微分方程习题课例题解答

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

高等数学第11章 微分方程习题详解

高等数学第11章 微分方程习题详解
2.指出下列各题中的函数是否为所给微分方程的解: (1) xy 2 y , y 5x 2 ; (2) y y 0 , y 3sin x 4cos x ; (3) y 2 y y 0 , y x 2 e x ; (4) ( xy x) y x( y)2 yy 2 y 0 , y ln( xy) . 解 (1)将 y 10 x 代入所给微分方程的左边,得左边 10 x 2 ,而右边=2 (5 x 2 ) 10 x 2 左边,所以 y 5x 2 是 xy 2 y 的解. ( 2 ) 将 y 3 cosx 4 sin x , y 3sin x 4cos x 代 入 所 给 微 分 方 程 的 左 边 , 得 左 边 右 ( 3 sin x 4 cos x ) (3 sin x 4 cos x ) 0边,所以 y 3 sin x 4 co x s是 所 给 微 分 方 程 y y 0 的解. (3)将 y x 2 e x , y 2 x e x x2 e x , y 2e x 4 x e x x2 e x 代入所给微分方程的左边,得 左边 (2e x 4 x e x x2 e x ) 2(2 x e x x2 e x ) x2 e x 2e x 0 (右边) , 所以 y x 2 e x 不是所给微分方程 y 2 y y 0 的解. (4)对 y ln( xy) 的两边关于 x 求导,得 1 y y , x y xyy y xy . 即 再对 x 求导,得 yy x( y)2 xyy y y xy , 即

(3 y 2 1) 6 C e 2 .
由定解条件 y
x 0
1
1
x2

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案

数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。

为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。

练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。

高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023

高中数学微分方程练习题及参考答案2023一、填空题1.微分方程 $y'=x^2$ 的通解为 $y=$_____________。

2.微分方程 $y'-2y=\cos x$ 的通解为 $y=$_____________。

3.微分方程 $y''-3y'+2y=0$ 的通解为 $y=$_____________。

4.微分方程 $y''+y=e^x$ 的通解为 $y=$_____________。

5.微分方程 $(x-1)y'-y=3$ 的通解为 $y=$_____________。

二、选择题1.微分方程 $y''-y'-12y=0$ 的解正确的选项是A. $y=c_1e^{4x}+c_2e^{-3x}$B. $y=c_1e^{3x}+c_2e^{-4x}$C. $y=c_1\sinh3x+c_2\cosh4x$D. $y=c_1\sinh4x+c_2\cosh3x$2.对于微分方程 $y''-2y'+y=x^3\mathrm{e}^{2x}$,以下选项正确的是A. 特解应为多项式 $Ax^3+Bx^2+Cx+D$B. 对于其特解应有 $A=0$C. 对于其特解应有 $B=0$D. 对于其特解应有 $B\neq0$3.微分方程 $y''-y'-2y=0$,其中 $y_1(x)=e^{2x}$,$y_2(x)=?$,正确的选项是A. $y_2(x)=e^{-x}$B. $y_2(x)=e^{x}$C. $y_2(x)=e^{-2x}$D. $y_2(x)=\mathrm{e}^{-2x}-4x\mathrm{e}^{-2x}$三、解答题1.求微分方程 $y'+\frac{1}{x}y=2\sin\ln x$ 的通解。

2.求微分方程 $y'-y=x\mathrm{e}^x$ 的通解。

习题课_微分方程(解答)

习题课_微分方程(解答)

有两个不相等实根 r1 , r2
有两个相等实根 r r1 r2
有一对共轭复根 r1 ,2 i
y C1e
rx
r1 x
C2 e
r2 x
y e (C1 C2 x)
y e x (C1 cos x C2 sinx)
4
10. 二阶常系数线性非齐次方程 ay '' by ' cy f ( x)
0
x
解: f ( x)sinx x f (t )dt tf (t )dt , f (0) 0 ,
0 0
x 0
x
x
f ( x)cosx f (t )dt , f (0)1 ,f ( x ) sin x f ( x ) ,
y y sin x 得初值问题: 。 y(0) 0, y(0)1 1 求得通解为 y C1cos x C 2 sinx xcos x , 2 1 代入初始条件 y(0)0, y(0)1 ,得 C1 0 , C 2 , 2 1 ∴ y f ( x ) (sin x x cos x ) 。 2
(1) α iβ
ex [ Pm ( x ) cos x Pn ( x ) sinx ]
(1) y ex [ RL ( x ) cos x ( 2) RL ( x ) sinx ]
(1) y xex [ RL ( x ) cos x ( 2) RL ( x ) sinx ]
2
9
三、计算题
1.求方程 yy ' (sin x y 2 )cot x 的解。
( y x 2 y 2 )dx xdy 0 ( x 0) 2.求初值问题 的解。 y x1 0

微分方程课后习题答案

微分方程课后习题答案

微分方程课后习题答案微分方程是数学中的重要分支,它研究的是描述自然现象中变化规律的方程。

在学习微分方程的过程中,课后习题是巩固知识、提高技能的重要途径。

本文将为大家提供一些微分方程课后习题的答案,希望能够帮助大家更好地理解和掌握微分方程的知识。

1. 一阶线性微分方程题目:求解微分方程 dy/dx + y = 2x解答:这是一个一阶线性微分方程,我们可以使用常数变易法来求解。

首先,将方程改写为 dy/dx = 2x - y设 y = u(x) * v(x),其中 u(x) 是未知函数,v(x) 是待定函数。

将 y = u(x) * v(x) 带入方程,得到 u(x) * v'(x) + u'(x) * v(x) = 2x - u(x) * v(x)整理得 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x根据乘积法则,有 (u(x) * v(x))' = 2x对上式两边同时积分,得到 u(x) * v(x) = x^2 + C,其中 C 是常数。

然后,我们需要求解 u(x) 和 v(x)。

由于 v(x) 是待定函数,我们可以选择 v(x) = e^(-x),这样 v'(x) = -e^(-x)。

将 v(x) = e^(-x) 带入 u(x) * v'(x) + u'(x) * v(x) - u(x) * v(x) = 2x,得到 u'(x) * e^(-x) = 2x对上式两边同时积分,得到 u(x) * e^(-x) = x^2 + C将 u(x) * e^(-x) = x^2 + C 代入 y = u(x) * v(x),得到 y = (x^2 + C) * e^x所以,原微分方程的通解为 y = (x^2 + C) * e^x,其中 C 是常数。

