序数atomic radius 原子半径atomic separation 原子间距atomic spacing 原子间距atomic structure 原子结构atomic theory 原子论atomizer 喷雾器attenuation 衰减attraction 吸引attractive force 吸力audible frequency range 听频范围audible signal 可听讯号audio frequency 声频autofocus 自动聚焦,自动对焦avalanche 电子雪崩average acceleration 平均加速度average power 平均功率average speed 平均速率average velocity 平均速度Avogadro constant 阿佛加德罗常数,阿佛加德罗常量Avogadro number 阿佛加德罗数Avogadro?s law 阿佛加德罗定律axial 轴向的,沿轴的axial field 轴向场axial search coil 轴向探察线图axis 轴axis of rotation 转轴B back e.m.f. 反电动势background radiation 本底辐射Bainbridge mass spectrometer 班布里奇质谱仪balance 天平,秤,平衡balance arm 秤杆,平衡臂balance point 平衡点balance bridge 平衡电桥balanced force 平衡力ball bearing 球轴承,滚珠轴承ballistic galvanometer 冲击电流计,冲击检流计ballistic pendulum 冲击摆Balmer series 巴耳末系,巴耳末光谱band spectrum 带状光谱,带状谱bandwidth 带宽bar code 条形码bar magnet 磁棒bare wire 裸线? barium 钡barometer 气压计barrier 障碍物barrier layer 阻档层,耗尽层barrier potential difference 阻档层电势差,阻档层电位差Barton?s pendulums 巴尔通摆base 基极base current 基极电流battery 电池组battery charger 电池充电器battery holder 电池座beaker 烧杯beam splitter 分束器,射束分离器beat 拍beat frequency 拍频becquerel 贝克勒耳,贝克bel 贝尔,贝bell jar 钟形罩bench mat 实验台垫Bernoulli?s theorem 伯努利定律beryllium 铍beta decay β衰变beta particle β粒子biasing circuit 偏压电路biasing voltage 偏压biconcave lens 双凹透镜biconvex lens 双凸透镜bicycle dynamo 自行车发电机,脚踏车发电机bifilar pendulum 双线摆bifocal lens 双焦距透镜big bang model 大爆炸模型bimetallic strip 双层金属片,双金属片binary adder 二进加法器binary system 二进制binding 结合binding energy 结合能binoculars 双筒望远镜Biot-Savart law 毕奥—萨伐尔定律bipolar 双极的birefraction 双折射bistable 双稳态的,双稳器bistable circuit 双稳电路bistable multivibrator 双稳态多谐振荡器bit 二进制制,位black body radiation 黑体辐射block and tackle 滑轮组block diagram 方框图blocking capacitor 隔直流电器容blooming 敷霜,表面加膜Bohr atom 玻尔原子Bohr radius 玻尔半径Bohr theory 玻尔理论boil 沸腾,煮沸boiler 锅炉boiling point 沸点bolometer 辐射热计Boltzmann constant 玻耳兹曼常数,玻耳兹曼常量bombardment 轰击bond energy 键能bonding 键合Bourdon gauge 布尔登气压计bow wave 弓形波,舷波Boyle?s law 博伊尔定律Brackett series 布喇开系,布喇开光谱Bragg angle 布喇格角Bragg diffraction 布喇格衍射,布喇格绕射Bragg plane 布喇格平面Bragg?s law 布喇格定律brake 制动器breakdown potential 击穿电势,击穿电位breaking point 断点breaking strength 抗断强度breaking stress 致断应力breeder reactor 增殖反应堆bremsstrahlung 轫致辐射Brewster?s law 布鲁斯特定律bridge circuit 桥式电路bridge rectifier 桥式整流器bright fringe 亮纹brightness 亮度brittle 脆的,易碎的bromine 溴Brownian movement 布朗运动brush 电刷bubble chamber 气泡室bubble raft model 泡筏模型buffer 缓冲器buffer circuit 缓冲电路bulk modulus 体积弹性模量Bunsen burner 本生灯buoyancy 浮力burette 滴定管burette stand 滴定管架burglar alarm 防盗警报器,防盗警钟buzzer 蜂鸣器by-pass 旁路byte 二进制组,字节C cable 电缆cadmium sulphide 硫化镉caesium 铯calcite 方解石calibrate 校准,标上刻度calipers 测径器,卡钳calorie 卡路里,卡calorimeter 量热器camera 照相机cancer cell 癌细胞candela 坎德拉cantilever 悬臂capacitance 电容capacitance substitution box 换值电容箱capacitive circuit 电容电路capacitive component 电容性分量capacitive coupling 电容耦合capacitive discharge 电容性放电capacitive reactance 容抗capacitor 电容器capacitor-input filter 电容输入滤波器capacity 容量,载量capillarity 毛细现象,毛细作用capillary depression 毛细下降capillary rise 毛细上升capillary tube 毛细管capsule 囊capture 俘获carbon 碳carbon granule 碳颗粒carbon paper disc 圆形碳纸carbon-14 dating 碳14年代测定法carburettor 化油器,汽化器carrier wave 载波carry 进位castor oil 蓖麻油cataract 白内障cathode 阴极,负极cathode ray 阴极射线? cathode ray deflection tube 阴极射线偏转管cathode-ray oscilloscope 阴极射线示波器,示波器cathode-ray tube 阴极射线管cavity resonator 空腔共振器celestial telescope 天体望远镜cell 电池,细胞Celsius temperature scale 摄氏温标centimetre 厘米centralized low voltage power supply unit 中央控制低压电源箱centre of curvature 曲率中心centre of gravity 重心centre of mass 质心centre of oscillation 振荡中心centre-tapped transformer 中心抽头变压器centrifugal force 离心力centrifuge 离心机centripetal acceleration 向心加速度centripetal force 向心力Chadwick 查德威克chain reaction 连锁反应change of state 物态变化change-over switch 换向开关characteristic 特性,特征characteristic curve 特性曲线? characteristic line 特征线,特征谱? characteristic spectrum 特征光谱,特征谱charge 电荷,充电,起电charge carrier 载荷子charge conservation 电荷守恒charge density 电荷密度charge distribution 电荷分布charge to mass ratio 荷质比charged particle 带电粒子charging by contact 接触起电charging by friction 摩擦生电charging by induction 感应起电charging by sharing 授受起电charging time constant 充电时间常数,充电时间常量Charles?s law 查理定律choke 扼流,抗流,扼流圈,抗流圈choke circuit 扼流电路,抗流电路chromatic aberration 色差chromatic dispersion 色散cinefilm soundtrack 电影胶片声迹circle of least confusion 最少模糊圈,明晰圈circuit 电路circuit board 电路板circuit breaker 断路器circuit symbol 电路符号circular coil 环形线圈circular motion 圆周运动circular orbit 圆周轨道circular pulse 圆形脉冲circular wave 圆形波circular wavefront 圆形波阵面,圆形波前clamp 夹钳,夹紧clap-echo method 「拍掌—回声」法cleave 裂开clinical thermometer 体温计clip 夹子clockwise moment 顺时针力矩closed circuit 闭合电路closed pipe 闭管closed tube 闭管closed-loop control system 死循环控制系统closed-loop gain 死循环增益closed-loop voltage gain 死循环电压增益closely packed 密堆积的cloud chamber 云室cloud chamber track 云室径迹coaxial 共轴,同轴coaxial cable 同轴电缆,同轴? cobalt 钴code 编码coder 编码器coefficient of dynamic friction 动摩擦系数coefficient of friction 摩擦系数coefficient of restitution 恢复系数coefficient of static friction 静摩擦系数coefficient of viscosity 黏滞系数coherent 相干的cohesion 内聚力,内聚cohesive force 内聚力coil 线圈collector 集电极,集极collector current 集电极电流,集极电流collimator 准直管,准直仪collision 碰撞colour 颜色colour code 色码,色标combinational logic 组合逻辑common emitter 共发射极common-mode voltage 共模电压commutator 换向器compass 指南针,罗盘complete circuit 完整电路component 组件,分量,组分component of force 分力compound microscope 复式显微镜compound pendulum 复摆compressed gas 压缩气体compressibility 可压缩性,压缩系数,压缩率compressible fluid 可压缩性流体compression 密部,压缩compression spring balance 压缩弹簧天平concave 凹concave lens 凹透镜concave mirror 凹镜,凹面镜concentric capacitor 同心电容器condensation 凝结,凝聚condensation nucleus 凝结核,凝聚核condensation point 凝点,凝结点condenser 聚光器,电容器,冷凝器conductance 电导conductivity 传导性,传导率conductor 导体conical pendulum 锥摆conjugate foci 共轭焦点conservation of angular momentum 角动量守恒conversation of charge 电荷守恒conservation of energy 能量守恒conservation of mechanical energy 机械能守恒conservation of momentum 动量守恒conservative force 守恒力,保守力conserved 守恒constant acceleration 恒加速度constant angular acceleration 恒角加速度constant angular velocity 恒角速度constant force 恒力constant motion 恒速运动constant pressure 定压constant speed 恒速率constant temperature 定温constant velocity 恒速度constant volume 定容constant volume gas thermometer 定容气体温度计constantan 康铜constriction 颈缩constructive interference 相长干涉contact angle 接触角contact area 接触面积contact force 接触力continuity equation 连续性方程continuous spectrum 连续光谱,连续谱continuous wave 连续波contract 收缩control experiment 对照实验,比对实验control grid 控制栅极control rod 控制棒control system 控制系统convection 对流converge 会聚converging lens 会聚透镜converging mirror 会聚镜convex 凸convex lens 凸透镜convex mirror 凸镜,凸面镜coolant 冷却剂cooling by evaporation 蒸发致冷cooling correction 冷却修正cooling curve 冷却曲线? cooling effect 冷却效应cooling system 冷却系统,散热系统coplanar forces 共面力core 心,核心Coriolis force 科里奥利力corkscrew rule 螺旋法则cornea 角膜corona discharge 电晕放电corpuscular theory of light 光的微粒学说correction 矫正,修正cosmic radiation 宇宙辐射coulomb 库伦Coulomb?s law 库伦定律count rate 计数率counter 计数器counter weight 平衡锤,配重couple 力偶coupled oscillation 耦合振荡coupling 耦合covalent bond 共价键crane magnet 起重磁铁creep 蠕变crest 波峰critical angle 临界角critical damping 临界阻尼critical mass 临界质量critical point 临界点critical temperature 临界温度critical velocity 临界速度crocodile clip 鳄鱼夹cross hairs 十字丝,叉丝cross-sectional area 截面积Crova?s disc 克罗瓦盘crystal 晶体crystal diffraction 晶体衍射,晶体绕射crystal lattice 晶体点阵,晶体格子,晶格crystal planes 晶面crystalline 结晶的crystallization 结晶crystallography 晶体学cubical expansivity 体积膨胀系数,体积膨胀率curie 居里current 电流current amplification 电流放大current amplification factor 电流放大因素current amplifier 电流放大器current balance 电流天平current density 电流密度current gain 电流增益current intensity 电流强度current pulse 电流脉冲current sensitivity 电流灵敏度current stabilizer 稳流器current transfer characteristic 电流转移特性current-carrying conductor 载电流导体current-voltage characteristic curve 电流—电压特性曲线? curved mirror 曲面镜cyclotron 回旋加速器cylindrical concave lens 柱面凹透镜cylindrical concave mirror 柱面凹镜cylindrical convex lens 柱面凸透镜cylindrical convex mirror 柱面凸镜cylindrical lens 柱面透镜cylindrical mirror 柱面镜D d.c. generator 直流发电机 d.c. motor 直流电动机Dalton?s law of partial pressures 道尔顿分压定律damped harmonic motion 阻尼谐动damped harmonic oscillation 阻尼谐振damped oscillation 阻尼振荡damping 阻尼damping force 阻尼力dark fringe 暗纹data 数据dating 年代测定daughter nucleus 子核daughter nuclide 子核素de Broglie relation 德布罗意关系式de Broglie wave 德布罗意波dead time 失效时间decade capacitance box 十进电容箱decade resistance box 十进电阻箱decay 衰变decay analogue 衰变模拟decay constant 衰变常数,衰变常量decay curve 衰变曲线? decay law衰变定律decay product 衰变产物decelerate 减速deceleration 减速度decibel 分贝decode 译码,解码decoder 译码器,译码器deflection 偏转deflection plate 偏转板deflection system 偏转系统deflection tube 偏转管deformation 形变degradation of energy 能量退降,能量递降degree 度degree Celsius 摄氏度degree of freedom 自由度demagnetization 去磁,退磁demonstration diode 演示用二极管demonstration meter 演示用电表density 密度depletion layer 耗尽层,阻挡层depth of field 景深derived quantity 导出量derived unit 导出单位destructive interference 相消干涉detection 探测detector 探测器detector of radiation 辐射探测器deuterium 氘,重氢deuteron 氘核,重氢核deviation 偏向,偏差device 装置,设计,器件diamagnetism 抗磁性diaphragm 光阑,膜片diatomic molecule 双原子分子dielectric 电介质,介电的dielectric constant 介电常数,介电常量,电容率dielectric polarization 电介质极化dielectric strength 电介质强度differential equation 微分方程differential input voltage 差动输入电压diffracted ray 衍射线,绕射线? diffraction 衍射,绕射diffraction grating 衍射光栅,绕射光栅diffuse reflection 漫反射diffusion 扩散,漫射diffusion cloud chamber 扩散云室digital 数字的digital display 数字显示digital signal 数字讯号digital-to-analogue conversion 数模转换dimension 量纲,因次,维,大小dimensional analysis 量纲分析,因次分析diminished 缩小diode 二极管diode probe 二极管微波探测器dioptre 屈光度,焦度dipole 偶极子direct current 直流电direction 方向,方位direction of propagation 传播方向directly heated cathode 直热式阴极discharge 放电disintegration 蜕变dislocation 位错dispersion 色散dispersive power 色散能力,色散本领,色散率displacement 位移,排量displacement can 排水罐displacement-time graph 位移—时间关系线图dissipative force 耗散力distance 距离distance-time graph 距离—时间关系线图distortion 失真,扭曲,畸变disturbance 干扰diverge 发散diverging lens 发散透镜diverging mirror 发散镜division of amplitude 振幅分割division of wavefront 波阵面分割,波前分割domain 畴,域domestic circuit 家居电路donor 给予体doped semiconductor 掺杂半导体doping 掺杂Doppler broadening 多普勒谱线增宽Doppler effect 多普勒效应Doppler shift 多普勒频移dosage 剂量dose 剂量dose rate 剂量率double pulley 双滑轮double refraction 双折射double slit 双缝double-pole-double-throw switch 双刀双掷开关doublet 双重线? drag force 阻力,曳力drift velocity 漂移速度driver circuit 驱动电路driver frequency 驱动频率driving cell 驱动电池driving force 驱动力driving mirror 行车后视镜dry battery 干电池组dry cell 干电池dual trace oscilloscope 双迹示波器ductile 延性的Dulong-Petit law 杜隆—珀替定律dynamic equilibrium 动态平衡dynamic friction 动摩擦dynamic resistance 动态电阻dynamics 动力学dynamo 发电机E earth 接地,地线? earthquake waves 地震波ebonite 硬橡胶,硬质胶ebonite rod 硬橡胶棒,硬质胶棒echo 回声,回波eddy current 涡电流,涡流eddy current damping 涡流阻尼eddy current loss 涡流损耗effective mass 有效质量efficiency 效率effort 施力Einstein?s mass-energy relation 爱因斯坦质能关系式elastic collision 弹性碰撞elastic constant 弹性常数,弹性常量elastic deformation 弹性形变elastic hysteresis 弹性滞后elastic limit 弹性极限elastic strain energy 弹性应变能elasticity 弹性electric bell 电铃electric charge 电荷electric current 电流electric field 电场electric field intensity 电场强度electric field pattern 电场图形electric fire 电暖炉electric line of force 电力线? electric motor 电动机electric potential 电势,电位electric power 电功率electric shock 电震electrical appliance 电器electrical conductivity 导电率electrical energy 电能electrical oscillation 电振荡electrical potential energy 电势能,电位能electrical resonance 电共振electricity 电,电学electrode 电极electrolysis 电解electrolyte 电解质electrolytic 电解质的,电解的electrolytic capacitor 电解质电容器electromagnet 电磁铁,电磁体electromagnetic coil 电磁感应圈electromagnetic contact 电磁触点electromagnetic force 电磁力electromagnetic induction 电磁感应electromagnetic moment 电磁矩electromagnetic oscillation 电磁振荡electromagnetic radiation 电磁辐射electromagnetic spectrum 电磁波谱electromagnetic wave 电磁波electromagnetism 电磁学electrometer 静电计electromotive force 电动势electron 电子electron beam 电子束electron cloud 电子云electron diffraction 电子衍射,电子绕射electron drift 电子漂移electron energy level 电子能级electron gun 电子枪electron transition 电子跃迁electron tube 电子管electron-volt 电子伏特,电子伏electronics 电子学electrophorus 起电盘electroscope 验电器electrostatic bond 静电键electrostatic field apparatus 静电场仪器electrostatic precipitation 静电沉淀法electrostatics 静电学element 元素,组件elliptic orbit 椭圆轨道elongation 伸长度emergent ray 出射线? emission 发射emission line 发射谱线? emission spectrum 发射光谱,发射谱emissivity 发射率,比辐射率emit 发射emitter 发射极,射极emitter current 发射极电流,射极电流enamelled wire 漆包线? encode 编码encoder 编码器end-correction 端部修正,管口校正量end-on collision 同向碰撞,尾追碰撞energetic particle 高能粒子energy 能量,能energy band 能带energy conversion 能量转换energy conversion efficiency 能量转换效率energy input 能量输入energy level 能级energy output 能量输出energy transfer 能量转移enriched uranium 浓缩铀equation of continuity 连续性方程equation of state 物态方程equation of uniformly accelerated motion 匀加速运动方程equatorial orbit 赤道轨道equilibrium 平衡equilibrium condition 平衡条件equilibrium spacing 平衡间距equipartition of energy 能量均分equipotential 等势的,等位的equipotential line 等势线,等位线? equipotential surface 等势面,等位面equivalent capacitance 等效电容equivalent inductance 等效电感equivalent resistance 等效电阻erect 正立escape velocity 逃逸速度ether 以太,醚evacuation 抽成真空evaporation 蒸发excess pressure 超压,逾电压excitation 激发excitation energy 激发能excitation potential 激发电势,激发电位excitation voltage 激发电压excited 受激excited energy level 受激能级excited state 受激态expansion 膨胀expansivity 膨胀系数,膨胀率exponential change 指数式改变exponential decay 指数式衰变exposure 曝光量,照射extension 伸长external force 外力external work 外功extra high tension 超高电压extra-nuclear structure 核外结构extraordinary ray 非常光线? extrapolation 外推,外推法extrinsic semiconductor 含杂质半导体eyepiece 接目镜,目镜F f-number f数,光圈数f-stop f制光圈far point 远点farad 法拉Faraday constant 法拉第常数,法拉第常量Faraday?s law of electromagnetic induction 法拉第电磁感应定律fast breeder reactor 快中子增殖反应堆feedback 反馈feedback amplifier 反馈放大器feedback resistance 反馈电阻ferromagnetic substance 铁磁性物质ferromagnetism 铁磁性fictitious force 假力,伪力fidelity 保真性,保真度field coil 场线圈field effect transistor 场效应晶体管field intensity 场强field lines 场力线? field magnet 场磁铁,场磁体field of view 视场,视野field strength 场强figure of merit 优值,灵敏值filament 灯丝,丝极filter capacitor 滤波电容器filter circuit 滤波电路filter pump 滤泵final state 终态,末态final velocity 末速度fine-adjustment 微调,细调fire alarm 火警警报器,火警钟first law of thermodynamics 热力学第一定律first order spectrum 第一级光谱,第一级谱fission 裂变fission reactor 裂变反应堆fixed point 定点fixed pulley 定滑轮fixed resistor 定值电阻器flat coil 扁平线圈flat solenoid 扁平螺线管flat-bottomed flask 平底烧瓶Fleming?s left hand rule 弗林明左手定则Fleming?s right hand rule 弗林明右手定则floating body 浮体fluid 流体fluid dynamics 流体动力学fluorescence 荧光fluorescent screen 荧光屏,荧光幕flux 通量flux density 通量密度fly-back 回扫flywheel 飞轮focal length 焦距focal plane 焦平面focus 焦点,聚焦,对焦focus control 聚焦控制follower circuit 跟随电路foot pump 脚踏泵force 力force constant 力常数,力常量force polygon 力多边形force resolution 力的分解force triangle 力三角形force-extension curve 施力—伸长关系曲线? forced oscillation 受迫振荡former 框forward biased 正向偏压forward current 正向电流fossil fuel 化石燃料Foucault?s rotating mirror method 傅科旋转镜法frame of reference 参考坐标系,参考系Franck-Hertz experiment 弗兰克—赫兹实验Fraunhofer diffraction 夫琅和费衍射,夫琅和费绕射Fraunhofer lines 夫琅和费谱线? free electron 自由电子free fall 自由下坠,自由下落free falling body 自由落体free oscillation 自由振荡free path 自由程free space 自由空间freeze 凝固freezing point 凝固点freon 氟利昂,二氯二氟甲烷frequency 频率frequency modulation 调频,频率调制frequency response 频率响应Fresnel diffraction 菲涅耳衍射,菲涅耳绕射Fresnel?s biprism 菲涅耳双棱镜friction 摩擦,摩擦力friction compensated 补偿摩擦作用frictionless motion 无摩擦运动fringe 条纹fringe pattern 条纹图形fuel rod 燃料棒fulcrum 支点full adder 全加法器full-scale deflection 满标偏转full-wave rectification 全波整流full-wave rectifier 全波整流器fundamental frequency 基频fundamental mode of vibration 基谐振动模式fundamental note 基音fundamental quantity 基本量fundamental unit 基本单位fuse 保险丝fuse rating 保险丝额定值fusion 熔解,聚变fusion point 熔点fusion reactor 聚变反应堆G G - clamp G-形钳gain 增益gain control 增益控制galaxy 星系Galilean telescope 伽利略望远镜Galileo?s thought experiment 伽利略假想实验galvanometer 电流计,检流计gamma radiation 伽玛辐射gamma ray 伽玛射线? gap 隙gas 气,气体gas pressure 气体强压,气压gaseous phase 气相gaseous state 气态gauge 规,计Gauss theorem 高斯定理Geiger counter 盖革计数器Geiger-Marsden scattering experiment 盖革—马斯登散射实验Geiger-Muller counter 盖革—弥勒计数器Geiger-Muller tube 盖革—弥勒管general gas equation 普适气体方程general gas law 普适气体定律generator 发电机genetic effect 遗传效应geometrical optics 几何光学germanium 锗ghost effect 迭影效应glancing angle 掠射角glass fibre 玻璃纤维glycerine 甘油gold foil 金箔fold leaf electroscope 金箔验电器gradient 斜率,梯度graduated cylinder 量筒Graham?s law of diffusion 格拉哈姆散定律grain 粒,晶粒gramophone record 唱片,唱碟graph 图,线图,图表graphical method 图解法grating 光栅grating spectrometer 光栅光谱仪,光栅分光计gravitational acceleration 重力加速度gravitational attraction 引力,重力gravitational constant 引力常数,引力常量gravitational field 引力场,重力场gravitational force 引力,重力gravitational mass 引力质量gravitational potential 引力势,重力势gravitational potential difference 引力势差,重力势差gravitational potential energy 引力势能,重力势能gravity 重力grazing incidence 掠入射,切入射greenhouse effect 温室效应grid 栅极grid control 栅极控制grid system 电力网groove 纹道,针槽,开槽ground 接地ground state 基态guinea and feather experiment 「硬币与羽毛」实验H hair spring 游丝half adder 半加法器half-life 半衰期half-silvered mirror 半镀银镜half-wave rectification 半波整流half-wave rectifier 半波整流器Hall effect 霍耳效应Hall probe 霍耳探测器Hall voltage 霍耳电压hand stroboscope 手动式频闪观测器harmonic 谐音harmonic motion 谐运动harmonic oscillation 谐振荡head-on collision 对正碰撞,正碰heat 热,热量,加热,热学heat absorbent 吸热剂heat absorber 吸热器heat absorption 吸热,热吸收heat capacity 热容量heat conduction 热传导heat exchange 热交换heat flow 热流heat gain 热增益,得热heat insulation 热绝缘,隔热heat loss 热损耗,失热heat proof 耐热的,隔热的heat pump 热泵heat radiation 热辐射heat reservoir 热库,储热器heat sink 热壑heat transfer 热传递,热转移heater 发热器,加热器heating effect 热效应heating element 发热组件Helmholtz coils 亥姆霍兹线圈henry 亨利,亨hertz 赫兹,赫high dispersion prism 高色散棱镜high tension 高电压hole 空穴,空子hollow plastic lens 空心塑料透镜hollow plastic prism 空心塑料棱镜hologram 全息图holography 全息术,全息学Hooke?s law 虎克定律horizontal 水平horizontal component 水平分量horizontal deflection 水平偏转horseshoe magnet 蹄形磁铁hot cathode 热阴极hour 小时Huygens? principle 惠更斯原理hydraulic press 水压机hydroelectric power 水力发电hydrogen bomb 氢弹hygrometer 湿度计hyperbolic orbit 双曲线轨道hypodermic needle 皮下注射针头hypodermic syringe 皮下注射针筒hypothesis 假说,假设hysteresis 滞后现象I ideal gas 理想气体ideal gas equation 理想气体方程ideal gas temperature scale 理想气体温标ideal machine 理想机械illuminate 照明,照亮image 像image distance 像距immerse 浸没immersion heater 浸没式电热器impact 碰撞impedance 阻抗impulse 冲量impurity 杂质in focus 焦点对准in parallel 并联in phase 同相in series 串联incident ray 入射线? incident wavefront 入射波阵面,入射波前inclined plane 斜面incoherent 不相干的incompressible fluid 非压缩性流体indicator 指示器indirectly heated cathode 旁热式阴极induced charge 感生电荷induced current 感生电流induced e.m.f. 感生电动势induced voltage 感生电压? inducing charge 施感电荷inducing current 施感电流inductance 电感inductance capacitance coupled circuit 感容耦合电路inductance coil 电感线圈induction 感应induction heating 感应生热inductive circuit 电感电路inductive component 电感性分量inductive reactance 感抗inductor 电感器,感应器inelastic collision 非弹性碰撞inert gas 惰性气体inertia 惯性,惯量inertia balance 惯性秤inertial frame 惯性坐标系,惯性系inertial mass 惯性质量infra-red detector 红外线探测器infra-red radiation 红外辐射infra-red ray 红外线? initial state 初态initial velocity 初速度input 输入input bias current 输入偏压电流input characteristic 输入特性input current 输入电流input offset current 输入补偿电流input power 输入功率input resistance 输入电阻input voltage 输入电压input-output voltage characteristic 输入—输出电压特性instantaneous acceleration 瞬时加速度instantaneous angular velocity 瞬时角速度instantaneous current 瞬时电流instantaneous power 瞬时功率instantaneous speed 瞬时速率instantaneous velocity 瞬时速度instantaneous voltage 瞬时电压insulation 绝缘insulator 绝缘体integrated circuit 集成电路intensity 强度intensity control 强度控制intensity of current 电流强度interaction 相互作用interatomic force 原子间力interatomic potential 原子间势,原子间位interatomic separation 原子间距intercept 截距,截段interconversion 互换interference 干涉interference pattern 干涉图形internal energy 内能internal force 内力internal resistance 内电阻internal work 内功international system of units 国际单位制,公制,十进制interval 间隔intrinsic semiconductor 纯半导体,本征半导体inverse-square law 平方反比定律inverted 倒立的inverter 反相器,倒换器inverting input 反相输入ion 离子ion-pair 离子偶,离子对ionic bond 离子键ionic structure 离子结构ionization 电离作用ionization chamber 电离室ionization current 电离电流ionization energy 电离能ionization potential 电离电势,电离电位ionization voltage 电离电压ionize 电离ionized atom 离子ionized layer 电离层ionizing power 致电离能力,致电离本领ionizing radiation 致电离辐射ionosphere 电离层iris 虹膜,可变光阑iron core 铁心iron filings 铁粉irreversible process 不可逆过程isobar 等压线,同质异序素isobaric expansion 等压膨胀isobaric process 等压过程isochronous oscillation 等时振荡isotherm 等温线? isothermal process 等温过程isotope 同位素isovolumetric process 等容过程J Jaegers method 耶格法jet propulsion 喷气推进jockey 滑动触头joule 焦耳joulemeter 焦耳计junction 连接,接头junction diode 面结型二极管junction transistor 面结型晶体管K Kaleidoscope 万花筒Kelvin 开尔文,开Kelvin temperature scale 开氏温标Kepler?s law 开普勒定律key 电键kilogram 千克kilowatt 千瓦特,千瓦kilowatt-hour 千瓦小时,千瓦时kilowatt-hour meter 电表,千瓦时计kinematics 运动学kinetic energy 动能kinetic friction 动摩擦kinetic theory 分子运动论kinetic theory model 分子运动模型kinetic theory of gases 气体分子运动论Kirchhoff?s law 基尔霍夫定律kit 套件knife-edge 刃形支承,刀刃,刀边kryton 氪Kundt?s tube 孔脱管L lagging 保温套laminar flow 层流laminated 分层的,迭片的laser 激光,激光器laser beam 激光束laser material 激光材料latch 闩锁latent heat 潜热lateral 横向,侧向,旁向lateral inversion 横向倒置lateral magnification 横向放大,横向放大率lateral search coil 横向探察线圈lattice 点阵,晶格lattice spacing 点阵间隔,点阵间距law 定律law of conservation of momentum 动量守恒定律law of reflection 反射定律law of refraction 折射定律lead 导线,铅lead-acid accumulator 铅酸蓄电池leakage current 漏泄电流least distance of distinct vision 最小明视距离Leclanche cell 勒克朗谢电池length 长度lens 透镜,晶体,晶状体lens formula 透镜公式lens holder 透镜座lens marker?s formula 透镜制造者公式Lenz?s law 楞次定律leukaemia 白血病lever 杠杆light 光,光学light beam 光束,光柱light dependent resistor 光敏电阻器light emitting diode 发光二极管light guide 光导light pipe 光导管light ray 光线? light sensitive resistor 光敏电阻器light source 光源lightning 闪电lightning conductor 避雷针limiting angle 极限角limiting friction 极限摩擦line of action 作用线? line of force 力线? line spectrum 线状光谱,线状谱linear air track 线性气垫导航linear electronics 线性电子学linear expansivity 线性膨胀系数,线性胀率linear flow 线流linear momentum 线动量linear voltage amplification 线性电压放大率linearly polarized wave 线偏振波liquefaction 液化liquid 液体liquid crystal 液晶体liquid phase 液相liquid pressure 液体压强liquid-in-glass thermometer 玻管液体温度计Lissajous figure 利萨如图形live 载电,活线,火线Lloyd?s mirror 洛埃镜load 负荷lodestone 磁石logic gate 逻辑门logic level 逻辑电平,逻辑级logic level indicator 逻辑电平指示器,逻辑级指示器logic value 逻辑值long sight 远视long wave 长波longitudinal magnification 纵向放大,纵向放大率longitudinal wave 纵波loop 回路,圈Lorentz force 洛兰兹力Lorentz rotating disc 洛兰兹旋转盘loudness 响度loudspeaker 扬声器low frequency a.c. generator 低频交流发电机low voltage 低电压low voltage immersion heater 低压浸没式电热器lower limit 下限lycopodium powder 石松粉Lyman series 赖曼系,赖曼光谱M Mach number 马赫数machine 机械macroscopic 宏观的magnadur magnet 玛格纳多尔磁铁magnet 磁铁,磁体magnet keeper 永久磁铁衔铁magnetic domain磁畴,磁域magnetic effect 磁效应magnetic field 磁场magnetic field board 磁场板magnetic field intensity 磁场强度magnetic field strength 磁场强度magnetic flux 磁通量magnetic flux density 磁通量密度magnetic flux linkage 磁链,磁键,磁通匝数magnetic force 磁力magnetic hysteresis 磁滞magnetic induction 磁感应强度,磁感应magnetic line of force 磁力线? magnetic material 磁性材料magnetic meridian 磁子午线? magnetic moment 磁矩magnetic north pole 磁北极magnetic permeability 磁导率magnetic pole 磁极magnetic screen 磁屏magnetic shield 磁屏magnetic south pole 磁南极magnetic susceptibility 磁化率magnetic tape 磁带magnetic tape recorder 磁带录音机magnetic torque 磁矩magnetic track 磁迹magnetism 磁学,磁性magnetization 起磁,磁化作用magnetize 磁化magnetizing current 磁化电流magnification 放大,放大率magnified 放大的magnifying glass 放大镜magnifying power 放大率magnitude 量,量值mains frequency 市电频率mains immersion heater 市电浸没式热器mains supply 市电电源majority carriers 多数载流子malleable 展性的,韧性的Maltese cross tube 马尔塔十字管manometer 流体压强计mass 质量mass defect 质量亏损mass number 质量数mass spectrometer 质谱仪mass-energy relation 质能关系matter wave 物质波maximum error 最大误差mean free path 平均自由程measurement 测量mechanical advantage 机械利益mechanical efficiency 机械效率mechanical energy 机械能mechanical oscillation 机械振荡mechanical wave 机械波mechanism 机制,机理medium 介质medium wave 中波Melde?s experiment 迈尔德实验melt 熔化melting point 熔点meniscus 弯液面,弯月面meniscus lens 凹凸透镜,弯月形透镜mercury 汞,水银metal fatigue 金属疲劳fetal grid 金属珊metallic bond 金属键metastable 亚稳态的,介稳态的method of dimensions 维量法,因次法method of no-parallax 无视差法metre 米metre bridge 滑线电桥,米尺电桥metre rule 米尺mica 云母mica capacitor 云母电容器microammeter 微安培计,微安计microelectronics 微电子学micrometer 测微计micrometer screw gauge 螺旋测微计microphone 微音器,传声器microscope 显微镜microscopic 微观的microwave 微波microwave apparatus 微波仪器microwave receiver 微波接收器microwave transmitter 微波发送器milliammeter 毫安计,毫安计Millikan experiment 密立根实验millimetre 毫米minimum deviation 最小偏向minority carrier 少数载流子minute 分,分钟mirage 海市蜃楼,蜃景mirror 镜mirror formula 球面镜公式mobility 动性,迁移率mode 模式model eye 眼球模型model power line 输电线模型moderator 减速剂,缓和剂modulation 调制,调节module 组件modulus of elasticity 弹性模量modulus of rigidity 刚性模量molar gas constant 摩尔气体常数,摩尔气体常量molar heat capacity 摩尔热容量molar volume 摩尔体积mole 摩尔molecular bombardment 分子撞击molecular force 分子力molecular motion 分子运动molecular polarization 分子极化molecular separation 分子间距molecular structure 分子结构molecule 分子moment 矩moment arm 矩臂,力臂moment of couple 力偶矩moment of dipole 偶极矩moment of force 力矩moment of inertia 转动惯量moment of momentum 动量矩momentum 动量monatomic molecule 单原子分子monochromatic light 单色光motion 运动motor 电动机motor rule 电动机法则movable pulley 动滑轮moving-coil galvanometer 动圈式电流计,动圈式检流计moving-coil loudspeaker 动圈式扬声器moving-coil meter 动圈式电表multiflash photography 多闪照相法multimeter 万用电表,多用电表multiple image 复像multiple reflection 多次反射multiplication process 倍增过程multiplier 倍加器multivibrator 多谐振荡器musical instrument 乐器mutation 突变multiple-slit interference 多缝干涉mutual inductance 互感mutual induction 互感应mutually perpendicular 互相垂直的。

