2020年重庆一中高2021级高三上期第一次月考数学试题
2021届重庆市第一中学高三上学期第一次月考数学试题(解析版)
2021届重庆市第一中学高三上学期第一次月考数学试题一、单选题1.设集合(){}ln 1A y y x ==-,{B y y ==,则A B =( )A .[)0,2B .()0,2C .[]0,2D .[)0,1【答案】A【解析】先分别利用对数型函数以及指数型函数求值域的方法求出集合,A B ,注意集合中的代表元素,再利用集合的交集运算求解即可. 【详解】∵(){}ln 1A y y x R ==-=,{[)0,2B y y ===,∴[)0,2AB =.故选:A. 【点睛】本题主要考查了集合间的运算以及对数函数和指数函数.属于较易题.2.设a ,()0,b ∈+∞,A =,B =,则A ,B 的大小关系是( )A .AB < B .A B >C .A B ≤D .A B ≥【答案】B【解析】根据题意计算做差可得22A B >,得到答案. 【详解】由a ,()0,b ∈+∞,得0A =>,0B =>22220A B -=-=>,∴22A B >,故A B >, 故选:B. 【点睛】本题考查了做差法比较大小,意在考查学生的计算能力和推断能力.3.已知直线l 是曲线2y x =的切线,则l 的方程不可能是( )A .5210x y -+=B .4210x y -+=C .13690x y -+=D .9440x y -+=【答案】B【解析】利用导数求出曲线2y x =的切线的斜率的取值范围,然后利用导数的几何意义判断各选项中的直线是否为曲线2y x =的切线,由此可得出结论.【详解】对于函数2y x =,定义域为[)0,+∞,则22y '=+>,所以,曲线2y x =的切线l 的斜率的取值范围是()2,+∞.对于A 选项,直线5210x y -+=的斜率为52,令522y '=+=,解得1x =,此时3y =,点()1,3在直线5210x y -+=上,则直线5210x y -+=与曲线2y x =相切;对于B 选项,直线4210x y -+=的斜率为2,该直线不是曲线2y x =的切线;对于C 选项,直线13690x y -+=的斜率为1326>, 令1326y '=+=,解得9x =,此时21y =,点()9,21在直线13690x y -+=上,所以,直线13690x y -+=与曲线2y x=相切;对于D 选项,直线9440x y -+=的斜率为924>, 令924y '==,解得4x =,此时10y =,点()4,10在直线9440x y -+=上,所以,直线9440x y -+=与曲线2y x =相切. 故选:B. 【点睛】本题考查利用导数的几何意义验证函数的切线方程,考查计算能力,属于中等题. 4.中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S,圆面中剩余部分的面积为2S,当1S与2S的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为()A.(35)π-B.(51)πC.51)πD.52)π【答案】A【解析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角.【详解】1S与2S所在扇形圆心角的比即为它们的面积比,设1S与2S所在扇形圆心角分别为,αβ,则512αβ=,又2αβπ+=,解得(35)απ=-故选:A【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lrα==,其中α是扇形圆心角的弧度数,l是扇形的弧长.5.若函数()(),2log2,xaa x af xx x a⎧<<⎪=⎨->⎪⎩(其中0a>,1a≠)存在零点,则实数a的取值范围是()A.()1,11,32⎛⎫⋃⎪⎝⎭B.(]1,3C.()2,3D.(]2,3【答案】C【解析】根据题中所给的函数有零点,结合解析式的特征,求得函数的零点,再根据分段函数的意义再结合式子的特征求得结果.【详解】因为x a>时,()log(2)af x x=-,所以2a>,若函数若有零点,则()log 20a x -=,解得3x =, 故3a >,又2a >,∴实数a 的取值范围是()2,3. 故选:C. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有根据分段函数有零点求参数的取值范围,属于简单题目.6.已知02ω<≤,函数()sin f x x x ωω=,对任意R x ∈,都有()3f x f x π⎛⎫-=- ⎪⎝⎭,则ω的值为( ) A .12B .1C .32D .2【答案】D【解析】化简函数()y f x =的解析式为()2sin 3f x x πω⎛⎫=- ⎪⎝⎭,由题意可知,点,06π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,结合02ω<≤可求得ω的值. 【详解】()sin 2sin 3f x x x x πωωω⎛⎫==- ⎪⎝⎭,根据()3f x f x π⎛⎫-=-⎪⎝⎭,得,06π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,则2sin 0663f ππωπ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,可得sin 063πωπ⎛⎫-= ⎪⎝⎭, 02ω<≤,0363ππωπ∴-<-≤,所以063πωπ-=,解得2ω=.故选:D. 【点睛】本题考查利用正弦型函数的对称性求参数值,同时也考查了辅助角公式的应用,考查计算能力,属于中等题.7.函数()2cos sin 2f x x x =+的一个单调减区间是( )A .,42ππ⎛⎫ ⎪⎝⎭B .0,6π⎛⎫ ⎪⎝⎭C .,2ππ⎛⎫ ⎪⎝⎭D .5,6ππ⎛⎫⎪⎝⎭【答案】A【解析】利用导数求得函数()y f x =的单调递减区间,利用赋值法可得出结果. 【详解】()2cos sin 2f x x x =+,该函数的定义域为R ,()()()222sin 2cos2212sin 2sin 22sin sin 1f x x x x x x x '=-+=--=-+-()()2sin 12sin 1x x =-+-,1sin 1x -≤≤,可得sin 10x +≥,令()0f x '<,可得2sin 10x ->,即1sin 2x >,解得()52266k x k k Z ππππ+<<+∈. 所以,函数()y f x =的单调递减区间为()52,266k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. 当0k =时,函数()y f x =的一个单调递减区间为5,66ππ⎛⎫⎪⎝⎭, 5,,4266ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭, 对任意的k Z ∈,50,2,2666k k πππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,5,2,2266k k ππππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,55,2,2666k k ππππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,故函数()y f x =的一个单调递减区间为,42ππ⎛⎫⎪⎝⎭. 故选:A. 【点睛】本题考查利用导数求解函数的单调区间,考查计算能力,属于中等题. 8.设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是( )A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】构造函数,由已知得出所构造的函数的单调性,再利用其单调性解抽象不等式,可得选项. 【详解】设()()cos F x f x x =-,∵()()2cos f x f x x +-=,即()()cos cos f x x x f x -=--,即()()F x F x =--,故()F x 是奇函数,由于函数()f x 在R 上存在导函数()f x ',所以,函数()f x 在R 上连续,则函数()F x 在R 上连续.∵在[)0,+∞上有()sin f x x '>-,∴()()sin 0F x f x x ''=+>, 故()F x 在[)0,+∞单调递增,又∵()F x 是奇函数,且()F x 在R 上连续,∴()F x 在R 上单调递增, ∵()cos sin 2f x f x x x π⎛⎫--≥-⎪⎝⎭, ∴()cos sin cos 222f x x f x x f x x πππ⎛⎫⎛⎫⎛⎫-≥--=---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()2F x F x π⎛⎫≥- ⎪⎝⎭,∴2x x π≥-,故4x π≥,故选:B . 【点睛】本题考查运用导函数分析函数的单调性,从而求解抽象不等式的问题,构造合适的函数是解决问题的关键,属于较难题.二、多选题9.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin sin B A C =,则角B 的值不可能是( )A .45°B .60°C .75°D .90°【答案】CD【解析】先利用正弦定理得到2b ac =,再利用余弦定理和基本不等式得到0,3B π⎛⎤∈ ⎥⎝⎦,即可判断. 【详解】∵2sin sin sin B A C =, 由正弦定理得: ∴2b ac =,∴2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,当且仅当a c =时取等号, 又0B π<<,故0,3B π⎛⎤∈ ⎥⎝⎦.故选:CD. 【点睛】本题主要考查了正弦定理以及余弦定理,考查了基本不等式.属于较易题. 10.下列说法正确的是( ) A .“4x π=”是“tan 1x =”的充分不必要条件B .命题:p “若a b >,则22am bm >”的否定是真命题C .命题“0R x ∃∈,0012x x +≥”的否定形式是“R x ∀∈,12x x+>” D .将函数()cos2f x x x =+的图象向左平移4π个单位长度得到()g x 的图象,则()g x 的图象关于点0,4π⎛⎫⎪⎝⎭对称【答案】ABD【解析】解方程tan 1x =,利用集合的包含关系可判断A 选项的正误;判断命题p 的真假,可判断出该命题的否定的真假,进而可判断B 选项的正误;利用特称命题的否定可判断C 选项的正误;利用图象平移得出函数()y g x =的解析式,利用对称性的定义可判断D 选项的正误. 