2. 二阶线性常系数齐次微分方程题目:求解微分方程 d^2y/dx^2 + 2dy/dx + 2y = 0解答:这是一个二阶线性常系数齐次微分方程,我们可以使用特征方程法来求解。

微分方程习题和答案

微分方程习题和答案

微分方程习题和答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y y x xy dx dy ;(2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了染色,30分钟后剩下,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。

微分方程相关习题和答案

微分方程相关习题和答案

微分方程相关习题和答案微分方程是数学中的一个重要分支,它研究的是函数与其导数之间的关系。

微分方程广泛应用于物理、工程、经济等领域,是解决实际问题的有力工具。

在学习微分方程的过程中,习题是不可或缺的一部分,通过解习题可以加深对微分方程理论的理解和掌握。

下面我将给大家介绍几个微分方程相关的习题和答案。

1. 题目:求解一阶线性微分方程y' + 2xy = 3x。

解答:这是一个一阶线性常微分方程,可以使用常数变易法求解。

首先,将方程改写成标准形式y' + p(x)y = q(x),其中p(x) = 2x,q(x) = 3x。

然后,求出齐次线性微分方程y' + 2xy = 0的通解y_h(x)。

通过分离变量法可得y_h(x) =Ce^{-x^2},其中C为常数。

接下来,我们猜测特解y_p(x)为形如y_p(x) = Ax + B的一次多项式。

将y_p(x)代入原方程,整理得到2Ax + 2(Ax + B)x = 3x,比较系数可得A = 3/2,B = -1/4。

因此,特解为y_p(x) = (3/2)x - 1/4。

最后,将通解和特解相加,得到原方程的通解为y(x) = Ce^{-x^2} + (3/2)x - 1/4,其中C为常数。

2. 题目:求解二阶常系数齐次线性微分方程y'' - 4y' + 4y = 0。

解答:这是一个二阶常系数齐次线性微分方程,可以使用特征方程法求解。

首先,写出特征方程r^2 - 4r + 4 = 0,并求出其特征根r_1 = r_2 = 2。

由于特征根相等,所以通解形式为y(x) = (C_1 + C_2x)e^{2x},其中C_1和C_2为常数。

如果题目给出了初始条件,可以利用初始条件求解出具体的解。

例如,若已知y(0) = 1和y'(0) = 2,代入通解中的x = 0和x = 0的导数,得到C_1 = 1和C_2 = 1。

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。

大学数学微分方程练习题及答案

大学数学微分方程练习题及答案

大学数学微分方程练习题及答案微分方程是大学数学中重要的一门学科,它在科学和工程领域中有着广泛的应用。

掌握微分方程的求解技巧对于学生来说至关重要。

以下是一些常见的微分方程练习题及详细解答,希望对你的学习有所帮助。

题目一:求解一阶线性常微分方程给定微分方程:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$分别是已知的函数。

求解该微分方程。

解答一:为了求解上述微分方程,我们可以利用一阶线性常微分方程的常数变易法。

首先将方程写成标准形式:$\frac{dy}{dx}+P(x)y=Q(x)$,其中$P(x)$和$Q(x)$分别是已知的函数。

设通解为$y=e^{\int P(x)dx}u(x)$,其中$u(x)$是一个待定的函数。

将该通解代入原微分方程中,经过简化后得到:$u(x)=\int e^{-\int P(x)dx}Q(x)dx+C$,其中$C$是常数。

因此,该微分方程的通解为$y=e^{\int P(x)dx}(\int e^{-\intP(x)dx}Q(x)dx+C)$。

题目二:求解分离变量的微分方程给定微分方程:$\frac{dy}{dx}=f(x)g(y)$,其中$f(x)$和$g(y)$是已知的函数。

求解该微分方程。

解答二:为了求解上述微分方程,我们可以利用分离变量的方法。

首先将方程重写为$\frac{dy}{g(y)}=f(x)dx$。

对两边同时积分,得到$\int \frac{dy}{g(y)}=\int f(x)dx$。

经过积分运算后可得到$\int \frac{1}{g(y)}dy=\int f(x)dx+C$,其中$C$是常数。

因此,该微分方程的通解为$\int \frac{1}{g(y)}dy=\int f(x)dx+C$。

题目三:求解二阶常系数齐次线性微分方程给定微分方程:$\frac{d^2y}{dx^2}+a\frac{dy}{dx}+by=0$,其中$a$和$b$是已知的常数。

微分方程习题(附答案)

微分方程习题(附答案)

微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y yx xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等27. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常?9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y(4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。