ECCM18 - 18th European Conference on Composite Mat

ECCM18 - 18th European Conference on Composite Mat

THERMOPLASTIC INFUSIBLE RESIN SYSTEMS: CANDIDATES FORTHE MARINE SECTOR?Niamh Nash1, Carlos Bachour Sirerol1, Ioannis Manolakis1 and Anthony J. Comer11Irish Composites Centre (IComp), School of Engineering, Bernal Institute, University of Limerick,V94 T9PX, Limerick, IrelandKeywords: Liquid resin infusion, thermoplastic, laminate, conditioning, mechanical testingAbstractThis work investigated the feasibility of the use of a novel infusible thermoplastic resin (Elium 150 from Arkema) for composite laminate manufacture by resin infusion methods and possible application in the shipbuilding sector. We compared the properties of Elium glass-fibre laminates with those of laminates infused with state-of-the-art thermosetting epoxy and urethane acrylate resins. The Elium laminates matched the mechanical performance (flexure and interlaminar shear strength) of the epoxy and surpassed that of the urethane acrylate counterpart. However, the mechanical performance of the Elium laminates after immersion in water at 35 o C for 28 days deteriorated compared to urethane acrylate, but was comparable in flexural properties to that of the epoxy. The combination of superior mechanical performance coupled with acceptable environmental resistance and comparable composite laminate manufacturing conditions makes the infusible thermoplastic a possible future candidate matrix over commercial thermosetting resin options.1. IntroductionFibre-reinforced polymer (FRP) composite materials find increasing acceptance and application in a number of transport sectors (aviation, land & waterborne transport [1]) due to their lightweight nature which provides a significant advantage in terms of lower fuel consumption and greenhouse gas emissions, in line with relevant EU directives.Particularly in waterborne transport and shipbuilding, FRP composites are currently dominating the manufacture of vessels up to 50 m in length, with liquid resin infusion (LRI) being the most frequently used manufacturing technique and vacuum-assisted resin transfer moulding (VARTM) in particular the most widely adopted LRI variant. The primary options for the reinforcement include glass and carbon fibres, whilst thermosetting resins are a traditional choice for the matrix.Recent developments in the field have seen the introduction of novel, infusible thermoplastic resins into the market [2], with low viscosities and thus suitable for resin infusion processing. The use of a thermoplastic matrix has a number of potential advantages over a thermoset (performance, re-processable, recyclable). Moreover, when compared to thermosetting systems based on styrene as reactive diluent (e.g. polyester, vinylester, urethane acrylate), the novel infusible thermoplastic option provides a styrene-free offering with otherwise similar characteristics (e.g. resin viscosity, time to gel point), yet with distinct environmental benefits.In this work we conducted an extensive, direct comparison of FRP composite laminates manufactured by VARTM with a novel infusible acrylic thermoplastic (Elium 150 from Arkema), and state-of-the-art thermosetting resins. Our comparison included manufacturing aspects (infusion time,recommended curing and post-curing schedule) as well as laminate quality, and mechanical and thermomechanical performance in both dry and wet (after immersion in water) conditions.2. Materials and Methods2.1. Manufacturing of Composite Laminates by VARTMComposite laminates (350 x 500 mm) were manufactured on glass or aluminium tools at room temperature. Unidirectional non-crimp glass fabric (Saertex UD NCF 996 gsm with PPG Hybon 2002 E-glass fibre) was the reinforcement of choice along with two thermosetting resins (urethane acrylate Crestapol 1210 from Scott Bader and epoxy Prime 27 from Gurit) and an infusible thermoplastic (Elium 150 from Arkema). The recommended ratios of hardener/catalyst/accelerator (as appropriate) from the supplier were used for each system. Four (4) plies of glass fabric were cut in the above mentioned dimensions and placed on the tool in a symmetric/unidirectional stacking sequence [0o]2S with a glass preform mass of approximately 650 g targeting a nominal laminate thickness of 3 mm. The infusion time was measured from the opening of the resin inlet to the closure of the outlet (outlet was closed on observing bubble-free resin in the outlet tube).2.2. Mechanical testing2.2.1. Interlaminar shear strength (ILSS)Interlaminar shear strength tests were conducted according to ISO 14130. Five (5) samples of 30 x 15 x 3 mm were used for each laminate to determine the apparent inter-laminar shear strength (ILSS). 2.2.2. 3-point bendingFlexure tests were conducted according to ISO 14125. Five (5) samples of 80 x 15 x 3 mm were used for each laminate to determine the flexural strength and flexural modulus for each case.2.3. Dynamic Mechanical AnalysisDynamic Mechanical Analysis was performed in a TA Instruments (USA) Q800 Dynamic Mechanical Analyser in 3-point bend testing mode, with a displacement amplitude of 10 μm and frequency of 1Hz. Laminate specimens with nominal dimensions of L x W x T equal to 50 x 12 x 3 mm were used. The specimens were heated from ambient temperature to an appropriate end temperature based on their expected T g at a rate of 5°C/min. Storage modulus (E’), loss modulus (E’’) and tanδ were recorded. 2.4. Scanning Electron MicroscopyCross-sections of the composite laminates were examined using a Hitachi SU-70 Analytical Field Emission SEM, at accelerating voltage of 10 kV and working distance of 10 mm. Specimens were examined as received, and after manual polishing (using P800 and P1000 SiC paper). The samples were sputter-coated with gold for 30 seconds using an Emitech K550 sputter coater before SEM observation.2.5. DensitySpecific gravity was calculated by the displacement method according to ASTM D792-08, using five (5) samples for each laminate with dimensions 25 x 12 x 3 mm.2.6. Fibre volume fraction (V f)Fibre volume fractions were determined by a resin burn-off test according to ISO 1172, using five (5) samples for each laminate.2.6. Water immersion studiesLaminate specimens for ILSS and flexure were immersed in distilled water in a water bath at 35 o C for 28 days, and tested after removal. Three samples were used for each laminate in each test (with the exception of Prime 27, for which two ILSS specimens were measured due to equipment issues).3. Results and DiscussionThe comparison of the composite laminates in this study was conducted across a number of aspects, namely manufacturability for resin infusion (resin/curing agent formulation, viscosity, infusion temperature and time, curing and post curing requirements), quality of produced laminates (achieved fibre volume fraction and T g), mechanical properties as-manufactured and effect of water immersion on mechanical properties.The manufacturing details for the three laminates are presented in Table 1. It is evident that the infusible thermoplastic is quite similar in terms of viscosity and infusion time at room temperature to its thermosetting counter parts. It also doesn’t require any post-curing according to the resin manufacturer; it can be left to cure at room temperature on the tool overnight, and is subsequently easily demoulded. This is a particularly attractive feature for complex shapes with curvature, which are quite abundant in shipbuilding.Table 1. VARTM manufacturing details for composite laminatesResin Details Resin:Curingagent(s)(w/w)Viscosity a(cP)ToolInfusiontime/T(min/o C)CuringschedulePost-curingscheduleUrethaneAcrylate CRESTAPOL1210 100:2:1:1b175 cP at25 °C(neat resin)Glass 11/21.1 1h at RT NonerequiredEpoxy PRIME 27100:28(Prime 27 slowhardener)285 cP at20 °C(mixture)Glass 15/18.81h at 45 °COvernightat RT7h at 65 o CAcrylic thermoplastic ELIUM 150100:2.5(benzoylperoxideLuperox A40FP-EZ9)100 cP at25 °C(neat resin)Glass 23/21.9 Overnightat RTNonerequireda: values from TDS; b: 2 parts by weight of Accelerator D (10% solution of dimethyaniline in styrene) : 1 part by weight of Accelerator G (1% cobalt solution in styrene) : 1 part by weight of peroxide catalyst (Trigonox 44B)All three laminates were shown to reach the expected T g levels when tested by DMA [3-5], indicating a complete cure cycle. Elium 150 is expected to show a heat deflection temperature of 109 o C, and indeed showed an onset transition in the storage modulus at 96 o C and a peak in the loss modulus at 107 o C (Figure 1).Mechanical properties of the as-manufactured composite laminates are summarized in Table 2. The achieved fibre volume fractions for all three resins were in the region of 56-58% (using the same UD glass fabric), indicating again that the infusible thermoplastic behaves in terms of manufacturing very similar to a thermosetting resin. Elium 150 clearly exceeded the urethane acrylate (Crestapol 1210) thermoset in both interlaminar shear and flexural strength values. Compared to the standard epoxy (Prime 27), Elium showed higher flexural and slightly lower interlaminar shear strength values. Overall, it is quite clear that Elium 150 is comparable in its performance to the epoxy laminate and outperforms the laminate made from a styrene-based resin in the dry condition.Figure 1. Dynamic mechanical analysis profile of the Elium 150/glass laminateTable 2. Mechanical (ILSS, flexure) and physical (V f, density) properties of composite laminates inthe Dry ConditionResin DetailsV f(%)Density(g/cm3)Apparent Inter-Laminar ShearStrength(MPa)*FlexuralStrength(MPa)*FlexuralModulus(GPa)*Urethane Acrylate CRESTAPOL 121057(±0.3%)2.017(±0.7%)42.09(±3.0%)790.61(±11.3%)34.52(±2.0%)Epoxy PRIME 2758(±0.9%)2.061(±0.5%)58.04(±2.4%)917.1(±2.4%)35.37(±2.8%)Acrylic thermoplastic ELIUM 15056(±1.0%)1.999(±0.4%)56.87(±3.6%)942.8(±3.8%)33.86(±1.6%)*Minimum required laminate property values in accordance with [6]: ILSS at least 15 MPa; Flexural Strength and Flexural Modulus for a laminate with equivalent fibre mass fraction (0.72) at least 367 MPa and 19.5 GPa, respectivelyScanning Electron Microscopy on cross-sections from the as-manufactured laminates provided information on the infusion quality/void content and the matrix/fibre interface. All laminates showed generally good fibre impregnation (a selection of SEM images in Figures 2a, 2b, 3a), as expected from their good mechanical properties (Table 2).a bc de f Figure 2. SEM images of the Elium 150/glass laminate cross-sections: as-manufactured (a, b; polished; Table 2) and after immersion in water for 28 days at 35 o C (c, d: polished; e, f: unpolished; Table 3). Longitudinal lines in the polished samples come from the polishing action/direction.The effect of prolonged water immersion on the mechanical properties of the three laminates is detailed in Table 3. Water absorption less than 70 mg (after 7 days of immersion), and a drop in mechanical properties no greater than 25% after 28 days are the main requirements for material qualification in shipbuilding [6].Figure 3. SEM images of the Prime 27/glass laminate polished cross-sections (a: as-manufactured; b: after immersion in water for 28 days at 35 o C). Longitudinal lines come from the polishing action/direction.Elium 150 appeared to absorb similar amounts of water to the epoxy. The urethane acrylate laminate recorded the lowest water uptake and the smallest drop in all mechanical properties. The Elium laminate showed the sharpest drop in ILSS value (37.5%) compared to the dry state value. In terms of flexural strength, Elium and Prime 27 were almost identical, with a drop of 17-18%. Flexural modulus was less affected for Elium. As in Table 1, Elium appears overall comparable with the state-of-the-art epoxy in terms of environmental resistance, with the exception of the ILSS values (yet with a high coefficient of variation); the latter may suggest a more affected matrix and/or Elium/glass interface due to water ingress (possibly also due to hydrolysis of the acrylic-based Elium matrix).Table 3. Comparsion of mechanical properties (Table 1) after immersion in water (35 o C, 28 days)Resin Details ApparentInter-LaminarShearStrength(MPa)Changecomparedto drystate(Table 1)(%)AveragemassuptakeILSSspecimens(mg)FlexuralStrength(MPa)Changecomparedto drystate(Table 1)(%)FlexuralModulus(GPa)Changecomparedto drystate(Table 1)(%)Averagemassuptakeflexurespecimens(mg)UrethaneAcrylate CRESTAPOL121041.90(±2.4%)-0.5 4.6(±30%)785.9(±1.5%)-0.6 35.34(±2.3%)+2.4 21.0(±16%)Epoxy PRIME 2748.45(±2.9%)-16.5 16.1(±7%)746.7(±5.0%)-18.6 33.80(±6.1%)-4.4 39.9(±2%)Acrylic thermoplastic ELIUM 15035.56(±14.5%)-37.5 9.7(±2%)779.8(±11.6%)-17.3 33.99(±1.0%)-0.4 34.7(±4%)For this reason, SEM was also conducted on laminate specimens after water immersion (Figures 2c, 2d, 2e, 2f, 3b) and compared to images obtained for the as-manufactured laminates. Crestapol 1210 (not shown here) showed very little difference in terms of SEM imaging in the dry and wet condition, in line with its minimal change in mechanical properties.In the case of Elium 150 (Figure 2), SEM suggested the presence of some localised resin-poor areas in the wet samples, potentially linked to possible hydrolysis of the acrylic matrix. Otherwise, there was again little visible difference overall by SEM between dry and wet samples, which can be partlya battributed to the overall low average mass uptake (Table 3) for all samples. Nevertheless, the effect on mechanical properties was significant for Prime 27 and Elium 150, as shown in Table 3.4. ConclusionsThis study highlighted the suitability of the novel infusible acrylic thermoplastic option for FRP laminate manufacture by liquid resin infusion in a shipbuilding environment. The laminates produced by the infusible thermoplastic were of high quality, and comfortably exceeded the minimum requirements set by classification societies [6] in ILSS and flexural properties (see note in Table 2). Elium 150 matched the mechanical performance of a state-of-the-art epoxy resin (Prime 27), and outperformed laminates produced with resins based on styrene reactive diluent technology (urethane acrylate Crestapol 1210 in this study).The drop observed in flexural properties for the thermoplastic laminates after immersion in water was comparable to that of the epoxy-based laminates and within the allowed 25% reduction compared to the dry state [6]. The reduction in ILSS values for Elium 150 (> 25%) observed in this study could be improved by e.g. employing the allowed post-curing schedule according to [6] (16 h at 40 o C), or selecting a glass fibre fabric with bespoke sizing for the Elium resin range.The new infusible acrylic thermoplastic combines good manufacturability in a liquid resin infusion context with epoxy-like laminate properties, and additionaly offers a re-processable, styrene-free resin option to the shipbuilding industry. Once a competitive price range could be established for the Elium range, it would be expected that its acceptance and adoption by the shipbuilding industry would increase accordingly.AcknowledgmentsThis work has been funded by the H2020 project FIBRESHIP (www.fibreship.eu) under grant agreement 723360.References[1] J. Summerscales. Marine applications of advanced fibre reinforced composites. WoodheadPublishing, Cambridge, 2016.[2] https:///en/media/news/news-details/Arkema-gains-ground-in-composites-andlaunches-a-revolutionary-range-of-Elium-liquid-resins/[3] Technical Data Sheet Crestapol 1210 (Scott Bader)[4] Technical Data Sheet Crestapol Prime 27 (Gurit)[5] Technical Data Sheet Elium 150 (Arkema)[6] Lloyds Register. Material and Qualification Procedures for Ships Book K Procedure 14-1 & 14-2.Revision 01 Dec 2013。

氩斯气分区Richland,美国Michigan的产品说明书,请选择产品类型并单击梗点查看PDF格式

氩斯气分区Richland,美国Michigan的产品说明书,请选择产品类型并单击梗点查看PDF格式

