数学模型_实验报告6
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告
《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
建模实验报告
建模实验报告建模实验报告一、引言建模是一种重要的科学研究方法,通过对实际问题进行抽象和数学描述,可以更好地理解和解决问题。
本次实验旨在通过建模的方法,对某一实际问题进行分析和解决,以达到提高问题解决能力的目的。
二、问题描述本次实验的问题是:如何合理安排城市公交车的运行路线,以最大程度地满足市民的出行需求,并提高公交系统的效率。
三、建模过程1. 数据收集首先,我们需要收集相关的数据,包括城市的人口分布、交通流量、公交车站点分布等信息。
通过调查问卷、实地观察和网络数据等多种方式,我们可以获得这些数据。
2. 问题分析在收集到数据后,我们需要对问题进行分析。
首先,我们可以根据人口分布和交通流量数据,确定各个区域的出行需求和交通状况。
然后,我们可以根据公交车站点分布,确定公交车的起点和终点位置。
最后,我们需要考虑如何合理安排公交车的运行路线,以最大程度地满足市民的出行需求。
3. 模型建立基于以上分析,我们可以建立一个数学模型来描述这个问题。
我们可以将城市划分为若干个区域,每个区域可以表示为一个节点。
然后,我们可以通过边来连接不同的节点,表示不同的公交车路线。
通过引入权重,我们可以衡量不同路线的优劣,例如路程长度、交通流量等指标。
最终,我们可以使用图论算法,如最短路径算法,来寻找最优的公交车路线。
4. 模型求解在建立模型后,我们需要进行模型求解。
我们可以使用计算机编程语言,如Python,来实现模型,并使用真实数据进行模拟实验。
通过不断调整模型参数和算法,我们可以得到最优的公交车路线方案。
五、实验结果与分析通过模拟实验,我们可以得到一组最优的公交车路线方案。
我们可以通过比较不同方案的指标,如路程长度、平均等候时间等,来评估方案的优劣。
同时,我们还可以通过调整模型参数,如公交车数量、站点位置等,来进一步优化方案。
六、实验总结本次实验通过建模的方法,对城市公交车路线进行了优化设计。
通过收集数据、问题分析、模型建立和模型求解等步骤,我们得到了一组最优的公交车路线方案。
数学建模的实验报告
数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。
2.熟悉掌握matlab软件的文件操作和命令环境。
3.掌握数据可视化的基本操作步骤。
4.通过matlab绘制二维图形以及三维图形。
二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。
即要求出二次多项式: y=a+b x2的系数。
2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。
数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。
2.利用Matlab进行编程求近似解。
二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
数学建模实验报告
内江师范学院中学数学建模实验报告册编制数学建模组审定牟廉明专业:班级:级班学号:姓名:数学与信息科学学院2016年3月说明1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;2.要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格;3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;4.实验成绩评定分为优秀、合格、不合格,实验只是对学生的动手能力进行考核,跟据所做的的情况酌情给分。
根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。
实验名称:数学规划模型(实验一)指导教师:实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:实验目的:掌握优化问题的建模思想和方法,熟悉优化问题的软件实现。
实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装Windows XP Professional操作系统和装有数学软件的计算机。
实验内容及要求原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种,如何下料最节省?实验过程:摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。
按工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题。
以此次钢管下料问题我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 对题目所提供的数据进行计算从而得出最优解。
线性规划问题求解----数学建模实验报告
084实验报告1、实验目的:(1)学会用matlab软件解决线性规划问题的最优值求解问题。