第六章微分方程习题详解

第六章微分方程习题详解

第六章微分方程习题详解习题六答案详解三、1.(1)分离变量 22sec sec d tan tan y xy dx y x=-两边积分 22sec sec d tan tan y xy dx y x =-??11dtan tan tan tan y d x y x =-?? 微分方程的通解: t a n t a n y x C =;(2) 211()22x y y '-=分离变量2112dy dx y x=- 两边积分 2112dy dx y x =-??微分方程的通解: 11ln()2x C y =-+;(3)分离变量d 1010xy y dx =;两边积分 d 1010x y ydx =??微分方程的通解: 10100x y C -++=;(4)分离变量 23(1)y dy x dx +=-两边积分 23(1)y dy x dx +=-?? 微分方程的通解: 241134y y x C +=-+;(5)分离变量 2y x e dy e dx = ,两边积分 2y x e dy e dx =??微分方程的通解: 212y x e e C =+02012e e C ?=+12C =微分方程的特解: 21122y x e e =+;(6)分离变量 l n s i n d y d xy y x = 两边积分 l n s i n d y d xy y x=?? 微分方程的通解: l n c s c c o t y C x x=-ln csccot22e C ππ=-1C =微分方程的特解: l n c s c c o t y x x =-;(7) ()s i n c o s ,()x P x x Q xe -== cos cos sin ()xdx xdxx y e e e dx C --??=+?微分方程的通解: s i n ()x y e x C -=+ ;(8)d ln d y y y x x x= ,y dy duu u xx dx dx ==+ ln duu x u u dx +=(ln 1)du dxu u x=-(ln 1)du dxu u x =-??ln 1u Cx -=微分方程的通解: ln 1yxC x =+;(9) ,y d y d uu u x x d x d x==+1du u x u dx u +=+1du x dx u =dxudu x =dxudu x =?? 21ln 2u x C =+ 微分方程的通解:21()ln 2yx C x =+212()ln121C =+ 2C = 微分方程的特解:21()ln 22y x x=+;(10) 123y y x x x'+=++112[(3)]dx dx x x y e x e dx C x-=+++?微分方程的通解:32113[2]32y x x x C x =+++;(11) t a n t a n [s i n 2]x d x x d xy e x e d x C -??=+?cos [2sin ]y x xdx C =+?微分方程的通解:cos (2cos )y x x C =-+;(12) 33[8]dx dxy e e dx C -??=+?微分方程的通解:338[]3x x y e e C -=+303082[]3e e C -??=+23C =-微分方程的特解:3382[]33x x y e e -=-;(13) ()1s i n,()x P x Q x x x == 11sin ()dx dx x xx y e e dx C x-??=+?微分方程的通解:1(cos )y x C x=-+11(cos )C ππ=-+C π=微分方程的特解:1(cos 1)y x x π=-+- ;(14)1ln dx x dy y y-= ()11,()ln P y Q y y y=-=11()()1[]ln dydyyy x e e dy C y---??=+?微分方程的通解:(ln ln )x y y C =+;(15)令211,du dyu y dx y dx==-du3d xu x x+=- 33(())xdx xdxu e x e dx C -??=-+?2232321(())x x x d x C e=-+?221()3x x e e C -=-+微分方程的通解: 22332211()3x x e e C y -=-+ ;(16)令4514,du dyu y dx y dx==-du44d u x x+=- 44((4))dx dxu e x e dx C -??=-+?44((4))x x e x e dx C -=-+? 4441()4x x x e xe e C -=-++ 微分方程的通解: -4x 44411=e ()4xx xe e C y-++。

(完整版)微分方程例题选解

(完整版)微分方程例题选解

微分方程例题选解3 1. 求解微分方程 x ln xdy ( y ln x)dx 0 , y |x e。

2解:原方程化为dy1 y1dx,xln xx1 dx 1 e 1dxy eC ] 通解为x ln x[ xln xdxx1 [ ln xdx C ]1 [ 1ln 2 x C ]ln xxln x 2由 xe , y3 ,得 C1 ,所求特解为y11ln x 。

2ln x 22. 求解微分方程 x 2 y ' xy y20 。

解:令 y ux , y uxu ,原方程化为 uxuu u 2 ,分离变量得du 1dx ,1 u 2x积分得ln x C,ux原方程的通解为y。

ln x C3. 求解微分方程 ( x 3 xy 2 ) dx ( x 2 y y 3 )dy 。

解:此题为全微分方程。

下面利用“凑微分”的方法求解。

原方程化为 x 3dx xy 2 dx x 2 ydy y 3 dy 由x 3 dx xy 2 dx x 2 ydy y 3dy 1dx41( y 2 dx 2x 2 dy 2 )421d (x 4 2x 2 y 2 y 4 ) ,4 得d (x 4 2x 2 y 2y 4 ) 0 ,原方程的通解为x 42 x 2 y 2 y 4 C 。

注:此题也为齐次方程。

0 ,1 dy 444. 求解微分方程 y '' 1 ( y ') 2 。

解:设 py ,则 y dp,原方程化为 dp1 p2 ,dp dxdx分离变量得dx ,积分得 arctan px C 1 ,1 p2于是 yp tan(x C 1 ) , 积分得通解为yln cos(x C 1 ) C 2 。

5. 求解微分方程 解:特征方程为通解为 y e x (C 1y '' 2y ' 2 y 0 。

r 2 2r 2 0 ,特征根为 r1 i ,cos C 2 sin x) 。

微分方程(习题及解答)

微分方程(习题及解答)

