2020年全国各地中考数学压轴题按题型(几何综合)汇编(一)三角形中的计算和证明综合(原卷版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020全国各地中考数学压轴题按题型(几何综合)汇编

一、三角形中的计算和证明综合题

1.(2020贵州黔东南州)如图1,△ABC和△DCE都是等边三角形.

探究发现

(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.

拓展运用

(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.

(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.

2.(2020黑龙江牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,

交射线CA于点F.请解答下列问题:

(1)当点E 在线段AB 上,CD 是△ACB 的角平分线时,如图①,求证:AE +BC =CF ;(提示:延长CD ,FE 交于点M .)

(2)当点E 在线段BA 的延长线上,CD 是△ACB 的角平分线时,如图②;当点E 在线段BA 的延长线上,CD 是△ACB 的外角平分线时,如图③,请直接写出线段AE ,BC ,CF 之间的数量关系,不需要证明;

(3)在(1)、(2)的条件下,若DE =2AE =6,则CF = . 3.(2020武汉)问题背景:如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ;

尝试应用:如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上,

AD BD

=

√3,求

DF CF

的值;

拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长.

4.(2020湖南常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N .

(1)如图1,当D ,B ,F 共线时,求证: ①EB =EP ; ②∠EFP =30°;

(2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.

5.(2020江苏淮安)[初步尝试]

(1)如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ; [思考说理]

(2)如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AM BM

的值;

[拓展延伸]

(3)如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ′处,折痕为CM . ①求线段AC 的长;

②若点O 是边AC 的中点,点P 为线段OB ′上的一个动点,将△APM 沿PM 折叠得到△A ′PM ,点A 的对应点为点A ′,A ′M 与CP 交于点F ,求

PF MF

的取值范围.

6.(2020江苏南京)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,

AD AB

=

A′D′A′B′

(1)当CD

C′D′=

AC

A′C′

=

AB

A′B′

时,求证△ABC∽△A'B'C.

证明的途径可以用下面的框图表示,请填写其中的空格.

(2)当CD

C′D′=

AC

A′C′

=

BC

B′C′

时,判断△ABC与△A'B'C′是否相似,并说明理由.

7.(2020江苏扬州)如图1,已知点O 在四边形ABCD 的边AB 上,且OA =OB =OC =OD =2,OC 平分∠BOD ,与BD 交于点G ,AC 分别与BD 、OD 交于点E 、F . (1)求证:OC ∥AD ;

(2)如图2,若DE =DF ,求AE AF

的值;

(3)当四边形ABCD 的周长取最大值时,求DE DF

的值.

8.(2020青海)在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 重合,另一条直角边恰好经过点B .通过观察、测量BF 与CG 的长度,得到BF =CG .请给予证明. 猜想论证:

(2)当三角尺沿AC 方向移动到图2所示的位置时,一条直角边仍与AC 边重合,另一条直角边交BC 于点D ,过点D 作DE ⊥BA 垂足为E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE 、DF 与CG 之间存在的数量关系,并证明你的猜想. 联系拓展:

(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

9.(2020山东烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以

DE为一边作等边三角形DEF,连接CF.

【问题解决】

如图1,若点D在边BC上,求证:CE+CF=CD;

【类比探究】

如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.

10.(2020四川攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度i=1:0.75,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:

(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?

(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?

(3)若同一时间量得高圆柱落在坡面上的影子长为100 cm,则高圆柱的高度为多少cm?

相关文档
最新文档