Pneumatic DivisionRichland, Michigan USA /pneumaticsPneumatic DivisionRichland, Michigan USA/pneumatics42 SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV293FP Stacking Installation & ServiceV294HP Inline Installation & ServiceV295HP 3-Position Installation & ServiceV297EP 2-Position Manual Installation & ServiceV298EP 3-Position Manual Installation & Service45 SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV275CP 45 Series, 3-Position 4-Way 5-Ports, Installation & ServiceV280CP 45 Series, 2-Position 4-Way 5-Ports, Installation & ServiceV282BP 4510 “C” Installation & ServiceV284CP 4530 “C” Installation & ServiceV321CP 45 Series with Stem Operator, Installation & ServiceV476BP 4510 Sandwich Regulator Installation & Service125 / 250 Sae automotIVe INDeX Bulletin Number Bulletin DescriptionV581P 125 Series Valves, ServiceV582P 125 Series Subbase & Manifold, InstallationV585P Sandwich RegulatorsV590P 250 Series Valve, InstallationV591P 250 Series Valve, ServiceV592P 250 Series Subbase & Manifold, InstallationV595P 250B Series Valves, Installation & ServiceV596P 250B Series Valves, Subbase & ManifoldPneumatic DivisionRichland, Michigan USA/pneumatics500 / 1000 SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV604P 500 Series Valve, Wiring InstructionsV604P 1000 Series Valve, Wiring Instructions3250 SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV650P 3250 Flow Control 1 to 1-1/2, Installation & ServiceaDeX ValVe INDeX Bulletin Number Bulletin DescriptionV332CP A00 Installation & ServiceV338CP A05 Collective Wiring InstallationV330CP A05 Inline Installation & ServiceV339P A05 Manifold Isolator PlugV331CP A05 Subbase & Manifold Installation & ServiceV338CP A12 Collective Wiring InstallationV330CP A12 Inline Installation & ServiceV339P A12 Manifold Isolator PlugV331CP A12 Subbase & Manifold Installation & ServicePneumatic DivisionRichland, Michigan USA/pneumaticsB SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV423BP B2 “C” Extruded Manifold InstallationV420P B2 “C” InstallationV421P B2 “C” ServiceV402EP B2 “C” Solenoid, ReplacementV339P B2 Manifold Isolator PlugV425P B2 Sandwich Regulator Installation & ServiceV381BP B2 Series, Installation & ServiceV391P B3 “B” 1/8” & 1/4” 2-Position ServiceV392P B3 “B” 1/8” & 1/4” 3-Position, ServiceV390P B3 “B” 1/8” & 1/4” Installation & ServiceV393BP B3 “B” 1/8” & 1/4” Service, ReplacementV400BP B3 “C” InstallationV401CP B3 “C” ServiceV402EP B3 “C” Solenoid, ReplacementV376BP B3 Extruded Manifold InstallationV374EP B3 Modular Manifold AssemblyV375BP B3 Sandwich Regulator Installation & ServiceV355P B4 “A” Installation & OperationV356P B4 “A” Installation & ServiceV357P B4 “A” Modular Manifold AssemblyV378BP B4 Extruded ManifoldV363BP B5 “A” Solenoid & Pilot Body ServiceV360FP B5 “C” Installation & ServiceV378BP B5 Extruded ManifoldV402EP B5 “C” Low Watt Solenoid, ReplacementV367EP B5 Low Watt Installation & ServiceV364CP B5 Modular Manifold Assembly ProcedureV513CP B6 / B7 / B8 Extruded Manifold, InstallationV510FP B6 / B7 / B8 Installation & ServicePneumatic DivisionRichland, Michigan USA/pneumaticsBl SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV350BP BL Inline, Installation & ServiceV351BP BL Stacking, Installation & ServiceV352BP BL Manifold, Installation & ServiceV353BP BL Stacking & Manifold Assembly ProcedureBW SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV377P BW To B3 ConversionV632P BW Replacement OperatorsC / CC / CW SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV203E CJ1 / CWJ1, Installation & ServiceV222-1DP CWY / CY Series, Installation & ServiceV222D C / CW Installation & ServiceV225CP C10 / CW10 Installation & ServiceV226D C12 / CW12 Installation & ServiceV227D C6 / C7 Installation & ServiceV228CP CS1 / CWS1, Installation & ServiceV241BP CC Flow Control, InstallationV285EP CCA-1S / CCC-1S / CCJ-1S Installation & ServiceV287BP CC10 / CC12 Installation & ServiceV289CP CC Installation & ServiceCyCloNe ValVe INDeX Bulletin Number Bulletin DescriptionV640P Cyclone (74) UL/CSA Data SheetV641P Cyclone (74,75,76,77,78) Installation & ServiceV649P Cyclone / Hazardous Duty, Installation & ServiceV642P Cyclone Installation & ServicePneumatic DivisionRichland, Michigan USA/pneumaticsDIreCtaIr 2 INDeX Bulletin Number Bulletin DescriptionV620BP 40 (Directair 2 Poppet) Installation & ServiceV621BP 41 Solenoid Operated Installation & ServiceV621BP 41 Whisker Operated InstallationV622CP 41 Solenoid Operated ServiceV622CP 41 Whisker Operated ServiceV624BP 41 (Directair 2) Man./Mech. Installation & ServiceV646P 41 (Directair 2) DIN Solenoid ReplacementV647P 41 (Directair 2) Conduit Solenoid ReplacementDIreCtaIr 4 INDeX Bulletin Number Bulletin DescriptionV623BP 52 (Directair 4) InstallationV625P 52 (Directair 4) Foot Guard Kit InstallationV626CP 52 (Directair 4) ServiceV646P 52 (Directair 4) DIN Solenoid ReplacementV647P 52 (Directair 4) Conduit Solenoid ReplacementDIreCtaIr 6 INDeX Bulletin Number Bulletin DescriptionV627P Directair 6 Foot Guard InstallationDX SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV690P DX ISO 5599-1 Valve InstallationV691P DX0 ISO 15407-1 Valve InstallationPneumatic DivisionRichland, Michigan USA/pneumaticsF SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV448BP F Manifold Base-Interconnect Wiring, Installation & ServiceV418EP F Series Collective Wiring Manifold, InstallationV449P F Series Selector Regulator Installation & ServiceV411DP F3 Body ServiceV410EP F3 InstallationV419DP F3 Manifold Bases with Interconnect WiringV413DP F3 Manifold InstallationV438CP F3 Manifold with Flexboard Option D & E, Install InstallationV415CP F3 Sandwich Flow Control InstallationV416CP F3 Sandwich Regulator InstallationV417DP F3 Sandwich Regulator Service & ConversionV402EP F3 Solenoid ReplacementV412DP F3 Solenoid ServiceV414CP F3 Subbase InstallationV440P F5 InstallationV433CP F5 Manifold InstallationV443P F5 Manifold InstallationV438CP F5 Manifold w Flexboard Option D & E, Installation InstructionV445P F5 Sandwich Flow Control InstallationV435BP F5 Sandwich Flow Controls, Installation InstructionV446P F5 Sandwich Regulator Installation & ServiceV437BP F5 Sandwich Regulator Service & ConversionV436BP F5 Sandwich Regulators, Installation & OperatingV402EP F5 Solenoid ReplacementV432BP F5 Solenoid Service, Installation InstructionsV434BP F5 Subbase InstallationV431BP F5 Valve Body Service, Installation InstructionsV441BP F5 Valve ServiceV430DP F5 Valve, Installation & Operating InstructionsV440P F6 InstallationV443P F6 Manifold InstallationF Series continued on next page.Pneumatic DivisionRichland, Michigan USA/pneumaticsF SerIeS ValVe (CoNtINueD)INDeXBulletin Number Bulletin DescriptionV445P F6 Sandwich Flow Control InstallationV476BP F6 Sandwich Regulator Installation & ServiceV447P F6 Sandwich Regulator, Installation & ServiceV402EP F6 Solenoid ReplacementV441BP F6 Valve ServiceV440P F7 InstallationV443P F7 Manifold InstallationV445P F7 Sandwich Flow Control InstallationV486BP F7 Sandwich Regulator Installation & ServiceV447P F7 Sandwich Regulator, Installation & ServiceV402EP F7 Solenoid ReplacementV441BP F7 Valve ServiceFleXSam SerIeS INDeX Bulletin Number Bulletin DescriptionV342EP FlexSAM Installation & User’s GuideV345P 25-Pin, D-Sub Cable, Installation & ServiceG SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV641P G Installation & ServiceGG SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV268EP GGB Installation & ServiceGeNeratIoN 3.0 INDeX Bulletin Number Bulletin DescriptionV341BP SAM 3.0 Installation InstructionsPneumatic DivisionRichland, Michigan USA/pneumaticsH SerIeS ValVe INDeXBulletin Number Bulletin DescriptionV345P 25-Pin, D-Sub Cable, Installation & ServiceV462BP H “A” Solenoid, ServiceV448BP H 5599-2 Manifold Base with Interconnect WiringV449P H Series Selector Regulator Installation & ServiceV398FP H1 “A” Installation & ServiceV466CP H1 “A” Sandwich Regulator Installation & ServiceV444P H1 “B” 5599-1 CNOMO InstallationV402EP H1 “B” 5599-2 Auto Solenoid ReplacementV440P H1 “B” 5599-2 InstallationV443P H1 “B” 5599-2 Manifold InstallationV442P H1 “B” Auto InstallationV418EP H1 “B” Collective Wiring Manifold InstallationV445P H1 “B” Sandwich Flow Control InstallationV446P H1 “B” Sandwich Regulator Installation & ServiceV441BP H1 “B” Valve ServiceV433CP H1 Manifold InstallationV465BP H1 Sandwich Flow Controls, Install & ServiceV434BP H1 Subbase InstallationV398FP H2 “A” Installation & ServiceV462BP H2 “A” Solenoid ServiceV444P H2 “B” 5599-1 CNOMO InstallationV402EP H2 “B” 5599-2 Auto Solenoid ReplacementV440P H2 “B” 5599-2 InstallationV443P H2 “B” 5599-2 Manifold InstallationV442P H2 “B” Auto InstallationV418EP H2 “B” Collective Wiring Manifold InstallationV445P H2 “B” Sandwich Flow Control InstallationV447P H2 “B” Sandwich Regulator, Installation & ServiceV441BP H2 “B” Valve ServiceV465BP H2 Sandwich Flow Controls, Install & ServiceV476BP H2 Sandwich Regulator Installation & ServiceV474P H2 Series Subbase, Installation & ServiceH Series continued on next page.Pneumatic DivisionRichland, Michigan USA/pneumaticsH SerIeS ValVe (CoNtINueD)CoNtINueD)INDeX Bulletin Number Bulletin DescriptionV480CP H3 “A” (Non Plug-In) Installation & ServiceV462BP H3 “A” Solenoid ServiceV444P H3 “B” 5599-1 CNOMO InstallationV402EP H3 “B” 5599-2 Auto Solenoid ReplacementV440P H3 “B” 5599-2 InstallationV443P H3 “B” 5599-2 Manifold InstallationV442P H3 “B” Auto InstallationV418EP H3 “B” Collective Wiring Manifold InstallationV445P H3 “B” Sandwich Flow Control InstallationV447P H3 “B” Sandwich Regulator, Installation & ServiceV441BP H3 “B” Valve ServiceV483P H3 Manifold InstallationV465BP H3 Sandwich Flow Controls, Install & ServiceV486BP H3 Sandwich Regulator Installation & ServiceV474P H3 Series Subbase, Installation & ServiceV408CP H4 Installation & ServiceV462BP H4 Solenoid ServiceHHB ValVe INDeX Bulletin Number Bulletin DescriptionV219-1B HHB200 Locking To Non-Locking Override ConversionV219-2B HHB400 Non-Locking To Locking Override ConversionV219-3B HHB200 NLMOR To Knob NLMOR & LMOR ConversionV219-4B HHB400 LMOR To Knob NLMOR & LMOR ConversionV267CP HHR1 Sandwich Pressure Regulator, Installation & ConversionV300DP HHB Installation & ServiceV301DP HHB Sequence Operator Installation & ServiceINterFaCe 2000 / P2Se ValVe INDeX Bulletin Number Bulletin DescriptionV660P Interface 2000 Installation InstructionsISyS ISo ValVe INDeX Bulletin Number Bulletin DescriptionV345P 25-Pin, D-Sub Cable, Installation & ServiceV450P isys HA, HB ISO 15407-2 Valve ServiceV452P isys HA, HB Sandwich Flow ControlV453P isys HA, HB ManifoldV454P isys HA, HB Sandwich RegulatorsV467P isys H1 Sandwich RegulatorsV468P isys H1, H2, H3 Sandwich Flow ControlV469P isys H1, H2, H3 Subbase/ManifoldsV470P isys H1, H2, H3 ValvesV471P isys H2, H3 Sandwich RegulatorsISySNet FIelD BuS SyStem INDeX Bulletin Number Bulletin DescriptionE100P Isysnet 32 Point Valve Driver, Series AE101P Isysnet DeviceNet Adapter, Series AE102P Isysnet PROFIBUS Adapter, Series AE103P Isysnet ControlNet Adapter, Series AE104P Isysnet EtherNet/IP Adapter, Series AE105P Isysnet 24VDC Expansion Power Supply, Series AE106P Isysnet 24VDC Input Module, Series AE107P Isysnet 24VDC Output Module, Series AE109P Isysnet Relay Output Module, Series AE110P Isysnet 24VDC Analog Input Module, Series AE111P Isysnet 24VDC Analog Output Module, Series AE112P Isysnet I/O RS-232 ASCII Module, Series AE115P Isysnet, Industrial Automation Wiring & GroundingE116P Isysnet, Safety Guidelines for the ApplicationE117P Isysnet Extension Units, Series A (PSSEXT1 and PSSEXT3)PSS-SG001A-EN-P Isysnet Serial Bus System Selection GuidePSS-RN001B-EN-E Isysnet I/O ControlNet Adapter, Release Notes1734-ACNR Isysnet I/O ControlNet IP Adapter, User ManualPSS-UM001A-EN-P Isysnet DeviceNet Adapter, User ManualDNET-UM072C-EN-P DeviceNet Media: Design and Installation GuidePSS-RN002A-EN-E Isysnet I/O EtherNet IP Adapter, Release Notes1734-AENT Isysnet I/O EtherNet IP Adapter, User Manual1734-APB Isysnet I/O PROFIBUS IP A dapter, User ManualIntegrated Solution Field Bus System - Integrated SolutionIEN-1 Ethernet TechnologyV456 Isysnet Demo Case ManualK SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV335P K Series 3 & 4-Way Installation & Service1/4" SK200 / l4 ValVe INDeX Bulletin Number Bulletin DescriptionV530P Single Operated Valve, InstallationV531P Double Operated Valve, InstallationV532P 3-Position Valve, InstallationV533P Subbase & ManifoldV534P Single Operated Valve, ServiceV535P Double Operated Valve, ServiceV536P 3-Position Valve, ServiceV644P 1/4” SK200 Solenoid, ServiceV648P 1/4” SK200 Time Delay Module1/2" SK200 / a5 ValVe INDeX Bulletin Number Bulletin DescriptionV539P L-Pilot O-ring Service KitV543P Subbase & Manifold, InstallationV550P Single Operated Valve, InstallationV551P Double Operated 2-Position Valve, InstallationV552P 3-Position Valve, InstallationV553P Single Operated Valve, ServiceV554P Double Operated 2-Position Valve, ServiceV555P 3-Position Valve, ServiceV556P Single Solenoid Poppet Valve, InstallationV557P Single Solenoid Poppet Valve, ServiceV644P 1/2” SK200 Solenoid, ServiceV648P 1/2” SK200 Time Delay ModuleloaD-tamer INDeX Bulletin Number Bulletin DescriptionV700 Load-Tamer, Installation & ServiceK583402 Load-Tamer Air Suspension Controller / Push-Pull ValveK583413 Load-Tamer Air Suspension Controller / Toggle ValveloCKout ValVe INDeX Bulletin Number Bulletin DescriptionV322BP Lockout Valve Installation & ServiceV324P LV Series Lockout Valve, Installation & ServiceV324P EZ Series Lockout Valve, Installation & ServicemICroKING ValVe INDeX Bulletin Number Bulletin DescriptionV671BP MK Installation InstructionsmINI KING SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV644P Mini King Solenoid Servicemo SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionK583187 MO Lockout Valve Elect. Encl. Installation & ServiceK583186 MO Lockout Valve Installation & ServiceK583092 MO Valves “OU” to O-Ring ConversionmoDuFleX ValVe INDeX Bulletin Number Bulletin DescriptionV680P Moduflex PeripheralsV682P Moduflex Complete ModulesW915102510111 Moduflex ValveN SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV539P L-Pilot O-ring Service KitV610P Remote Air Internal Return, InstallationV611P Remote Air External Return, InstallationV612P Solenoid Internal Pilot Supply, InstallationV613P Solenoid External Pilot Supply, InstallationV614P 3/8 & 3/4 Solenoid Operated, ServiceV615P 1-1/4 Solenoid Operated, ServiceV616P Remote Air Internal Return, ServiceV617P Remote Air External Return, ServiceV643P Hazardous Duty L Pilot Application BulletinV644P L-Pilot Solenoid, ServiceV645P P-Pilot Solenoid, ServiceV648P Time Delay ModuleQuICK eXHauSt aND SHuttle ValVe INDeX Bulletin Number Bulletin DescriptionV235P OR Installation & ServicePVlB / PVlC ValVe INDeX Bulletin Number Bulletin DescriptionV382P PVLB10 Serial Modules InstallationV383P PVLC10 Serial Modules InstallationrIGHt aNGle FloW CoNtrolS INDeX Bulletin Number Bulletin DescriptionP03883 Right Angle Flow ControlsrotatING PreSSure JoINt INDeX Bulletin Number Bulletin Description83-7001 Rotating Pressure Joint Installation & Servicerotary DISK 3-PoSItIoN ValVe INDeX Bulletin Number Bulletin DescriptionV201GP PL & VL, Installation & ServiceV325P HV Valve, Rotary Disk 3-PositionSa SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV254BP SA Add-A-Fold InstallationSeNSorS INDeX Bulletin Number Bulletin DescriptionCVM-101P MPS-1 Series Sensor, Installation & ServiceCVM-102P MPS-2 Series Sensor, Installation & ServiceCVM-103P MPS-3 Series Sensor, Installation & ServiceCVM-104P MPS-3SS Series Sensor, Installation & ServiceCVM-105P MPS-31 Series Sensor, Installation & ServiceCVM-106P MPS-4 Series Sensor, Installation & ServiceCVM-107P MPS-5 Series Sensor, Installation & ServiceCVM-108P MPS-6 Series Sensor, Installation & ServiceCVM-109P MPS-71 Series Sensor, Installation & ServiceCVM-110P MPS-8 Series Sensor, Installation & ServiceCVM-111P MPS-9 Series Sensor, Installation & ServiceCVM-113P MPS-74 Series Sensor, Installation & ServiceCVM-115P MVS-201 Series Sensor, Installation & ServiceSlIDeaIr SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV377P CN To B3 Conversion, Transition PlateV632P CN Replacement OperatorsSPrINt / al ValVe INDeX Bulletin Number Bulletin DescriptionV571P Sprint Body ServiceV578P Sprint Dynamic Seal ServiceV579P Sprint Extended Override ConversionV570P Sprint InstallationV573P Sprint Manifold InstallationV577P Sprint Plug-In Indicator Light ReplacementV589P Sprint Plug-In Solenoid ConversionV575P Sprint Sandwich Flow Control InstallationV576P Sprint Sandwich Regulator Installation & ServiceV572P Sprint Solenoid ServiceV574P Sprint Subbase InstallationSS SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV251D SS1200 / SS1400 Installation & ServiceV250D SS1500 / SS1600 Installation & ServiceV253C SS2000 Installation & ServiceV255D SS4000 Installation & ServiceV256CP SS5000 / SS6000 Installation & Servicet SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV239DP T200/T210 Installation & Servicete SerIeS ValVe INDeX Bulletin Number Bulletin DescriptionV383P TE Solenoid Valve, Subbase & Manifold, AssemblyVa01 ValVe INDeX Bulletin Number Bulletin DescriptionV685P VA01 Valve & Manifold, Installation & ServiceV686P VA01 Valve, Installation & ServiceVaCuum GeNeratorS INDeX Bulletin Number Bulletin DescriptionCVM-201P MCA Vacuum Generators, Installation & ServiceCVM-202P CV Vacuum Generators, Installation & ServiceCVM-203P CV-CK Vacuum Generators, Installation & ServiceCVM-204P CV-VR Vacuum Generators, Installation & ServiceCVM-205P MC2 Vacuum Generators, Installation & ServiceCVM-206P MC3 Vacuum Generators, Installation & ServiceCVM-207P CVR2 Vacuum Generators, Installation & ServiceCVM-208P CVK Vacuum Generators, Installation & ServiceCVM-209P CVX-0260B, Installation & ServiceCVM-210P CEK Emergency Stop Vacuum Generators, Installation & ServiceCVM-211P Vacuum Application CaseCVM-212P HF Vacuum Generators, Installation & ServiceCVM-213P CHF Vacuum Generators, Installation & ServiceCVM-214P CVXCEK Emergency Stop Vacuum GeneratorsValVair ii ValVe iNDeX Bulletin Number Bulletin Description1" Valvair ii / a6V560P Single Operated Valve, InstallationV561P Double Opererated 2-Position Valve, InstallationV562P 3-Position Valve, InstallationV563P Subbase & Manifold, InstallationV564P Single Operated Valve, ServiceV566P 3-Position Valve, ServiceV644P Solenoid ServiceV648P Time Delay Module3/8" Valvair ii / a4V539P Valvair II, L-Pilot - O-ring Service KitV540P Single Operated Valve, InstallationV541P Double Operated Valve, InstallationV542P 3-Position Valve, InstallationV543P Subbase & Manifold, InstallationV544P Single Operated Valve, ServiceV545P Double Operated Valve, ServiceV546P 3-Position Valve, ServiceV547P Original MPC Sandwich Regulator, ServiceV548P “A” Level Sandwich Regulator, ServiceV549P Sandwich Regulator, Installation & ServiceV644P Solenoid ServiceV648P Time Delay ModuleVikiNg Xtreme iNDeX Bulletin Number Bulletin Description Catalog 0677-2 V695P Inline Valves, Installation & ServiceV696P Extruded Manifold, Assembly ProcedureWelDiNg, SemPreSS iNDeX Bulletin Number Bulletin Description Catalog 0695 WCS-SIF-01 Pneumatic Spotwelding Control Systems, Welding ManualXM ValVe INDeX Bulletin Number Bulletin Description Catalog 0661V675P 1/8" Inline & Subbase 3/2 & 4/2 Valves, Installation & ServiceV676P Transition Kits, XM Valve to MicroKing, Installation & ServiceMIsCellaNeous INDeX Bulletin Number Bulletin DescriptionP03877 Flow ControlsW983002 Flow Gain Nozzle ServiceV640P G4 UL/CSA Data SheetF442 F442 Oil, Material Safety Data SheetP01539B Cable Plug Wiring Instructions, ISO & Mini SizesV345P 25-Pin, D-Sub Cable, Installation & Service6057016 Verti-Scale Hydraulic Gauge ServiceTeC DoCuMeNTs INDeX Bulletin Number Bulletin DescriptionTEC-1 Date Code SystemTEC-4 Delrin / Celcon CompatibilityVAL-TEC-11 Threshold SensorsVAL-TEC-12 Chemical ResistanceTEC-13 Guidelines & Rules of ThumbTEC-14 Gas LawsTEC-15 Pipe Flow CurvesVAL-TEC-16 Valve BasicsVAL-TEC-17 IP Codes and NEMA Rating。