第十二章 微分方程§12.1 微分方程基本概念、可分离变量的微分方程、齐次微分方程一、单项选择题1. 下列所给方程中,不是微分方程的是( ) .(A)2xy y '=; (B)222x y C +=;(C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B).2. 微分方程4(3)520y y xy y '''+-=的阶数是( ).(A)1; (B)2; (C)3; (D)4; 答(C).3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ).(A)1cos y C x =; (B)2sin y C x =;(C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D).4. 下列微分方程中,可分离变量的方程是( ).(A)x y y e +'=; (B)xy y x '+=;(C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A).5. 下列微分方程中,是齐次方程是微分方程的是( ).(A)x y y e +'=; 2(B)xy y x '+=;(C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D).二、填空题1.函数25y x =是否是微分方程2xy y '=的解? . 答:是 .2.微分方程3d d 0,4x x y y y x=+==的解是 . 答:2225x y +=. 3.微分方程23550x x y '+-=的通解是. 答:3252x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =.5'的通解是 . 答:arcsin arcsin y x C =+.6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答:Cx y e x=. 三、解答题1.求下列微分方程的通解.(1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解:(3) d 10d x y y x +=; (4) 23d (1)0.d y y x x++= 解: 解:2.求下列微分方程满足所给初始条件的特解: (1) 20,0x y x y e y -='==; (2) 2sin ln ,x y x y y y e π='==;解: 解: (3) 2d 2d 0,1x x y y x y =+==; (4) d 10d x y y x+=. 解: 解:3*.设连续函数20()d ln 22xt f x f t ⎛⎫=+ ⎪⎝⎭⎰,求()f x 的非积分表达式. 答:()ln 2x f x e =⋅. §12.2 一阶线性微分方程、全微分方程一、单项选择题1. 下列所给方程中,是一阶微分方程的是( ).2d (A)3(ln )d y y x y x x+=; 52d 2(B)(1)d 1y y x x x -=++ 2d (C)()d y x y x=+; (D)()d ()d 0x y x x y y -++=. 答(B). 2. 微分方程2()d 2d 0x y x xy y ++=的方程类型是( ).(A) 齐次微分方程; (B)一阶线性微分方程;(C) 可分离变量的微分方程; (D)全微分方程. 答(D).3. 方程y y x y x ++='22是( ).(A)齐次方程; (B)一阶线性方程;(C)伯努利方程; (D)可分离变量方程. 答(A).二、填空题1.微分方程d d x y ye x-+=的通解为 . 答:x x y Ce xe --=+. 2.微分方程2()d d 0x y x x y --=的通解为 . 答:33x xy C -=. 3.方程()(d d )d d x y x y x y +-=+的通解为 . 答:ln()x y x y C --+=. 三、简答题1.求下列微分方程的通解:(1) sin cos x y y x e -'+=; (2) d ln d y y x y x x=; 解: 解:(3) 232xy y x x '+=++; (4) tan sin 2y y x x '+=;解: 解: (5) 2d (6)20d y y x y x-+=; (6) (2)d 0y y e xe y y +-=; 解: 解:(7) 222(2)d ()d 0a xy y x x y y ---+=.解:2.求下列微分方程满足所给初始条件的特解. (1) 0d 38,2d x y y y x=+==; (2) d sin ,1d x y y x y x x x π=+==. 解: 解:3*.求伯努利方程2d 3d y xy xy x-=的通解. 解:§12.3 可降阶的高阶微分方程、二阶线性微分方程一、单项选择题1. 方程x y sin ='''的通解是( ).(A)322121cos C x C x C x y +++=; (B)1cos C x y +=; (C)322121sin C x C x C x y +++=; (D)x y 2sin 2=. 答(A) 2. 微分方程y y xy '''''+=满足条件21x y ='=,21x y ==的解是( ).(A)2(1)y x =-; (B)212124y x ⎛⎫=+- ⎪⎝⎭; (C)211(1)22y x =-+; (D )21524y x ⎛⎫=-- ⎪⎝⎭. 答(C). 3. 对方程2y y y '''=+,以下做法正确的是( ).(A)令()y p x '=,y p '''=代入求解; (B)令()y p y '=,y p p '''=代入求解;(C)按可分离变量的方程求解; (D)按伯努利方程求解. 答(B).4. 下列函数组线性相关的().是(A)22,3x x e e ; (B)23,x x e e ; (C)sin ,cos x x ; (D)22,x x e xe . 答(A).5. 下列方程中,二阶线性微分方程是( ).(A)32()0y y y '''-=; (B)2x y yy xy e '''++=;(C)2223y x y y x '''++=; (D)222x y xy x y e '''++=. 答(D).6. 12,y y 是0y py qy '''++=的两个解,则其通解是( ).(A)112y C y y =+; (B)1122y C y C y =+;(C)1122y C y C y =+,其中1y 与2y 线性相关;(D)1122y C y C y =+,其中1y 与2y 线性无关. 答(D).7. 下列函数组线性相关的().是22(A),3x x e e ; 23(B),x x e e ;(C)sin ,cos x x ; 22(D),x x e xe . 答(A).二、填空题1.微分方程sin y x x ''=+的通解为. 答: 312sin .6x y x C x C =-++ 2.微分方程y y x '''=+的通解为. 答: 212.2x x y C e x C =--+ 三、简答题1.求下列微分方程的通解. (1) 21()y y '''=+; (2) 21()2y y '''=. 解: 解:2.求方程2()0y x y '''+=满足条件12x y ='=,11x y ==-的特解.解:§12.4 二阶常系数线性齐次微分方程一、单项选择题1. 下列函数中,不是微分方程0y y ''+=的解的是( ).(A)sin y x =; (B)cos y x =;(C)x y e =; (D)sin cos y x x =+. 答(C).2. 下列微分方程中,通解是312x x y C e C e -=+的方程是( ).(A)230y y y '''--=; (B )25y y y '''-+=; (C)20y y y '''+-=; (D)20y y y '''-+=. 答(A).3. 下列微分方程中,通解是12x x y C e C xe =+的方程是( ).(A)20y y y '''--=; (B)20y y y '''-+=;(C)20y y y '''++=; (D)240y y y '''-+=. 答(B).4. 下列微分方程中,通解是12(cos2sin 2)x y e C x C x =+的方程是( ).(A)240y y y '''--=; (B)240y y y '''-+=(C)250y y y '''++=; (D )250y y y '''-+=. 答(D).5. 若方程0y py qy '''++=的系数满足10p q ++=,则方程的一个解是( ).(A)x ; (B)x e ; (C)x e -; (D)sin x . 答(B). 6*. 设()y f x =是方程220y y y '''-+=的一个解,若00()0,()0f x f x '>=,则()f x 在0x x =处( ).(A)0x 的某邻域内单调减少; (B )0x的某邻域内单调增加; (C) 取极大值; (D) 取极小值. 答(C).二、填空题1.微分方程的通解为40y y '''-=的通解为 . 答:412x y C C e =+.2.微分方程20y y y '''+-=的通解为 . 答:212x x y C e C e -=+.3.微分方程440y y y '''-+=的通解为 . 答:2212x x y C e C xe =+.4.微分方程40y y ''+=的通解为 . 答:12cos2sin 2y C x C x =+.5.方程6130y y y '''++=的通解为 . 答:312(cos2sin 2)x y e C x C x -=+.三、简答题1.求下列微分方程的通解:(1) 20y y y '''--=; (2) 22d d 420250d d x x x t t-+=. 解: 解:2.求下列方程满足初始条件的特解. (1) 00430,10,6x x y y y y y ==''''-+===; (2) 00250,5,2x x y y y y=='''+===.解: 解: §12.5 二阶常系数线性非齐次微分方程一、单项选择题1. 微分方程2y y x ''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C).2. 微分方程2y y x '''+=的一个特解应具有形式( ).2(A)Ax ; 2(B)Ax Bx +;2(C)Ax Bx C ++; 2(D)()x Ax Bx C ++. 答(C).3. 微分方程256x y y y xe -'''-+=的一个特解应具有形式( ).2(A)x Axe -; 2(B)()x Ax B e -+;22(C)()x Ax Bx C e -++; 2(D)()x x Ax B e -+. 答(B).4. 微分方程22x y y y x e '''+-=的一个特解应具有形式( ).2(A)x Ax e ; 2(B)()x Ax Bx e +;2(C)()x x Ax Bx C e ++; 2(D)()x Ax Bx C e ++. 答(C).5. 微分方程23sin x y y y e x '''+-=的一个特解应具有形式( ).(A)(cos sin )x e A x B x +; (B )s i n x A e x ;(C)(sin cos )x xe A x B x +; (D)sin x Axe x 答(A).二、填空题1.微分方程34y y x x ''+=+的一个特解形式为 答:3*48x x y =-. 2.微分方程2y y x '''+=的一个特解形式为 . 答:*()y x Ax B =+.3.微分方程56x y y y xe '''-+=的一个特解形式为 . 答:*()x y Ax B e =+.4.微分方程356x y y y xe '''-+=的一个特解形式为 . 答:3*()x y x Ax B e =+.5.微分方程sin y y x ''-=的一个特解形式为 . 答:*sin y A x =.6.微分方程sin y y x ''+=的一个特解形式为 . 答:*(cos sin )y x A x B x =+.三、简答题1.求下列微分方程的通解.:(1) 22x y y y e '''+-=; (2) 5432y y y x '''++=-;解: 解:(3) 269(1)x y y y x e '''-+=+.解:。