(2)学会将实际问题归结为线性规划问题用MATLAB软件建立恰当的数学模型来求解。
(3)学会用最小二乘法进行数据拟合。
(4)学会用MATLAB提供的拟合方法解决实际问题。
2、实验要求:(1)按照正确格式用MATLAB软件解决课本第9页1.1、1.3,第100页5.1、5.3这几个问题,完成实验内容。
(2)写出相应的MATLAB程序。
(3)给出实验结果。
(4)对实验结果进行分析讨论。
(5)写出相应的实验报告。
3、实验步骤:(1)、对于习题1.1:a.将该线性规划问题首先化成MATLAB标准型b.用MATLAB软件编写正确求解程序:程序如下:c=[3,-1,-1];a=[4,-1,-2;1,-2,1]; b=[-3;11]aeq=[-2,0,1]; beq=1;[x,y]=linprog(-c,a,b,aeq,beq,zeros(3,1))x,y=-y(2)、对于习题1.3:a.建立适当的线性规划模型:对产品I 来说,设以A1,A2完成A 工序的产品分别为x 1,x 2件,转入B 工序时,以B1,B2,B3完成B 工序的产品分别为x 3,x 4,x 5件;对产品II 来说,设以A1,A2完成A 工序的产品分别为x 6,x 7件,转入B 工序时,以B1完成B 工序的产品为x 8件;对产品III 来说,设以A2完成A 工序的产品为x 9件,则以B2完成B 工序的产品也为x 9件。
由上述条件可得x 1+x 2=x 3+x 4+x 5, x 6+x 7=x 8.由题目所给的数据可建立如下的线性规划模型:Min z =(1.25-0.25)( x 1+x 2)+(2-0.35) x 8+(2.8-0.5) x 9-3006000(5x 1+10x 6)-32110000(7x 2+9x 7+12x 9)- 2504000(6x 3+8x 8)-7837000 (4x 4+11x 9)-2004000⨯7x 5s.t.{ 5x 1+10x 6≤60007x 2+9x 7+12x 9≤100006x 3+8x 8≤40004x 4+11x 9≤70007x 5≤4000x 1+x 2=x 3+x 4+x 5 x 6+x 7=x 8x i ≥0,i =1,2,3,…9 b.运用MATLAB 软件编写程序求解:程序如下:c=[0.75,1-(321*7*0.0001),-16*6,(-783*4)/7000,-7/20,-0.5,-321*9*0.0001,1.15,2.3-(321*12*0.0001-(783*11)/7000)]; a=[-5,0,0,0,0,-10,0,0,0;0,-7,0,0,0,0,-9,0,-12;0,0,-6,0,0,0,0,-8,0;0,0,0,-4,0,0,0,0,-11;0,0,0,0,-7,0,0,0,0]; b=[-6000;-10000;-4000;-7000;-4000];aeq=[1,1,-1,-1,-1,0,0,0,0;0,0,0,0,0,1,1,-1,0];beq=[0;0];[x,y]=linprog(c,a,b,aeq,beq,zeros(3,1))(3)、对于习题5.1:用MATLAB中的三次函数,二次函数,四次函数进行数据拟合,然后与原来结果进行比较。
数学建模实验报告
数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。
通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。
本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。
一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。
一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。
1.2模型的求解模型的求解是数学建模的核心环节。
根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。
1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。
分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。
二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。
为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。
2.1模型的建立首先,我们需要明确问题的前提条件和目标。
假设该产品的市场价格为P,成本价格为C,单位销售量为Q。
我们的目标是最大化销售利润。
于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。
2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。
我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。
在这里,我们选择辅助函数法。
我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。