SGT-800 核心引擎说明书

SGT-800 核心引擎说明书

SGT-800 core engine is available with different ratings and standard options for hot and cold climates.1Compressor15-stage compressor with variable guide vanes on the first 3 stages. A hot-climate option available for increased powerand efficiency.2DLE combustion systemRobust dual-fuel (gas / liquid) Dry LowEmission (DLE) combustion systemfor low environmental footprint andexcellent gas fuel flexibility.3TurbineA highly efficient 3-stage turbinedesign offering optimal performanceand lifetime. High exhaust energy giving excellent cogeneration / combined cyclecharacteristics.Key benefits• 47.5 – 57.0 MW(e) power output • > 40% simple cycle efficiency • > 58.5% combined cycle efficiency • More than 325 units sold• More than 5 million fleet hours • High reliability and availability • Low lifecycle costs• Robust dual-fuel (gas / liquid) DLE combustion system• On-load fuel changeover capability • Excellent fuel flexibility• High content of inert gases, hydrogen and heavy hydrocarbons • Low emissions over a wide load range• Capable of single-digit NO xand COGas turbine SGT-800For power generation applicationsProven reliability, flexible solutions, low emissions and excellent performance make the SGT-800 the perfect choice. Typical applications include both simple and combined cycle plants for industrial or oil and gas power generation, as well as combined heat and power (CHP) generation.High efficiency• Outstanding in combined cycle • Excellent steam-raising capability • High electrical efficiency• Hot climate optionImportant features• Robust industrial design for high reliability and easy maintenance • Dual-fuel DLE combustion system for low emissions and high fuel flexibility • High operational flexibility including 10-minute start capability and fast load-following for grid support or island mode operation Customer service and maintenance• Flexible standardized time- andcycle-based maintenance concepts• Up to 60,000 equivalent operatinghours (EOH) between major over-hauls• On-site maintenance or modularoverhaul• Option for off-site maintenance with48-hour core engine exchange• Maintenance-friendly design• 24/7 support including emergencyservice and specialist helpdesk• Full field service, diagnostic support,and remote monitoring/gasturbines 231Published bySiemens AG 2017Power and Gas Division Distributed Generation Freyeslebenstrasse 191058 Erlangen, GermanyArticle No. PGDG-T10040-00-7600 Printed in Germany Dispo 34806TH 566-160258 FS 0917Subject to changes and errors.The information given in this document only contains general descriptions and/or perfor-mance features which may not always specifi-cally reflect those described, or which mayu ndergo modification in the course of further devel o pment of the products. The requested p erformance f eatures are binding only when they are expressly agreed upon in the con-cluded contract.Note: All performance values are based ons tandard design, ISO ambient conditions and natural gas fuel. NO x emissions at 15% O 2 on fuel gas (with DLE). The combined cycle plant SCC-800 is available based on one or multiple SGT-800 gas turbines. Combined cycle perfor-mance is based on two pressure non-reheat or three pressure non-reheat bottoming cycle. Dimensions depending on configuration. Dimensions exclude inlet filter housing and exhaust stack. For power generation, AC generator is included.SGT-800 Classic packageThe gas turbine and gearbox are placed on a single base frame or with the gearbox directly on the foundation. The m echanical auxiliary systems are mounted on a separate skid placed close to the gas t urbine inside the e nclosure.• Modular and flexible package design • Easily transported and installed at site • On-site maintenance inside the package SGT-800 Single Lift packageA single-lift driver unit (i. e., skid-mounted gas turbine, gearbox and mechanical auxiliary systems) or as a complete skid-mounted train (including the generator) for 3-point mount installations, e.g. for power barges.• Single-lift capability and small footprint • Short installation and commissioning time • 48-hour core engine exchange optional •Available with a special US-adapted optionGas turbines from 4 to 564 MWSGT-800 performanceAbove performances at ISO conditions, natural gas fuel。

双重造影产气剂指南解读

双重造影产气剂指南解读

双重造影产气剂指南解读英文回答:Double-contrast barium enema (DCBE) is a diagnostic procedure used to examine the colon and rectum. It involves the use of a contrast agent, which is a substance that helps highlight the structures being examined. In DCBE, two types of contrast agents are used barium sulfate and air.Barium sulfate is a white, chalky substance that is mixed with water to form a liquid contrast agent. It is administered rectally using a tube. The barium coats the lining of the colon and rectum, making them visible on X-ray images. This allows the radiologist to detect any abnormalities or abnormalities such as polyps, tumors, or inflammation.Air is also introduced into the colon during a DCBE. This is done by inflating the colon with a small amount of air or carbon dioxide gas. The air helps to expand thecolon, allowing for better visualization of its inner lining. It also helps to separate the folds and creases of the colon, making it easier to identify any abnormalities.The combination of barium sulfate and air creates a double-contrast effect, enhancing the visibility of the colon and rectum on X-ray images. The barium coats theinner lining, while the air expands and separates the structures, providing a clear view.During the procedure, the patient may experience some discomfort or pressure as the barium and air are introduced into the colon. However, this is usually temporary and subsides once the procedure is complete. After the procedure, the patient may need to pass gas and have bowel movements to expel the barium and air from the body.DCBE is commonly used to screen for colorectal cancer, detect polyps or tumors, diagnose inflammatory bowel disease, and evaluate the cause of symptoms such as abdominal pain, changes in bowel habits, or rectal bleeding. It is a safe and effective procedure that can providevaluable information about the health of the colon and rectum.中文回答:双重造影钡灌肠(DCBE)是一种用于检查结肠和直肠的诊断性过程。

GE颜巴赫T3系列燃气内燃机样本

GE颜巴赫T3系列燃气内燃机样本

efficient, durable, reliableLong service intervals, maintenance-friendly engine design and low fuel consumption ensure maximum efficiency in our type 3 engines. Optimized components prolong service life even when using non-pipeline gases such as landfill gas. The type 3 stands out in its 500 to 1,100 kW power range due to its technical maturity and high degree of reliability.GE EnergyJ312 GSContainerized solutionLandfill site; Cavenago, ItalyJ316 GS Profusa,producer of coke; Bilbao, SpainJ320 GSEcoparc I;Barcelona, SpainJ320 GSAmtex Spinning Mills; Faisalabad, PakistanFuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landfill gas Engine type ....................... 2 x JMC 312 GS-L.L Electrical output ............................... 1,202 kW Thermal output ................................ 1,494 kW Commissioning ...................... September 1999Fuel . . . . . . . . . . . . . . . . . . . . . . . . . Coke gas and natural gas Engine type ................... 12 x JGS 316 GS-S/N.L Electrical output a) with 100% coke gas ....................... 5,642 kW b) with 60% coke gas and 40% natural gas, or 100% natural gas ......................... 6,528 kW Commissioning ....................... November 1995 Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . Biogas and natural gas Engine type .................... 5 x JMS 320 GS-B/N.L Electrical output ................................. 5,240 kW Thermal output a) with biogas ..................................... 2,960 kW b) with natural gas .............................. 3,005 kW Commissioning ........................ December 2001 to January 2002Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Natural gas Engine type ...................... 12 x JGS 320 GS-N.L Electrical output ............................. 12,072 kW Commissioning ... November 2002 (1st , 2nd engine), April 2003 (3rd engine), May 2003 (4th - 7th engine), April 2004 (8th engine), April 2005 (9th , 10th engine), March 2008 (11th , 12th engine)Every system has its own landfill gas feeder line and exhaust gas treatment line. The generated electricity is used on-site, excess power is fed into the public grid. The employm ent of the CL.AIR ® system ensures the purifica-tion of the exhaust gas to meet stringent Italian emis-sion requirements. As a special feature, at this plant the thermal energy is used for landfill leachate treatment, as well as for greenhouse heating.This installation designed by GE’s Jenbacher product team enables Profusa to convert the residual coke gas with a hydrogen content of approximately 50% into valuable electrical energy. Beginning 2008, the 12 engines reached a combined total of one million operating hours.In Ecoparc I, organic waste is processed into biogas, which serves as energy source for our gas engines. The generated electricity is used on-site as well as fed into the public power grid. A portion of the thermal energy is used as process heat in the digesters, and the excess heat is bled off in the air coolers.The natural gas-driven units generate electricity for spinning mills in one of Pakistan’s most important textile centers. Special features of this Jenbacher plant allow for high ambient temperature, dusty inlet air,and operation in island mode.reference installationsmodel, plantkey technical datadescriptionJenbacher type 3Dimensions l x w x h (mm)Generator setJ312 GS 4,700 x 1,800 x 2,300 J316 GS 5,200 x 1,800 x 2,300J320 GS 5,700 x 1,700 x 2,300Cogeneration system J312 GS 4,700 x 2,300 x 2,300 J316 GS 5,300 x 2,300 x 2,300J320 GS 5,700 x 1,900 x 2,300Container J312 GS 12,200 x 2,500 x 2,600 J316 GS 12,200 x 2,500 x 2,600J320 GS 12,200 x 2,500 x 2,600Weights empty (kg)J312 GS J316 GS J320 GS Generator set8,000 8,800 10,500Cogeneration system 9,400 9,900 11,000 Container (generator set) 19,400 22,100 26,000Container (cogeneration)20,80023,20026,500Configuration V 70°Bore (mm) 135Stroke (mm) 170Displacement/cylinder (lit) 2.43Speed (rpm) 1,500 (50 Hz) 1,200/1,800 (60 Hz)Mean piston speed (m/s) 8.5 (1,500 rpm) 6.8 (1,200 rpm) 10.2 (1,800 rpm)Scope of supply Generator set, cogeneration system, generator set/cogeneration in container Applicable gas types Natural gas, flare gas, propane, biogas, landfill gas, sewage gas. Special gases (e.g., coal mine gas, coke gas, wood gas, pyrolysis gas)Engine type J312 GS J316 GS J320 GS No. of cylinders 12 16 20 Total displacement (lit) 29.2 38.9 48.7technical data© 2010 G E J e n b a c h e r G m b H & C o O H G . A l l r i g h t s r e s e r v e d .G E A -13690Aoutputs and efficiencies1)E lectrical output based on ISO standard output and standard reference conditions according to ISO 3046/I-1991 and p.f. = 1.0 according to VDE 0530 REM with respective tolerance; minimum methane number 70 for natural gas2) Total heat output with a tolerance of +/- 8%, exhaust gas outlet temperature 120°C, for biogas exhaust gas outlet temperature 180°C 3) Special version with higher compression ratioAll data according to full load and subject to technical development and modification.GE Energy Jenbacher gas engines Austria (Headquarters) 6200 Jenbach T +43 5244 600-0 F +43 5244 600-527 @ 。

开启片剂完整性的窗户(中英文对照)

开启片剂完整性的窗户(中英文对照)

开启片剂完整性的窗户日本东芝公司,剑桥大学摘要:由日本东芝公司和剑桥大学合作成立的公司向《医药技术》解释了FDA支持的技术如何在不损坏片剂的情况下测定其完整性。

太赫脉冲成像的一个应用是检查肠溶制剂的完整性,以确保它们在到达肠溶之前不会溶解。

关键词:片剂完整性,太赫脉冲成像。

能够检测片剂的结构完整性和化学成分而无需将它们打碎的一种技术,已经通过了概念验证阶段,正在进行法规申请。

由英国私募Teraview公司研发并且以太赫光(介于无线电波和光波之间)为基础。

该成像技术为配方研发和质量控制中的湿溶出试验提供了一个更好的选择。

该技术还可以缩短新产品的研发时间,并且根据厂商的情况,随时间推移甚至可能发展成为一个用于制药生产线的实时片剂检测系统。

TPI技术通过发射太赫射线绘制出片剂和涂层厚度的三维差异图谱,在有结构或化学变化时太赫射线被反射回。

反射脉冲的时间延迟累加成该片剂的三维图像。

该系统使用太赫发射极,采用一个机器臂捡起片剂并且使其通过太赫光束,用一个扫描仪收集反射光并且建成三维图像(见图)。

技术研发太赫技术发源于二十世纪九十年代中期13本东芝公司位于英国的东芝欧洲研究中心,该中心与剑桥大学的物理学系有着密切的联系。

日本东芝公司当时正在研究新一代的半导体,研究的副产品是发现了这些半导体实际上是太赫光非常好的发射源和检测器。

二十世纪九十年代后期,日本东芝公司授权研究小组寻求该技术可能的应用,包括成像和化学传感光谱学,并与葛兰素史克和辉瑞以及其它公司建立了关系,以探讨其在制药业的应用。