微分方程练习题及解析

微分方程练习题及解析

微分方程练习题及解析微分方程作为数学中的一个重要分支,广泛应用于各个领域,涉及到物理、经济学、生物学等众多科学领域。

掌握微分方程的解析方法和技巧,对于理解和解决实际问题具有重要意义。

本文将为大家提供一些微分方程的练习题,并对其中的解析过程进行详细讲解。

1. 难题1已知微分方程 dy/dx = x * y,求其通解,并求通过点 (1,2) 的特解。

解析:首先对微分方程进行变量分离,将 dy/y 移到方程的右边,将 dx/x 移到方程的左边,得到:dy/y = x * dx对上式两边同时积分,得到:ln|y| = x^2/2 + C1其中,C1 为常数。

接下来,对上式两边同时取指数,得到:|y| = e^(x^2/2 + C1) = e^(C1) * e^(x^2/2)由指数函数的性质可知,e^(C1) 为常数,因此可以将其用 C2 来表示。

于是通解为:y = ± C2 * e^(x^2/2)下面求通过点 (1,2) 的特解,将 x=1 和 y=2 代入通解中,得到:2 = ± C2 * e^(1/2)解得 C2 = ± (2 / e^(1/2))所以通过点 (1,2) 的特解为:y = ± (2 / e^(1/2)) * e^(x^2/2)2. 难题2已知微分方程 d^2y/dx^2 + 4 * dy/dx + 4y = 0,求其通解,并求过点(0,1) 且 y'(0) = -2 的特解。

解析:该微分方程为二阶常系数齐次线性微分方程,首先求其特征方程。

特征方程为:r^2 + 4r + 4 = 0解特征方程可得到两个特征根相等的情况,即 r = -2。

由于存在重根,通解形式为:y = (C1 + C2x) * e^(-2x)下面求过点 (0,1) 且 y'(0) = -2 的特解。

将 x=0 和 y=1 代入通解中,得到:1 = C1 * e^0 = C1将 x=0 和 y'=-2 代入通解的导数中,得到:-2 = C2 * e^0 - 2C1 = C2 - 2解得 C2 = -2 + 2 = 0所以过点 (0,1) 且 y'(0) = -2 的特解为:y = (1 + 0x) * e^(-2x) = e^(-2x)通过以上两个例子,我们可以看到,对于微分方程的求解,我们需要先进行变量分离、恢复变量或代换等操作,然后再通过积分或特征方程求解,最后根据已知条件求得特定的解。

微分方程习题课(1)-10

微分方程习题课(1)-10
第七章 习题课 (一) 一阶微分方程的 解法及应用
一、一阶微分方程求解 二、解微分方程应用问题
机动
目录
上页
下页
返回
结束
一、一阶微分方程求解
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 贝努里方程 关键: 关键 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解 变量代换法 —— 代换自变量 自变量 代换因变量 因变量 代换某组合式 某组合式
y − y′x = x 1 y′ − y = −1 即 x 定解条件为 y x=1 =1.
思考: 思考 能否根据草图列方程?
y
M(x, y)
x tanα = xy′
o
机动
x
目录
x
上页 下页 返回 结束
第七章 习题课 (二) 二阶微分方程的 解法及应用
一、两类二阶微分方程的解法 二、微分方程的应用
机动
思考 若问题改为求解 y x=0 = 0 ,
则求解过程中得 问开方时正负号如何确定 正负号如何确定? 正负号如何确定
机动 目录 上页 下页 返回 结束
例7.
且满足方程
f (x) = sin x − ∫
求 f (x) .
x (x − t) f (t) dt 0
x x f (t) dt + t 0 0
通解
2 − y3
1 − y3 e = ex + C 3
机动
目录
上页
下页
返回
结束
′ = x2 − y2 + y (2) xy
方程两边同除以 x 即为齐次方程 , 令 y = u x ,化为分 离变量方程.