建模实验报告
建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。
实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。
1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。
通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。
本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。
2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。
在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。
2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。
我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。
在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。
2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。
微分方程可以描述问题中的变量和其变化率之间的关系。
在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。
2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。
最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。
在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。
3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。
在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。
3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。
在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。
3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。
数学建模实习报告
数学建模实习报告一、引言数学建模是运用数学方法和技巧来解决实际问题的一门学科。
在大学数学课程中,培养学生的数学建模能力已经成为教学的重点之一。
本次实习报告旨在总结我在数学建模实习中的学习经验和收获,并将所学知识应用在实际问题中。
二、实习内容1. 实习项目介绍我所参与的数学建模实习项目是关于城市交通流量预测的研究。
通过对城市交通数据进行收集和分析,利用数学模型和算法来预测未来的交通流量,以便城市规划者和交通管理部门能够更好地优化交通流动。
2. 数据收集与预处理为了进行交通流量预测,我们首先需要收集一定时期内的交通数据,包括车辆数量、速度、道路状况等信息。
根据实际情况,我们选择了某城市的主干道作为研究对象,并在道路上安装了传感器来收集数据。
然后,我们对收集到的原始数据进行清洗和预处理,消除异常值和缺失值的影响,以保证数据的准确性和完整性。
3. 模型选择与建立在交通流量预测中,我们需要选择合适的数学模型来描述交通流动的规律。
经过研究和实践,我们选择了时间序列模型和神经网络模型作为预测模型的候选。
时间序列模型考虑了时间的连续性和相关性,适用于交通流量数据的预测;而神经网络模型则可以通过对历史数据的学习和训练来预测未来的交通流量。
4. 数据分析与模型评估在建立完预测模型后,我们对历史数据进行了分析和验证,评估了模型的准确性和可靠性。
通过比较模型预测结果和实际观测值,计算相关的误差指标和准确率,以评估模型的优劣,并进行进一步的改进和调整。
5. 结果与讨论经过一段时间的实验和分析,我们得到了相对准确的交通流量预测结果,并与城市交通管理部门进行了交流和反馈。
根据预测结果,他们可以提前做好交通管理和调度工作,以缓解拥堵和提高交通效率。
同时,我们也对模型的不足之处进行了讨论,并提出了一些改进和优化的建议。
三、实习收获通过参与数学建模实习,我获得了如下的收获和体会:1. 熟悉了数学建模的基本流程和方法,了解了数学建模在实际问题中的应用和意义。
数学建模实验报告范文
数学建模实验报告范文实验目的本次实验旨在运用数学建模的方法和技巧,对给定的问题进行分析和求解,以提高我们的问题解决能力和创新思维。
实验背景在现实生活中,我们经常面临各种各样的问题,但是如何从复杂的问题中提取关键信息,并通过数学建模的方法进行求解,是一个非常有挑战性的任务。
通过本次实验的学习和训练,我们可以更好地应对复杂问题,提高解决问题的能力和效率。
实验过程和方法本次实验我们选择了一个关于货车配送问题的案例进行研究。
具体过程如下:1. 问题理解:我们首先详细了解了货车配送问题的背景和要求,明确问题的目标和限制条件。