虽然早期的结果表明该技术有前景,但日本东芝公司却不愿深入研究下去,原因是此应用与日本东芝公司在消费电子行业的任何业务兴趣都没有交叉。

这一决定的结果是研究中心的首席执行官DonArnone和剑桥桥大学物理学系的教授Michael Pepper先生于2001年成立了Teraview公司一作为研究中心的子公司。

TPI imaga 2000是第一个商品化太赫成像系统,该系统经优化用于成品片剂及其核心完整性和性能的无破坏检测。

F602 细胞筛选器说明书

F602 细胞筛选器说明书

Installation & Service InstructionsIS-F602F602 Particulate Filter ISSUED: July , 2005Supersedes: November , 2003Doc. #ISF602, ECN #050983, Rev. 2Filterw/Manual DrainIntroductionFollow these instructions when installing, operating, or servicing the product.Application LimitsThese products are intended for use in general purpose compressed air systems only.WARNINGFAILURE OR IM PROPER SELECTION OR IM PROPER USE OF THE PRODUCTS AND/OR SYSTEM S DESCRIBED HEREIN OR RELATED ITEM S CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.This document and other information from The Company, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by The Company and its subsidiaries at any time without notice.EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.Maximum Recommended Pressure Drop:kPa PSIG bar Particulate Filter70100.7With Polycarbonate BowlkPa PSIG bar Operating Pressure Maximum 103415010Operating Temperature Range4°C to 49°C (40°F to 120°F)With Aluminum BowlkPa PSIG bar Operating Pressure Maximum 206830021Operating Temperature Range4°C to 82°C (40°F to 180°F)With Zinc Bowl with Sight GaugekPa PSIG bar Operating Pressure Maximum 172325017.0Operating Temperature Range 4°C to 66°C(40°F to 150°F)ANSI Symbols!CAUTIONPolycarbonate bowls, being transparent and tough, are ideal for use with Filters and Lubricators. They are suitable for use in normal industrial environments, but should not be located in areas where they could be subjected to direct sunlight, an impact blow, nor temperatures outside of the rated range. As with most plastics, some chemicals can cause damage. Polycarbonate bowls should not be exposed to chlorinated hydrocarbons, ketones, esters and certain alcohols. They should not be used in air systems where compressors are lubricated with fire-resistant fluids such as phosphate ester and diester types.Metal bowls are recommended where ambient and/or media conditions are not compatible with polycarbonate bowls. Metal bowls resist the action of most such solvents, but should not be used where strong acids or bases are present or in salt laden atmospheres. Consult the factory for specific recommendations where these conditions exist.TO CLEAN POLYCARBONATE BOWLS USE M ILD SOAP AND WATER ONL Y! DO NOT use cleansing agents such as acetone,benzene, carbon tetrachloride, gasoline, toluene, etc., which are damaging to this plastic.!Pneumatic DivisionRichland, Michigan 49083269-629-5000WARNINGTo avoid unpredictable system behavior that can cause personal injury and property damage:•Disconnect electrical supply (when necessary) before installation,servicing, or conversion.•Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.•Operate within the manufacturer’s specified pressure, temperature,and other conditions listed in these instructions.•M edium must be moisture-free if ambient temperature is below freezing.•Service according to procedures listed in these instructions.•Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.•After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.•Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.!F602 Particulate Filter IS-F602Installation1.The filter should be installed with reasonable accessibilityfor service whenever possible – repair service kits are available. Keep pipe or tubing lengths to a minimum with inside clean and free of dirt and chips. Pipe joint compound should be used sparingly and applied only to the male pipe – never into the female port. Do not use PTFE tape to seal pipe joints – pieces have a tendency to break off and lodge inside the unit, possibly causing malfunction. Also,new pipe or hose should be installed between the filter and equipment being protected.2.The upstream pipe work must be clear of accumulated dirtand liquids.3.Select a filter location as close as possible to the equipmentbeing protected and upstream of any pressure regulator.4.Install filter so that air flows in the direction of arrow on body.5.Install filter vertically with bowl drain mechanism at thebottom. Free moisture will thus drain into the sump “quiet zone” at the bottom of the bowl.Operation and Service1.T o service the filter, it is not necessary to remove the unitfrom the airline. Manual drain filters must be drained regularly before the separated moisture and oil reaches the bottom of the lower baffle.2.The particulate Filter Element should be removed andreplaced when pressure differential across the filter is 10 PSIG.3.Shut off air supply and depressurize the unit, before servicing.4.Carefully remove Bowl by turning counterclockwise.5.Remove Filter Element, Baffle, and Retainer.6.Wipe parts, clean with soapy water or denatured alcohol,but do not use denatured alcohol on plastic bowl or sight gauge . If using compressed air to blow dry, be sure to wear appropriate eye protection.7.After servicing, apply system pressure and check for airleaks. If leakage occurs, Do Not Operate — conduct servicing again.replacement should be planned.Product Bowl Port DescriptionNumberTypeSizeBowlsPolycarbonateBK602Y B 1/4", 3/8"Zinc with Sight Gauge BK605WY W 1/4", 3/8"Polycarbonate BK602A B 1/2"AluminumBK603A E 1/2"Zinc with Sight Gauge BK605WA W 1/2"AluminumBK603B E 3/4" thru 2-1/2"Zinc with Sight Gauge BK605WB W 3/4" thru 2-1/2"Element Kits 5 Micron EK602VY —1/4", 3/8"40 Micron EK602Y —1/4", 3/8"5 Micron EK602VA —1/2"40 Micron EK602A —1/2"5 Micron EK602VB —3/4" thru 1-1/2"40 Micron EK602B —3/4" thru 1-1/2"40 Micron EK602G —2", 2-1/2"Drain Kits ManualSA600Y7-1All All Sizes Piston (Poly Bowl Only)RK602SY B 1/4", 3/8"Piston (Poly Bowl Only)RK602SA B 1/2"External Auto.( 8 oz. Poly & Metal)SA602D B 1/2"External Auto. (16 oz. Aluminum)SA603D E 1/2"Internal Auto.SA602MD All 1/2"External Auto.( 16 oz. Metal Bowl)SA602D W 3/4" thru 2-1/2"External Auto. (32 oz. Aluminum)SA603D E 3/4" thru 2-1/2"Internal Auto.SA602MD All 3/4" thru 2-1/2"Mounting Bracket KitsSAF602-0571—1/4", 3/8"SAF602-0572—1/2"(2 per unit required)SA200AW57—3/4"(2 per unit required)SA200CW57—1"Repair KitsDeflector, Baffle Assy, Retaining Rod RK602Y —1/4", 3/8"Deflector, Baffle Assy, Retaining Rod RK602A —1/2"Deflector, Baffle Assy, Retaining Rod RK602B —3/4", 1"Deflector, Baffle Assy, Retaining Rod RK602C —1-1/4", 1-1/2"Deflector, Baffle Assy, Retaining Rod RK602G —2", 2-1/2"External Auto Drain (Short Float 602)RK602D —1/2" thru 2-1/2"External Auto Drain (Tall Float 603)RK603D —1/2" thru 2-1/2"Internal Auto DrainRK602MD —1/4" thru 2-1/2"Metal Bowl with Sight Gauge RKB605WY —1/4", 3/8"Metal Bowl with Sight Gauge RKB605WA —1/2"Metal Bowl with Sight GaugeRKB605WB—1/2" thru 2-1/2"Kits Available。

机匣处理在无喷嘴径流涡轮叶片抑振

机匣处理在无喷嘴径流涡轮叶片抑振

机匣处理在无喷嘴径流涡轮叶片抑振中的应用*潘镭1杨名洋1*Shota Murae2Wataru Sato2Naoto Shimohara2Akihiro Yamagata2(1.上海交通大学;2.IHI Corporation)摘要:高周疲劳是无喷嘴径流涡轮叶片损坏的主要原因。

大部分有关叶片抑振的研究都侧重于修改叶片与蜗壳几何,然而这些方法具有周期长、通用性差、影响涡轮气动性能等缺陷。

本文采用流固耦合数值方法并结合实验验证,研究基于机匣处理的抑振流动控制方法。

由广义力方法的基本原理可知,通过引入额外的激振力以抵消蜗壳产生的激振力,从而降低振幅。

通过在叶片尾缘附近的机匣壁面上设计轴向沟槽以实现这一目标。

首先研究蜗舌与沟槽相对位置对气动激振的影响。

结果表明,当沟槽与蜗舌距离最大时,叶片振幅显著降低。

广义力和流场分析进一步表明,在该位置处,蜗壳与沟槽的激振效应抵消。

接下来研究沟槽尺寸参数对气动激振的影响。

结果表明,通过合理调节参数,振幅最多下降了94%。

其中两个参数只影响广义力的长度而不改变相位,极大地方便了沟槽的优化设计。

本研究可用于指导高性能、高可靠性无喷嘴涡轮的设计。

关键词:机匣处理;无喷嘴径流涡轮;叶片抑振;高周疲劳;涡轮增压;动-静干涉中图分类号:U464.135文章编号:1006-8155-(2022)06-0001-09文献标志码:A DOI:10.16492/j.fjjs.2022.06.0001Application of Casing Treatment in Blade Vibration Alleviation of Nozzleless Radial TurbineLei Pan1Ming-Yang Yang1*Shota Murae2Wataru Sato2Naoto Shimohara2Akihiro Yamagata2(1.Shanghai Jiao Tong University;2.IHI Corporation)Abstract:High cycle fatigue(HCF)is the most common reason of blade failure in nozzleless radial turbines.Most current studies related to blade vibration alleviation focus on redesign of blade and volute geometries but they have the drawbacks of long period,poor universality and performance sacrifice.This paper investigates a fluid-structure interaction(FSI)numerical method with experimental verification for blade vibration alleviation based on casing treatment.Inspired by the generalized force method,the aerodynamic excitation force caused by volute can be offset by introducing additional excitation force artificially.Axial grooves are designed on the casing in the vicinity of blade trailing edge to achieve this target.Firstly,the influence of relative position of volute tongue and grooves on blade excitation is investigated.It’s found that the vibration amplitude is evidently reduced by maximizing the distance between the tongue and the adjacent groove.Generalized force analysis and flow field analysis reveal that the excitation effects caused by volute and casing treatment cancel each other out in*基金项目:国家自然科学基金(52076130)*通讯作者:杨名洋,**************.cn0引言发动机小型化与涡轮增压相结合已成为应对日益严格的排放法规的有效手段[1-3]。

食品接触用玻璃制品重金属迁移检测分析

食品接触用玻璃制品重金属迁移检测分析

食品接触用玻璃制品重金属迁移检测分析高维亚,张茜琳(滨州市检验检测中心,山东滨州 256600)摘 要:重金属超标对人体健康的影响非常严重,在食品接触用玻璃制品的使用过程中,往往会出现重金属析出的问题,长期使用重金属含量超标的玻璃制品易造成重金属积累。

依据国家食品接触用玻璃制品相关检测标准和检测方法,本研究采用电感耦合等离子体发射光谱法(Inductively Coupled Plasma Optical Emission Spectrom,ICP-OES)检测市场销售的食品接触用玻璃制品质量,测定铅(Pb)和镉(Cd)的迁移量。

结果表明,部分食品接触用玻璃制品有重金属析出,随着浸泡次数的增加,重金属的迁移量逐渐下降,带有釉彩或涂料的玻璃制品是玻璃制品中的高风险产品。

本研究对科学、规范、合理选用食品接触用玻璃制品,为食品接触用玻璃制品的质量控制提供参考。

关键词:食品接触用;玻璃制品;电感耦合等离子体发射光谱法;重金属迁移量Detection and Analysis of Heavy Metal Migration in GlassProducts for Food ContactGAO Weiya, ZHANG Xilin(Binzhou Testing Center, Binzhou 256600, China)Abstract: Excessive heavy metals pose a serious threat to human health. The use of glass products for food contact often accompanies the migration of heavy metals. Using glass products with excessive heavy metal content of long term can easily lead to the accumulation of heavy metals. According to the relevant detection standards and methods of national food safety standard, this study used inductively coupled plasma optical emission spectrometry(ICP-OES) to detect some commercial glass products for food contact, and measured the migration of plumbum(Pb) and cadmium(Cd).The results showed that heavy metals were precipitated from some glass products. With the increase of soaking times, the migration amount of two kinds of heavy metals decreased gradually. Glass products with colorful glaze or coating were risky products. This study provided reference to the scientific, standardized, and reasonable selection of glass products for food contact, and to the quality control of glass products for food contact.Keywords: food contact; glass products; inductively coupled plasma optical emission spectrom; heavy metal migration玻璃被广泛应用在食品接触材料领域,具有安全、化学稳定性好、卫生、可回收等特点,一直深受消费者喜爱。

气相色谱串联质谱联用测定环境空气中颗粒物的多环芳烃

气相色谱串联质谱联用测定环境空气中颗粒物的多环芳烃

广东化工2020年第20期· 238 · 第47卷总第430期气相色谱串联质谱联用测定环境空气中颗粒物的多环芳烃顾钧,刘淼,孙欣阳,尹燕敏(江苏省苏州环境监测中心,江苏苏州215004)[摘要]采用气相色谱串联质谱联用法测定环境空气颗粒物中多环芳烃。

样品与无水硫酸钠混合后,用正己烷、丙酮(1∶1,V/V)在加速溶剂萃取仪上以10.3 MPa、80 ℃提取10 min,用串联质谱检测器进行分析,16种多环芳烃的回收率在70.5 %~107 %之间。

该法得到了良好的分离效果。

[关键词]加速溶剂提取;多环芳烃;串联气相色谱质谱联用;颗粒物[中图分类号]O65 [文献标识码]A [文章编号]1007-1865(2020)20-0238-03Determination of PAHs in Particulate Matter in Ambient Air by GasChromatography Tandem Mass SpectrometryGu Jun, Liu Miao, Sun Xinyang, Yin Yanmin(Suzhou Environmental Monitoring Center of Jiangsu Province, Suzhou 215004, China) Abstract: The analytical methods of polycyclic aromatic hydrocarbons (PAHs) in Particulate Matters are studied by ASE-GC-MS/MS. The sample is blend by Na2SO4, with acetone, Hexane (1∶1, V /V) on acceleration solvent extraction meter by 10.3 MPa, 80 ℃; withdraws 10 min, carries on the analysis with the MS/MS detector, The returns-ratio between 70.5 %~107 %. This method has high sensitivity.Keywords: ASE;(PAHs);GC-MS/MS;PM(Particulate Matters)大气作为生物体摄取氧气的源泉、植物摄取二氧化碳的存库及环境能量流转的重要场所,是人类生存环境的重要组成部分。