微分方程练习题及解答

微分方程练习题及解答

微分方程练习题一、一阶微分方程1.求 dy dx =2xy 的通解。

2.求微分方程x dy =y +�x 2+y 2 (x >0)满足y (1)=0的特解。

3.求微分方程 y ′−3x y =x 的通解。

4.求微分方程 y ′+y tanx =cosx 的通解。

5.求 x 2y ′+xy =y 2满足初始条件y (1)=1的特解。

6.求微分方程sec 2x coty dx −csc 2y tanx dy =0的通解。

7.求微分方程dy dx −2y x +1=(x +1)52的一个特解。

8.求微分方程xdy =yln y x dx 的通解。

9.求微分方程 dy dx =y x +y 3e y 的通解。

10求微分方程 y ′+y =e −x 的通解。

11.求微分方程xy 2dy =(x 3+y 3)dx 的通解。

12.求微分方程y =�1+(y ′)2 满足条件y (0)=1的特解。

13.求微分方程 xy ′+2y =x lnx 满足初始条件y (1)=−19的特解。

14.求微分方程 xy ′+y =x 2 y 2 lnx 的通解。

15.设f (x )=�f �t 2�dt +ln2,求f (x )的表达式。

2x 0二、高阶微分方程 1.求y ′′=1+(y ′)2的通解。

2.求 y ′′−2y ′−y =0的通解。

3.求 y ′′+2xy ′2=0,y (0)=1,y ′(0)=−12的特解。

4.求 y ′′−2y ′−5y =1的通解。

5.求 y ′′+y ′+y =8的通解。

6.求微分方程d 2y dx 2+w 2y =0的通解。

7.求微分方程 y ′′−3y ′+2y =xe x 的通解。

8.求微分方程 x 2y ′′+4xy ′+2y =x 的通解。

9.求微分方程 yy ′′+y ′2=y ′ 的通解。

10.求微分方程 x 2y ′′+3xy ′−3y =x 3的通解。

数学课程微分方程入门练习题及答案

数学课程微分方程入门练习题及答案

数学课程微分方程入门练习题及答案微分方程是数学中重要的一门学科,广泛应用在物理、工程、经济等领域。

掌握微分方程的基本概念和解题方法对于学习和应用数学都至关重要。

本文将为您提供一些微分方程入门练习题及其答案,帮助您巩固基础知识和提高解题能力。

1. 练习题:一阶线性微分方程已知微分方程dy/dx + xy = 2x,求其通解,并满足初始条件y(0) = 1,求特解。

解答:首先,根据线性微分方程的一般形式dy/dx + P(x)y = Q(x),我们可以将给定的微分方程转化为dy/dx + xy = 2x的形式,其中P(x) = x,Q(x) = 2x。

该方程是一阶线性齐次微分方程,我们可以使用常数变易法求其通解。

假设通解为y = e^(-1/2 * x^2) * u(x),其中u(x)为待定函数。

将通解代入原方程,可得:e^(-1/2 * x^2) * d(u(x))/dx + xe^(-1/2 * x^2) * u(x) = 2x对上式两边同时乘以e^(1/2 * x^2),并化简得:d(u(x))/dx + x * u(x) = 2x * e^(1/2 * x^2)利用一阶线性非齐次微分方程的常数变易法解法,我们可以通过求解齐次方程和利用常数变异法得到非齐次方程的一个特解。

首先求解齐次方程d(u(x))/dx + x * u(x) = 0,可以使用分离变量法得到:du(x)/u(x) = -xdx经过积分求解后可得齐次方程的通解为u(x) = Ce^(-1/2 * x^2),其中C为任意常数。

接下来,我们可以利用常数变异法来求解非齐次方程。

设特解为v(x) = A(x)e^(-1/2 * x^2),将其代入非齐次方程中,可得:dv(x)/dx + x * v(x) = 2x * e^(1/2 * x^2)对上式进行求导,并代入v(x) = A(x)e^(-1/2 * x^2),可得:A'(x)e^(-1/2 * x^2) = 2x * e^(1/2 * x^2)将上式中的e^(-1/2 * x^2)约去,并进行变量分离,可得:A'(x) = 2x对上式两边进行积分,并得到A(x) = x^2 + C1,其中C1为常数。

微分方程的初值问题练习题及解析

微分方程的初值问题练习题及解析

微分方程的初值问题练习题及解析微分方程是数学中的重要分支,通过研究微分方程可以揭示自然界和社会现象的规律。

微分方程的初值问题是求解微分方程的一种常见方法,它通过给定初值条件来确定特定的解。

下面将介绍一些微分方程的初值问题练习题,并提供解析过程,帮助读者加深对微分方程初值问题的理解。

练习题1:考虑一阶常微分方程dy/dx = 2x,初值条件为y(0) = 3。

求解该初值问题并画出解的图像。

解析:将方程dy/dx = 2x进行分离变量,得到dy = 2xdx。

对两边同时积分,得到∫dy = ∫2xdx,即y = x^2 + C。

根据初值条件y(0) = 3,代入方程可求得C = 3,因此解为y = x^2 + 3。

根据解析结果,我们可以画出解的图像,如下所示:(插入图像,图像是y = x^2 + 3)练习题2:考虑一阶常微分方程dy/dx + y = x,初值条件为y(0) = 1。

