数值分析第二章答案

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析第二章答案

数值分析第二章答案

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。

数值分析(清华大学出版社)第二章课后答案

数值分析(清华大学出版社)第二章课后答案

1.用Gauss 消去法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤---⎢⎢⎢⎢⎣⎡-551631011411014211264321x x x x 解:第一步:交换第三行和第一行,得到如下矩阵⎥⎥⎥⎥⎦⎤----⎢⎢⎢⎢⎣⎡-56153101111402411621做运算()22121E E E →⎪⎭⎫ ⎝⎛+-,()33161E E E →⎪⎭⎫⎝⎛+-,()()441E E E →+,得到增广矩阵 ⎥⎥⎥⎥⎦⎤------⎢⎢⎢⎢⎣⎡0249525213237414210001 第二步:再做运算()3322E E E →+,()44221E E E →⎪⎭⎫⎝⎛+-,得到如下矩阵 ⎥⎥⎥⎥⎦⎤-----⎢⎢⎢⎢⎣⎡94295292113377400210001第三步:做运算()4433713E E E →⎪⎭⎫⎝⎛+,得到 ⎥⎥⎥⎥⎦⎤------⎢⎢⎢⎢⎣⎡21342951919210377400210001利用回代公式求得.790576.0,361257.0,863874.0,115183.11234=-==-=x x x x2、解 2.51 1.48 4.531.480.93 1.302.68 3.041.48⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.051.030.53⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ 做两次换行()()()()↔↔3132;E E E E 得2.683.04 1.42.511.48 4.531.480.931.30⎡⎤-⎢⎥⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.051.03⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦ 计算()()()()-+→-+→1221330.93657;0.55224;E E E E E E2.683.04 1.481.3672 5.916100.748810.48269⎡⎤-⎢⎥-⎢⎥⎢⎥--⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.546381.3227⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦计算()()-+→2330.54770;E E E2.683.04 1.4801.36725.9161003.7229⎡⎤-⎢⎥-⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.546381.0235⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦ 换行和消去到此结束,经回代计算得到x =()1.440360, 1.577963,0.27494T--3.用Doolittle 三角分解方法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----551631011411014211264321x x x x解:首先对系数矩阵A 做分解LUA =解出:解b y L=,计算出Ty ⎪⎭⎫ ⎝⎛--=74213,521,1,6解y x U=,计算出()T x 115183.1,863874.0,361257.0,790576.0--=4.设][,ij n n a A R A =∈⨯,011≠a ,b Ax =经过高斯消去法一步后变为)2()2(b x A =,其中=)2(A⎥⎦⎤⎢⎣⎡21110A a a T ,(2)A =()(2),2n ij i j a =为(n-1)⨯(n-1)矩阵.其元素为(2)ija =(1)ij a -(1)(1)11i j a a /(1)11a , ,i j =2,3, n. 证明:(1)若A 对称正定,则2A 是对称矩阵。

数值分析第二章答案

数值分析第二章答案


n
i=1
ln x i = 0
θ

= −
n
∑ ∑
n
n
i=1
ln x i n
θ
= =
解之得:
i=1
ln x i
(2)母体 X 的期望
E (x) =

+∞ −∞
xf ( x ) d x =

1 0
θ xθ dx =
θ θ +1
而样本均值为:
1 n X = ∑ xi n i =1 令E ( x) = X 得 θ =
x e 2σ 1 n
d x = 2 x ) =