Parker高纯度气体生成方案指南说明书

Parker高纯度气体生成方案指南说明书

12FOCUSED ON PURITYOffering a wide range of advantages over the traditional cylinder gas supply, gas generators are increasingly becoming the popular choice in many laboratories.Parker on-site gas generation allows us to have a high-purity, safe, and consistent supply of gas."In chemical sectors such as pharmaceuticals, polymer, environmental monitoring, CRO, and forensics, scientists rely upon specialized instruments for the fast and accurate analysis of compound properties.A consistent, safe supply of high-purity carrier and combustion gases is essential to ensure precise results in TOC analysis techniques.The challenge is to find a gas supply solution that meets the quality criteria while being easy to use, cost-efficient, and reliable.3/igfg Expert gas generation solutionsWith a history of expertise in gas generation, Parker is perfectly positioned to support profitable operations in analytical science. Working with partners in laboratories across a range of sectors, our industry-leading solutions enable consistent accuracy through a constant, on-demand supply of various analytical gases.Consistent, reliable purityGas purity varies significantly from cylinder to cylinder, and impurities can be introduced via the pipeline during changeover. In contrast, on-site generators consistently supply high-purity gas, preventing variations in quality, and ensuring ultra-sensitive analysis, every time.Supported by proven, advanced technologies you can trust, Parker gas generators to deliver the reliability and consistency your work demands.FOCUSED ON PERFORMANCEA safer choiceHigh-pressure cylinders are inherently linked to safety issues - from the chance of injury through manual handling to the risk of gas leaks, which can make the atmosphere potentially explosive or deficient in oxygen. Gas generators from Parker are a safe alternative, thanks to leak detection technology with ‘auto shut off’ and integral alarms. They also operate at a fraction of the pressure and with low volumes of stored gas, further reducing the potential for harm.These generators eliminate many of the inconveniences of dependence on outside vendors, such as uncontrollable price increases, dewar ice and condensation, contract negotiations, long term commitments, and tank rentals. With a Parker generator, you control your gas supply.Cost-efficient with the lowest lifetime costIn some cases, you can expect to have recoupedthe cost of your gas generator in less than one year. Energy efficient technologies keep running costs down, there are no hidden charges such as on-going delivery costs, cylinder rental or storage fees for spares and empty cylinders, and maintenance andpart replacement costs are minimal.4/igfg 5Global support for your peace of mindWe know that business continuity is vital to your work. That’s why we offer a comprehensive package of expert service, care, and maintenance across our complete analytical gas systems range, worldwide. From installation, scheduled maintenance, and in very rare cases, emergency assistance, wherever you are, you can trust Parker to give you complete peace of mind.Continuous supply, available on-demandParker gas generators are engineered to transform standard compressed air into high quality analytical gas at safe, regulated pressures, on demand, without operator attention. Engineered for easy installation, operation, and long term performance, and permanently installed at the point of use, an on-site generator provides you with straightforward access to an unlimited supply of gas. Always at the correct pressure, flow, andtemperature, Parker gas generators improve the stability of your instruments and the accuracy of your results.6TOC-625Parker TOC Gas Generators produce carrier andcombustion gas from an existing compressed air supplyfor TOC instruments, eliminating the need to purchase expensive, inconvenient, high pressure cylinders ofair, nitrogen, or oxygen.TOC Gas Generator• Ensures consistent, reliable, TOC operation and reducesinstrument service and maintenance costs• Compact design frees up valuable laboratory floor space• Purity meets or exceeds all TOC manufacturer’s gaspurity requirements• Easy installation• Operational display shows system status at a glance• Requires minimal annual maintenanceBaseline Supplied by aParker TOC Gas GeneratorBaselines of THC Analyzer and CO2Content Analyzer after 5 hours suppliedby a Parker TOC Gas Generator-0.5-0.250.250.500.83 1.67 2.50 3.33 4.17 5.00 5.38Time in Hours-0.50.51-11.5-1.52-2012345Time in Hours-0.5-0.250.250.500.83 1.67 2.50 3.33 4.17 5.00 5.38Time in Hours-0.50.51-11.5-1.52-2012345Time in Hours THC Baseline Chart CO2Baseline ChartThe generators utilize catalytic oxidation and pressure swing adsorption technologies to remove hydrocarbons to 0.05 ppm (measured as methane), CO2to 1 ppm, water vapor to 1 ppm, and CO to 1 ppm.TOC-1250Model TOC-625 TOC-1250 Max. TOC Gas Flow Rate (outlet) at 100 psig625 cc/min1200 cc/minOutlet Hydrocarbon Concentration (as methane)< 0.05 ppm0.1 ppmOutlet CO2 Concentration<1.0 ppm<1.0 ppmOutlet CO Concentration< 1.0 ppm< 1.0 ppmDewpoint< -100°F (-73°C)< -100°F (-73°C) Inlet and Outlet Port Connections1/4” NPT (female)1/4” NPT (female)Min/Max Inlet Air Pressure60 psig/125 psig60 psig/125 psigMax Inlet Air Temperature78°F (25°C) 78°F (25°C) Min Required Inlet Air Flow at 100 psig 2.0 lpm (2,000 cc/min) 2.5 lpm (2,500 cc/min) Max Inlet Hydrocarbon Concentration (as methane)100 ppm100 ppmPressure Drop at Maximum Flow Rate7 psig7 psigElectrical Requirements120VAC/60 Hz, 2.0 Amps. 120VAC/60 Hz, 2.0 Amps.Dimensions9”w x 12.5”h x 16”d(23 cm x 32 cm x 41 cm)11”w x 17”h x 17”d (28 cm x 43 cm x 43 cm)Shipping Weight34 lbs. (15.42 kg) 48 lbs. (22 kg) Principal SpecificationsOrdering Information for assistance, call 800-343-4048 Description ModelTOC Gas Generator TOC-625TOC-1250Maintenance Kit @ 12 months MKTOC625-12MK7840Maintenance Kit @ 36 months MKTOC625-3676810Installation Kit IK76803IK76803Preventive Maintenance Plan IK76803TOC-1250-PMModel 72-007 Receiving Tank8Parker Gas Receiving tanks are highly recommended for supplying gas to pressure sensitive instrumentation, for the storage of compressed nitrogen from nitrogen generators, and for other instruments requiring an occasional high flow burst of compressed gas in excess of the normal capacity of a Parker gas generator .Gas Receiving Tanks• Aluminum construction eliminates corrosion and contamination • Internal surface preparation eliminates particle shedding andvapor out-gassing• Convenient mounting brackets for floor or wall placement • Smoothes out gas pressure fluctuationsDescriptionModel NumberMaterial of Construction3003 Aluminum Capacity at Atmospheric Pressure0.75 gallons (2.8 liters)Max. Temperature130°F (54°C)Max. Pressure at Max. Temperature240 psigInlet/Outlet Ports1/8” NPT (female)Dimensions 18” w x 5” h (45 cm x 12 cm)Shipping Weight4 lbs (1.8 kg)Ordering Information for assistance, call 800-343-4048Principal SpecificationsDescriptionModel NumberGas Receiving Tank72-007The Model 72-007 has a maximum pressure rating of 240 psig. At 240 psig, the 72-007 will hold approximately 1.7 scf (50 liters) of compressed gas./igfg9Instrument Gas Requirements Gas PurityRequirements Flow Rates Generator Recommendation/ModelAtomic Absorption(AA) with Flame Air for Oxidant Gas Clean, Dry1-7 SCFM AA Gas Purifier Model 73-100Atomic ThermalDesorber Zero AirHydrogen for FID FuelClean, Dry, Hydrocarbon-freeClean, Dry, High PurityUp to 1600 ml/min.Zero Air or TOC Gas GeneratorHPZA-3500 or TOC-1250Atmospheric Pressure Ionization (API-MS)Air for nebulizer gas, nitrogen forcurtain, sheath, and shield gasClean, Dry, Hydrocarbon-free99% or higherUp to 40 ml/min.per FIDZero Air or TOC Gas GeneratorHPZA-3500 or TOC-1250Hydrogen GeneratorH2PEM-100, H2PEM-165,H2PEM-260, H2PEM-510Autosamplers for Various Instruments Air for pneumatic controls, nitrogenfor sample injectorClean, dryUltra high purity<1 SCFM<550 cc/minMembrane Air Dryer 64-02UHP Nitrogen Generator HPN2-1100,UHPN2-1100CO2 Analyzers Calibration Air CO2 Free0.5-1.0 SLPM FT-IR Purge Gas GeneratorSpectra15, Spectra30Continuous Emissions Monitoring (CEM)Calibration AirDilution AirDry, CO2, SO2, NO X,Hydrocarbon-free10-15 SLPM CEM Zero Air Generator 75-45-M744Emissions Analyzers Zero Air Hydrocarbon-free2-15 SLPM Zero Air Generator HPZA-18000Fourier Transform Infrared Spectrometer(FT-IR)Air for sample compartment,optics, and/or air-bearing Clean, Dry, CO2-free0.5-3 SCFMFT-IR Purge Gas GeneratorSpectra15, Spectra30Lab Gas Generator 74-5041NAGas Chromatograph(GC)GC-FID Zero air as flame support airHydrogen as flame fuel gasHydrogen as capillary carrier gasNitrogen as packed carrier gasNitrogen as make up gasClean, hydrocarbon-freeUltra high purityUltra high purityUltra high purity, zero gradeUltra high purity, zero grade150-600 cc/min.30-40 cc/min.VariesVaries<100 cc/minZero Air Generator HPZA-3500Hydrogen Generator H2PEM-260Hydrogen Generator H2PD-300UHP Nitrogen Generator UHPN2-1100UHP Nitrogen Generator UHPN2-1100GC-FPD Zero Air as Flame Support AirHydrogen as Flame Fuel GasHydrogen as Capillary Carrier GasNitrogen as Packed Carrier GasClean, hydrocarbon-freeUltra high purityUltra high purityUltra high purity<200 cc/min50-70 cc/minVariesVariesZero Air Generator HPZA-3500Hydrogen Generator H2PEM-260Hydrogen Generator H2-1200UHP Nitrogen Generator UHPN2-1100GC-NPD Zero Air to Rubidium/ThermonicBeadHydrogen as Detector Support GasHydrogen as Capillary Carrier GasNitrogen as Packed Carrier GasDry, clean, hydrocarbon-freeUltra high purityUltra high purityUltra high purity<200 cc/min<10 cc/minVariesVariesZero Air Generator HPZA-3500Hydrogen Generator H2PEM-100Hydrogen Generator (Palladium)H2PD-300UHP Nitrogen Generator UHPN2-1100GC-ECD Nitrogen as carrier gasNitrogen as make up gas Ultra high purity, zero gradeUltra high purity, zero gradeVaries<100 cc/minUHP Nitrogen Generator UHPN2-1100UHP Nitrogen Generator UHPN2-1100GC-ELCD, HALL Hydrogen as reaction gas Ultra high purity70-200 cc/min Hydrogen Generator H2PD-300 Recommended Gas Generators for Analytical InstrumentsFAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating con-ditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.Legal Notifications WARNING!Instrument Gas RequirementsGas Purity RequirementsFlow RatesGeneratorRecommendation/ModelGC-TCD Hydrogen as carrier & reference gas Ultra high purity Varies Hydrogen generator H2PD-300LC-MS Nitrogen as a curtain gasLC-MS Grade 3-30 lmp Nitrogen generatorN2-14, N2-14ANA, NitroFlowLab NitroFlow60, N2-35, N2-35ANA ICP SpectrometerNitrogen as Optic/Camera PurgeUltra high Purity <1-5 lmp Nitrogen generator 76-97NA, 76-98NA Nuclear MagneticResonance (NMR)Air for lifting, spinningClean, dry <10 SCFM Air dryer UDA-300NALab gas generator 74-5041NA Ozone generator Supply air Clean, dry .3-20 SCFM Air dryer 64-01, 64-02, 64-10, UDA-300NAProtein analyzerDry air , nitrogen Clean, dry Up to 5 SCFM Nitrogen generator N2-14, N2-22, NitroFlowLab, N2-35Solvent evaporators (sample concentrators)Nitrogen Clean, dry nitrogen 2-15 SLPM Zero Air GeneratorNitrovap-1LV, Nitrovap-2LVStack gas samplerDilution airClean, dry <1.0 SCFM CEM zero air generator 75-45-M744Total oxygen demand(TOD)Nitrogen as a carrier gasUltra high purity300 cc/minNitrogen Generator UHPN2-1100Thermal gravametricanalyzer (TGA)Nitrogen as furnace purgeClean, dry, inert <100 cc/minZero Air Generator HPZA-3500Hydrogen Generator H2PEM-260Hydrogen Generator H2-1200UHP Nitrogen Generator UHPN2-1100Differential scanningcalorimeter (DSC)Air for air shieldClean, dry<100 cc/min Dry Air Generator 64-01, UDA-300Total hydration analyzer (THA)Zero Air for FIDHydrogen as flame fuel gas Clear, hydrocarbon free Ultra high purity50-500 cc/min 5-50 cc/min Zero Air Generator 75-82S, 75-83NA Hydrogen Generator H2PEM-100Total organic carbon analyzer (TOC)Dry air or nitrogen for carrier gasCombusion gasClean, dry, hydrocarbon-free,CO 2 Free, Ultra high purity100-500 SLPM 50-700 cc/minTOC gas generator TOC-625, TOC-1250UHP Nitrogen Generator UHPN2-110012Parker Hannifin CorporationIndustrial Gas Filtration and Generation Division 4087 Walden Avenue Lancaster, NY 14086phone 800 343 /igfg© 2019 Parker Hannifin Corporation. Product names are trademarks or registered trademarks of their respective companies BRO-AGS-TOC-C-072019Worldwide Filtration Manufacturing LocationsNorth AmericaCompressed Air TreatmentIndustrial Gas Filtration and Generation DivisionLancaster, NY 716 686 6400/igfg Haverhill, MA 978 858 0505/igfgEngine FiltrationRacorModesto, CA 209 521 7860/racor Holly Springs, MS 662 252 2656/racorHydraulic FiltrationHydraulic & Fuel FiltrationMetamora, OH 419 644 4311/hydraulicfilter Laval, QC Canada 450 629 9594 VelconColorado Springs, CO 719 531 5855 Process Filtrationdomnick hunter Process Filtration SciLogOxnard, CA 805 604 3400/processfiltrationWater PurificationVillage Marine, Sea Recovery, Horizon Reverse OsmosisCarson, CA 310 637 3400/watermakersEuropeCompressed Air Treatmentdomnick hunter Filtration & SeparationGateshead, England +44 (0) 191 402 9000 /dhfnsParker Gas SeparationsEtten-Leur, Netherlands +31 76 508 5300/dhfnsHiross ZanderEssen, Germany +49 2054 9340/hzfd Padova, Italy+39 049 9712 111 /hzfdEngine Filtration & Water PurificationRacorDewsbury, England +44 (0) 1924 487 000 /rfdeRacor Research & DevelopmentStuttgart, Germany+49 (0)711 7071 290-10Hydraulic FiltrationHydraulic FilterArnhem, Holland +31 26 3760376 /hfde Urjala, Finland+358 20 753 2500Condition Monitoring Parker KittiwakeWest Sussex, England +44 (0) 1903 731 470 Process Filtrationdomnick hunter Process Filtration Parker Twin Filter BVBirtley, England+44 (0) 191 410 5121/processfiltrationAsia PacificAustraliaCastle Hill, Australia +61 2 9634 7777/australiaChinaShanghai, China +86 21 5031 2525 /chinaIndiaChennai, India +91 22 4391 0700 /indiaParker FowlerBangalore, India +91 80 2783 6794JapanTokyo, Japan +81 45 870 1522/japanKoreaHwaseon-City +82 31 359 0852/koreaSingaporeJurong Town, Singapore +65 6887 6300/singaporeThailandBangkok, Thailand +66 2186 7000/thailandLatin AmericaParker Comercio Ltda. Filtration DivisionSao Paulo, Brazil +55 12 4009 3500 /brPan American DivisionMiami, FL 305 470 8800/panamAfricaAeroport Kempton Park, South Africa +27 11 9610700/africa。