求解该初值问题并画出解的图像。

解析:对于方程dy/dx + y = x,可以通过乘以一个积分因子来进行求解。

积分因子的选择是e^(∫dx),其中∫dx是对方程中y的系数进行积分得到的结果。

在本题中,系数为1,因此积分因子选择为e^x。

将方程进行乘积因子法的变形,得到e^xdy/dx + e^xy = x*e^x。

根据乘积因子法的特点,左侧的表达式可以化简为(d/dx)(e^xy) = x*e^x。

对两边同时积分,得到∫(d/dx)(e^xy)dx = ∫x*e^xdx。

对右侧的积分进行计算,得到∫x*e^xdx = e^x(x-1) + C1,其中C1是积分常数。

对左侧的积分进行计算,得到∫(d/dx)(e^xy)dx = e^xy + C2,其中C2是积分常数。

将求得的结果代入,得到e^xy + C2 = e^x(x-1) + C1。

根据初始条件y(0) = 1,代入x = 0和y = 1,并整理方程,可求得C2 = 0和C1 = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程习题课例题解答例1.若微分方程的通解为x C y x +=e ,求该微分方程.解:对x C y x +=e 求导,有1e +='x C y ,消去C ,得1+-='x y y ,这就是所求的微分方程.例2.若函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23是二阶线性方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:根据非齐次线性微分方程两个解的差是相应齐次线性微分方程的解,得相应齐次线性 方程的两个线性无关的解x x y y y y 22313e e =-=--、,于是应齐次线性方程的通解为 x x C C Y 221e e +=-.取非齐次线性微分方程的一个特解为x x y y y y e 321*=-+=,所以原方程的通解为 x x x x C C y Y y e e e 221*++=+=-. (注:*y 也可以取321y y y 、、中的任何一个)例3.已知221,x y x y ==是二阶齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,x y e *=是二阶非齐次线性微分方程)()()(x f y x Q y x P y =+'+''的一个特解,写出二阶非齐次线性微分方程)()()(x f y x Q y x P y =+'+''的通解,并写出此微分方程. 解:因为221,x y x y ==线性无关,根据线性微分方程解的结果,该方程的通解为 xx C x C y e 221++=.将221,x y x y ==分别代入到齐次线性微分方程0)()(=+'+''y x Q y x P y 之中,有⎩⎨⎧=++=+,,0)()(220)()(2x Q x x xP x xQ x P 解得x x P 2)(-=,22)(x x Q =. 将xy e *=代入到非齐次线性微分方程)(222x f y xy x y =+'-''之中,得 x x x xx x x x x f e )221(e 2e 2e )(22+-=+-=.所以该微分方程为xx x y xy x y e )221(2222+-=+'-'',或写为x x x y y x y x e )22(2222+-=+'-''.例4.求解下列微分方程:(1)求xy y y x 2=+'满足初始条件0)1(=y 的特解; 解:先求方程的通解. (方法1)化为齐次方程xyx y y 2=+',令u x y =,则u u u x u x 2d d =++,分离变量有xxu u u d )1(2d -=-,积分得x C u ln )1ln(=-,即x C u =-1,通解为C x xy =-.(方法2)看作伯努利方程y xx y y 2=+'(21=n ),令y y z n ==-1,则方程化为一阶线性方程xx z z 12=+',通解为)(1)d (1)d e 1(e2d 2d x C xx C x x x C z y x xxx+=+=⎰+⎰==⎰⎰-,即C x xy =-. (方法3)令u xy =,则方程化为u x u 2d d =,分离变量为x uud 2d =,积分得C x u +=,即通解为C x xy =-.再求满足初始条件的特解,由0)1(=y ,得1=C ,特解为1=-x xy ,或写作xx y 2)1(-=.(2)求)(ln 2d d x y y x y -=的通解; 解:(方法1)将方程改写为y x y y x )(ln 2d d -=,即yy x y y x ln 22d d =+,则方程通解为 )d ln (1)d ln 2(1)d e ln 2(e222d 2d y y y y C yy y y C y y y y C x y y tyt⎰⎰⎰-+=+=⎰+⎰=-)2ln (122y y y C yy-+=,或写作2ln 222y y y C xy -+=.(方法2)令u x y =-ln ,则xux y y d d 1d d 1=-,于是u x u 211d d =+,即u u x u 221d d -=, 分离变量有x u u d d )2111(-=--,积分得C x u u ln 21)21ln(21+-=-+,即 C u x u ln )21ln()(2=-++,化简为C x y y =+-)2ln 21(2,这就是原方程通解.(3)求y x x y ++-='221的通解;解:令u y x =+2,则u y x '='+2,于是u u +='1,分离变量为x uu d 1d =+.因为t tt t t t u uu d )111(2d 121d ⎰⎰⎰+-=+=+C u u C t t -+-=-+-=)]1ln([2)]1ln([2,所以方程通解为 x C u u =-+-)]1ln([2,即C x y x y x +=++-+)]1ln([222.(4)求)ln (ln x y y y x -''=''的通解;解:令)(x p y =',则p y '='',于是)ln (ln x p p p x -=',即xpx p x p ln d d =,这是齐次方程,再令u x p =,则u u u x u x ln d d =+,分离变量为xx u u u d )1(l n d =-,积分得x C u 1ln )1ln(ln =-,即x C x xu p y 11e +===',所以方程通解为21111111)1(e ]d e [e 1d e1111C C x C x C x x y x C x C x C xC +-=-==++++⎰⎰.(5)求012=+'-''y y y 的通解;解:令)(y p y =',则p p y '='',于是012=+-'p p yp ,分离变量为y yp p p d d 12=-,积分得y C p 12ln 1ln 21=-,即22121y C y =-'. 当1±='y 时,则C x y +±=; 当1>'y 时,有22121yC y =-',则1221+±='y C y ,分离变量有x C y C y C d 1d 12211±=+,积分得211arsh C x C y C +±=,原方程的通解为)(sh 1121x C C C y ±=; 当1<'y 时,有22121y C y ='-,则2211y C y -±=',分离变量有x C yC y C d 1d 12211±=-,积分得211arcsin C x C y C +±=,原方程的通解为)(sin 1121x C C C y ±=. (6)1)9(62='++''+'''y a y y (0>a ).解:这是三阶常系数非齐次线性方程,相应齐次线性方程为0)9(62='++''+'''y a y y ,特征方程为0)9(6223=+++r a r r ,特征根是ai a r r ±-=-±-==3246023,21、,相应齐次线性方程通解为x ax C ax C C Y 3321e )sin cos (-++=.对于原方程,0=λ是单重特征根,0=m ,为此设bx y =*,代入方程有1)9(2=+b a ,得291a b +=,所以2*9a x y +=.原方程通解为23321*9e )sin cos (a xax C ax C C y Y y x++++=+=-.例5.已知1)(=πϕ,试确定函数)(x ϕ使0d )(d )]([sin =+-y x x xyx x ϕϕ是全微分方程,并对所确定的)(x ϕ,求该方程满足1)(=πy 的特解. 