根据问题的描述,我们可以得到基本的数学模型:- 假设有N个配送点,每个配送点有固定的货物数量和配送时长。
- 有M辆货车,每辆货车的最大载重量和最大配送时长是已知的。
- 目标是使得总配送时间最短的同时,不超过货车的最大载重量。
2. 数据处理:我们将问题中给出的具体数据转化为计算机可处理的数据结构,并进行必要的预处理工作。
包括计算各个点之间的距离、货物数量等信息。
3. 建模与求解:我们根据问题的特点和要求,选用相应的数学模型和求解方法。
在本次实验中,我们选择了基于图论的算法,如最短路径算法和旅行商问题算法,来优化货车的配送路径和时间。
4. 结果分析:我们根据得到的结果,对货车的配送路径和时间进行分析和评估。
通过对比不同算法和参数设置的结果,找出最优解,并对结果进行可视化展示。
实验结果经过模型求解和分析,我们得到了一组满足条件的最优解。
在我们的实验中,总配送时间最短的方案是:...通过对比和分析不同算法和参数设置的结果,我们可以发现...实验总结本次实验通过对货车配送问题的研究和实践,我们学习了数学建模的基本方法和技巧。
通过模型建立、求解和分析的全过程,我们深入理解了数学建模的重要性和应用价值。
在实验过程中,我们遇到了一些困难和挑战,如如何选择合适的数学模型和求解算法等。
通过克服这些困难,我们不断提高了自己的问题解决能力和创新思维。
数学建模实验报告范文
一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。
二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。
三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。
为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。
四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。
五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。
2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。
3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。
4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。
六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。
2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。
3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。
4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。
七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。
2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。
3. 通过模型求解,为相关部门制定交通管理政策提供依据。
八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。
数学建模全部实验报告
一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
2. 提高数学建模能力,培养创新思维和团队合作精神。
3. 熟练运用数学软件进行数据分析、建模和求解。
二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。
请为公司制定招聘计划。
3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。
请建立模型分析居民出行方式选择的影响因素。
三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。
2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。
3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。
4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。
5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。
四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。
(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。
(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。
(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。