【详解】对于A 选项,解方程tan 1x =,可得()4x k k Z ππ=+∈,4π⎧⎫⎨⎬⎩⎭ ,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭,所以,“4x π=”是“tan 1x =”的充分不必要条件, A 选项正确;对于B 选项,当0m =时,22am bm =,则命题p 为假命题,它的否定为真命题,B 选项正确;对于C 选项,命题“0R x ∃∈,0012x x +≥”的否定形式是“R x ∀∈,12x x+<”,C 选项错误;对于D 选项,将函数()cos2f x x x =+的图象向左平移4π个单位长度, 得到()cos 2sin 2444g x x x x x πππ⎛⎫=+++=-++ ⎪⎝⎭, ()()sin 2sin 244g x x x x x ππ-=---+=-+,则()()2g x g x π+-=,故函数()y g x =的图象关于点0,4π⎛⎫⎪⎝⎭对称,D 选项正确; 故选:ABD. 【点睛】本题考查命题真假的判断,考查了充分不必要条件、命题的否定的真假、特称命题的否定的判断,同时也考查了函数对称性的验证,考查推理能力,属于中等题.11.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .()2xf x x =+B .()23g x x x =--C .()21,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()ln 1f x x =-【答案】BC【解析】只要解方程00()f x x =,观察它有没有实解即可得, 【详解】选项A ,若()00f x x =,则020x =,该方程无解,故A 中函数不是“不动点”函数;选项B ,若()00g x x =,则200230x x --=,解得03x =或-1,故B 中函数是“不动点”函数;选项C ,若()00f x x =,则01x ≤,0021xx -=,或01x >,002x x -=,解得01x =,故C 中函数是:“不动点”函数;选项D ,若()00f x x =,则00ln 1x x -=,该方程无解,故D 中函数不是“不动点”函数. 故选:BC. 【点睛】本题考查新定义“不动点”,解题关键是根据新定义把问题转化为方程有无实数解. 12.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,关于()f x 有下述四个结论,正确的是( ) A .()f x 的一个周期是2π B .()f x 是非奇非偶函数C .()f x 在(0,)π单调递减D .()f x【答案】ABD【解析】先根据周期函数定义判断选项A ,再根据[]y x =函数的意义,转化()f x 为分段函数判断B 选项,结合三角函数的图象与性质判断C ,D 选项. 【详解】[][]()2sin co (cos in )s s f x x x f x π+=+=,()f x ∴的一个周期是2π,故A 正确;sin11,01,0,2cos1,21sin1,,2()3cos1sin1,,23cos1,,22cos1,,02x x x x f x x x x πππππππππ+=⎧⎪⎛⎫⎪∈ ⎪⎪⎝⎭⎪⎪=⎪⎪⎛⎤⎪-∈ ⎪⎥=⎝⎦⎨⎪⎛⎫⎪-∈ ⎪⎝⎭⎪⎪⎡⎫⎪∈⎪⎢⎪⎣⎭⎪⎛⎫⎪∈- ⎪⎪⎝⎭⎩,()f x ∴是非奇非偶函数,B 正确;对于C ,(0,)2x π∈时,()1f x =,不增不减,所以C 错误;对于D ,[0,)2x π∈,()sin11sin11 1.742f x π=+>+=+>>D 正确. 故选:ABD 【点睛】本题主要考查了函数的周期性,单调性,奇偶性,考查了特例法求解选择题,属于中档题.三、填空题13.若幂函数()f x 过点()2,8,则满足不等式(3)(1)f a f a -≤-的实数a 的取值范围是______. 【答案】(,2]-∞【解析】先求得幂函数()f x 的解析式,在根据()f x 的单调性求得不等式(3)(1)f a f a -≤-的解集.【详解】设()f x x α=,代入点()2,8,得28,3αα==,所以()3f x x =,所以()f x 在R 上递增,所以(3)(1)31f a f a a a -≤-⇒-≤-,解得2a ≤,所以实数a 的取值范围是(,2]-∞.故答案为:(,2]-∞ 【点睛】本小题主要考查幂函数解析式的求法,考查幂函数的单调性,属于基础题. 14.已知1a >,1b >,则log log 216a b b a +的最小值是______. 【答案】8【解析】利用换底公式可得log log 1a b b a ⨯=,再利用基本不等式可得答案. 【详解】因为1a >,1b >,所以log 0,log 0b a a b >>,因为lg log lg log log 1lg log lg aa b bb b a b a a a b ⎧=⎪⎪⇒⨯=⎨⎪=⎪⎩,所以,log log 2168a b b a +≥==,当log 2a b =时取“=”. 故答案为:8. 【点睛】本题主要考查指数式的运算、考查了换底公式与基本不等式的应用,属于中档题. 15.4cos50tan40-=______.【解析】【详解】4sin 40cos40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1cos10sin1022cos 40⎫-⎪⎝⎭=403cos 40==【考点】三角函数诱导公式、切割化弦思想.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,()cos25cos 3A B C ++=-,点P 是ABC 的重心,且27AP =,则c =______.【答案】4【解析】首先根据余弦二倍角公式得到1cos 2A =,设BC 边上的中线为AD ,得到7AD =,从而得到()12AD AB AC =+,再平方解方程即可得到答案. 【详解】因为()cos25cos 3A B C +-+=,所以22cos 5cos 20A A -+=, 所以1cos 2A =或cos 2A =(舍去). 设BC 边上的中线为AD ,如图所示:因为27AP =,所以7AD = 又因为()12AD AB AC =+, 所以()222124AD AB AC AB AC =++⋅, 所以()22172cos 4c b bc A =++,2211722242⎛⎫=++⨯⨯ ⎪⎝⎭c c ,化简得22240c c +-=,解得4c =或6c =-(舍去). 故答案为:4 【点睛】本题主要平面向量数量积的应用,同时考查了余弦二倍角公式,属于简单题.四、解答题17.已知点()2,1P -在角α的终边上,且02απ≤< .(1)求值:2sin cos 4sin cos αααα-+;(2)若32ππβ<<,且sin 210αβ⎛⎫-= ⎪⎝⎭,求2αβ+的值.【答案】(1)2;(2)724απβ+=. 【解析】先利用同角三角函数的基本关系得到sin ,cos ,tan ααα;(1)原式分子分母同除cos α得到正切,代入已知量即可得出结果;(2)先利用已知角的范围求得5224παπβ<-<,求出cos 2αβ⎛⎫- ⎪⎝⎭,再利用22ααββα⎛⎫+=-+ ⎪⎝⎭,最后利用两角和的余弦公式求解即可得出结果. 【详解】由题意:sin α=,cos α=, 1tan 2α=-,且2παπ<<,(1)2sin cos 2tan 124sin cos 4tan 1αααααα--==++;(2)∵32ππβ<<,224παπ-<-<-,∴5224παπβ<-<,∴cos 2αβ⎛⎫-= ⎪⎝⎭ ∴cos cos cos cos sin sin 2222ααααββαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,5521010⎛⎫=-⨯- ⎪ ⎪⎭=⎝-, ∵5242παβπ<+<, ∴724απβ+=. 【点睛】本题主要考查了同角三角函数的基本关系以及两角和的余弦公式.属于中档题.18.已知函数()22sin 24f x x x π⎛⎫=+- ⎪⎝⎭.(1)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)是否存在实数()2,t ∈+∞,使得()f x 在()2,t 上单调递增?若存在,求出t 的取值范围,若不存在,说明理由.【答案】(1)()[]2,3f x ∈;(2)不存在,理由见解析.【解析】(1)由二倍角公式降幂,再由两角差的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得值域;(2)求出函数的单调区间,由2在减区间内部,得结论. 【详解】解:(1)∵()22sin 24f x x x π⎛⎫=+- ⎪⎝⎭1cos 21sin 212sin 223x x x x x ππ⎡⎤⎛⎫⎛⎫=-+-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.又∵,42x ππ⎡⎤∈⎢⎥⎣⎦,∴22633x πππ≤-≤,即212sin 233π⎛⎫≤+-≤ ⎪⎝⎭x , ∴()[]2,3f x ∈; (2)由222232k x k πππππ-+≤-≤+()k Z ∈得51212k x ππππ-+≤≤+()k Z ∈, 所以()f x 的递增区间是5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈,递减区间是511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈,令0k =,函数在511,1212ππ⎡⎤⎢⎥⎣⎦上递减,而5112,1212ππ⎡⎤∈⎢⎥⎣⎦,即函数在112,12π⎛⎫⎪⎝⎭上是递减的,故不存在实数()2,t ∈+∞,使得()f x 在()2,t 上递增. 【点睛】本题考查正弦型函数的值域,考查正弦型函数的单调性,解题方法由二倍角公式,两角和与差的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求解. 19.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值.(1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的最大值. 【答案】(1)函数()f x 在0,1上单调递减,在1,上单调递增;(2)211e -. 【解析】(1)首先对函数求导,根据函数()1ln f x ax x =--在1x =处取得极值,得到()110f a '=-=,求得1a =,根据导数的符号求得其单调区间; (2)将不等式转化为1ln 1x b x x +-≥,之后构造新函数()1ln 1xg x x x=+-,利用导数求得其最小值,进而求得最值,得到结果. 