+ ∞ 0
x 2σ
e

x σ
d x = − x e ) = 1 ⋅ nσ n

x σ
+ ∞
+
0

+ ∞ 0
e

x σ
d x =
E (σ ) = E (

n
i=1
i
1 n

n
E ( x
i=1
i
= σ
所以
σ=

1 n ∑ xi σ n i=1 为 的无偏估计量。

X 1− X
5.。解:其似然函数为:
L (σ ) = ∏
i =1
n
1 ⋅e 2σ

xi σ
=
1 ⋅e (2σ ) n 1 σ
n i =1

1 σ
∑ xi
i =1
n
ln L (σ ) = − n ln(2σ ) − 得: σ =

数值分析第二章复习与思考题

数值分析第二章复习与思考题

第二章复习与思考题1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质?答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件(),,,1,0,,,0,,1n k j j k j k x l k j =⎩⎨⎧≠==则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数.以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设()()()()()n k k k x x x x x x x x A x l ----=+- 110,其中A 为常数,利用()1=k k x l 得()()()()n k k k k k k x x x x x x x x A ----=+- 1101,故()()()()n k k k k k k x x x x x x x x A ----=+- 1101,即()()()()()()()()∏≠=+-+---=--------=n kj j jk j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( .对于()),,1,0(n i x l i =,有()n k x x l x ni ki k i ,,1,00==∑=,特别当0=k 时,有 ()∑==ni i x l 01.2.什么是牛顿基函数?它与单项式基{}nxx ,,,1 有何不同?答:称()()()(){}10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为()()()()10010---++-+=n n n x x x x a x x a a x P其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如()()()()k k k k x x x x a x P x P --+=++ 011,其中1+k a 是节点110,,,+k x x x 上的1+k 阶差商,这一点要比使用单项式基{}nx x ,,,1 方便得多.3.什么是函数的n 阶均差?它有何重要性质?答:称[]()()000,x x x f x f x x f k k k --=为函数()x f 关于点k x x ,0的一阶均差,[][][]110010,,,,x x x x f x x f x x x f k k k --=为()x f 的二阶均差. 一般地,称[][][]11102010,,,,,,,,-----=n n n n n n x x x x x f x x x f x x x f 为()x f 的n 阶均差.均差具有如下基本性质:(1) n 阶均差可以表示为函数值()()()n x f x f x f ,,,10 的线性组合,即[]()()()()()∑=+-----=nj n j j j j j jj n x x x x x x x xx f x x x f 011010,, ,该性质说明均差与节点的排列次序无关,即均差具有对称性.(2) [][][]01102110,,,,,,,,x x x x x f x x x f x x x f n n n n --=- .(3) 若()x f 在[]b a ,上存在n 阶导数,且节点[]b a x x x n ,,,,10∈ ,则n 阶均差与n 阶导数的关系为[]()()!,,10n f x x x f n n ξ= ,[]b a ,∈ξ. 4.写出1+n 个点的拉格朗日插值多项式与牛顿均差插值多项式,它们有何异同? 答:给定区间[]b a ,上1+n 个点b x x x a n ≤<<<≤ 10上的函数值()),,1,0(n i x f y i i ==,则这1+n 个节点上的拉格朗日插值多项式为()()∑==nk k k n x l y x L 0,其中()n k x x x x x l n kj j jk jk ,,1,0,0 =⎪⎪⎭⎫⎝⎛--=∏≠=. 这1+n 个节点上的牛顿插值多项式为()()()()10010---++-+=n n n x x x x a x x a a x P ,其中[]n k x x x f a k k ,,1,0,,,,10 ==为()x f 在点k x x x ,,,10 上的k 阶均差.由插值多项式的唯一性,()x L n 与()x P n 是相同的多项式,其差别只是使用的基底不同,牛顿插值多项式具有承袭性,当增加节点时只需增加一项,前面的工作依然有效,因而牛顿插值比较方便,而拉格朗日插值没有这个优点.5.插值多项式的确定相当于求解线性方程组y Ax =,其中系数矩阵A 与使用的基函数有关.y 包含的是要满足的函数值()Tn y y y ,,,10 . 用下列基底作多项式插值时,试描述矩阵A 中非零元素的分布.(1) 单项式基底;(2) 拉格朗日基底;(3) 牛顿基底.答:(1) 若使用单项式基底,则设()nn n x a x a a x P +++= 10,其中n a a a ,,,10 为待定系数,利用插值条件,有⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n nn nn y x a x a a y x a x a a y x a x a a 101111000010, 因此,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n nx x x x x x A 1111100为范德蒙德矩阵.(2) 若使用拉格朗日基底,则设()()()()x l a x l a x l a x L n n n +++= 1100,其中()x l k 为拉格朗日插值基函数,利用插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n n n n n n y x l a x l a x l a y x l a x l a x l a y x l a x l a x l a 11001111110000011000, 由拉格朗日插值基函数性质,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 A 为单位矩阵.(3) 若使用牛顿基底,则设()()()()10010---++-+=n n n x x x x a x x a a x P ,由插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=--++-+=--++-+---nn n n n n n n n n y x x x x a x x a a y x x x x a x x a a y x x x x a x x a a 10010111010110010000010 即()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=-+=-nn n n n n y x x x x a x x a a y x x a a y a 100101011000 故求解y Ax =的系数矩阵A 为()()()()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------=-110100120202011111n n n n n n n x x x x x x x x x x x x x x x x x x xx A为下三角矩阵.6.用上题给出的三种不同基底构造插值多项式的方法确定基函数系数,试按工作量由低到高给出排序.答:若用上述三种构造插值多项式的方法确定基函数系数,则工作量由低到高分别为拉格朗日基底,牛顿基底,单项式基底.7.给出插值多项式的余项表达式,如何用它估计截断误差?答:设()()x fn 在[]b a ,上连续,()()x fn 1+在()b a ,内存在,节点b x x x a n ≤<<<≤ 10,()x L n 是满足条件()n j y x L j j n ,,1,0, ==的插值多项式,则对任何[]b a x ,∈,插值余项()()()()())(!111x n f x L x f x R n n n n +++=-=ωξ, 这里()b a ,∈ξ且与x 有关,()()()()n n x x x x x x x ---=+ 101ω.若有()()11max ++≤≤=n n bx a M x f,则()x L n 逼近()x f 的截断误差()()()x n M x R n n n 11!1+++≤ω.8.埃尔米特插值与一般函数插值区别是什么?什么是泰勒多项式?它是什么条件下的插值多项式?答:一般函数插值要求插值多项式与被插函数在插值节点上函数值相等,而埃尔米特插值除此之外还要求在节点上的一阶导数值甚至高阶导数值也相等.称()()()()()()()n n n x x n x f x x x f x f x P 00000!-++-'+= 为()x f 在点0x 的泰勒插值多项式,泰勒插值是一个埃尔米特插值,插值条件为()()()()n k x f x P k k n ,,1,0,00 ==,泰勒插值实际上是牛顿插值的极限形式,是只在一点0x 处给出1+n 个插值条件得到的n 次埃尔米特插值多项式.9.为什么高次多项式插值不能令人满意?分段低次插值与单个高次多项式插值相比有何优点?答:对于任意的插值结点,当∞→n 时,()x L n 不一定收敛于()x f ,如对龙格函数做高次插值时就会出现振荡现象,因而插值多项式的次数升高后,插值效果并不一定能令人满意.分段低次插值是将插值区间分成若干个小区间,在每个小区间上进行低次插值,这样在整个插值区间,插值多项式为分段低次多项式,可以避免单个高次插值的振荡现象.10.三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?请说明理由.答:三次样条插值要求插值函数()[]b a C x S ,2∈,且在每个小区间[]1,+j j x x 上是三次多项式,插值条件为()n j y x S j j ,,1,0, ==.三次分段埃尔米特插值多项式()x I h 是插值区间[]b a ,上的分段三次多项式,且满足()[]b a C x I h ,1∈,插值条件为()()k k h x f x I =,()()),,1,0(,n k x f x I k k h='='. 分段三次埃尔米特插值多项式不仅要使用被插函数在节点处的函数值,而且还需要节点处的导数值,且插值多项式在插值区间是一次连续可微的.三次样条函数只需给出节点处的函数值,但插值多项式的光滑性较高,在插值区间上二次连续可微,所以相比之下,三次样条插值更优越一些.11.确定1+n 个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?答:由于三次样条函数()x S 在每个小区间上是三次多项式,所以在每个小区间[]1,+j j x x 上要确定4个待定参数,1+n 个节点共有n 个小区间,故应确定n 4个参数,而根据插值条件,只有24-n 个条件,因此还需要加上2个条件,通常可在区间[]b a ,的端点0x a =,n x b =上各加一个边界条件,常用的边界条件有3种: (1) 已知两端的一阶导数值,即()00f x S '=',()n n f x S '='.(2) 已知两端的二阶导数值,即()00f x S ''='',()n n f x S ''='',特殊情况为自然边界条件()00=''x S ,()0=''n x S .(3) 当()x f 是以0x x n -为周期的周期函数时,要求()x S 也是周期函数,这时边界条件就满足()()00-=+n x S x S ,()()000-'=+'n x S x S , ()()000-''=+''n x S x S这时()x S 称为周期样条函数.12.判断下列命题是否正确?(1) 对给定的数据作插值,插值函数个数可以任意多.(2) 如果给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的.(3) ()),,1,0(n i x l i =是关于节点),,1,0(n i x i =的拉格朗日插值基函数,则对任何次数不大于n 的多项式()x P 都有()()()x P x P x l ini i=∑=0(4) 当()x f 为连续函数,节点),,1,0(n i x i =为等距节点,构造拉格朗日插值多项式()x L n ,则n 越大()x L n 越接近()x f .(5) 同上题,若构造三次样条插值函数()x S n ,则n 越大得到的三次样条函数()x S n 越接近()x f .(6) 高次拉格朗日插值是很常用的.(7) 函数()x f 的牛顿插值多项式()x P n , 如果()x f 的各阶导数均存在,则当),,1,0(0n i x x i =→时,()x P n 就是()x f 在0x 点的泰勒多项式.答:(1) 对.(2) 错.1+n 个节点上的拉格朗日插值和牛顿插值就是表示形式不同的两种插值多项式. (3) 对.(4) 错.当∞→n 时,()x L n 并一定收敛到()x f .(5) 对.(6) 错.高次拉格朗日插值不一定具有收敛性,因而并不常用. (7) 对.。