(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。
2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。
数学建模实习报告
数学建模实习报告一、引言本报告是对我在数学建模实习中的经历和成果的总结和分析。
通过这次实习,我深入了解了数学建模的基本理论和应用,并且在实际操作中获得了一定的实践经验。
本报告将主要包括以下几个方面的内容:实习项目的背景介绍、问题分析、模型建立和求解、实验结果和讨论以及总结。
二、实习项目的背景介绍本次实习项目是针对某企业的运输调度问题展开的。
该企业负责将一批货物从不同的发货点运送到不同的收货点,要求在最短的时间内完成任务,并且要尽量减少总运输成本。
由于存在各种各样的限制条件,如道路的限制、车辆的限制以及货物的限制等,因此该企业希望我们通过数学模型来解决这个运输调度问题。
三、问题分析在开始建立数学模型之前,我们首先对该问题进行了全面的分析。
我们详细了解了该企业的运输调度流程,并且查阅了相关的资料,了解了道路限制、车辆限制和货物限制等方面的信息。
经过分析,我们确定了以下几个关键的问题:如何确定最优的运输路线、如何合理安排车辆的使用、如何考虑货物的不同特性。
四、模型建立和求解基于上述问题的分析,我们建立了一套数学模型来解决该运输调度问题。
我们首先将该问题抽象成图论中的最短路径问题,并且引入了线性规划模型来解决车辆的安排问题。
在考虑货物特性的时候,我们使用了多目标规划模型,并对其进行了求解。
通过数学模型的建立和求解,我们得到了一组最优的调度方案,并且进行了实验验证。
五、实验结果和讨论在实验中,我们将得到的最优调度方案与该企业原有的调度方案进行了对比。
实验结果表明,我们提出的调度方案相比原有方案具有更高的效率和更低的成本。
通过与企业员工的讨论和交流,我们也收集到了他们的反馈意见,并根据反馈意见进行了相应的调整和改进。
六、总结通过这次数学建模实习,我深入了解了数学建模的基本理论和方法,并且在实际操作中提高了自己的实践能力。
我学会了如何分析问题、建立模型和求解模型,并且学会了如何将数学建模的成果应用于实际问题中。
数学建模实验报告
在下面的题目中选做100分的题目,给出详略得当的答案。
一.通过举例简要说明数学建模的一般过程或步骤。
(15分)答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型为例):1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。
(查资料得出数学式子或算法)。
3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。
注意要尽量采用简单的数学公具。
例如:马尔萨斯模型,洛杰斯蒂克模型4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。
二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。
(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分)答:模型假设:1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。
2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。
3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。
4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。
5.挪动仅只是旋转。
我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。
将AC和BD这两条腿逆时针旋转角度θ。
记AC到地面的距离之和为f(θ)。
数模实验报告
数模实验报告数模实验报告摘要:本实验旨在通过数学建模的方法,分析和解决实际问题。
通过对数学模型的建立和求解,得出了一系列有关问题的结论和解决方案。
本文将详细介绍实验的目的、方法、结果和讨论。
1. 引言数学建模是一种将实际问题转化为数学问题,并通过数学方法求解的过程。
它在现代科学研究和工程实践中发挥着重要作用。
本实验选取了一个与交通流量相关的问题,通过数学建模的方法进行分析和求解。
2. 问题描述本实验的问题是:如何优化城市交通系统中的交通信号灯配时方案,以最大限度地提高交通流量并减少交通拥堵现象。
3. 模型建立为了解决这个问题,我们首先需要建立一个数学模型。
我们假设城市交通系统中的交通流量可以用一个二维矩阵来表示,其中每个元素表示一个交叉口的车辆数。
我们将交通信号灯配时方案表示为一个向量,其中每个元素表示一个交叉口的信号灯状态(红灯或绿灯)。
接下来,我们需要确定一个目标函数来衡量交通流量的优化程度。
我们选择了交通流量的总和作为目标函数,即最大化交通流量。
4. 模型求解为了求解模型,我们采用了遗传算法。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟遗传、变异和选择的过程,逐步优化目标函数。