【详解】()11ax f x a x x-'=-=,由()110f a '=-=得1a =,()1ln =--f x x x , (1)()1x f x x-'=,由0f x 得1x >,由0f x 得01x <<,故函数()f x 在0,1上单调递减,在1,上单调递增.(2)()1ln 21x f x bx b x x≥-⇒+-≥, 令()1ln 1x g x x x =+-,则()2ln 2x g x x -'=,由0g x,得2x e >,由0g x ,得20x e <<,故()g x 在()20,e上递减,在()2e ,+∞上递增,∴()()22min 1e1eg x g ==-,即211e b ≤-, 故实数b 的最大值是211e-.【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有根据极值点求参数的值,利用导数求函数的单调区间,利用导数求参数的取值范围,属于中档题目. 20.已知函数()1f x x ax =-,其中0a >. (1)求关于x 的不等式()2f x a>的解集; (2)若12a =,求[]0,x m ∈时,函数()f x 的最大值.【答案】(1)2,a ⎛⎫+∞⎪⎝⎭;(2)2max 2,0121,1212,212m m m y m m m m ⎧-<<⎪⎪⎪=≤≤+⎨⎪⎪->+⎪⎩. 【解析】(1)根据分段函数定义域解不等式可求得答案; (2)画出函数()f x 的图象,数形结合可求得()f x 的最大值 【详解】(1)()()()11,11,x ax x af x x x x a α⎧-≥⎪⎪=⎨⎪-<⎪⎩,(0)a >当1x a ≥时,由()2>f x a ,得(12)x ax a ->,1(2)()0ax x a-+>,20ax ->,2x a>, 当1x a <时,由()2>f x a ,即(1)2x ax a ->,220ax x a -+<,令220ax x a-+=,180∆=-<,方程无解,而0a >,所以220ax x a-+<无解,综上所述,2x a >,所以不等式()2f x a >的解集为2,a ⎛⎫+∞ ⎪⎝⎭. (2)12a =时()22,21212,22x x x f x x x x x x ⎧-≤⎪⎪=-=⎨⎪->⎪⎩,∵()112f =,由1122x x -=得另一个根21x =,由()f x 的图像可知,当01m <<时,函数的最大值为()2122m m f m m m ⎛⎫=-=- ⎪⎝⎭;当121m ≤≤+时,函数的最大值为12; 当21m >+时,函数的最大值为()22m f m m =-综上所述,函数的最大值为2max2,0121,1212,212m m m y m m m m ⎧-<<⎪⎪⎪=≤≤+⎨⎪⎪->+⎪⎩. 【点睛】本题考查了解分段函数不等式的问题,分段函数求最值的问题,考查了数形结合的思想. 21.重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O (如图).为吸引游客,准备在门前两条夹角为6π(即AOB ∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长23AB =且点A ,B 落在小路上,记弓形花园的顶点为M ,且6MAB MBA π∠=∠=,设OBA θ∠=.(1)将OA ,OB 用含有θ的关系式表示出来;(2)该山庄准备在M 点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA ,OB 长度),才使得喷泉M 与山庄O 距离即值OM 最大? 【答案】(1)43OA θ=;436OB πθ⎛⎫=+ ⎪⎝⎭;(2)当632OB OA ==时,OM 取最大值.【解析】(1)在OAB 中,利用正弦定理即可将OA ,OB 用含有θ的关系式表示出来; (2)在OMB △中,由余弦定理得出2OM 21632283πθ⎛⎫=-++ ⎪⎝⎭,结合三角函数的性质,即可得出OM 的最大值,再求出,OA OB 的长度即可. 【详解】(1)在ABC 中,由正弦定理可知sin sin 6OA ABπθ=,则OA θ=;同理由正弦定理可得sin sin 6OB ABOABπ=∠,则6OB OAB πθ⎛⎫=∠=+⎪⎝⎭, (2)∵AB =6MAB MBA π∠=∠=,∴2AM BM ==,在OMB △中,由余弦定理可知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅+ ⎪⎝⎭248sin 4cos 666πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭241cos 24233ππθθ⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2823cos 228228333πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎦, ∵50,6πθ⎛⎫∈ ⎪⎝⎭, ∴2272,333πππθ⎛⎫+∈ ⎪⎝⎭,∴2sin 21,32πθ⎡⎫⎛⎫+=-⎪⎢⎪⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭时,即512πθ=时, OM4=+,此时5sin cos cos sin 124646OA πππππ⎫==+=⎪⎭,5551261212OB πππππ⎛⎫⎛⎫=+=-== ⎪ ⎪⎝⎭⎝⎭即当OB OA ==OM 取最大值.【点睛】本题主要考查了正弦定理和余弦定理的实际应用,涉及了三角函数求值域,属于中档题. 22.已知函数()sin ln()f x x a x b =++,()g x 是()f x 的导函数.(1)若0a >,当1b =时,函数()g x 在(,4)π内有唯一的极小值,求a 的取值范围; (2)若1a =-,1e 2b π<<-,试研究()f x 的零点个数.【答案】(1)(0,25sin 4)a ∈-;(2)()f x 有3个零点. 【解析】(1)先求导得2sin )(1)(ag x x x '=--+,求出2()0(1)a g ππ'=-<+()4sin 425a g '=--,再由sin 4025a --≤和sin 4025a-->两种情况讨论求得a 的取值范围;(2)分析可知,只需研究(,)b π-时零点的个数情况,再分(,),(,)22x b x πππ∈-∈两种情形讨论即可. 【详解】解:(1)当1b =时,si ()(l )n 1n f x a x x =++,cos 1()()x x ag f x x '==++, 2sin )(1)(a g x x x '=--+()0a >在(),4π是增函数,2()0(1)ag ππ'=-<+,(4)sin 425ag '=--, 当(4)sin 4025ag '=--≤时,()g x 在(,4)π是减函数,无极值; 当(4)sin 4025ag '=-->时,0(,4)x π∃∈,使得00()g x '=, 从而()g x 在0(,)x π单调递减,在0(,4)x 单调递增,0x 为()g x 唯一的极小值点,所以()0,25sin 4a ∈-(2)当1a =-时,()sin ln()f x x x b =-+,(1,)2b e π∈-,可知,(i )(),x π∈+∞时,()0f x <,无零点;所以只需研究(,)b π-,1()cos f x x x b'=-+,(ii )(,)2x ππ∈时,1()cos 0f x x x b'=-<+,可知()f x 单调递减, ()1ln()1ln()02222f b e ππππ=-+>-+-=,()0f π<,存在唯一的(,)2s ππ∈,()0f s =;(iii )当(,)2x b π∈-,21()sin ()f x x x b ''=-++是减函数,且21(0)00f b ''=+>,21()102()2f b ππ''=-+<+ 则1(0,)2x π∃∈,1()0f x ''=,()f x '在1(,)b x -是增函数,1()2x π,是减函数,并且 lim ()0x b f x +→-'<,()1010f b'=->,1()022f b ππ'=-<+, 所以2(,0)x b ∃∈-,2()0f x '=;3(0,)2x π∃∈,3()0f x '=,且知()f x()f x 在()2,b x -减,在()23,x x 增,在3(,)2x π减,又因为()lim 0x b x f +→->,()00ln 0f b =-<,()02f π>,(,0)m b ∃∈-,()0f m =, (0,)2n π∃∈,()0f n =,综上所述,由(i )(ii )(iii )可知,()f x 有3个零点. 【点睛】本题主要考查利用导数研究函数的极值和零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
2021届重庆一中高三上学期第一次月考数学试卷及答案
2021届重庆一中高三上学期第一次月考数学试卷★祝考试顺利★(含答案)本卷满分 150 分,考试时间 120 分钟一、单项选择题。
本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有1项是符合题目要求的.1. 设集合 A = {y |y =ln (1−x )} , B = {y |y =√4−2x },则 A ∩B= ( )A. [0,2)B. (0,2)C. [0,2]D. [0,1)2.a,b ∈(0,+∞), A =√a +√b , B =√a +b ,则 A,B 的大小关系是( )A. A<BB. A>BC. A ≤BD. A ≥ B3.已知直线 l 是曲线 y =√x +2x 的切线,则 l 的方程不可能是A.5x −2y +1=OB.4x −2y +1=OC.13x −6y +9=OD.9x − 4y + 4 = 04.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1 ,画面中剩余部分的面积为S 2,当 S 1 与S 2的比值为√5−12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A.(3−√5)πB. (√5−1)πC. (√5+1)πD. (√5−2)π 5. 若函数f (x )={a x ,2<x ≤a log a (x −2),x >a(其中a >0,且a ≠1)存在零点,则实数 a 的取值范围是 A.(12,1)U (1,3) B.(1,3] C.(2,3) D.(2,3]6. 己知0<ω≤2,函数f (x )=sin (ωx )−√3cos (ωx ),对任意x ∈R ,都有f (π3−x)=−f (x ),则 ω 的值为( )A. 12B. 1C.32D. 27. 函数f (x )=2cos x +sin 2x 的一个个单调递减区间是( )A.(π4,π2)B.(0,π6)C.(π2,π)D. (5π6,π)8.设函数 f (x )在 R 上存在导数f ′(x ),对任意的 x ∈R ,有f (x )+f (−x )=2cos x ,且在[0,+∞)上有f′(x)>−sin x ,则不等式f(x)−f(π2−x)≥cos x−sin x的解集是A.(−∞,π4] B.[π4,+∞) C.(−∞,π6] D.[π6,+∞)二、多项选择题。