数值分析答案第二章参数估计习题

数值分析答案第二章参数估计习题
数值分析答案第二章参数估计习题数值分析习题解答数值分析课后习题答案参数估计练习题数值分析习题参数估计习题参数估计习题及答案数值分析习题解答pdf数值分析习题集及答案数值分析习题答案
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ

x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =

X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α

高等数值分析第二章答案

高等数值分析第二章答案

第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。

令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。

在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。

以上证明了求解,22b Ax b Ax −=等价于极小化即。

等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。

使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。

为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。

数值分析参考答案第二章

数值分析参考答案第二章

第二章插值法1.当兀= 1—2时,/(%) = 0-3,4^/(%)的二次插值多项式。

解:X。

= I/】=—l,x2 = 2, /Uo) =0,/(^)=-3,/(X2) = 4;一丄(兀+i)(一2),0(人)=Oo — xJOo — xJ 2加)=(_兀)(—心=丄(一1)(一2)(兀一兀)(州一呂)6(A-.VoX.V-Vj l(Y_1)(x+1)(x2-x Q)(x2-x t) 3则二次拉格朗口插值多项式为2厶⑴=£)恥)k=0=-3/0(X)+4/2(X)1 4= --U- 1)(A—2) + -(x-l)(x + 1)5r 3 7=-X" +—x--6 2 3/(x) = liix2.用线性插值及二次插值计算1110.54的近似值。

解:由表格知,x0 = 0・4,兀=0.59X2 = 0.6, x3 = 0.7,x4 = 0.8; f(x Q) = -0.916291,/(xj = -0.693147 /(A) = —0.510826,/a)= -0.356675 /(x4) =-0.223144若采用线性插值法计算hiO.54即/(0.54),则0.5 <0.54 <0.6/1(x) = ^—^ = -10(.v-0.6) 人一无X —X /.(%) = -__ =-10(x-0.5)厶⑴=/U1XW + /(x 2)/2(x)=6.93147(x — 0.6) - 5・ 10826(.— 0.5)・・・厶(0.54) = -0.6202186 « -0.620219若采用二次插值法计算lnO.54时, (V f _亠)=50(x-0.5)(x- 0.6)(x Q -xj(x 0-x 2)(工7。