我们首先随机生成了一组初始解,并计算其对应的目标函数值。
然后,我们通过交叉、变异和选择等操作,不断迭代更新解的集合,直到达到停止条件。
最终,我们得到了一个最优的交通信号灯配时方案,使得交通流量达到了最大值。
同时,我们也得到了一系列次优解,可以用于进一步的分析和讨论。
5. 结果分析通过对模型求解的结果进行分析,我们可以得出以下结论:首先,优化交通信号灯配时方案可以显著提高交通流量。
与传统的固定配时方案相比,我们的最优方案将交通流量提高了20%。
其次,交通流量的优化程度与交通网络的拓扑结构有关。
我们发现,在某些情况下,即使使用最优方案,交通流量仍然无法达到最大值。
这是因为交通网络的结构限制了交通流量的传输。
最后,我们还发现,交通流量的优化程度与交通信号灯配时方案的调整频率有关。
数学建模的实验报告
数学建模的实验报告数学建模实验报告示例如下:实验名称:社交网络分析中的协同过滤实验目的:研究社交网络中的协同过滤算法,并比较其性能和效率。
实验设计:1. 数据收集:从Facebook的公开数据集中获取了20个城市居民的用户数据,包括他们的个人资料、社交关系和浏览记录等。
每个用户被标记为一个或多个好友、关注者或喜欢某个特定话题的人。
共收集了7000个用户数据点。
2. 数据预处理:对数据进行清洗和特征提取。
清洗数据是为了删除无用的信息,提取特征则是为了将数据转化为计算机能够理解的形式。
3. 模型选择和训练:选择协同过滤算法,并使用数据集训练模型,包括K-近邻算法、Apriori算法、朴素贝叶斯算法和聚类算法等。
4. 模型评估:使用测试集对不同算法的性能进行评估。
计算模型的准确性、召回率、精确度、F1值等指标,并比较不同算法之间的性能。
5. 应用测试:使用测试集尝试在实际应用中应用模型。
将模型应用于新的数据集,评估模型的性能和效率,并进行模型的优化和改进。
实验结果:1. 结果概述:经过预处理和特征提取后,共产生了7000个用户数据点,其中5566个用户被标记为好友、关注者或喜欢某个特定话题的人。
共1897个用户数据点被保留,用于评估模型的性能。
2. 模型评估指标:准确性:模型预测的准确率。
召回率:模型从测试集中返回的真实用户中,能够被预测为好友或关注者的比例。
精确度:模型预测的精确度。
F1值:在测试集中,模型预测正确的用户数量与实际用户数量之比。
实验结果显示,K-近邻算法的性能最好,召回率为74.06%。
Apriori算法的性能次之,准确性为72.32%。
朴素贝叶斯算法的性能最次,召回率为69.71%。
聚类算法的精确度最低,为68.91%。
3. 应用测试结果:在实际应用中,将模型应用于新的数据集,评估模型的性能和效率。
实验结果显示,K-近邻算法的应用性能最好,召回率为89.46%。
Apriori算法的应用性能次之,召回率为78.21%。
数学建模实验报告模版
数学建模实验报告模版一、实验目的数学建模是实际问题抽象为数学模型,通过数学方法求解得到问题的答案。
本实验的目的是通过一个具体问题的建模与求解,培养学生的实际问题抽象与解决能力。
二、实验内容本次实验选择了一个实际生活中的问题进行建模与求解。
该问题是市场调查机构要对地区餐馆的顾客满意度进行调查,以评估餐馆的服务质量。
但由于资源有限,调查机构只能选择一部分顾客进行调查。
在这个问题中,我们需要确定调查的样本量大小,使其能够在一定的置信水平下准确代表整个顾客群体的意见。
三、实验步骤1.问题分析:首先,我们需要对问题进行分析,了解问题的背景和要求。
2.建立模型:根据问题的要求,我们选择了一个概率模型来描述问题。
假设顾客的满意度服从一个二项分布,即每位顾客都有可能是满意或不满意。
我们通过计算满意度的均值和方差,来代表整个顾客群体的意见。
3.数学求解:根据建立的模型,我们使用统计学方法对样本量大小进行估计,以达到一定的置信水平。
4.实验验证:最后,我们通过实验验证我们得到的样本量大小,看是否满足要求。
四、实验结果经过建模和求解,我们得到了样本量大小的估计结果。
根据我们的计算,当置信水平为95%时,我们需要调查的样本量大小为110人。
五、实验总结通过这次实验,我们学会了将实际问题抽象成数学模型,以及通过数学方法去求解这个模型。
我们也进一步了解了概率分布和统计学的知识,以及如何利用它们来进行建模和求解。
这对我们今后在实际问题中的应用具有重要意义。
在实验过程中,我们也发现了一些问题和不足之处。
例如,我们的模型可能存在一定的偏差,因为我们的假设可能与实际情况有所不同。
此外,我们的模型也有一些局限性,不适用于所有情况。
因此,在今后的学习过程中,我们需要进一步加强对数学建模的理解和应用,不断提高自己的建模能力,以更好地解决实际问题。
以上是一份关于数学建模实验的报告模板,希望对你的写作有所帮助。
实验报告的内容可根据具体实验情况进行修改和补充,以符合实际情况。
数学建模实验报告
数学建模实验报告Lingo软件的上机实践应用《数学建模实验报告》Lingo软件的上机实践应用简单的线性规划与灵敏度分析学号:班级:姓名:日期:20XX年-7-21数学与计算科学学院Lingo软件的上机实践应用一、实验目的:通过对数学建模课的学习,熟悉了matlab和lingo等数学软件的简单应用,了解了用lingo软件解线性规划的算法及灵敏性分析。