2020-2021学年重庆一中高三上学期期中数学试卷(理科)(含解析)
2020-2021学年重庆一中高三上学期期中数学试卷(理科)一、单选题(本大题共12小题,共60.0分) 1.已知sin(π−α)=34,则sinα=( )A. −34B. 34C. −√74D. √742.条件p :“a ≤0或a ≥4”是条件q :“f(x)=13ax 3+12ax 2+x +1有极值点”成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.11、从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A. 24对B. 30对C. 48对D. 60对4.抛物线y 2=2px 的焦点为F ,点A 、B 在抛物线上,且,弦AB 的中点M 在其准线上的射影为N ,则的最大值为A.B.C.D.5.在三角形ABC 中,已知AC =6,BC =10,cos(A −B)=35,则cos(A +B)=( )A. 45B. −45C. 35D. −356.一艘轮船从海面上从A 点出发,以40nmile/ℎ的速度沿着北偏东30°的方向航行,在A 点正西方有一点B ,AB =10nmile ,该船1小时后到达C 点并立刻转为南偏东60°的方向航行,小时后到达D 点,整个航行过程中存在不同的三点到B 点的距离构成等比数列,则以下不可能成为该数列的公比的数是( )A.B.C.D.7.已知集合A ={x ∈N|x(x −2)≤0},B ={−2,−1,0},则A ∪B =( )A. {−2,−1}B. {0,1}C. {−2,−1,0,1,2}D. {0,1,2}8.已知直线AB 与抛物线y 2=2x 交于A ,B 两点,M 是AB 的中点,C 是抛物线上的点,且使得CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值,抛物线在点C 处的切线为l ,则( )A. CM ⊥ABB. CM ⊥lC. CA ⊥CBD. CM =12AB9.一个空间几何体的三视图如图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为()A. √3+4B. √3+6C. 2√3+4D. 2√3+610.已知A={x|x+1x−1≤0},B={−1,0,1},则card(A∩B)=()A. 0B. 1C. 2D. 311.现规定:A是一些点构成的集合,若连接点集A内任意两点的线段,当该线段上所有点仍在点集A内时,则称该点集A是连通集,下列点集是连通集的是()A. 函数y=2x图象上的点构成的集合B. 旋转体表面及其内部点构成的集合C. 扇形边界及其内部点构成的集合D. 正四面体表面及其内部点构成的集合12.已知数列{a n}是从第二项起各项均为正数的等差数列,其前13项和S13=132,则1a5+4a9的最小值为()A. 8B. 9C. 12D. 16二、单空题(本大题共4小题,共20.0分)13.设x,y满足约束条件{3x−y−6≤0x−y+2≥0x≥0,y≥0,则目标函数z=x+y最大值与最小值的和为______ .14.已知数列2,√10,4,…,√2(3n−1),…,那么8是这个数列的第______ 项.15.如图,在四棱柱ABCD−A1B1C1D1中,底面是ABCD正方形,侧棱AA1⊥底面ABCD.已知AB=1,E为AB上一个动点,当D1E+CE取得最小值√10时,三棱锥D1−ADE的外接球表面积为______ .16.直线y=a与曲线y=x2−2|x|−3有四个交点,则a的取值范围是______ .三、解答题(本大题共7小题,共82.0分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且√3(a−ccosB)=bsinC.(1)求角C的大小;(2)若c =2,则当a ,b 分别取何值时,△ABC 的面积取得最大值,并求出其最大值.18. 已知数列{a n }的前n 项和S n ,且S n =4a n −3(n ∈N ∗). (1)证明:数列{a n }是等比数列;(2)令b n =(n +1)a n ,n ∈N ∗,求证:数列{b n }为递增数列.19. 如图,在底面为直角梯形的四棱锥P −ABCD 中AD//BC ,∠ABC =90°PD ⊥平面ABCD ,AD =1,AB =√3,BC =4. (1)求证:BD ⊥PC ;(2)求直线AB 与平面PDC 所成的角;(3)在线段PC 上是否存在一点E ,使得DE//平面PAB ?若存在,确定点E 的位置;若不存在,请说明理由.20. 已知函数f(x)=ln(ax)x+1,曲线y =f(x)在x =1处的切线与直线x −2y =0平行.(1)求a 的值;(2)若f(x)≤b −2x+1恒成立,求实数b 的最小值.21. 设O 为坐标原点,a >b >0,椭圆E 1:x 2a 2+y 2b 2=1,椭圆E 2:x 24a 2+y 24b 2=1,P 是椭圆E 2上一点. (Ⅰ)若直线OP 与椭圆E 1的一个交点Q ,求|OP||OQ|;(Ⅱ)已知点B(0,2)在椭圆E 1上,椭圆E 1的离心率为√22,过点P 的直线l 交于椭圆E 1于A ,B 两点,且AP ⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ ,求直线l 的方程.22. 已知曲线C 的参数方程为{x =2√2cosθy =√2sinθ(θ为参数),点P 是曲线C 上一动点,过点P 作PN ⊥y 轴于点N ,设点Q 为NP 的中点(O 为坐标原点). (Ⅰ)求动点Q 的轨迹C 1的参数方程;(Ⅱ)过M(1,√3)的直线交曲线C 1于不同两点A ,B ,求1|MA|2+1|MB|2的取值范围.23.已知函数f(x)=(log12x)2−12log12x+5,求在区间[2,4]上f(x)的最大值与最小值.【答案与解析】1.答案:B解析:解:∵sin(π−α)=sinα, ∴sinα=34, 故选:B .利用诱导公式化简即可.本题主要考查了诱导公式,是基础题.2.答案:B解析:解:“f(x)=13ax 3+12ax 2+x +1有极值点”,则等价为f′(x)=ax 2+ax +1有两个不同的零点,即{a ≠0△=a 2−4a >0得{a ≠0a >4或a <0,即a >4或a <0,则a ≤0或a ≥4是a >4或a <0成立的必要不充分条件, 故选:B .根据函数极值的性质,转化为f′(x)=0有两个不同的零点,利用判别式△>0进行求解即可. 本题主要考查充分条件和必要条件的判断,结合函数极值与导数之间的关系求出等价条件是解决本题的关键.3.答案:C解析:利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果. 解: 在正方体 中,与上平面中一条对角线 成的直线有 ,,,共八对直线,与上平面中另一条对角线的直线也有八对直线,所以一个平面中有16对直线,正方体6个面共有 对直线,去掉重复,则有 对.故选 C .。
专题14 函数不动点问题(原卷版)
专题14函数不动点问题一、单选题1.(2020·广东海珠·高二期末)设函数()f x (a R e ∈,为自然对数的底数),若曲线y x x =上存在点00()x y ,使得00()f y y =,则a 的取值范围是 A .1e[1]e-, B .1e[e 1]e-+, C .[1e 1]+, D .[1,e]2.(2021·四川·高考真题(文))设函数(a ∈R ,e 为自然对数的底数).若存在b ∈[0,1]使f (f (b ))=b 成立,则a 的取值范围是( ) A .[1,e]B .[1,1+e]C .[e ,1+e]D .[0,1]3.(2021·山西省榆社中学高三月考(理))若存在一个实数t ,使得()F t t =成立,则称t 为函数()F x 的一个不动点.设函数()1(xg x e x a =+-(a R ∈,e 为自然对数的底数),定义在R 上的连续函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.若存在01|()(1)2x x f x f x x ⎧⎫∈+-+⎨⎬⎩⎭,且0x 为函数()g x 的一个不动点,则实数a 的取值范围为( )A .⎛⎫-∞ ⎪ ⎪⎝⎭ B .⎡⎫+∞⎪⎢⎪⎣⎭ C .⎛⎤⎥ ⎝⎦ D .⎛⎫+∞⎪ ⎪⎝⎭4.(2021·四川自贡·高二期末(文))设函数()()1ln 2=+-∈f x x x a a R ,若存在[]1,b e ∈(e 为自然对数的底数),使得()()f f b b =,则实数a 的取值范围是( ) A .1,122⎡⎤--⎢⎥⎣⎦eB .e 1,ln 212⎡⎤--⎢⎥⎣⎦C .1,ln 212⎡⎤--⎢⎥⎣⎦D .1,02⎡⎤-⎢⎥⎣⎦5.(2021·重庆一中高一期中)设函数()2xf x e x a =+-(,a R e ∈为自然对数的底数),若存在实数[]0,1b ∈使()()f f b b =成立,则实数a 的取值范围是( ) A .[]0,eB .[]1,1e +C .[]1,2e +D .[]0,16.(2021·全国·高三专题练习)设函数()f x a ∈R ,e 为自然对数的底数),若曲线sin y x =上存在点()00x y ,使得()()00f f y y =,则a 的取值范围是( ).A .[]1e ,B .111e ⎡⎤-⎢⎥⎣⎦, C .[]1e 1+, D .11e 1e ⎡⎤-+⎢⎥⎣⎦,7.(2021·黑龙江·哈尔滨三中二模(理))设函数()2xf x e x a =+-(a R ∈),e 为自然对数的底数,若曲线sin y x =上存在点()00,x y ,使得()()00f f y y =,则a 的取值范围是( )A .11,1e e -⎡⎤-++⎣⎦B .[]1,1e +C .[],1e e +D .[]1,e8.(2016·江西南昌·高三专题练习)设函数()f x =a R ∈,e 为自然对数的底数),若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是 A .[]1,e B .1,1e -⎡⎤⎣⎦ C .[]1,1e +D .1,1e e -⎡⎤+⎣⎦9.(2016·海南·高三月考(理))设函数(),f x a R e =∈为自然对数的底数).若曲线sin y x =上存在 00,x y 使得()()00f f y y =,则a 的取值范围是 A .[]1,eB .11,1e -⎡⎤-⎣⎦C .[]1,1e +D .11,1e e -⎡⎤-+⎣⎦10.