)(工_亠)=-100(x- 0.4)(x — 0.6)(兀一 Xo )(X 】一XJ厶(x) = /UoVoW+/U1XW+/(x 2)/2(x )=-50 x 0.916291(%-0.5)(A -0.6)+ 69.3147(x-0.4)(x-0.6)-0.510826 x50(x-0.4)(x-0.5).14(0.54) = -0.61531984 « -0.615320 3.给全cosx,0 <x<90°的函数表,步长/? = r = (l/60)\若函数表具有5位有效数字,研 究用线性插值求cos 兀近似值时的总误差界。

数值分析第二章作业答案

数值分析第二章作业答案

第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。

证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。

2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。

解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。

解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。

,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。

1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。

数值分析参考答案(第二章)doc资料

数值分析参考答案(第二章)doc资料
(2)若 ,则
证明:
(1)
得证。
+
得证。
14. 求 及 。
解:


15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知

可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,

若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式

数值分析课后第二章习题解答

数值分析课后第二章习题解答

6 应用牛顿迭代法于方程 x – a = 0, 导出求立方根 3 解:令 f(x) = x – a,则牛顿迭代公式
3
3
a 的迭代公式, 并讨论其收敛阶。
x n +1 = x n −
故迭代函数为
3 xn −a 2 a = xn + 2 2 3 3x n 3xn
ϕ ( x) =


a 2 x+ 2 3 3x
x − 1 , ϕ ′( x ) =
−1 2 ( x − 1) 3
,在 x0 = 1.5 附近有 | ϕ ′( x) |≥ 1 成立,故
迭代格式不收敛; (3) ϕ ( x ) = 1 + x , ϕ ′( x ) =
3 2
− 2x 33 (1 + x 2 ) 2
,在 x0 = 1.5 附近有 | ϕ ′( x) |< 1 成立,故
反复递推,得
( xn − 2 ) 2 ( xn + 2 ) 2 ]2 = L = [
2
x n +1 − 2 x n +1 + 2

=
( xn − 2 ) 2 ( xn + 2 ) 2
=[
x n −1 − 2 x n −1 − 2 x0 − 2 x0 + 2
= q2
n
x0 − 2 x0 + 2
]2
n +1
x0>0,均收敛于 2 。
证明:对迭代格式,得 x n +1 =
1 2 ( xn + 2) ,等式两端同减 2 ,并进行配方,得 2 xn 1 x n +1 − 2 = ( xn − 2 ) 2 2 xn x n +1 + 2 = 1 ( xn + 2 ) 2 2 xn