不同表观气速对好氧颗粒污泥净化苯酚废气的影响

不同表观气速对好氧颗粒污泥净化苯酚废气的影响

第31卷第5期2011年5月环境科学学报Acta Scientiae CircumstantiaeVol.31,No.5May ,2011基金项目:水体污染控制与治理科技重大专项(No.2008ZX07208-003);中央级公益性科研院所基本科研业务专项(No.2007KYYW12);自然科学基金(No.50908221,50905281)Supported by the National Key Scientific and Technological Project for Water Pollution Control and Management (No.2008ZX07208-003),the Nation Public Institute Funding from Chinese Research Academy of Environmental Sciences (No.2007KYYW12)and the National Natural Science Foundation of China (No.50908221,50905281)作者简介:曾萍(1971—),女,副研究员,E-mail :zengping71@hotmail.com ;*通讯作者(责任作者),E-mail :songyh@craes.org.cn Biography :ZENG Ping (1971—),female ,associate professor ,E-mail :zengping71@hotmail.com ;*Corresponding author ,E-mail :songyh @craes.org.cn曾萍,宋永会,刘风华,等.2011.不同表观气速对好氧颗粒污泥净化苯酚废气的影响[J ].环境科学学报,31(5):964-970Zeng P ,Song Y H ,Liu F H ,et al .2011.The effects of superficial gas velocity on the phenol waste gas degradation by aerobic granules [J ].Acta Scientiae Circumstantiae ,31(5):964-970不同表观气速对好氧颗粒污泥净化苯酚废气的影响曾萍1,宋永会1,*,刘风华1,2,都基峻1,赵立国1,2,宋存义21.中国环境科学研究院,城市水环境研究室,北京1000122.北京科技大学,土木与环境工程学院,北京100083收稿日期:2010-08-16修回日期:2010-09-17录用日期:2010-09-19摘要:实验设置了0.7、1.2、2.0、2.5和3.0cm ·s -15个不同表观气速,考察其对好氧颗粒污泥净化苯酚废气的影响.研究发现当表观气速在0.7 3.0cm ·s -1之间时,好氧颗粒污泥表现出良好的稳定性,苯酚去除率达到95%以上.随着表观气速的提高好氧颗粒污泥各项理化指标均有不同程度的改善,胞外多聚物(extracellular polymeric substances ,EPS )产量显著提高,同时PS /PN 值不断增大,颗粒污泥的疏水性和稳定性能逐渐增强.好氧颗粒污泥对苯酚废气的降解过程的拟合结果显示当表观气速为2.5cm ·s -1时,比苯酚降解速率达到最大值19.46mg ·g -1·min -1.关键词:表观气速;好氧颗粒污泥;苯酚废气;胞外多聚物文章编号:0253-2468(2011)05-964-07中图分类号:X703文献标识码:AThe effects of superficial gas velocity on the phenol waste gas degradation by aerobic granulesZENG Ping 1,SONG Yonghui 1,*,LIU Fenghua1,2,DU Jijun 1,ZHAO Liguo1,2,SONG Cunyi21.Department of Urban Water Environmental Research ,Chinese Research Academy of Environmental Sciences ,Beijing 1000122.School of Civil and Environmental Engineering ,University of Science and Technology Beijing ,Beijing 100083Received 16August 2010;received in revised form 17September 2010;accepted 19September 2010Abstract :The effects of superficial gas velocity on the degradation of phenol waste gas by aerobic granules were studied.The results showed that aerobic granules performed stably and effectively with phenol removal rates over 95%at superficial gas velocities from 0.7to 3.0cm·s -1.With the increasing of superficial gas velocities ,the physical and chemical characteristics of aerobic granules were improved including the increasing of hydrophobicity ,PS /PN and amount of extracellular polymeric substances (EPS ),which resulted in the stable operation of the aerobic granules.The simulation of the phenol waste gas degradation by aerobic granules indicated that the highest specific phenol degradation rate was 19.46mg ·g -1·min -1when superficial gas velocity was 2.5cm ·s -1.Keywords :superficial gas velocity ;aerobic granules ;phenol waste gas ;extracellular polymeric substrate1引言(Introduction )随着有机合成工业和石油化学工业的迅速发展,进入大气的挥发性有机化合物(Volatile Organic Compounds ,VOCs )越来越多.1997年国家环境保护局颁布并实施的《大气污染物排放标准》中限定了33种污染物的排放限值其中包括苯、甲苯、酚类物质等挥发性有机物(SEPA.1997).因此如何经济有效地控制气态挥发性有机物(VOCs )成为环境保护领域的热点之一(Aaron et al .,2000;Liu et al .,2005;王灿等,2008).近年来费用低廉、操作简单的生物净化技术越来越受到大家的重视.一般认为生物法净化有机废气经历3个步骤:有机废气成分首先同水接触并溶于水中(即由气膜扩散进入液5期曾萍等:不同表观气速对好氧颗粒污泥净化苯酚废气的影响膜);溶解于液膜中的有机成分在浓度差的推动下进一步扩散至生物膜进而被其中的微生物捕捉并吸收;进入微生物体内的有机污染物在其自身的代谢过程中被作为能源和营养物质分解,经生物化学反应最终转化为无害的化合物(余成洲等,2009).苯酚作为一种顽固的挥发性有机物,对大多微生物种群具有生物毒害作用(Kumar et al.,2005),因而被列入《环境优先控制有毒有机污染物》的名单(Busca et al.,2008).好氧颗粒污泥技术在含酚废水的处理方面已经得到了很好的应用研究(Tay et al.,2004;Moussavi et al.,2010),当废水中苯酚浓度分别为500mg·L-1和1900mg·L-1时对苯酚的降解比率可达到1g·g-1·d-1和0.53g·g-1·d-1.同时研究表明水力剪切力对好氧颗粒污泥的形成、稳定、生物活性起着至关重要的作用(Adav et al.,2008;Chen et al.,2008;高景峰等,2007),而水力剪切力的大小同提供曝气的气速大小成正相关关系.在气体的处理过程中,通常以表观气速来表示通过反应器的气速.表观气速是指单位时间内空塔截面积上通过的污染气体量,也称空塔气速.表观气速可以直观地反映设备的处理能力.在净化苯酚废气的过程中,表观气速高,表明反应器对苯酚废气的处理能力强,但过高的表观气速有可能使得反应器被穿透;而低的表观气速会直接影响到好氧颗粒污泥系统的性能,使其稳定性和净化效果变差.因而,开展表观气速对好氧颗粒污泥净化苯酚废气影响的研究,寻找最佳表观气速,对反应器的运行十分重要.本文通过开展好氧颗粒污泥净化苯酚废气的研究,探索了好氧颗粒污泥净化苯酚废气的能力,以及表观气速对净化苯酚废气的影响.2材料与方法(Materials and methods)2.1实验装置及运行参数实验设备主要由苯酚废气发生装置、好氧颗粒污泥序批式反应器(Sequence Batch Reactor,SBR)、尾气吸收装置3部分组成.作为净化苯酚废气的主体装置,SBR反应器有效高度为100cm,内径5cm,有效反应容积为2L,排水口在距离底部50cm处,进水、进气以及曝气装置均在底部完成.好氧颗粒污泥反应器采用间歇式运行,单一循环周期为4h(进水5min、曝气225 min、沉淀5min、排水5min).图1好氧颗粒污泥工艺系统图Fig.1Scheme of aerobic granular system液态苯酚汽化后由高压氮气载入好氧颗粒污泥反应器.尾气吸收装置为串联式碱液瓶.通过编程时间控制器实现整套实验设备运行的自动控制.SBR反应器参数设置如表1所示.表1好氧颗粒污泥SBR反应器不同运行参数Table1The operation conditions of the aerobic granular reactor表观气速/(cm·s-1)曝气量/(L·h-1)混合气体苯酚浓度/(mg·L-1)0.755.52.531.285.01.472.0141.50.882.5176.50.713.0212.00.59实验中苯酚废气的容积负荷始终为1.5 kg·m-3·d-1,高压氮气负载苯酚废气与曝气管路内空气混合后由SBR反应器底部的布气装置进入.实验通过调节曝气泵的气体流量来产生不同的表观气速.本实验结果为单次试验,实验过程中采集3个平行样品进行检测,取其平均值.2.2分析检测方法MLSS、VSS、SVI均按标准方法测定(APHA,2005);比好氧速率(Specific Oxygen Utilization Rates,SOUR)的测定采用APHA(2005)标准方法,颗粒污泥沉降速度的测定利用重力沉降法(王芳等,2005);颗粒污泥粒径使用激光粒度分析仪(Malvern Mastersizer2000)和成像分析系统(Image-Pro Plus5)测定;颗粒污泥的机械强度采用Ghangekar等实验中使用的方法(Tay et al.,2004);苯酚浓度采用4-氨基安替比林分光光度法测定(APHA,2005);胞外多聚物(Extracellular Polymeric Substrate,EPS)的提取采用高速离心和加热相结合569环境科学学报31卷的方法(Wang et al .,2006;Wang et al .,2010;张丽丽等,2007);蛋白质(Protein ,PN )浓度的分析采用BCA 试剂定量法(Zeng et al .,2007);多糖(Polysaccharide ,PS )分析方法为苯酚-硫酸法(Zeng et al .,2007);疏水性(Hydrophobicity )参照文献方法测定(Tay et al .,2005).2.3好氧颗粒污泥反应器中苯酚降解动力学模型如图2所示,以好氧颗粒污泥反应器为研究对象,根据质量守恒定律建立单位时间(d t )内质量守恒方程:V d S =Q (S in -S out )d t -V X νd t (1)式中:V 为实际反应液体的体积(L ),S in 和S out 分别为进出反应器初始和排出苯酚废气的浓度(mg ·L -1),S 为反应液体中苯酚浓度(mg ·L -1),X 为反应器中好氧颗粒污泥的浓度(mg ·L -1),ν为比苯酚降解速率(Specific Phenol Degradation Rate ,SPDR )比降解速率(mg ·g -1·min -1),Q 为气体流量.苯酚废水在好氧颗粒污泥反应器中的降解过程采用Lawrence-McCarty 生化反应动力学模型方程(陈一良等,2006;Ucun et al .,2010)进行模拟:v =v max SK m +S(2)图2好氧颗粒污泥反应器物料平衡图Fig.2The mass balance of the aerobic granule system式中:v max 为理论最大比降解速率(mg ·g -1·min -1),K m 饱和常数也称为半速度常数(mg ·L -1);将公式(2)代入(1)中进行整理:d S =QV (S in -S out )d t -v max S K m +S X d t (3)3结果与讨论(Results and discussion )3.1苯酚的降解特性分析在不同表观过滤气速下,SBR 反应器单个周期内苯酚废气的降解规律如图3所示,在苯酚负荷不图3不同表观气速下单循环内苯酚的降解特性(a.表观气速为0.7cm ·s -1;b.表观气速为1.2cm ·s -1;c.表观气速为2.0cm ·s -1;d.表观气速为2.5cm·s -1;e.表观气速为3.0cm ·s -1)Fig.3Profiles of phenol degradation at different superficial gas velocities over a single cycle6695期曾萍等:不同表观气速对好氧颗粒污泥净化苯酚废气的影响变的情况下,进气中的苯酚浓度随着表观气速的升高而降低,不同表观气速下反应器内苯酚降解的趋势基本一致.当表观气速在0.7 2.5cm·s-1之间时,在整个循环过程中尾气中苯酚浓度为0 mg·L-1.液相中的苯酚浓度经历了一个量的累积,然后在反应进行到70min后,出水中苯酚浓度小于1.0mg·L-1.这些结果表明当表观气速在0.7 2.5 cm·s-1时,好氧颗粒污泥反应去对苯酚废气的去除率在99%以上,反应器运行状态良好.当表观气速升高到3.0cm·s-1,在循环反应开始的30min内,由于表观气速太大导致水溶液被混合气体所击穿,尾气排放中含有一定量的苯酚,液相中的苯酚浓度在反应进行到70min后,出水中苯酚浓度小于1.0 mg·L-1,好氧颗粒污泥反应对苯酚废气的去除率在95%以上.3.2对好氧颗粒污泥性能的影响分析由表2可见在不同表观气速下好氧颗粒污泥的性能发生了一些变化,随着表观气速的升高好氧颗粒污泥的MLSS不断增大,表观气速由0.7cm·s-1增大至3.0cm·s-1时MLSS则由5.51g·L-1逐渐上升为7.01g·L-1;好氧颗粒污泥的比耗氧速率(Specific Oxygen Utilization Rate,SOUR)和VSS/SS 由表观气速为0.7cm·s-1时的50.32mg·g-1·h-1和89.90%增大到表观气速为3.0cm·s-1时的75.01 mg·g-1·h-1和90.91%,由此可见随着表观气速的提高好氧颗粒污泥生物量及生物活性相应升高.表观气速的提高加强了颗粒污泥表面的水力剪切力,也就说水力选择压在不断增强,使得部分细菌被冲刷淘汰,因此颗粒污泥的平均粒径随着表观气速的升高而逐渐减小.颗粒污泥的机械强度随着表观气速的升高而增强,说明好氧颗粒污泥的结构也随之更加密实、紧凑,颗粒污泥系统表现出良好的稳定性.随着表观气速由0.7cm·s-1逐渐升高到3.0 cm·s-1,好氧颗粒污泥的沉降性能也逐渐增强,SVI 由121.59mL·g-1降低到56.26mL·g-1,沉降速率由55.66m·h-1上升为70.04m·h-1,较高的表观气速可以使好氧颗粒污泥具有良好的沉降性能,进一步强化了好氧颗粒污泥的固液分离效果.表2不同表观气速下好氧颗粒污泥的性能Table2The performance of aerobic granules at different superficial gas velocities表观气速/(cm·s-1)MLSS/(g·L-1)VSS/SS平均粒径/mmSVI/(mL·g-1)沉降速率/(m·h-1)机械强度SOUR/(mg·g-1·h-1)0.75.51ʃ0.2589.90%ʃ4.49%3.42ʃ0.07121.59ʃ6.0755.66ʃ2.7892%ʃ1.84%50.32ʃ2.52 1.26.01ʃ0.2790.19%ʃ4.51%3.39ʃ0.07106.98ʃ5.3456.18ʃ2.8096%ʃ1.92%59.37ʃ2.97 2.06.21ʃ0.2890.04%ʃ4.5%3.26ʃ0.0795.76ʃ4.7858.14ʃ2.9098%ʃ1.96%69.42ʃ3.47 2.56.27ʃ0.2890.36%ʃ4.52%3.10ʃ0.0688.57ʃ4.4268.83ʃ3.44100%ʃ2.00%73.12ʃ3.66 3.07.01ʃ0.3290.91%ʃ4.55%3.10ʃ0.0656.26ʃ2.8170.04ʃ3.5100%ʃ2.00%75.01ʃ3.753.3表观气速对胞外多聚物(EPS)产生的影响分析EPS是微生物为抵抗外界压力所分泌的粘性物质,它有利于细胞之间相互粘附、搭桥、聚集,被认为是污泥里除微生物细胞和水之外的第3种成分,其组成和浓度影响着污泥的表面疏水性、生物絮凝性和稳定性等;从好氧颗粒污泥的空间结构上分析,EPS通常覆盖在微生物细胞的表面,能保护细胞免受一定浓度的有毒物质的侵害.EPS主要成分是糖类和蛋白质,两者的总有机碳(total organic carbon,TOC)占整个EPS的70% 80%.由图4可见,多糖(Polysaccharide,PS)随着表观气速的升高而增大,由19.85mg·g-1增大到28.41mg·g-1提高了30.14%;然而蛋白质(Protein,PN)在此过程中并没有明显变化.文献报道,多糖以网状骨架结构分布于好氧颗粒污泥的外层,内部则图4表观气速对EPS产生量的影响Fig.4Effects of superficial gas velocity on the amount of EPS由蛋白质和死细胞等物质填充,以支持好氧颗粒污泥的机械稳定性(王建龙等,2009;Adav et al.,2008).刘晓云等(2006)通过透射电镜观察到存在于好氧颗粒细菌微群落中的多糖将细菌黏连、聚集769环境科学学报31卷在一起,微群落外包裹着呈多糖阳性反应的网状结构,有利于降低污泥表面负电性,形成稳定的微生物聚集体.在好氧颗粒污泥降解苯酚的过程中,苯酚经过多糖扩散到达微生物细胞表面时的苯酚浓度比没有多糖存在时的到达微生物细胞的浓度低,因而可以降低苯酚对好氧颗粒污泥表面的微生物的毒害作用(Adav et al.,2007,2009).因此,由表观气速的增加引起的EPS含量的提高对好氧颗粒污泥的稳定性具有积极的促进作用.EPS是影响污泥相对疏水性的根本原因,疏水性是微生物聚集的重要推动力之一,疏水性增加可以增强细胞间的亲和力(李延军,2006).由图5可见,PS/PN和疏水性成正比例关系,都随着表观气速的升高而增大,在表观气速为0.7cm·s-1时PS/PN和疏水性分别为1.53和43%随后分别逐渐增大到表观气速为3.0cm·s-1时的2.37和59%.实验结果显示,表观气速的升高有效改善了EPS中PS与PN的构成比例,同时颗粒污泥的表面疏水性逐渐增强,因此,表观气速的提高有利于提高好氧颗粒污泥的泥水分离性能和结构稳定性.图5表观气速对PS/PN的影响Fig.5Effects of superficial gas velocity on the PS/PN3.4苯酚降解过程的动力学模拟根据好氧颗粒反应器的物料平衡和质量守恒原理,对好氧颗粒污泥反应器中的苯酚降解过程进行计算得到公式(3),将不同表观气速下的苯酚浓度的变化按照公式(3)模拟,结果如图6和表3所图6不同表观气速下单循环内苯酚降解的动力学模拟(a,b,c,d,e的表观气速分别为为0.7、1.2、2.0、2.5、3.0cm·s-1)Fig.6Profiles of phenol degradationat different superficial gas velocities over a single cycle8695期曾萍等:不同表观气速对好氧颗粒污泥净化苯酚废气的影响示.拟合结果显示实测值和模拟值的拟和度达到0.93以上.表观气速由0.7cm·s-1升高至2.5cm·s-1时,SPDR则由9.34提高至19.46,这是因为好氧颗粒的活性在不断提高,所以单位时间内单位质量生物量所降解的苯酚量也随之增大.但当表观气速提高至3.0cm·s-1时,比苯酚降解速率相对降低.表3不同表观气速时动力学模型拟合结果Table3Simulation of phenol degradation at different superficial gasvelocities表观气速/(cm·s-1)苯酚的最大比降解速率/(mg·g-1·min-1)K m/(mg·L-1)R20.79.340.0220.97901.211.600.0320.97612.011.850.0400.98452.519.460.0510.97783.016.090.0500.93854结论(Conclusions)1)不同表观气速下好氧颗粒污泥对苯酚废气的净化均可以取得较好的效果,苯酚去除率均在95%以上,综合考虑颗粒污泥的各项理化指标,发现表观气速下在0.7 3.0cm·s-1之间时,更有利于好氧颗粒污泥系统的稳定运行.2)随着表观气速的提高,好氧颗粒污泥各项理化指标均有不同程度的改善,EPS产量显著提高,颗粒污泥的疏水性能逐渐增强,提高了好氧颗粒污泥结构的稳定性.3)不同表观气速下,好氧颗粒污泥对苯酚的降解过程的拟合结果显示,当表观气速为2.5cm·s-1时,比苯酚降解速率达到最大值19.46mg·g-1·min-1.责任作者简介:宋永会(1967—),男,博士,研究员,博士生导师,主要从事水污染控制技术研究.参考文献(References):Adav S S,Chen M Y,Lee D J,et al.2007.Degradation of phenol by Acinetobacter strain isolated fromaerobic granules[J].Chemosphere,67:1566-1572Adav S S,Lee D J,Lai J Y.2010.aerobic granules with inhibitory strains and role of extracellular polymeric substances[J].Journal of Hazardous Materials,174:424-428Adav S S,Lee D J,Show K Y,et al.2008.Aerobic granular sludge:Recent advances[J].Biotechnology Advances,26:411-423 Adav S S,Lee D J,Tay J H.2008.Extracellular polymeric substancesand structural stability of aerobic granule[J].Water Research,42:1644-1650APHA.2005.Standard Methods for the Examination of Water and Wastewater(21th ed)[M].Washington D C:American Public Health AssociationBusca G,Berardinelli S,Resini C,et al.2008.Technologies for the removal of phenol from fluid streams:a short review of recent developments[J].Journal of Hazardous Materials,160:265-288 Chen Y,Jiang W J,Liang D T,et al.2008.Aerobic granulation under the combined hydraulic and loading selection pressures[J].Bioresource Technology,99:7444-7449陈一良,杨云飞,杨超.2006.活性污泥法降解苯酚模拟废水的动力学研究[J].中国资源综合利用,24(11):24-27Chen Y L,Yang Y F,Yang C.2006.Study on kinetics of phenol wastewater degradation by activated sludge method[J].China Resources Comprehensive Utilization,24(11):24-27(in Chinese)高景峰,周建强,彭永臻.2007.处理实际生活污水短程硝化好氧颗粒污泥的快速培养[J].环境科学学报,27(10):1604-1611 Gao J F,Zhou J Q,Peng Y Z.2007.Rapid cultivation of aerobic granular sludge for shortcut nitrification of domestic wastewater [J].Acta Scientiae Circumstantiae,27(10):1604-1611(in Chinese)Kumar A,Kumar S,Kumar S.2005.Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC1194[J].Biochemical Engineering Journal,22:151-159李延军.2006.好氧颗粒污泥胞外聚合物的产生与分布[D].无锡:江南大学.2-5Li Y J.2006.Production of Extracellular Polymeric Substances from Aerobic Granular Sludge and its Distribution[D].Wuxi:Jiangnan University.2-5(in Chinese)Liu Y H,Quan X,Zhao Y Z,et al.2005.Removal of ternary VOCs in air streams at high loads using a compost-based biofilter[J].Biochemical Engineering Journal,23:85-95刘晓云,王琳,林跃枚,等.2006.好氧颗粒污泥胞外多糖的细胞化学定位研究[J].电子显微镜学报,25(增刊):247-248Liu X Y,Wang L,Lin Y M,et al.2006.Study on cytochemical localization of aerobic granular sludge exopolysaccharide[J].Journal of Chinese Electron Microscopy Society,25(s1):247-248(in Chinese)Moussavi G,Barikbin B,Mahmoudi M.2010.The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR[J].Chemical Engineering Journal,158:498-504 Neal A B,Loehr R C.2000.Use of biofilters and suspended-growth reactors to treat VOCs[J].Waste Management,20:59-68国家环境保护局.1997.大气污染物综合排放标准详解[M].北京:中国环境科学出版社SEPA.1997.Integrated Emission Standard of Air Pollutants[M].Beijing:China Environmental Science Press(in Chinese)国家环保总局.2002.水与废水监测分析方法(第4版)[M.]北京:中国环境科学出版社SEPA.2002.Monitoring and Analytical Methods of Water and969环境科学学报31卷Wastewater(4th ed)[J].Beijing:China Environmental Science Press(in Chinese)Tay J H,Jiang H L,Tay S T L.2004.High-rate biodegradation of phenol by aerobically grown microbial granules[J].Journal of Environmental Engineering,130(12):1415-1423Ucun H,Yildiz E,Nuhoglu A.2010.Phenol biodegradation in a batch jet loop bioreactor(JLB):Kinetics study and pH variation[J].Bioresource Technology,101:2965-2971王灿,胡洪营,席劲瑛.2008.丝状真菌生物过滤塔对挥发性有机物的去除性能[J].环境科学与技术,31(7):40-43Wang C,Hu H Y,Xi J Y.2008.Performance of filamentous fungal biofilters for volatile organic compounds control[J].Environmental Science&Technology,31(7):40-43(in Chinese)Wang X,Zhang B,Shen Z Q,et al.2010.The EPS characteristics of sludge in an aerobic granule membrane bioreactor[J].Bioresource Technology,101:8046-8050Wang Z P,Liu L L,Yao J,et al.2006.Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors[J].Chemosphere,63:1728-1735王芳,于汉英,张兴文,等.2005.进水碳源对好氧颗粒污泥特性的影响[J].环境科学研究,18(2):84-88Wang F,Yu H Y,Zhang X W,et al.2005.Influence of Carbon Sourceon the Characteristics of Aerobic Granules[J].Research of Environmental Sciences,18(2):84-88(in Chinese)王建龙,张子健,吴伟伟.2009.好氧颗粒污泥的研究进展[J].环境科学学报,29(3):449-473Wang J L,Zhang Z J,Wu W W.2009.Research advances in aerobic granular sludge[J].Acta Scientiae Circumstantiae,29(3):449-473(in Chinese)余成洲,张贤明,张春媚.2009.可挥发性有机化合物废气治理技术及其新进展[J].重庆工商大学学报(自然科学版),26(1):35-39Yu C Z,Zhang X M,Zhang C M.2009.The technology and new development of treatment of waste VOCs[J].Journal of Chongqing Technology and Business(Natural Sciences Edition),26(1):35-39(in Chinese)张丽丽,姜理英,方芳,等.2007.好氧颗粒污泥胞外多聚物的提取及成分分析[J].环境工程学报,1(4):127-130Zhang L L,Jiang L Y,Fang F,et al.2007.Extraction and composition analysis of EPS for aerobic granular sludge[J].Chinese Journal of Environmental Engineering,1(4):127-130(in Chinese)Zeng P,Zhuang W Q,Tay S T L,et al.2007.The influence of storage on the morphology and physiology of phthalic acid-degrading aerobic granules[J].Chemosphere,69(11):1751-1757079。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /0304471v 1 25 A p r 2003D RAFTVERSIONF EBRUARY 2,2008Preprint typeset using L A T E X style emulateapj v.11/12/01EXTRAPLANAR EMISSION-LINE GAS IN EDGE-ON SPIRAL GALAXIES.II.OPTICAL SPECTROSCOPYS COTT T.M ILLER 1,2ANDS YLVAIN V EILLEUX 1,3,4Department of Astronomy,University of Maryland,College Park,MD 20742;stm,veilleux@ Draft version February 2,2008ABSTRACTThe results from deep long-slit spectroscopy of nine edge-on spiral galaxies with known extraplanar line emis-sion are reported.Emission from H α,[N II]λλ6548,6583,and [S II]λλ6716,6731is detected out to heights of a few kpc in all of these galaxies.Several other fainter diagnostic lines such as [O I]λ6300,[O III]λλ4959,5007,and He I λ5876are also detected over a smaller scale.The relative strengths,centroids and widths of the various emission lines provide constraints on the electron density,temperature,reddening,source(s)of ionization,and kinematics of the extraplanar gas.In all but one galaxy,photoionization by massive OB stars alone has difficulties explaining all of the line ratios in the extraplanar gas.Hybrid models that combine photoionization by OB stars and another source of ionization such as photoionization by turbulent mixing layers or shocks provide a better fit to the data.The (upper limits on the)velocity gradients measured in these galaxies are consistent with the predictions of the galactic fountain model to within the accuracy of the measurements.Subject headings:diffuse radiation –galaxies:halos –galaxies:ISM –galaxies:spiral –galaxies:structure1.INTRODUCTIONEmission-line diagnostics have been used successfully to de-termine the hardness of the ionizing spectrum in Galactic and extragalactic H II regions (e.g.,Stasinska 1982;Evans &Dopita 1985;McCall,Rybski,&Shields 1985;Dopita et al.2000and references therein)and in the nuclei of galaxies (e.g.,Baldwin,Phillips,&Terlevich 1981;Veilleux &Osterbrock 1987;Os-terbrock,Tran,&Veilleux 1992;Veilleux 2002and references therein),but only over the last decade has it been possible to measure the emission line ratios in the faint,extraplanar dif-fuse ionized gas (eDIG)of external galaxies (e.g.,reviews by Dettmar 1992and Dahlem 1997).Observations of the diffuse ionized gas in our own Galaxy show line ratios which are dif-ficult to explain with pure stellar photoionization models with-out extra heating (e.g.,Reynolds 1985a,1985b;Reynolds &Tufte 1995;Mathis 2000).A similar situation appears to apply to external galaxies.The [N II]λ6583/H αand [S II]λ6716,6731/H αline ratios measured in a few galaxies generaly be-come stronger with increasing heights,often reaching values considerably higher than typical values observed in H II re-gions (e.g.,Rand,Kulkarni,&Hester 1990;Keppel et al.1991;Dettmar &Schultz 1992;Veilleux,Cecil,&Bland-Hawthorn 1995;Ferguson,Wyse,&Freeman 1996;Golla,Dettmar,&Domgörgen,1996;Domgörgen &Dettmar 1997;Rand 1998;Otte &Dettmar 1999;Tüllman &Dettmar 2000;Tüllman et al.2000;Miller &Veilleux 2003a,hereafter Paper I).The verti-cal [N II]/H αand [S II]/H αgradients detected in these galaxies may be due to hardening of the OB-star radiation as it passes through the dusty and neutral medium of the galaxy,or to the existence of other sources of heating or ionization which is be-coming increasingly important above the galactic plane.Pos-sible sources of extra ionization and heating include shocks,photoionization by cooling hot gas,“turbulent mixing layers”(TML;Slavin,Shull,&Begelman 1993)or supernova remnants (Slavin,McKee,&Hollenbach 2000),cosmic ray heating (e.g.,Lerche &Schlickeiser 1982;Hartquist &Morfill 1986;Parker 1992),and magnetic reconnection (e.g.,Raymond 1992).The measurements of additional line ratios can shed some light on the importance of secondary ionization sources.One particularly important line ratio is [O III]λ5007/H α,a good indicator of high energy processes.However,[O III]is chal-lengingly faint and has therefore been measured in only a few galaxies (e.g.,Rand 1998;Tüllman &Dettmar 2000;Tüllman et al.2000;Collins &Rand 2001).This is also the case for He I λ5876/H α,a sensitive indicator of the hardness of the ioniz-ing radiation.Interestingly,the value of He I/H αin NGC 891,a galaxy which in many ways is very similar to our own,ap-pears significantly larger than the Galactic value (0.034versus 0.012±0.006;Reynolds &Tufte 1995;Rand 1997),while the value observed in NGC 3044is even larger (∼0.07;Tüllman &Dettmar 2000).[O II]λ3727/H βhas recently been shown to be a useful diagnostic of extra heating in the diffuse ionized gas (Mathis 2000;Otte et al.2001;Otte,Gallagher,&Reynolds 2002),but H βemission is generally very faint outside of H II regions and [O II]λ3727/H αis highly sensitive to reddening corrections and flux calibration errors.There is a need to expand the set of high-quality spectro-scopic observations of the eDIG to a larger number of galaxies.This paper describes an attempt to remedy this situation.The results from a spectroscopic survey of nine edge-on galaxies with known eDIG are reported.Due to scheduling constraints,the imaging observations reported in Paper I were not reduced and analyzed in time for our scheduled spectroscopic observa-tions,so the spectroscopic sample was selected independently of the imaging sample.The only exception is NGC 2820,where the H αimage obtained with the TTF (see Paper I)was used to1Visiting Astronomer,Kitt Peak National Observatory and Cerro Tololo Inter-American Observatory,National Optical Astronomy Observatory,which is operated by the Association of Universities for Research in Astronomy,Inc.(AURA)under cooperative agreement with the National Science Foundation 2Current address:Department of Astronomy,Pennsylvania State University,525Davey Lab.,University Park,PA 16802;stm@3Current address:320-47Downs Lab.,Caltech,Pasadena,CA 91125and Observatories of the Carnegie Institution of Washington,813Santa Barbara Street,Pasadena,CA 91101;veilleux@ 4Cottrell Scholar of the Research Corporation12determine the optimum slit position[note that NGC4013is alsoin the imaging sample of Paper I,but the position of the slit for this object is based on earlier observations by Rand(1996;here-after R96)].The nine galaxies in the spectroscopic sample wereselected based on the published reports of extraplanar emission by Pildis,Bregman,&Schombert(1994b,hereafter PBS)andR96.The methods used to acquire and reduce these data are discussed in§2.Great care is taken to reach a limiting sur-face brightness of order a few10−18erg s−1cm−2arcsec−2.Theresults from the spectroscopic analysis are given in§3.New constraints on the physical conditions in the eDIG(e.g.,tem-perature,density,reddening,ionization level,kinematics)arederived using the relative strengths and positions of the stronger emission lines that lie within4550–7300Å.In§4,the line ratios derived from the long-slit spectra are compared with val-ues measured in other galaxies,as well as with predictions fromphotoionization models(Sokolowski1994;Bland-Hawthorn et al.1997),turbulent mixing layer models(Slavin et al.1993),and shock models(Shull&McKee1979;Dopita&Suther-land1995).This analysis allows us to determine whether a sec-ondary source of ionization in addition to photoionization byhot stars is needed in the eDIG.The main results are summa-rized in§5.2.DATA ACQUISITION AND REDUCTIONAll of the data were taken at the KPNO2.1-m telescope onJanuary22–26,1998.A compromise had to be made between broad wavelength coverage and good spectral resolution.Grat-ing#26new andfilter GG-420were used with the F3KA CCD to provide a dispersion of1.256Åpixel−1and a useful spectral coverage of∼2760Åbetween∼4550and7300Å,after ac-counting for the known bad columns on the redward side of theF3KA CCD.The slit width was set at1.′′5,yielding a spectral resolution of∼3.7Å.This configuration allows us to resolvethe Hα+[N II]λλ6548,6583complex,the[S II]λλ6717,6731 doublet,and the He Iλ5876line from the nearby Na ID skylines,but does not cover the important[O II]λ3727and[O III]λ4363diagnostic lines.The length of the slit in this mode is 5.′2,extending well beyond the extent of the galaxy disks in oursample.The CCD was binned in the spatial direction by a fac-tor of2in order to increase the signal per pixel from the diffuse emission,resulting in a spatial scale of1.