高一数学三角函数测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数测试题

一、选择题

1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( )

A .B=A ∩C

B .B ∪C=

C C .A C

D .A=B=C

2.下列各组角中,终边相同的角是

( )

A .

π2k

与)(2

Z k k ∈+ππ B .)(3

k

3Z k k ∈±

ππ

π

C .ππ)14()12(±+k k

与 )(Z k ∈ D .)(6

6

Z k k k ∈±

+

π

ππ

π与

3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )

A .2

B .

1

sin 2

C .1sin 2

D .2sin 4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为

( )

A .

ππ

434或 B .

ππ4

745或 C .

ππ

4

5

4或 D .

ππ

4

74或 5. 已知αα

αα

αtan ,5cos 5sin 3cos 2sin 那么-=+-的值为

( )

A .-2

B .2

C .

16

23 D .-

16

23 6、已知3

4

tan =

x ,且x 在第三象限,则=x cos ( ) A.

5

4

B. 54-

C. 53

D.53-

7. 1sin 、1cos 、1tan 的大小关系为

( )

A .1tan 1cos 1sin >

> B .1cos 1tan 1sin >>

C .1cos 1sin 1tan >>

D .1sin 1cos 1tan >>

8. 设角则,635

πα-

=)

(cos )sin(sin 1)cos()cos()sin(22

2απαπααπαπαπ+--+++--+的值等于 ( ) A .

33

B .-

3

3 C .

3 D .-3

9. 函数)4sin(π

+=x y

在下列哪个区间为增函数.

( )

A .]4

,43[π

π-

B .]0,[π-

C .]4

3

,4[ππ-

D .]2

,2[π

π-

10. 函数)4

2sin(log 2

+

=x y

的单调减区间为

( )

A .)(],4

(Z k k k ∈-

ππ

π B .)(]8,8(Z k k k ∈+-

π

ππ

π

C .)(]8

,83(Z k k k ∈+-π

πππ

D .)(]8

3

,8(Z k k k ∈++

πππ

π

11. 函数)2

5

2sin(π+=x y

的图象的一条对称轴方程是

( )

A .2

π

-

=x

B .4

π

-

=x C .8

π

=

x D .π4

5

=x

12.已知

)2

cos()(),2sin()(π

π-=+=x x g x x f ,则下列结论中正确的是 ( )

A 函数)(x g x f y ⋅=)(的周期为π2

B 函数)()(x g x f y

⋅=的最大值为1

C 将

)(x f 的图像向左平移

2

π

单位后得)(x g 的图像 D 将)(x f 的图像向右平移2

π

单位后得)(x g 的图像

二、填空题

13、要得到函数)3

2cos(2π

+=x y

的图像。

可以由诱导公式先把它变成sin 2=y ( ) 然后由x y sin =的图像先向 平移 个单位,再把各点的纵坐标不变,横坐标变为原来的 倍,

最后把各点的横坐标不变,纵坐标变为原来的 倍, 就可以得到)3

2cos(2π

+=x y

的图像.

14、已知2

1tan -

=x ,则1cos sin 3sin 2

-+x x x =______. 15、设

)cos()sin()(21απαπ+++=x n x m x f ,其中

m 、n 、1α、2α都是非零实数,若

,1)2004(=f 则=)2005(f .

16.函数])3

2

,6[)(8cos(πππ∈-=x x y 的最小值是

三、解答题

17、化简:)

(cos )tan()

3(sin )cos()4cot(3

2θπθππθπθπθ--⋅++⋅+⋅+

18、求值:

O

O

O O 170

cos 110cos 10cos 10sin 212

---

19、求证:

x

x

x x x x 2tan 12tan 12sin 2cos 2cos 2sin 212

2+-=--

相关文档
最新文档