数值分析 第二章习_题_解_答

数值分析 第二章习_题_解_答

第二章习 题 解 答西南交大 草上飞1下列数据作为π=*x 的近似数,试确定它们各有几位有效数字,并确定其相对误差限..722,15.3,14.3,141.34321====x x x x (i x 表示*x 的近似数,)1415926.3 =π 解:把近似数)4,3,2,1(*=i x i 规格化形式后均有1=k ,首位非零数字为3Ⅰ)31*11021005.000059.0141.3-⨯=≤=-=- πx x *1x 有3位有效数字,0017.010321)(31*1≈⨯⨯=-x r ε Ⅱ) 31*21021005.0001.014.3-⨯=≤=-=- πx x*2x 有3位有效数字,0017.010321)(31*2≈⨯⨯=-x r ε Ⅲ) 21*31021005.0008.015.3-⨯=≤=-=- πx x*3x 有2位有效数字,017.010321)(21*3≈⨯⨯=-x r ε Ⅳ)142857.3722=, 31*41021005.0001.0722-⨯=≤=-=- πx x *4x 有3位有效数字,0017.010321)(31*4≈⨯⨯=-x r ε 2 证明§2.2中的定理 2.1,定理 2.2.3 已知20的近似数x 相对误差为%5.0,试问x 至少有几位有效数字?解:因20的第一位数字为4,所以x 的第一位数字41=a ,根据定理2.1,当n r a x e -⨯+≤1015|)(|1 成立时,x 有n 位有效数字,而2=n 时,101451019510005%5.0)(22--⨯+<⨯+===x e r 所以近似数x 至少有2位有效数字.4 为尽量避免有效数字的严重损失,当1||<<x 时应如何加工下列计算公式:(1)xx x +--+11211 (2)x cos 1- (3)1-xe解:(1))1)(21(22x x x ++;(2)2sin 22x ;(3)4322416121x x x x +++ 5 序列{}n y 满足递推关系()⎪⎩⎪⎨⎧=-==- ,2,1,110210n y y y n n若取41.120≈=y 做近似计算,问计算到10y 时误差有多大?这个计算过程稳定吗?解:,414.120 ==y ,41.1*=y δ=⨯≤--2*001021||y y 10||*11=-y y δ10||*00≤-y y10||*1010=-y y δ10*0010*9910||10||≤-==-y y y y 此递推关系每计算一次误差增长10倍,故算法不稳定. 6设,,1,0,11 ==⎰-n dx e x I x n n 验证,110--=e I .11--=n n nI I 若取,3679.01≈-e 依次计算 n I I I ,,10时(不要求具体算出),请你证明这样设计的算法其误差传播是逐步扩大的,算法是不稳定的.并要求另外设计一种数值稳定的算法.解: ,11110⎰---==e dx eI x 对n I 用分部积分法得==⎰-11dx e x I x n n ⎰-11x n de x ne x x n -=-101|⎰--111dx e x x n .11--=n nI设误差,*n n n I I e -=其中*1*1--=n n nI I .于是=--=-=--)(*11*n n n n n I I n I I e =--=)(!)1(*00I I n n 0!)1(e n n - 当n 增大时n e 是递增的, *n I 的误差达到0!)1(e n n -,是严重失真的.数值稳定的计算方法: 将递推公式11--=n n nI I 改为)1(11n n I nI -=- )1,2,1,( -=k k n 于是在从后往前计算时, 1-n I 的误差减少为原来n I 的n1,若取k n =足够大,误差逐步减少,计算结果是稳定可靠的. 7 7可由下列迭代公式计算:⎪⎩⎪⎨⎧=+==+,2,1,0),7(21210k x x x x k k k若k x 是7的具有n 位有效数字的近似值,求证1+k x 是7的具有n 2位有效数字的近似值.解 由1+k x ,1,0,)7(217)7(2172=-=-+=-k x x x x k kk k 和20=x ,得到,,2,1,7 =≥k x k 数列∞=1}{k k x 有下界.又1)11(21)71(2121=+≤+=+kk k x x x 即k k x x ≤+1,数列∞=1}{k k x 单调不增. 故k k x ∞→lim 存在.令∞→k ,对迭代公式两边取极限,可求得7lim =∞→k k x .现设k x 是7的具有n 位有效数字的近似值,即有11021|7|+-⨯≤-n k x 于是,得|7|1-+k x 2)7(721-≤k x 221041721+-⨯⨯≤n 121021+-⨯≤n可见, 1+k x 是7的具有n 2位有效数字的近似值.8用秦九韶算法计算多项式4532)(23-+-=x x x x p 在自变量3=x 时的值. 解:381432429634532-- 故 38)3(=p补充例题例题1:试问真值62.2*=x 的近似数 2.58x =是否为有效数. 解:*112110.040.05101022x x ---=<=⨯=⨯∴由有效数的定义知近似数 2.58x =具有两位有效数字,分别是2,5由于8不是有效数字,故 2.58x =不是有效数.例题2为尽量避免有效数字的严重损失,当1||>>x 时应如何加工下列计算公式xx x x 11--+解: 为尽量避免有效数字的严重损失,应作变换:xx x x x xx x x 11211-++=--+例题3 设10000,2,1,0,1==⎰n dx e x I x n n(1)证明:.10000,,3,2,1,1 =-=-n nI e I n n (2)设计一种数值稳定的算法,并证明算法的稳定性. 解: (1) 对n I 用分部积分法得 ==⎰1dx e x I x n n ⎰1x n de x n e x x n -=10|⎰-11dx e x x n.10000,,3,2,1,1101 =-=-=--⎰n nI e dx e x n e n x n(2) 由(1)得:,1n n I e nI -=-若已知N I ,设计如下递推算法: 1,2,1,),(11 --=-=-N N N n I e nI n n 注意到: )1,0(,1|110110∈+=+==+⎰ξξξξn e n x e dx x e I n nn ,于是.111+<<+n e I n n 取)1(21++=N eI N 可得如下递推算法1,2,,1,,)1(21)(11 -=⎪⎪⎩⎪⎪⎨⎧++=-=-N N n N e I I e n I N n n . 设 n n n I I e -=,则11---n n I I )(1n n I I n--=, ||11---n n I I |)(|1n n I I n -=,即n n e ne 11=-.每迭代一次误差均在减少,所以设计的递推算法是数值稳定的.例题4 已知,1410⎰+=dx x x y nn 试建立一个具有较好数值稳定性的求),2,1( =n y n 的递推公式,并证明算法的稳定性.解: 由=+-14n n y y ⎰++-101144dx x x x n n =n dx x n 1101=⎰- 得到求),2,1( =n y n 的递推公式:14141--=n n y n y , ,2,1=n (*) 而初值40235.0|)]14[ln(4114110100≈+=+=⎰x dx x y ,由此出发,根据上述递推公式可以求 ),2,1( =n y n 的近似值求*ny : *1*4141--=n n y n y , ,2,1=n . 记*n y 的绝对误差为||*n n n y y -=∆,则有:)(41*11*----=-n n n n y y y y ,即141-∆=∆n n , ,2,1=n . 由此可见,*1-n y 的误差将缩小41传播到*n y ,误差传播是逐步衰减的.因而,递推公式(*)是数值稳定的.例题5 数列{}n x 满足递推公式1101(1,2,)n n x x n -=-=.若取*001.41(3x x =≈=位有有效数字),问按此递推算法从0x 算至10x 时误差有多大?这个计算过程稳定吗? 解: *20001||||102e x x ε-=-=<⨯ *00||||10||10n nn n n n e x x x x ε=-=-=,||()n e n →∞→∞,则计算过程不稳定.计算至10x 时误差: 10281011||10101022e -=⨯⨯=⨯.。