此次lingo上机实验又使我更好地理解了lingo程序的输入格式及其使用,增加了操作连贯性,初步掌握了lingo软件的基本用法,会使用lingo计算线性规划题,掌握类似题目的程序设计及数据分析。
二、实验题目(P55课后习题5):某工厂生产A1、A2两种型号的产品都必须经过零件装配和检验两道工序,如果每天可用于零件装配的工时只有100h,可用于检验的工时只有120h,各型号产品每件需占用各工序时数和可获得的利润如下表所示:(1)试写出此问题的数学模型,并求出最优化生产方案。
(2)对产品A1的利润进行灵敏度分析(3)对装配工序的工时进行灵敏度分析(4)如果工厂试制了A3型产品,每件A3产品需装配工时4h,检验工时2h,可获利润5元,那么该产品是否应投入生产?Lingo软件的上机实践应用三、题目分析:总体分析:要解答此题,就要运用已知条件编写出一个线性规划的Lingo程序,对运行结果进行分析得到所要数据;当然第四问也可另编程序解答。
四、实验过程:(1)符号说明设生产x1件A1产品,生产x2件A2产品.(2)建立模型目标函数:maxz=6x1+4x2 约束条件:1)装配时间:2x1+3x2=100 2)检验时间:4x1+2x2=120 3)非负约束:x1,x2=0 所以模型为:maxz=6x1+4x2 2x1 3x2 100s.t. 4x1 2x2 120 x,x 0 12Lingo软件的上机实践应用(3)模型求解:1)程序model:title 零件生产计划; max=6*x1+4*x2; 2*x1+3*x2=100; 4*x1+2*x2=120; end附程序图1:2)计算结果Global optimal solution found.Objective value: 200.0000 Total solver iterations: 2Model Title: 零件生产计划Lingo软件的上机实践应用Variable Value Reduced Cost X1 20.00000 0.000000 X2 20.00000 0.000000Row Slack or Surplus Dual Price 1 200.0000 1.000000 2 0.000000 0.***-***** 3 0.000000 1.*****附运行结果图1:3)做灵敏性分析:Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 6.000000 2.000000 3.***** X2 4.000000 5.0000001.000000Righthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 100.0000 80.00000 40.00000 3 120.0000 80.00000 53.***** 附灵敏性分析图1:Lingo软件的上机实践应用五、问题解答:1)试写出此问题的数学模型,并求出最优化生产方案答:①数学模型:maxz=6x1+4x22x1 3x2 100s.t. 4x1 2x2 120 x,x 0 12②生产20件A1产品,生产20件A2产品,最大利润200元。
对数模型实验报告
一、实验目的1. 理解对数模型的基本原理和特点。
2. 掌握对数模型的构建方法和应用。
3. 通过实验验证对数模型在数据拟合和分析中的有效性。
二、实验原理对数模型是一种描述变量之间关系的数学模型,通常用于处理变量之间存在指数关系的情况。
对数模型的基本形式为:y = a + b ln(x)其中,y 为因变量,x 为自变量,a 和 b 为模型参数。
对数模型的特点:1. 对数变换可以消除变量之间的非线性关系,使其转化为线性关系。
2. 对数模型适用于描述变量之间存在指数增长或衰减的情况。
三、实验内容1. 数据准备:收集一组数据,包括自变量 x 和因变量 y。
2. 模型构建:利用最小二乘法对对数模型进行参数估计,得到模型表达式。
3. 模型验证:通过绘制残差图、计算拟合优度等手段,验证模型的有效性。
4. 模型应用:利用对数模型进行数据预测和分析。
四、实验步骤1. 数据准备(1)收集数据:收集一组数据,包括自变量 x 和因变量 y。
(2)数据整理:对数据进行清洗,去除异常值和缺失值。
2. 模型构建(1)对数变换:对自变量 x 进行对数变换,得到 ln(x)。
(2)参数估计:利用最小二乘法,对对数模型进行参数估计,得到模型表达式 y = a + b ln(x)。
3. 模型验证(1)残差分析:绘制残差图,观察残差的分布情况。
(2)拟合优度检验:计算拟合优度R²,判断模型拟合效果。
4. 模型应用(1)数据预测:利用对数模型对未知数据进行预测。
(2)数据分析:利用对数模型对数据进行进一步分析,如相关性分析、趋势分析等。
五、实验结果与分析1. 数据准备本实验收集了一组数据,包括自变量 x 和因变量 y,数据量共 100 个样本。
2. 模型构建对自变量 x 进行对数变换,得到 ln(x)。
利用最小二乘法对对数模型进行参数估计,得到模型表达式 y = 2.5 + 1.2 ln(x)。
3. 模型验证(1)残差分析:绘制残差图,观察残差的分布情况。
数学模型实验报告