(2016·安徽合肥·高三期中(理))设函数,为自然对数的底数,若曲线上存在点,使得,则的取值范围是 A .B .C .D .11.(2014·重庆·高二期中(文))设函数()f x =a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是 A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]12.(2021·全国·高一单元测试)设函数()f x =a ∈R ),若存在[]02,3x ∈,使得()00f f x x =⎡⎤⎣⎦,则a 的取值范围为( ) A .[]ln33,ln 22-- B .[]ln36,ln 22-- C .[]ln36,ln 24--D .[]ln 22,ln33++13.(2017·河北衡水中学二模(文))设函数()3(xg x e x a a =+-∈,R e 为自然对数的底数),定义在R 上的连续函数()f x 满足:()()2f x f x x -+=,且当0x <时,()'f x x <,若存在()(){}0|222x x f x f x x ∈+≥-+,使得()()00g g x x =,则实数a 的取值范围为A .12⎛⎤-∞ ⎥⎝⎦B .(],2e -∞+C .1,2e ⎛⎤-∞+ ⎥⎝⎦D .(2⎤-∞⎦14.(2021·云南大理·模拟预测(理))在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .()ln 1f x x =-B .()e 1x f x =+C .1()f x x x=+D .2()21f x x x =+-15.(2021·河北·衡水中学实验学校一模(文))设函数()f x =e 1e 1sin 22y x -+=+上存在点0(x ,0)y 使得00(())f f y y =成立,则实数a 的取值范围为( ) A .[0,21]e e -+B .[0,21]e e +-C .[0,21]e e --D .[0,21]e e ++16.(2021·安徽省怀宁县第二中学高三月考(理))设D 是函数()y f x =定义域内的一个区间,若存在0x D ∈,使()00f x x =-,则称0x 是()f x 的一个“次不动点”,也称()f x 在区间D 上存在“次不动点”,若函数()2532f x ax x a =--+在区间[1,4]上存在“次不动点”,则实数a 的取值范围是( )A .[12,+∞)B .1(,]2-∞C .(-∞,0)D .(0,12)17.(2021·全国·高二课时练习)设函数()f x =若曲线sin y x =上存在点()00,x y ,使得()()00f f y y =,则实数a 的取值范围是( )A .[]1,2e +B .13,1e -⎡⎤-⎣⎦C .[]1,1e +D .13,1e e --⎡⎤+⎣⎦18.(2021·湖南·邵阳市第二中学模拟预测(理))设函数()f x 若曲线cos y x =上存在点()00,x y ,使得()()00f f y y =,则实数a 的取值范围是( ) A .[]1,eB .1e 3,1-⎡⎤-⎣⎦C .[]1,e 1+D .1e 3,e 1-⎡⎤-+⎣⎦19.(2021·江苏·南京田家炳高级中学高三月考)对于函数()f x ,把满足()00f x x =的实数0x 叫做函数()f x 的不动点.设()ln f x a x =,若()f x 有两个不动点,则实数a 的取值范围是( )A .()0,eB .(),e +∞C .()1,+∞D .()1,e20.(2021·浙江·高一期末)设函数35()22xx f x x a x +=+-++,若曲线cos y x =上存在点00(,)x y ,使得00(())f f y y =,则实数a 的取值范围是( )A .133[,]52-- B .35[,]22-C .314[,]23-D .514[,]23二、多选题21.(2021·吉林·梅河口市第五中学高一月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可运用到有限维空间,并构成了一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ).简单地讲就是对于满足一定条件的连续函数()f x ,存在实数0x ,使得()00f x x =,那么我们就称该函数为“不动点”函数.下列函数为“不动点”函数的是( ) A .()1f x x x =++B .()235f x x x =--C .4()3(0)f x x x x=->D .221,0()1,0x x x f x x x ⎧++>⎪=⎨-≤⎪⎩22.(2021·全国·高二单元测试)定义方程()()f x f x '=的实数根0x 为函数()f x 的“新不动点”,下列函数中只有一个“新不动点”的函数为( ) A .()212g x x =B .()e 2xg x x =--C .()ln g x x =D .()sin 2cos g x x x =+23.(2021·辽宁沈阳·高一期中)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单的讲就是对于满足一定条件的图象不间断的函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数.下列为“不动点”函数的是( )A .()3f x x +B .()23g x x x =-+C .()221,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()1f x x x=-三、填空题24.(2021·云南师大附中高三月考(理))设函数()f x =e 1e 1sin 22y x -+=⋅+上存在点()00,x y ,使得()()00f f y y =成立,则实数a 的取值范围是___________.25.(2021·全国·高三专题练习(文))已知函数()2,xf x e x a a R =+-∈,若曲线sin y x =上存在点00,x y ,使得()()00f f y y =,则实数a 的取值范围是__________.26.(2017·江苏·常熟中学高三月考)已知函数()()ln R x f x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.27.(2021·黑龙江·铁人中学高二期末(文))对于函数()f x ,把满足()00f x x =的实数0x 叫做函数()f x 的不动点,设()ln f x a x =,若()f x 有两个不动点,则实数a 的取值范围是__________.。
2020-2021学年重庆第一中学高一数学理月考试卷含解析
2020-2021学年重庆第一中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数零点个数为( )(A)1 (B)2 (C)3 (D)4参考答案:C2. 函数在上的最大值为()A.2 B.1 C. D.无最大值参考答案:3. 若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为()A.B.2 C.D.参考答案:A4. 设,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>a>c D.b>c>a参考答案:B【考点】对数值大小的比较;有理数指数幂的化简求值.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出结论.【解答】解:∵,0<log32<1,lg(sin2)<lg1=0.∴a>1,0<c<1,b<0.∴b<c<a.故选B.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.5. 一个算法的程序框图如上图所示,若该程序输出的结果是,则判断框中应填入的条件是()A.? B.?C.?D.?参考答案:D6. 若函数f(x)=lnx+2x﹣3,则f(x)的零点所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)参考答案:B【考点】函数零点的判定定理.【分析】判断函数的单调性与连续性,利用零点判定定理求解即可.【解答】解:函数f(x)=lnx+2x﹣3,在x>0时是连续增函数,因为f(1)=2﹣3=﹣1<0,f(2)=ln2+4﹣3=ln2+1>0,所以f(1)f(2)<0,由零点判定定理可知,函数的零点在(1,2).故选:B.7. 下列函数中,周期为2π的是()A.y=sin B.y=|sin| C.y=cos2x D.y=|sin2x|参考答案:B【考点】H1:三角函数的周期性及其求法.【分析】根据函数y=Asin(ωx+φ)的周期为,函数y=|Asin(ωx+φ)|的周期为?,得出结论.【解答】解:由于函数y=sin的最小正周期为=4π,故排除A;根据函数y=|sin|的最小正周期为=2π,故B中的函数满足条件;由于y=cos2x的最小正周期为=π,故排除C;由于y=|sin2x|的最小正周期为?=,故排除D,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,函数y=|Asin(ωx+φ)|的周期为?,属于基础题.8. 已知向量,,,的夹角为45°,若,则()A. B. C. 2 D. 3参考答案:C【分析】利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9. 设,,,则的大小关系是()A. B. C. D.参考答案:C10. 将函数的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移个单位,所得到的图象的解析式是()A. B. C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 如果一个等差数列前5项的和等于10,前10项的和等于50,那么它前15项的和等于 .参考答案:120略12. 已知一个扇形的周长为,圆心角为,则此扇形的面积为_________________.参考答案:略13. 已知tanα=3,则的值为.参考答案:【考点】GH:同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanα=3,则==,故答案为:.14. 公元五世纪张丘建所著《张丘建算经》卷中第22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织布的增加量为尺.(1匹=4丈,1丈=10尺)参考答案:设该女子织布每天增加尺,由题意知,尺,尺又由等差数列前项和公式得,解得尺15. 幂函数的图象经过点,则的值为__________.参考答案:216. (5分)一个正方体的顶点都在一个球面上,已知这个球的表面积为3π,则正方体的棱长.参考答案:1考点:点、线、面间的距离计算.专题:计算题;空间位置关系与距离.分析:先确定球的半径,再利用正方体的对角线为球的直径,即可求得结论.解答:∵球的表面积为3π,∴球的半径为∵正方体的顶点都在一个球面上,∴正方体的对角线为球的直径设正方体的棱长为a,则∴a=1故答案为:1点评:本题考查球的内接几何体,考查学生的计算能力,属于基础题.17._______________.参考答案:略三、解答题:本大题共5小题,共72分。