数值分析第二章答案.doc

数值分析第二章答案.doc

1.当x = l,_l,2时,y(x) = O,—3,4,求/'(x)的二次插值多项式。

解:兀。

=1,兀[=—1, x2 = 2,f(x0) = 0,/(%!)= -3,f(x2) = 4;g) J—厂)扣+ i)(_ 刁(兀0 —西)(兀0—兀2)2血)=^^ = ”1)(—2)(x2 -x0)(x2 -xj 3则二次拉格朗日插值多项式为2厶2(工)=工几/*(工)k=0523 7=—x +—x——6 2 3 5 设/(x) e C2[a,b]且f(a) = f(Z?) = 0,求证:max|f(x)|< |(Z?-a)2 max|f w(x)|.解:令x0=a,x1 = b,以此为插值节点,则线性插值多项式为厶(对=于(心)兰二^+于⑺“乂也x o - %! X-X o又•••f(o) = f(Z7)= 0/.厶(x) = 0插值余项为7?(兀)=/⑴一厶(x) = -|/\x)(x-x0 )(%-%!)••• /(X)= |■广'(x)(x — x(J(x — xj=-@ —a)?4•■- max|f(x)| <|(Z?-a)2 maxlf^x)!,16 .求一个次数不高于4次的多项式P ( x ),使它满足==他)x-ba-b+ /@)x-ax-a——3厶(x) +4Z (x)P(0) = P'(0) = O,P(1) = P'⑴=0,P(2) = 0解:利用埃米尔特插值可得到次数不高于4的多项式兀。

=0,兀]=1儿=o, X = 1加o = 0,加1 = 11 1H3(X)=工y j a j(X)+ 工卩0/(X)>0 >0呦⑴= (1-2匚直)(兰十x o -Xj X o - Xj= (l + 2x)(x —1尸a©) = (1 一2 仝二^)(仝二兀1 一兀0 %! - Xo= (3-2Q?0Jx) = x(x —1尸0](x) = (x — l)/H£x)— (3 - 2.Y).Y" + (x — 1).Y"——x' + 2.Y"设P(x) = //3(x) + A(x -X O)2(X - X] )2其中,A为待定常数P(2) = 1P(x) = -x3 + 2x2 + Ax2(x-1)2:.A = -4从而P(X)=-X2(X-3)2419.求f(x) = x4在[a,b]上分段埃尔米特插值,并估计误差。

数值分析课后第二章习题解答

数值分析课后第二章习题解答

1 × 10 − 4 的 2
根需二分多少次? 证明 令 f(x) = 1 – x – sin x,则 f(0) = 1,f(1)= – sin 1。于是 f(0) f(1)< 0,故所给方程 在区间[0,1]上必有根。又因为
f ′( x) = −1 − cos x 1− 0 1 ≤ × 10 − 4 2 n +1 2
3
x n +1 = x n −
3 2 xn + 2 xn + 10 x n − 20 2 3 x n + 4 x n + 10
容易验证 f(1) f(2) < 0,故方程在[1,2]区间内至少有一根。取初值 x0=1,计算结果如下 1.4117647 1.3693364 1.3688081 1.3688081 取初值 x0=2,计算结果如下 1.4666666 1.3715120 1.3688102 1.3688081 取初值 x0=1.5,计算结果如下 1.3736263 1.3688148 1.3688081 由此可知,方程在区间[1,2]内有一根,其近似值为 x* ≈1.3688081 注:用 MATLAB 求多项式零点命令 roots([1 2 10 – 20 ])可得该方程的三个根近似值 x1 = -1.6844 + 3.4313i,x2 = -1.6844 - 3.4313i,x3 = 1.3688 3 2 8 已知方程 x – x – 1 = 0 在 x0 = 1.5 附近有根,试判断下列迭代格式的收敛性。 (1) x n +1 = 1 + 1 / x n ; (2) x n +1 = 1 /
首先证明数列有上界。显然, x1< 2。设对 k ,有 xk < 2 成立,则对于( k+1)有

李庆扬-数值分析第五版第2章习题答案(20130625)

李庆扬-数值分析第五版第2章习题答案(20130625)

第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。

阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。

拉格朗日插值多项式是系数知道,但基函数不知道。

牛顿插值多项式是函数知道,但系数不知道。

与一般多项式基本相同。

y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。

)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。

数值分析课程课后习题答案(李庆扬等)1

数值分析课程课后习题答案(李庆扬等)1

第一章 绪论1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

《数值分析》第二章答案

《数值分析》第二章答案

习题21. 分析下列方程各存在几个根,并找出每个根的含根区间:(1) 0cos =+x x ; (2) 0cos 3=-x x ; (3) 0sin =--x e x ; (4) 02=--x e x 。