解:设)()]([sin x Q x y x x P ϕϕ=-=、,由0d )(d )]([sin =+-y x x xyx x ϕϕ是全微分方程,有yPx Q ∂∂=∂∂,得)]([sin 1)(x x x x ϕϕ-=',即x x x x x sin )(1)(=+'ϕϕ,这是一阶线性方程,通解为)cos (1)d sin (1)d e sin (e)(d d x C x x x C x x x x C x x xxx-=+=⎰+⎰=⎰⎰-ϕ.由1)(=πϕ,有)1(11+=C π,得1-=πC ,所以)cos 1(1)(x xx --=πϕ.这时原方程为0d )cos 1(1d )]cos 1(1[sin =--+---y x xx x y x x x ππ, )cos 1(d )cos 1(1d 0d d )(01),()0,1(x x yy x x x y Q x P y x u y x y x --=--+=+=⎰⎰⎰ππ,,于是原方程通解为1)cos 1(C x xy=--π,由1)(=πy ,得11=C ,所以原方程的特解是1)cos 1(=--x x y π,或写作xx y cos 1--=π. (注:方程通解也可以用凑微分方法得到,方程左式凑微分得0)]cos 1([d =--x xyπ,于是原方程通解为1)cos 1(C x xy=--π)例6.若函数)(x f 连续,且满足⎰--+=x t t f t x x x x f 0d )()(cos sin )(,求)(x f .解:将所给式子改写为⎰⎰+-+=x x t t tf t t f xx x x f 0d )(d )(cos sin )(,有1)0(=f ,且⎰⎰--=+---='x xt t f x x x xf x xf t t f x x x f 0d )(sin cos )()(d )(sin cos )(,1)0(='f .)(cos sin )(x f x x x f ---='',即x x x f x f cos sin )()(--=+'',这是二阶常系数非齐次线性微分方程,相应齐次线性方程为0)()(=+''x f x f ,其特征方程是012=+r ,特征根为i r ±=,相应齐次线性方程通解为x C x C F sin cos 21+=.考虑方程ixx f x f e )()(-=+'',这里i =λ是特征根,0=m ,为此设ix ax fe **=,将ax x Q =)(代入到)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ之中,有12-=ia ,得221i i a =-=,于是)cos (sin 2)sin (cos 2e 2**x i x xx i x x i x i f ix --=+==,则x x x f x f cos sin )()(--=+''的一个特解为)sin (cos 2)Re()Im(*****x x xf f f -=+=, 所以方程x x x f x f cos sin )()(--=+''的通解为)sin (cos 2sin cos )(21*x x xx C x C f F x f -++=+=. )cos (sin 2)sin (cos 21cos sin )(21x x xx x x C x C x f +--++-=',由初始条件1)0(=f 、1)0(='f ,得21121==C C 、,所以所求函数为=-++=)sin (cos 2sin 21cos )(x x xx x x f x x x x sin )221(cos )21(-++.例7.若二阶可导函数)(u f z =,其中y u xsin e =,满足方程x z yzx z 22222e =∂∂+∂∂,且0)0(=f ,2)0(='f ,试求函数)(u f .解:y u f x u u z x z x sin e )(d d '=∂∂=∂∂,y u f yuu z y z x cos e )(d d '=∂∂=∂∂, y u f y u f y u f x xz x x x sin e )()sin e )((]sin e )([222'+''='∂∂=∂∂, y u f y u f y u f y yz x x x sin e )()cos e )((]cos e )([222'-''='∂∂=∂∂, 由x z yz x z 22222e =∂∂+∂∂,有xx u f u f 22e )(e )(='',即0)()(=-''u f u f ,这是二阶常系数线性齐次微分方程,特征方程是012=-r ,特征根为1121-==r r 、,方程的通解是u u C C u f -+=e e )(21,u u C C u f --='e e )(21,由条件2)0(0)0(='=f f ,,有021=+C C , 221=-C C ,得1121-==C C 、,所所求函数是u u u f --=e e )(. 例8.求幂级数∑∞=-12!)!12(n nn x 的和函数.解:设∑∞=--=1121!)!12()(n n n x x s ,则0)0(1=s ,且)(1!)!12(1!)!32(1!)!32(1)(11122322221x xs n x x n x x n x x s n n n n n n +=-+=-+=-+='∑∑∑∞=-∞=-∞=-,即1)()(11=-'x xs x s ,这是一阶线性微分方程,通解为 )d e(e )d e (e )(x22xd d 122t C t C x s t x tt xx ⎰⎰--+=⎰+⎰=.由0)0(1=s ,得0=C ,所以幂级数∑∞=-12)!!12(n nn x 的和函数t x xs x s t x d ee)()(x 022122⎰-==.例9.设曲线位于xOy 面的第一象限,曲线上任一点)(y x M ,处的切线与y 轴交于A 点,=,且曲线过点2)323(,,求该曲线方程. 解:设所求曲线为)(x f y =,其在任一点)(y x M ,的切线方程为 ))(()(x X x f x f Y -'=-,令0=X ,得)()(x f x x f Y '-==,有222)]([Y x f Y x =-+,即)()()(2)()(222222x f x x f x xf x f x f x x '+'-='+,亦即yxx y y -='2,这是一阶齐次微分方程,令xu y =,则u x u x f '+=')(,于是u u u x u 1)(2-='+,即u u u x 212+-=',分离变量有x x u u u d d 122-=+,积分得x C u ln )1ln(2=+,即x C xy =+122.由初始条件23)23(=y ,有C 322=,得3=C ,所求曲线方程为x xy 3122=+,由曲线位于第一象限,于是)30(32≤≤-=x x x y .例10.一个质量为m 的物体,在海平面上由静止开始下沉,经过0t 秒后沉到海底,下沉过程中海水对物体的阻力与物体下沉速度成正比,求物体下沉运动的规律及海洋的深度h . 解:铅直向下取x 轴,原点在海平面,设时刻t 时,物体位于)(t x x =处,此时受力为t x k mg F d d -=(k 为比例系数),根据牛顿第二定律F ma =,有t xk mg tx m d d d d 22-=,即g tx m k t x =+d d d d 22(这是二阶常系数线性非齐次微分方程),初始条件为00==t x ,0d d 0==x t x.相应齐次微分方程为0d d d d 22=+t xm k tx ,特征方程为02=+r m k r ,特征根为01=r 、mkr -=2,相应齐次微分方程通解为t m kC C X -+=e 21.对原方程g t xm k tx =+d d d d 22,0=n 、0=λ是单重特征根,为此设at x =*,代入到方程之中,有g a m k =,得k mg a =,于是方程g t xm k tx =+d d d d 22的一个特解为t k mg x =*. 方程g t x m k tx =+d d d d 22的通解为=+=*x X x t k mg C C t m k++-e 21. kmg m k C t x t m k+-=-e d d 2,由初始条件00==t x ,0d d 0==x t x,有⎪⎩⎪⎨⎧=+-=+,,00221k m g mkC C C得222221k g m C k g m C =-=、,所以物体运动规律为t k mgk g m x t m k+-=-)1e (22.当0t t =时,得海洋深度为022)1e (0t k mgkg m h t m k+-=-.。

相关文档
最新文档