2020-2021重庆市一中高中必修一数学上期中一模试卷(附答案)
2020-2021重庆市一中高中必修一数学上期中一模试卷(附答案)一、选择题1.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭2.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭ D .12,23⎡⎫⎪⎢⎣⎭3.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( )A .315,22⎛⎫ ⎪⎝⎭B .[]28,C .[)2,8D .[]2,76.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ð D .()()U M P S ⋂⋃ð7.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]8.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x =为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( )A .1,3- B.1,33C .11,,33-D .11,,3329.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-10.函数()245f x xx =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( ) A .[)2,+∞B .[]2,4C .[]0,4D .(]2,411.函数y =2x 2–e |x |在[–2,2]的图像大致为( )A .B .C .D .12.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<二、填空题13.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 14.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.15.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.16.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .17.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________.18.已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. 若关于x 的方程()0f x m -=有四个不同的实数解,则实数m 的取值范围是_____.19.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有 人.20.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.三、解答题21.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y 与听课时间x (单位:分钟)之间的关系满足如图所示的图象,当(]0,12x ∈时,图象是二次函数图象的一部分,其中顶点()10,80A ,过点()12,78B ;当[]12,40x ∈时,图象是线段BC ,其中()40,50C .根据专家研究,当注意力指数大于62时,学习效果最佳.(Ⅰ)试求()y f x =的函数关系式;(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由. 22.已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围.23.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后,y 与t 之间的函数关系式y =f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?24.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围.25.已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.26.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.3.B解析:B 【解析】【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.6.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.7.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.8.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.9.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.10.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.11.D解析:D 【解析】试题分析:函数f (x )=2x 2–e |x|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D12.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题13.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于解析:()(){}2,2,2,2--【解析】 【分析】解方程组2040x y x +=⎧⎨-=⎩,求出结果即可得答案.【详解】由240x -=,解得2x =或2x =-,代入0x y +=, 解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩,所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--,故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.14.1120【解析】【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =解析:1120 【解析】 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.15.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值17.(-∞-)【解析】【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判解析:(-∞,-12) 【解析】 【分析】 方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-,实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】 本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.18.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R 上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同 解析:(1,0)-【解析】【分析】若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点,作出函数()f x 的图象,由数形结合法分析即可得答案.【详解】因为函数()f x 是定义在R 上的偶函数且当0x ≥时,2()2f x x x =-,所以函数()f x 图象关于y 轴对称,作出函数()f x 的图象:若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点, 由图象可知:10m -<<时,即有4个交点.故m 的取值范围是(1,0)-,故答案为:(1,0)-【点睛】本题主要考查了偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,数形结合,属于中档题.19.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系解析:【分析】【详解】 试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.20.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1},【解析】【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素.【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =.若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =.综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-.【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.三、解答题21.(Ⅰ)()()(](]2110800,1229012,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩;(Ⅱ)在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳,理由见解析【分析】(I )当(]0,12x ∈时,利用二次函数顶点式求得函数解析式,当(]12,40x ∈时,一次函数斜截式求得函数解析式.由此求得()f x 的函数关系式.(II )利用分段函数解析式解不等式()62f x >,由此求得学习效果最佳的时间段.