数学模型实验报告数学模型实验报告实验内容1.实验⽬的:学习使⽤lingo和MA TLAB解决数学模型问题实验原理:实验环境:MA TLAB7.0实验结论:源程序第四章:实验⽬的,学会使⽤lingo解决数学模型中线性规划问题1.习题第⼀题实验原理:源程序:运⾏结果:Range:结果分析:(1)求解结果中variable那⼀项表⽰的是最优解,容易看出x1,x2,x3,x4,x5取值分别为以上结果时,收益最⼤。
即证券A,C,E分别投资2.181818百万元,7.363636百万元,0.4545455百万元,最⼤收益为0.2983636百万元。
上⾯Row那⼀项中Slack or surplus 表⽰的是投资款项剩余值。
Dual 表⽰增加⼀单位,投资利润增加量。
(2)range 表⽰变化范围:variable那个项⽬表⽰的是最优解不变,系数的允许的变化范围。
Row那个项⽬表⽰的是影⼦价格(即在最优解下资源增加⼀个单位时效益的增量)。
3.习题第三题lingo算式:源程序:实验结果:结果分析:最优解为:x1=3,x2=4,y1=0,y2=2,y3=0,y4=0,y5=1时,min=820.此时费⽤最⼩。
在九个⼯作时间点的⽣于劳动⼒分别为3,6,5,0,1,2,0,0,0,个。
第五章:5.6节⼈⼝的预测和控制实验⽬的:⽤MATLAB 模型解决数学模型中⼈⼝预测和控制问题实验原理:指数增长模型:模型假设:年增长率保持不变记今年⼈⼝为x0,k 年后⼈⼝为xk,年增长率为r,则 xk=x0(1+r)^k (1)记t 时刻的⼈⼝为x(t),当考察⼀个国家或⼀个较⼤地区的⼈⼝时,是⼀个很⼤的整数,x(0)=x0,利⽤微积分求得 x(t)=x0e^rt (4)表⽰⼈⼝随时间⽆限增长组织增长模型---logistic 模型组织增长⽤体现在对⼈⼝增长率的影响上,使r 随着⼈⼝数量x 的增加⽽下降假定r(x)=r-sx(r,s>0)(5)这⾥r 称固有增长率,表⽰⼈⼝很少时(理论上是0x =)的增长率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a=[a;tmp]; %读准则层判断矩阵
end
for i=1:n1
str1=char(['b',int2str(i),'=[];']);
str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']);
eval(str1);
for j=1:n2
tmp=str2num(fgetl(fid));
eval(str2); %读方案层ห้องสมุดไป่ตู้判断矩阵
end
end
ri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标
[x,y]=eig(a);
lamda=max(diag(y));
num=find(diag(y)==lamda);
cr1(i)=(lamda-n2)/(n2-1)/ri(n2);
end
cr1, ts=w1*w0, cr=cr1*w0
4、在MATLAB目录下建立记事本文件,并命名为DuibiJuzhen.txt,在该文件里输入所有成对比较阵A,B1,B2,B3,B4。
5、在MATLAB命令窗口中输入命令:CengciFenxi,m
三、实验内容
用层次分析法解决一个实际问题,例如:
(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。可分为相对评价和绝对评价两种情况讨论。
(2)你要购买一台个人电脑,考虑功能、价格等因素,如何作出决策。
(3)为大学毕业的青年建立一个选择志愿的层次结构模型。
(4)你的家乡准备集资兴办一座小型饲养场,是养猪,还是养鸡、养鸭、养兔,用层次分析法进行决策。
四、实验步骤和运行结果(如运行有错误,请指出)
1、建立层次结构模型:选择(2)对购买一台个人电脑作出决策。将决策问题分为3个层次,最上层为目标层,即选择购买个人电脑,中间层是准则层,有功能、价格、外形、口碑4个准则,最下层为方案层,有P1、P2、P3三种选择方案,各层之间的联系如下所示。
2、构造成对比较阵
6、运行命令得到结果:
《数学建模》实验报告
实验序号:实验6实验项目名称:层次分析法的应用
学 号
0910012115
姓 名
林丹萍
专业、班
09信计1班
实验地点
实验4-416
指导教师
吴春红
实验时间
2012.5.14
成绩评定
一、实验目的及要求
通过对具体实例的分析,学会运用层次分析法建立数学模型的方法。
二、实验设备(环境)及要求
多媒体机房,单人单机,独立完成
准则层对目标层的成对比较阵:A=
方案层对准则层的成对比较阵:
B1= ,B2= ,B3= ,B4=
3、在MATLAB里建立M文件,并命名为:CengciFenxi.m,文件内容如下:
clc,clear
fid=fopen('tesk.txt','r');
n1=4;n2=3;
a=[];
for i=1:n1
w0=x(:,num)/sum(x(:,num));
cr0=(lamda-n1)/(n1-1)/ri(n1)
for i=1:n1
[x,y]=eig(eval(char(['b',int2str(i)])));
lamda=max(diag(y));
num=find(diag(y)==lamda);
w1(:,i)=x(:,num)/sum(x(:,num));