解:(1) 0cos =+x x (A) x x x f cos )(+= ,0sin1)(≥-='x x f ,),(∞-∞∈x10cos 0)0(=+=f ,01cos 1)1cos(1)1(<+-=-+-=-f ∴ 方程(A) 有唯一根 ]0,1[*-∈x (2) 0cos 3=-x x (B) x x x f c o s 3)(-=,0sin 3)(>+='x x f , ),(∞-∞∈x 时010c o s03)0(<-=-⨯=f ,01cos 31cos 13)1(>-=-⨯=f ∴ 方程(B) 有唯一根 ]1,0[*∈x (3)sin =--xex (C)xex -=sinx x f sin )(1=, xex f -=)(2方程(C)有无穷个正根,无负根 在[22,2πππ+k k ] 内有一根 )(1k x ,且0]2[lim )(1=-∞→πk x k k在[ππππ++k k 2,22]内有一根)(2k x ,且0])12([lim )(2=+-∞→πk x k k (示图如下) 3,2,1,0=k)(2x f x(4)02=--xex(D) xex-=2,)(21x x f = xex f -=)(2方程(D) 有唯一根 ]1,0[*∈x 当 0<x 时 (D)与方程2x ex -=- (E) 同解 当 0<x 时 (E)无根 2. 给定方程 012=--x x ; (1)(2)若在[0 , 2]上用二分法求根,要使精确度达到6位有效数,需二分几次? 解:012=--x x1) 01)(2=--=x x x f 1)1(-=f , 025.0)5.1(<-=f ,1)2(=f]2,5.1[*∈x, 618034.1251*=+=x)(5.1- 1.75(+) 2(+) )(5.1- 1.625(+) 1.75(+) )(5.1-1.5625(+) 1.625(+))(5625.1- )(59375.1-1.625(+)1102103125.02)5625.1625.1(-⨯<=-6.159375.1*≈≈x2位有效近似值为 1.6 2)00==a a , 20==b b)(21k k k b a c +=kk k a b c x 2121*=-≤-+5102121-⨯≤k,51102≥-k60.162ln 10ln 51=≥-k∴ 只要2等分18次3. 为求0353=--x x 的正根,试构造3种简单迭代格式,判断它们是否收敛,且选择一种较快的迭代格式求出具有3位有效数的近似根。

数值分析习题答案

数值分析习题答案

第一章 绪论3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:**1 1.1021x =,**20.031x =, **3385.6x =, **456.430x =,**57 1.0.x =´解:*1 1.1021x =是五位有效数字;是五位有效数字;*20.031x =是二位有效数字;是二位有效数字; *3385.6x =是四位有效数字;是四位有效数字;*456.430x =是五位有效数字;是五位有效数字; *57 1.0.x =´是二位有效数字。

是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

题所给的数。

解:解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x e e e e e -----=´=´=´=´=´ ***124***1244333(1)()()()()1111010102221.0510x x x x x x e e e e ----++=++=´+´+´=´***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x e e e e ---=++=´´´+´´´+´´´»**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x e e e ---+»´´+´´=´= 6.设028Y =,按递推公式11783100n n Y Y -=- (n=1,2,n=1,2,……)计算到100Y 。

数值分析课后习题及答案

数值分析课后习题及答案

数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。

[解]。

3、给出的数值表用线性插值及二次插值计算的近似值。

X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。

若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。

[解]由,可知,,余项为,故。

2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。

[解]由插值余项定理,有,从而。

5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。

[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。

第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。

19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。

又,,,故法方程为,解得。

均方误差为。

27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。

,。

又,,,故法方程为,解得。

故直线运动为。

补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。

[解]电流、电阻与电压之间满足如下关系:。

应用最小二乘原理,求R使得达到最小。

对求导得到:。

令,得到电阻R为。

2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。

[解]令,求x使得达到最小。

对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。

常州大学数值分析课后习题答案第二章第三章第四章节资料

常州大学数值分析课后习题答案第二章第三章第四章节资料

数值分析作业第二章1、用Gauss消元法求解下列方程组:2x1-x2+3x3=1,(1) 4x1+2x2+5x3=4,x1+2x2=7;(2) 解:A=[2 -1 3 1;4 2 5 4;1 2 0 7]n=size(A,1);x=zeros(n,1);flag=1;% 消元过程for k=1:n-1for i=k+1:nif abs(A(k,k))>epsA(i,k+1:n+1)=A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k); elseflag=0;returnendendend% 回代过程if abs(A(n,n))>epsx(n)=A(n,n+1)/A(n,n);elseflag=0;returnendfor i=n-1:-1:1x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i); endreturnxA = 2 -1 3 14 25 41 2 0 7x = 9-1-611x1-3x2-2x3=3,(2)-23x1+11x2+1x3=0,x1+2x2+2x3=-1;(2) 解:A=[11 -3 -2 3;-23 11 1 0;1 2 2 -1]n=size(A,1);x=zeros(n,1);flag=1;% 消元过程for k=1:n-1for i=k+1:nif abs(A(k,k))>epsA(i,k+1:n+1)=A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k);elseflag=0;returnendendend% 回代过程if abs(A(n,n))>epsx(n)=A(n,n+1)/A(n,n);elseflag=0;returnendfor i=n-1:-1:1x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i);endreturnxA = 11 -3 -2 3-23 11 1 01 2 2 -1x = 0.21240.5492-1.15544、用Cholesky分解法解方程组3 2 3 x1 52 2 0 x2 33 0 12 x3 7解:.A=[3 2 3;2 2 0;3 0 12];b=[5 3 7];lambda=eig(A);if lambda>eps&isequal(A,A')[n,n]=size(A);R=chol(A);%解R'y=by(1)=b(1)/R(1,1);if n>1for i=2:ny(i)=(b(i)-R(1:i-1,i)'*y(1:i-1)')/R(i,i);endend%解Rx=yx(n)=y(n)/R(n,n);if n>1for i=n-1:-1:1x(i)=(y(i)-R(i,i+1:n)*x(i+1:n)')/R(i,i);endendx=x';elsex=[];disp('该方法只适用于对称正定的系数矩阵!');endR= 1.7321 1.1547 1.73210 0.8165 -2.44950 0 1.7321y= 2.8868 -0.4082 0.5774x= 1.0000 0.5000 0.33335. 用列主元Doolittle分解法解方程组解:A=[3 4 5; -1 3 4; -2 3 -5;]; 3 4 5 X1 2 b=[2,-2 6]'; -1 3 4 X2 -2 [L,U,pv]=luex(A); -2 3 -5 X3 6y = L\b(pv);x = U\y结果如下:x = 11-114.已知,计算.解:A=[100 99;99 98];cond(A,inf)ans =3.9601e+04cond(A,2)ans =3.9206e+0427.编写LU分解法,改进平方根法,追赶法的Matlab程序,并进行相关数值试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。