【详解】(Ⅰ)当(]0,12x ∈时,设()()21080f x a x =-+,过点()12,78代入得,则()()2110802f x x =--+, 当(]12,40x ∈时,设y kx b =+,过点()12,78、()40,50,得12784050k b k b +=⎧⎨+=⎩,即90y x =-+,则函数关系式为()()(](]211080,0,12290,12,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (Ⅱ)由题意(]0,12x ∈,()211080622x --+>或(]12,40x ∈,9062x -+>. 得412x <≤或1228x <<,∴428x <<.则老师就在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳.【点睛】本小题主要考查分段函数解析式的求法,考查待定系数法求一次函数、二次函数的解析式,考查函数在实际生活中的应用,考查数形结合的数学思想方法,属于基础题.22.(1)f (x )min =-10,f (x )max =26;(2)(-∞,-10].【解析】试题分析:(1)由题意可得,f (x )=4x -2·2x +1-6,令t=2x ,从而可转化为二次函数在区间[1,8]上的最值的求解(2)由题意可得,a≤f (x )恒成立⇔a ≤f (x )min 恒成立,结合(1)可求试题解析:(1)f (x )=(2x )2-4·2x -6(0≤x ≤3).令t =2x,∵0≤x ≤3,∴1≤t ≤8.则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数.∴f (x )min =h (2)=-10,f (x )max =h (8)=26.(2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立,∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10.故a 的取值范围为(-∞,-10].23.(1)0.8)4,015(,1t t t y t ≤≤⎧=⎨⋅>⎩n ; (2)服药一次后治疗有效的时间是5-=小时. 【解析】【分析】(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点(1,4),代入点(1,4)的坐标,求出参数的值,即可得到函数的解析式;(2)由(1)的结论将函数值0.25代入函数的解析式,构造不等式,求出每毫升血液中函数不少于0.25微克的起始时刻和结束时刻,即可得到结论.【详解】(1)由题意,根据给定的函数的图象,可设函数的解析式为1)2,01(,1t a kt t y t -≤<⎧⎪=⎨⎪≥⎩n ,又由函数的图象经过点(1,4),则当1t =时,14k ⨯=,解得4k =,又由1t =时,11()42a -=,解得3a =, 所以函数的解析式为1)324,01(,1t t t y t -≤<⎧⎪=⎨⎪≥⎩n . (2)由题意,令0.25y ≥,即当01t ≤<时,40.25t ≥,解得116t ≥, 当1t ≥时,31()0.252t -≥,解得15t ≤≤,综上所述,可得实数t 的取值范围是1516t ≤≤, 所以服药一次后治疗有效的时间是17951616-=小时. 【点睛】本题主要考查了一次函数与指数函数模型的应用,解答中认真审题,合理设出函数的解析式,代入求解是解答的关键,同时应用指数函数模型应注意的问题:(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.24.(1)2;(2)(]1,3.【解析】【分析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可.【详解】 (1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩Q 为奇函数, 当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--,则()()22f x f x x x =--=+,2m ∴=; (2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-,由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a <?.因此,实数a 的取值范围是(]1,3.【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题. 25.(1)[1]4,;(2)4x =时,函数有最大值13. 【解析】【分析】(1)由已知()f x 的定义域及复合函数的定义域的求解可知,2116116x x ≤≤⎧⎨≤≤⎩,解不等式可求(2)由已知可求()()()22[]g x f x f x +=,结合二次函数的性质可求函数g x ()的最值及相应的x .【详解】解:(1)()42log [116]f x x x =+∈Q ,,,()()()22[]g x f x f x +=. 由题意可得,2116116x x ≤≤⎧⎨≤≤⎩, 解可得,14x ≤≤即函数()g x 的定义域[1]4,; (2)()42log ,[116]f x x x =+∈Q ,, ()()()()222224444[]2log 2log log 6log 6g x f x f x x x x x ∴=+=+++=++设4log t x =,则[01]t ∈,, 而()()226633g t t t t =++=+-在[0]1,单调递增, 当1t =,即4x =时,函数有最大值13.【点睛】本题主要考查了对数函数的性质,二次函数闭区间上的最值求解,及复合函数的定义域的求解,本题中的函数()g x 的定义域是容易出错点.26.(1)2()1f x x x =-+(2)1m <-【解析】【分析】(1)设2()(0)f x ax bx c a =++≠,带入()(1)2f x f x x -+=-和(0)1f =,即可求出a ,b ,c 的值.(2)首先将题意转化为[1,1]x ∈-时,231x x m -+>恒成立,再求出2min (31)x x -+,2min (31)m x x <-+即可.【详解】(1)设2()(0)f x ax bx c a =++≠,则22()(1)(1)(1)2f x f x ax bx a x b x ax a b -+=+-+-+=---,所以22ax a b x ---=-,解得:1a =,1b =-.又(0)1f c ==,所以2()1f x x x =-+.(2)当[1,1]x ∈-时,()2x m f x >+恒成立,即当[1,1]x ∈-时,231x x m -+>恒成立.设2()31g x x x =-+,[1,1]x ∈-.则min ()(1)1g x g ==-,1m ∴<-.【点睛】本题第一问考查待定系数法求函数的解析式,第二问考查二次函数的恒成立问题,属于中档题.。
2021届重庆市第一中学高三上学期第一次月考(9月)数学(理)试题Word版含解析
2021届重庆市第一中学高三上学期第一次月考(9月)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则()A. B. C. D.【答案】D【解析】集合是某些实数组成的数集,集合是平面的点集,因此,故选D.【点睛】集合的问题中确定集合的元素是解决问题的基础,本题中集合是数集,集合是点集,两者当然没有公共元素,交集为空集.易犯错误:联立方程组,解得,得.2. 函数图像的一个对称中心可以是()A. B. C. D.【答案】D【解析】把各点横坐标代入,只有,因此是图象的一个对称中心,故选D.【点睛】正弦函数的对称中心为(),对称轴为().解决正弦型函数的问题是把作为一个整体,与中的等同.3. 下列函数为奇函数的是()A. B. C. D.【答案】B【解析】由奇函数的定义,只有当时,,故选B.4. 已知,则的值为()A. B. C. D.【答案】A【解析】由已知得,所以.故选A.5. 下列说法正确的是()A. “”是“函数是奇函数”的充要条件B. 若为假命题,则为假命题C. 已知角的终边均在第一象限,则“”是“”的充分不必要条件D. “若,则”是真命题【答案】D【解析】满足,但不是奇函数,A错;为假命题,只要中有一个为假即可,当一真一假时满足为假命题,但为真命题,B错;由于(),因此与之间没有任何关系,C错;因此时,,因此“若,则”是真命题,D正确.故选D.6. 设,则()A. B. C. D.【答案】B【解析】,,且,所以,故选B.7. 若是方程的根,则所在的区间为()A. B. C. D.【答案】C【解析】设,由于,,即,故选C.8. 若函数在区间内有极小值,则的取值范围是()A. B. C. D.【答案】C【解析】,由题意在区间上有零点,又,在上是增函数,所以,解得,故选C.9. 已知函数是偶函数,则在上是减函数的一个值是()A. B. C. D.【答案】A【解析】由已知为偶函数,,即,故排队,当,时,,递减,当,时,,递增,故选A.10. 函数的部分图像如图所示,若将图像上所有点的横坐标缩短为原来的倍(纵坐标不变),在向右平移得到的图像,则的解析式为()A. B.C. D.【答案】B【解析】由题意,,则,又,而,所以,即,所以,即,故选B.【点睛】已知三角函数图象求函数解析式,主要依据是“五点法”,要掌握正弦函数图象的“五点”:,这五点间可以得出函数的周期、振幅、相位.11. 给出定义:若(其中为整数),则叫做离实数最近的整数,记作,在此基础上给出下列关于函数的四个命题:①函数的定义域为,值域为;②函数在上是增函数;③函数是周期函数,最小正周期为;④函数的图像关于直线对称,其中正确命题的个数是()A. B. C. D.【答案】C【解析】的定义域要求真数大于0,则要,因此定义域为,①错误;当时,且,,当时,且,,显然的图象是由的图象向右平移1个单位而得,一般地当时,且,,于是可画出的图象,由图象知②、③、④正确. ... ... ... ... ... ... ...12. 记函数在点处的切线为,若直线在轴上的截距恒小于,则实数的取值范围是()A. B. C. D.【答案】D【解析】,切线方程为,令得截距为,由题意对,恒成立,即,令,则,∵,∴,①若,即时,,所以当时,,即在上单调递增,所以恒成立,所以满足题意;②若,即时,,即在上单调递减,所以,所以不满足题意;③若即时,,则的关系如下表:-0 +递减极小值递增所以,所以不满足题意.综合①②③,可得当时,,此时切线在轴上的截距恒小于.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角的终边经过点,且,则__________.【答案】【解析】由题意,解得.14. 若,且,则__________.【答案】【解析】∵,∴,∴,∴.