′′56pixel−1.To reachour goal of achieving aflux limit on the order of a few×10−18erg s−1cm−2arcsec−2,each galaxy was observed for about5 hours.Details on the observations are listed in Table2.The slit was centered on the disk of the galaxy and in most cases positioned so that it lay perpendicular to the disk,although in a few cases it was tilted slightly to optimize the coverage of the extraplanar emission.The position of the slit is mentioned in Table2and shown in Figure1for each galaxy in the sample. All galaxies were observe through an airmass of less than∼1.5 to avoid any significant differential atmospheric refraction. Bias frames were taken each night and a composite bias was made by combining the individual frames.The bias level was found not to be constant across the CCD,showing a gradient along the dispersion axis.A one-dimensionalfit was applied along the dispersion axis to create the bias frame,making sure not to introduce additional noise to the data when subtracting off the bias.The spectra were then trimmed and corrected for bias and overscan using the CCDPROC package in IRAF.Both dome and internal(quartz)flats were obtained during the night with the purpose to use them for theflatfield and illumination corrections.However,better results were obtained when us-ing the domeflats toflatfield the data,and the data themselves to correct for the illumination along the slit.For this procedure, each spectrum was binned along the dispersion axis so that each wavelength bin was well represented and contained sufficient counts.The illumination variations across the slit were accu-rately modeled using the IRAF ILLUMINATION routine tofit a spline function to the background while avoiding the emission due to the galaxy.Next the data were corrected for distortion and wavelength calibrated using HeNeAr spectra.Observations of the HeNeAr lamp were obtained before and/or after each galaxy observation so that accurate corrections could be obtained.Afit to the sky background was calculated and subtracted from each frame us-ing sample rows on either side of the galaxy,far enough from it to avoid the extraplanar emission.The two-dimensional spec-tra were thenflux calibrated using HZ44as a calibrator and combined together.After combining the different observations for each galaxy, the redshifted emission lines were identified based on the sys-temic optical velocity of each galaxy(as listed in de Vau-couleurs et al.1991).The spatial dimension was further binned by two in order to increase the signal per binned pixel in the weaker lines,and one-dimensional spectra were extracted at different heights from the disk plane.The spatial dimension was binned even further at large|z|to help detect very faint ex-tended line emission.The spectra for each galaxy are shown in Figure2as a function of position along the slit.In the case where a spectral line is not detected,a representative spectrum from near the disk plane is presented.The linefluxes were determined using the SPLOT routine in IRAF.Single gaussian profiles werefitted to each line in order to calculate the lineflux and width and the level of the underlying continuum emission.3.RESULTS3.1.Line RatiosThe vertical profiles of up to nine diagnostic line ratios are shown in Figure3for each galaxy.In eachfigure,the vertical profile of the Hαemission is shown as the heavy solid line and the continuum emission is shown as the dotted line.Both have been scaled arbitrarily for display purposes.To prevent thefig-ures from becoming overcrowded,the error bars in all of the figures represent1σuncertainties as determined from SPLOT. In most galaxies,Hα,[N II]λ6583,and[S II]λλ6716,6731 have been detected along the slit out to1–2kpc from the center of the disk(in most of our galaxies,the slit is perpendicular to the disk and this represents the actual vertical extent of the gas, but in a few cases this distance differs slightly from the vertical height;see Fig.1).Fainter lines such as Hβ,[O III]λ4959, 5007,and He Iλ5876are also detected over a smaller scale in a number of galaxies.This section of the paper discusses the overall trends found in the sample.For a more detailed discus-sion of each object,the reader should refer to the Appendix.3.1.1.[N II]/Hα,[S II]/Hα,and[N II]/[S II]The average midplane values for[N II]λ6583/Hαand[S II]λ6716/Hαare0.40±0.20and0.24±0.14,respectively.Seven galaxies show a general increase in[N II]/Hαand[S II]/Hαwith increasing height.The most dramatic gradients occur within NGC4013and NGC4217,where the[N II]/Hαratios are H II region-like in the disk(∼0.3-0.4)but reach val-ues of nearly2.0at|z|∼1–2kpc above the disk.Some of3 the galaxies in the sample have[S II]λ6716/[N II]λ6583ra-tios which change with height;some(such as NGC2820andUGC4278)show a steady increase with increasing|z|.Others(such as NGC4302)show a general decrease with increasingheight.Most interesting is NGC4217,which shows an increasein[S II]/[N II]from0.5to0.7up to|z|∼1kpc,and then the ra-tio falls to0.3at higher|z|.Other galaxies present[S II]/[N II]ratios which are consistent with being constant within the un-certainties of the measurements.For comparison,Rand(1998)found in NGC891that the[N II]/Hαline ratio rises from0.35in the plane of this galaxy,toa value greater than unity at|z|∼2–3kpc.A similar trend wasfound with the[S II]/Hαline ratio,such that the[S II]/[N II]ratio remained almost constant with a value∼0.6.Observa-tions of a few other galaxies(Collins&Rand2001;Tüllmann&Dettmar2000)find similar trends.The ratio of collisionallyexcited lines(like[N II]and[S II])to recombination lines(likeHα)depends on the ratio of heating to recombination.SinceS0and N0have similar ionization potentials(10.4eV and14.5eV,respectively),any changes in the[S II]/[N II]ratio suggestchanges in the local ionization condition(S+ionizes at a slightlylower ionization energy than N+),or in the metallicity(since ni-trogen is a secondary product of nucleosynthesis while sulphuris a primary product).These issues are discussed further in§4.2and§4.3below.3.1.2.He I/HαHe Iλ5876is detected in the disk of only4of the9sam-ple galaxies(the presence of the Na ID absorption lines in atleast4of the galaxies makes detection of this line impossible-see Fig.2for details).Emission from H II regions in thedisks of the galaxies is almost certainly contaminating some ofthese measurements.The midplane value of He I/Hαfor thesegalaxies ranges from0.018(NGC4013)to0.052(NGC4302),bracketing the value measured in Orion(0.042;Kaler1976)butlarger than the value measured in the diffuse ionized gas nearthe midplane of our Galaxy(0.012±0.006;Reynolds&Tufte1995).The relative ionization fractions of helium and hydrogencan be determined by the equation:E5876χH (He/H8000K)−0.14(1)(e.g.,Brockelhurst1971;Martin1988;Reynolds&Tufte1995; Rand1997),where E is the emissivity in cm−3s−1,χis the frac-tion of helium or hydrogen that is singly ionized,He/H is the abundance of helium with respect to hydrogen by number,and T is the gas ing the He/H abundance listed in Boesgaard&Steigman(1995)and T=8000K(e.g.,Reynolds 1992),χHe/χH is found to range from0.38to1.09.If hydrogen is assumed to be mostly ionized(a reasonable assumption given the strength of[O III]in the eDIG of several galaxies;see§4.2), then the helium is about40%ionized in NGC4013,and is al-most fully ionized in ing Table1of Rand(1997), Q He/Q H,the ratio of He-ionizing(hν>24.6eV)to H-ionizing (hν>13.6eV)photons,ranges from∼0.040to0.115.These results imply an effective temperature of the radiationfield,T∗, which ranges from about36,500to38,500K,and an upper limit to the stellar mass function,M u,which ranges from∼42to54 M⊙.Extraplanar He I emission is detected unambiguously in only one galaxy of our sample,NGC2820.This object has a mid-plane He I/Hαvalue of0.046,and a range of values from0.033to0.056(the latter at a height of|z|=1kpc).Correspond-ing values of[N II]/Hαare∼0.25at the midplane,and range from0.16to∼0.3at|z|=1kpc.Within the uncertainties, these values are consistent with the predictions from the O-star photoionization models of Domgörgen&Mathis(1994).Rand (1997)had difficulties reconciling the values of He I/Hαwith those of[N II]/Hαin NGC891,but the extraplanar[N II]/Hαline ratios in this galaxy are much higher(near1.4).Extrapla-nar He I was not detected in any of the galaxies of our sample with large extraplanar[N II]/Hαratios.3.1.3.Reddening from Hα/HβThe Hα/Hβline ratio is shown in the bottom left panel of Figure3for each galaxy(when detected).No correction was made for possible underlying stellar absorption features;these features were never evident in the data.This line ratio provides an indication of the amount of reddening affecting the spectra. Determining the amount of reddening is not straightforward, however.Typical Hα/Hβline ratios for H II regions is∼2.85, but if shocks are present,this ratio could rise to∼3.10(e.g., Shull&McKee1979).The effects of extinction and reddening also depend on the distribution of the dust with respect to the source of emission(e.g.,uniform screen in front of the source of emission versus uniform dust distribution mixed with the line emitting gas).Rather than to try to correct for these complex effects,we instead list in Table3the impact on the line ratios of a foreground screen of dust with A V=1.Except for Hα/Hβand[O III]/Hα,the line ratios shown in Figure3are not at all sensitive to reddening.In general the amount of reddening is found to be larger in the disk than in the eDIG,as one would expect if the dust is dis-tributed near the plan of the galaxy disk.Out of thefive galaxies in which extraplanar Hβwas detected,three clearly show this trend.In the other two galaxies,the Hα/Hβline ratio appears to be relatively constant with height(NGC2820)or does not show any obvious monotonic trend with height(NGC4013).3.1.4.Density from[S II]λ6716/[S IIλ6731The[S II]λ6716/[S II]λ6731ratio is shown in the bottom middle frame of Figure3for each galaxy(when detected).The ratio of the intensities of these lines yield information on the average electron density of the gas.The low density limit of this line ratio is∼1.4,and so it is possible to make quantita-tive statements regarding the density of the gas only in regions where this line ratio is less than∼1.4.For most of the galaxies,the[S II]λ6716/[S II]λ6731line ratio is consistent with the low density limit,therefore suggest-ing an electron density of at most a few tens of cm−3.This is typical of the electron density that has been reported for other galaxies(e.g.,Rand1998;Collins&Rand2001).There are three exceptions:NGC3628,NGC4217,and NGC4302. The results on NGC3628are discussed in the Appendix.In NGC4217,the[S II]λ6716/[S II]λ6731line ratio has a value of∼1.2near the disk of the galaxy,and drops slightly to an average value of0.9at a height of about1kpc,before climbing back up over1.4.Assuming a constant temperature of∼104 K for the moment,this suggests that the electron density in the disk of the galaxy is∼200cm−3and increases to a value of 900cm−3at heights∼1kpc,before decreasing below the low density limit.In NGC4302,the value of the[S II]λ6716/[S II]λ6731line ratio near the disk of the galaxy is∼1.0,and de-creases to values near0.8and0.6at heights of∼0.5kpc.The4corresponding electron densities are∼500cm−3in the disk ofthe galaxy and1000to2000cm−3at larger heights.It should be noted,however,that the electron density as measured by the[S II]ratio scales as T1/2(e.g.,Osterbrock1989),and thereforean increase in temperature would be interpreted as higher elec-tron density if constant temperature were assumed.The verticaltemperature profiles in the eDIG of these galaxies are discussed next.3.1.5.Temperature from[N II]/HαTwo of the best temperature gauges for the extraplanar gasare the[N II]λ6583/[N II]λ5755and[O III]λ5007/[O III]λ4363line ratios.[N II]λ5755was recently detected in the diffuse ionized gas of our Galaxy and indicates elevated temper-atures relative to those of H II regions(Reynolds et al.2001).Unfortunately the[N II]λ5755line was not detected in any of the sample galaxies and[O III]λ4363falls outside the wave-length range of our observations.We therefore have no choice but to use other line ratios for this analysis.Recent studies have suggested the use of the[N II]/Hαline ratio as a temperature diagnostic(Haffner,Reynolds,&Tufte1999),keeping in mind that the derived temperature is an average value over the line-of-sight column density.Given that hydrogen and nitrogen have similarfirst ionization potentials and a weak charge-exchange reaction,and assuming that hardly any N is doubly ionized,one has N+/N0≈H+/H0.Under this assumption and using a Galac-tic gas-phase abundance of(N/H)=7.5×10−5at all heights (Meyer,Cardelli,&Sofia1997),the relationship between the [N II]/Hαline ratio and electron temperature is given by[N II]5tions at large heights(e.g.,turbulent mixing layer;§4.3.1),ordue to the fact that extinction by the disk is less significant at large heights(§3.1.3)and therefore a longer column of materialwith a broader range of velocities is being sampled.Our data donot allow us to distinguish between these various possibilities.4.DISCUSSIONSeveral models have been proposed to explain the line ra-tios detected in the extraplanar material of disk galaxies.Inthis section we discuss each of these models and compare theirpredictions with our data.4.1.Photoionization by OB StarsOB stars are almost certainly contributing to the ionization of the eDIG.They are by far the main source of Lyman contin-uumflux produced in the disk(e.g.,Reynolds1984),but theirposition near the disk midplane makes them highly vulnera-ble to absorption by the ISM and dust.Photoionization models(e.g.,Mathis1986;Domgörgen&Mathis1994;Sokolowski1994;Bland-Hawthorn et al.1997;Mathis2000)have had some success explaining the increase in the[N II]/Hαline ratioobserved in the eDIG.This increase is attributed to a decreasewith height of the ionization parameter(U),a measure of the ratio of the ionizing photon number density(Φ)to the electrondensity(n e).Under the assumption of ionization equilibrium,Φ∝n2e at all heights.Therefore,U∝Φ/n e∝n e,so the ion-ization parameter should fall off exponentially with height.AsU decreases,lower ionization species are favored,leading to anincrease in the[N II]/Hαand[S II]/Hαratios and a decrease in the[O III]/Hαratio(neglecting the effects of reddening).However,some problems arise with the photoionizationmodels.First,pure stellar continua models have difficulty re-producing[N II]/Hαand[S II]/Hαratios greater than unity,as detected in some of the galaxies of our sample and in other stud-ies(e.g.,Dettmar&Schultz1992;Veilleux et al.1995;Rand 1998;Collins&Rand2001;Paper I).Photoionization mod-els that take into account the multi-phase nature of the ISM, the possible depletion of certain gas-phase abundance of metals onto dust grains,and the absorption and hardening of the stel-lar radiationfield as it propagates through the dust and H I gas in the disk(Sokolowski1994;Bland-Hawthorn et al.1997)are more successful at producing elevated[N II]/Hαratios of∼1.5. Unfortunately,these models have difficulties explaining the ob-served behavior of[O I]and[O III]relative to Hα.Collins& Rand(2001)detect[O III]in three out of four of their galaxies, and observe in each one a general increase in the[O III]/Hαline ratio with increasing height.Out of thefive galaxies in which we detect[O III],three of them(NGC2820,NGC4302, and NGC5777)show the same positive trend with height.A sharp increase in the[O I]/Hαline,which is difficult to explain using photoionization models,is also observed in two galaxies of our sample(NGC2820and NGC4217;see also Collins& Rand2001;Rand1998).A secondary source of heating and/or ionization appears to be needed to explain these observations.4.2.Secondary Source of Nonionizing HeatingWefirst explore the possibility of a nonionizing source ofheating in the eDIG(e.g.,photoelectric heating from dust grains,dissipation of interstellar turbulence).The apparent temperature gradients found in three galaxies in the sample (§3.1.5)bring support to this scenario but do not prove it.For this,one needs to also examine the behavior of the other line ing the assumptions mentioned in§3.1.5when deriv-ing equation(2),Galactic gas-phase abundances of S,N,and O,and the fact that the ionization fractions of oxygen and hy-drogen are coupled through a charge exchange reaction,Collins and Rand(2001;also Haffner et al.1999)derive the following equations for the line ratio intensities as a function of tempera-ture and ionization fraction:[S II]H+/H T0.3074e−2.14/T4,(3) [S II]H+/H T−0.1194e0.04/T4,(4) [O III]H+/H T0.524e−2.87/T4,(5) [O I](H+/H) T1.8546a velocity range of25km s−1≤v t≤100km s−1.In their mod-els,Slavin et al.assume pressure and ionization equilibrium between the hot and cold gas phases and slow mixing within the turbulent layer,so as to distinguish between turbulent mix-ing and shocks.In general,the TML models are successful at predicting many of the observed line ratios,such as[N II]/Hαand [S II]/Hα.The TML models also predict strong[O III]emission (due to the high level of ionization in the mixing layer region), an emission line which is difficult to explain with photoioniza-tion alone(§4.1).Figure6presents plots of the[S II]/Hα,[O III]/Hαand [O I]/Hαline ratios versus[N II]/Hαfor each of the galaxies in the sample.In thefirst column,the predicted values of the line ratios based on Sokolowski’s photoionization model(using an absorption-hardened ionizing spectrum and dust-depleted abundances in the gas phase)are represented by a series of points connected by a thin solid line.The open triangles in these panels represent the predictions from Slavin et al.’s dust-depleted abundance TML models.Best-fit hybrid models that linearly combine the line ratio predictions from pure photoion-ization and pure TML models are shown as the thick solid line. The bestfit is determined visually as the set of points that most closely match the data points in all three plots.Of the three lefthand panels in Figure6,the most informa-tive is arguably the[O III]/Hαvs.[N II]/Hαdiagram.The three TML models are clearly separated in this diagnostic dia-gram.In the other two panels,the predictions for the log T=5.3 and the log T=5.5models are too close together to distinguish between the two models.Unfortunately,extended[O III]emis-sion has not been detected in many of the galaxies,so our anal-ysis of the hybrid photoionization/TML models based on the [O III]/Hαratio is limited.The extraplanar[O III]/Hαprofiles in thefive galaxies in which[O III]has been detected fall into two categories:three objects show an increasing[O III]/Hαline ratio with increasing|z|,while the[O III]/Hαratio drops with height in the other two galaxies.The galaxies in thefirst cate-gory tend to be betterfit by a TML model with an intermediate mixing temperature(log T=5.3),while those in the second cat-egory are betterfit by a model with lower mixing temperatures (log T=5.0).Forfive of the galaxies in our sample,wefind that the influ-ence of the TML regions on the emission-line spectra increases with height,such that the contribution to the observed line ra-tios(not to the lineflux)increase roughly from∼30to∼75%. These results are consistent with models in which turbulent mixing occurs at higher elevations,where superbubbles break out of the thin disk layer,or at the locations where cooling halo gas is mixing with the ejected gas.There are exceptions to this general rule,however.In UGC2092and NGC4013,the TML model contributes to the observed line ratios a near constant amount(70%and40%,respectively),while in NGC4217,the importance of the TML model appears to decrease with height (from40%to20%).Finally,one of the galaxies in our sample (NGC4302)demonstrates only little deviations from the pho-toionization model,and these deviations are not well explained by any of the TML models.4.3.2.ShocksShull and McKee(1979)model interstellar radiating shocks such as those due to supernovae events.They include the ion-izing effect of the UV precursor in the preshock gas in an effort to make their models self-consistent.In their study,Shull and McKee discuss ten models.In seven of the models they choose as their standard preshock conditions a hydrogen particle den-sity of10cm−3,a magneticfield B0⊥=1µG perpendicular to theflow,and cosmic metal abundances.They vary the shock velocity from40to130km s−1.In the other three,theyfix the shock velocity at100km s−1and vary,in turn,the density, magneticfield,and metal abundances.In the middle column of Figure6,the predicted line ratios from the shock models of Shull&McKee are compared with the predictions from the photoionization model(Sokolowski 1994).The solar abundance shock models are represented by the open triangles(the solid triangle represents Shull and Mc-Kee’s shock model with depleted abundances),while the pho-toionization models are represented by points joined by a thin solid line.The hybrid photoionization/shock model that best fits the data is shown as the dark solid line.The models of Shull&McKee with shock velocities near100km s−1do well in predicting the high[O III]/Hαratios detected in most eDIG and the relatively small[O I]/Hαratios.The biggest problem arises when trying to model the galaxies which show a decreas-ing[O III]/Hαline ratio with increasing|z|(recall that two out offive galaxies with detected extraplanar[O III]show this be-havior).In these galaxies,the[O III]/Hαratio drops below that which is predicted by the pure photoionization model.Since all of the shock models predict enhanced[O III]/Hαline ra-tios,they are unable to explain the negative[O III]/Hαvertical gradients.In galaxies without extraplanar[O III]data,we have to rely heavily on the[S II]/Hαvs.[N II]/Hαplot to determine the best fitting models.The line ratios for NGC3628and NGC4013 can hardly be explained by a combination of shocks and pho-toionization(shocks can contribute at most∼10%to the ob-served line ratios).In the other galaxies,the best-fitting model appears to be the depleted abundances model with a shock ve-locity of100km s−1.In general,the influence of the shocks on the observed line ratios appears to increase with increasing heights(from∼10–20%near the disk of the galaxies up to∼40–60%at higher|z|).In at least three of the galaxies,the hy-brid photoionization/shock model seems to imply that the ion-ization parameter decreases from a value of log U=–3near the plane of the galaxy down to log U=–4at heights|z| 1kpc.4.3.3.Shock+PrecursorIn a pair of papers,Dopita and Sutherland(1995,1996) present a grid of models of low-density,high-velocity photoion-izing radiative shocks.Dopita and Sutherland model photons which propagate both upstream through the preshock gas as well as downstream into the recombination region of the shock. Their grid spans a broad range in shock velocity and magnetic parameter,B/n1/2e.They assume solar abundances and a low-density radiative steadyflow shock.The importance of the magnetic parameter comes into play because they assume that the magneticfield is frozen into theflow.Dopita and Sutherland present models both with and without precursor regions.In these models,an increase in the shock velocity causes an increase in the ionization parameter in the pre-shock gas. Since the postshock plasma is the source of ionizing photons in radiative shocks,the faster the shock the larger theflux of ionizing photons,and hence the higher the ionizing param-eter.Dopita and Sutherland also found that an increase in the magnetic parameter increases the ionization parameter in。

相关文档
最新文档