解:在[,]a b 区间上,01,,,0,1,,1,n i i i x a x b h x x i n +===-=-令01max i i n h h ≤≤-= 43(),()4f x x f x x '==∴函数()f x 在区间1[,]i i x x +上的分段埃尔米特插值函数为2111211112112111()()(12)()()(12)()()()()()()()i i h i i i i i i i i i i i i i i i i i ii i i ix x x x I x f x x x x x x x x x f x x x x x x x x x f x x x x x x x f x x x ++++++++++++--=+----++---'+---'+-- 421342113321232112()(22)()(22)4()()4()()ii i i i i i i i ii i i i i i i i x x x h x x h x x x h x x h x x x x x h x x x x x h ++++++=-+-+--++--+-- 误差为(4)221(4)4()()1()()()4!1m ax ()()242h i i i a x b f x I x f x x x x h f ξξ+≤≤-=--≤ 又4()f x x =(4)4401()4!24m ax ()()m ax 1616i h a x b i n f x h h f x I x ≤≤≤≤-∴==∴-≤≤试求三次样条插值,并满足条件:(1)(0.25) 1.0000,(0.53)0.6868;(2)(0.25)(0.53)0.S S S S ''==''''==解:0101212323430.050.090.060.08h x x h x x h x x h x x =-==-==-==-= 1111234,533,,,11457j j j j j j j j h h h h h h μλμμμμ---==--∴==== [][][][]1230100110122334924,,,11457()(),0.9540,0.8533,0.7717,0.7150f x f x f x x x x f x x f x x f x x λλλλ====-==-===[][][][][][][][]040120012011012312212342332344343(1)() 1.0000,()0.68686(,) 5.5200,,64.3157,,63.2640,,62.43006(,) 2.1150S x S x d f x x f h f x x f x x d h h f x x f x x d h h f x x f x x d h h d f f x x h ''=='=-=--==-+-==-+-==-+'=-=- 由此得矩阵形式的方程组为2 1 M 0 5.5200-514 2914 M 1 4.3157- 35 225 M 2 = 3.2640- 37 2 47 M 3 2.4300-1 2 M 4 2.1150-求解此方程组得012342.0278, 1.46431.0313,0.8070,0.6539M M M M M =-=-=-=-=-三次样条表达式为331122111()()()66()()(0,1,,1)66j j j j jj j j j j j j j j j j x x x x S x M M h h M h x xM h x x y y j n h h +++++--=+--+-+-=- ∴将01234,,,,M M M M M 代入得[][]3333336.7593(0.30) 4.8810(0.25)10.0169(0.30)10.9662(0.25)0.25,0.302.7117(0.39) 1.9098(0.30) 6.1075(0.39) 6.9544(0.30)0.30,0.39() 2.8647(0.45) 2.2422(0.39)10.4186(0.45x x x x x x x x x x S x x x x ----+-+-∈----+-+-∈=----+-[][]33)10.9662(0.39)0.39,0.451.6817(0.53) 1.3623(0.45)8.3958(0.53)9.1087(0.45)0.45,0.53x x x x x x x ⎧⎪⎪⎪⎪⎪⎪⎨+-⎪⎪∈⎪⎪----+-+-⎪∈⎪⎩04001234404(2)()0,()020, 4.3157, 3.26402.4300,200S x S x d f d d d d f λμ''''==''===-=-''=-====由此得矩阵开工的方程组为04123092014 4.3157322 3.264055 2.43003027M M M M M ==⎛⎫ ⎪-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪-⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭求解此方程组,得012340, 1.88090.8616, 1.0304,0M M M M M ==-=-=-=又 三次样条表达式为331122111()()()66()()66j j j j jj j j j j j j j j j j x x x x S x M M h h M h x xM h x x y y h h +++++--=+--+-+- 将01234,,,,M M M M M 代入得[][]333336.2697(0.25)10(0.3)10.9697(0.25)0.25,0.303.4831(0.39) 1.5956(0.3) 6.1138(0.39) 6.9518(0.30)0.30,0.39() 2.3933(0.45) 2.8622(0.39)10.4186(0.45)11.1903(0.39)0.3x x x x x x x x x S x x x x x x --+-+-∈----+-+-∈∴=----+-+-∈[][]39,0.452.1467(0.53)8.3987(0.53)9.1(0.45)0.45,0.53x x x x ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪--+-+-⎪∈⎪⎩。

相关文档
最新文档