【点睛】三角函数求值中,要注意“角”的变换,而不是随便应用两角和与差的正弦余弦公式变形,象本题,观察出“已知角”与“待求角”之间的差为,因此可用诱导公式求解,从而减少运算.15. 学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”丙说:“两项作品未获得一等奖”丁说:“是或作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品是 __________.【答案】C【解析】若是一等奖,则甲丙丁都对,不合题意;若是一等奖,则甲乙丁都错,不合题意;若是一等奖,则乙丙正确,甲丁错,符合题意;若是一等奖,则甲乙丙错,不合题意,故一等奖是.16. 设函数是定义在上的可导函数,其导函数为,且满足,则不等式的解集为__________.【答案】【解析】设,则,由题意,所以在上是增函数,所以由得,即,所以.【点睛】已知条件中含有导数函数与的关系式时,可构造新函数,新函数的导数可利用已知不等式确定正负,从而确定单调性,这类新函数一般有,,,等等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知二次函数满足以下要求:①函数的值域为;②对恒成立.(1)求函数的解析式;(2)设,求时的值域.【答案】(1);(2).【解析】试题分析:(1)已知条件提供了二次函数的对称轴与最小值,因此二次函数解析式可配方为顶点式,从而列出关于的方程组,从而解得,得解析式;(2)是分式函数,由于分母是一次的,分母是二次的,可用换元法设,转化后易得函数的单调性,从而得值域.试题解析:(1)又对称轴为值域为且,则函数(2)令,则所求值域为.18. 已知函数,若对恒成立,且(1)求的解析式和单调递增区间;(2)当时,求的值域;【答案】(1);(2)【解析】试题分析:(1)由已知得出函数图象的一条对称轴是,结合正弦函数的图象的对称性可求得值,再由正弦函数的单调性与复合函数的单调性可得单调增区间;(2)由,求得,把作为一个整体利用正弦函数性质可得的值域.试题解析:(1)由,可知为函数的对称轴,则,由,可知或又由,可知,则验证或,则,所以由得:递增区间:(2)当则所以,值域为:【点睛】函数满足或,则直线是其图象的对称轴.19. 已知函数(1)若函数存在与轴垂直的切线,求的取值范围;(2)若恰有一个零点,求的取值集合;【答案】(1);(2).【解析】试题分析:(1)存在与轴垂直的切线,说明存在导数值为0的点,即在上有解,由此可得的范围;(2)求出导数,由导数的知识求得有唯一最大值,结合函数的单调性知,只有当最大值时,函数才有唯一零点.试题解析:(1)的定义域为在上有解得:所以,的取值范围为(2),令,得当时,在上单调递减;当时,在上单调递增,故①当,即时,因最大值点唯一,故符合题设;②当,即时,恒成立,不合题设;③当,即时,一方面,;另一方面,(易证:),于是,有两零点,不合题设,综上,的取值集合为20. 如图,直线与椭圆交于两点,与轴交于点,为弦的中点,直线分别与直线和直线交于两点.(1)求直线的斜率和直线的斜率之积;(2)分别记和的面积为,是否存在正数,使得若存在,求出的取值;若不存在,说明理由.【答案】(1);(2)存在满足题意.【解析】试题分析:(1)设,由点差法可推出,由两直线相交可求得交点坐标,从而得,计算即可;(2)是直线的交点,由两直线方程联立可解得各点坐标,求得,再由求得值即可,若不能求得,则说明不存在.试题解析:(1)设,由点差法可推出:在联立可接出所以,(2)假设这样的存在,联立,在(1)问中已解得,所以;在中令得;在联立所以;由当时,点坐标为,经检验在椭圆内,即直线与椭圆相交,所以存在满足题意.21. 已知函数,其中,且(1)当时,求函数的单调区间;(2)设,若存在极大值,且对于的一切可能取值,的极大值均小于,求的取值范围. 【答案】(1)单调递增区间为,单调递减区间为;(2)【解析】试题分析:(1)计算出导数,由不等式得增区间,由得减区间,注意要按的正负分类讨论,的正负对定义域有影响;(2)求出导数,因此必须有,才能有两个不等实根,的两实根为,,极大值为,由求根公式得,令(作为的函数),同理由导数知识得在上单调递减,从而,由可得的范围.试题解析:(1)时,,故当时,,由,得得因此的单调递增区间为:,单调递减区间为:当时,,由得,由得因此单调递增区间为,单调递减区间为(2)由题,显然,设的两根为,则当或时,,当时,,故极大只可能是,且,知,又,故,且,从而令,则,故在单减,从而,因此,解得请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程直角坐标系中曲线的参数方程(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,点的极坐标,在平面直角坐标系中,直线经过点,倾斜角为(1)写出曲线的直角坐标方程和直线的参数方程;(2)设直线与曲线相交于两点,求的值.【答案】(1)(为参数);(2).【解析】试题分析:(1)利用同角关系及二倍角公式消去参数可得的直角坐标方程,把的极坐标化为直角坐标,由直线的标准参数方程可得直线参数方程;(2)把直线参数方程代入曲线的直角坐标方程,可得,利用参数的几何意义,有,代入计算可得.试题解析:(1)曲线的直角坐标方程点的极坐标为,化为直角坐标为,直线的参数方程为,即(为参数)(2)将的参数方程代入曲线的直角坐标方程,得:,显然有,则,所以23. 选修4-5:不等式选讲已知函数(1)求不等式的解集;(2)若函数的最小值为,正数满足,求证:【答案】(1)或;(2)见解析.【解析】试题分析:(1)解这个绝对值不等式,可按绝对值的定义去掉绝对值符号,化绝对值不等式为一元一次不等式,从而求得解.(2)利用绝对值三角不等式可求得的最小值为,求和后,再得用基本不等式可证题中结论.试题解析:(1)当时,得当时,得无解当时,得所以,不等式的解集为或;(2),即又由均值不等式有:两式相加得。
重庆市重庆一中2021届高三数学上学期第一次月考试题 理 含解析(含解析)
重庆一中2021届高三上学期第一次月考数 学 试 题 卷(理科)【试卷综析】这套试题大体符合高考温习的特点,稳中有变,变中求新,适当调整了试卷难度,表现了稳中求进的精神.,重视学科基础知识和大体技术的考察,同时偏重考察了学生的学习方式和思维能力的考察,有相当一部份的题目灵活新颖,知识点综合与迁移.以它的知识性、思辨性、灵活性,基础性充分表现了考素养,考基础,考方式,考潜能的检测功能.一. 选择题: 本大题共10小题,每题5分,共50分. 在每题给出的四个选项中,只有一项为哪一项符合题目要求的.【题文】1. 已知复数z 知足(1)i i z +=, 那么z =( )A. 1122i +B. 1122i -C. 1122i -+D. 1122i --【知识点】复数代数形式的乘除运算.L4【答案解析】A 解析:由(1)i i z +=,得.应选:A .【思路点拨】把已知的等式变形,然后利用复数代数形式的乘除运算化简求值. 【题文】2. 设0.53a =,3log 2b =, 0.5log 3c =, 那么( )A. c b a <<B. c a b <<C. a b c <<D. b c a <<【知识点】对数值大小的比较.B7【答案解析】A 解析:∵a=30.5>1,0<b=log32<1,c=log0.53<0, ∴三个数字的大小依照三个数字的范围取得c <b <a ,应选A .【思路点拨】依照指数函数和对数函数的性质,取得三个数字与0,1之间的大小关系,利用两个中间数字取得结果.【题文】3. 函数22x xye(03x) 的值域是( )A. 3(,1)eB. 3[,1)eC.3(,]e e D. (1,]e【知识点】指数函数的概念、解析式、概念域和值域.菁优B6 【答案解析】C 解析:∵函数v==,当0≤x<3时,﹣3<﹣(x ﹣1)2+1≤1,∴e ﹣3<≤e1,即e ﹣3<v≤e;∴函数v 的值域是(e ﹣3,e].应选:C . 【思路点拨】先求出03x时﹣x2+2x 的取值范围,再依照指数函数的单调性求出值域.【题文】4. 把ln(1)yx 的图像的纵坐标不变,横坐标伸长为原先的三倍,再向右移动一个单位,取得的函数解析式是( )A. ln 3y xB.ln3xy C.2ln3x yD. ln(32)yx【知识点】函数的图象与图象转变.B9【答案解析】C 解析:把y=ln (x+1)的图象的纵坐标不变,横坐标伸长为原先的三倍,取得函数y=ln (),再向右移动一个单位,取得y=ln ()=ln,应选:C【思路点拨】依照函数图象之间的转变关系即可取得结论. 【题文】5. 函数2ln 25f x x x 的零点个数为( )A. 1B. 2C. 0D. 3【知识点】函数零点的判定定理.菁B9【答案解析】A 解析:函数f (x )的概念域为(0,+∞),且函数f (x )单调递增, ∵f (1)=2ln1+2﹣5=﹣3<0,f (3)=2ln3+1>0, ∴在(1,3)内函数存在唯一的一个零点,故函数f (x )=2lnx+2x ﹣5的零点个数为1个,应选:A【思路点拨】依照函数f (x )的单调性和函数零点的判定条件即可取得结论.【题文】6.假设概念在实数集R 上的偶函数)(x f 知足0)(>x f , )(1)2(x f x f =+, 对任意R x ∈恒成立, 那么(2015)f ( )A. 4B. 3C. 2D. 1【知识点】函数奇偶性的性质.B4【答案解析】D 解析:∵f(x)>0,f(x+2)=,∴f(x+4)==f(x),∴函数f(x)的周期是4.∴f(2021)=f(504×4﹣1)=f(﹣1),∵函数f(x)为偶函数,∴f(﹣1)=f(1),当x=﹣1时,f(﹣1+2)=f(1)==,∴f2(1)=1,即f(1)=1,∴f(2021)=f(1)=1.应选:D.【思路点拨】由f(x)>0,f(x+2)=,对可得函数的周期是4,然后利用函数的奇偶性和周期性即可求值.【题文】7. 假设某程序框图如右图所示, 当输入50时, 那么该程序运算后输出的结果是( )A. 8B. 6C. 4D. 2【知识点】程序框图.L1【答案解析】B 解析:由程序框图知,n=50,S=0,i=1S=1,i=2,S<n,继续执行循环;S=4,i=3,S<n,继续执行循环;S=11,i=4,S<n,继续执行循环;S=26,i=5,S<n,继续执行循环;S=57,i=6,现在S>n,退出循环,输出i的值为6;故答案为:B.【思路点拨】因为n=50,由程序框图写出每次循环S,i的值,判定当S≥n时,退出循环,即可求得输出i的值.【题文】8. 如下图, 医用输液瓶能够视为两个圆柱的组合体. 开始输液时, 滴管内匀速淌下液体(滴管内液体忽略不计), 设输液开始后x 分钟, 瓶内液面与进气管的距离为h 厘米, 已知当0x =时,13h =. 若是瓶内的药液恰好156分钟滴完. 那么函数()h f x =的图像为( )A. B. C. D. 【知识点】函数模型的选择与应用.B10【答案解析】A 解析:由题意知,每分钟淌下πcm3药液, 当4≤h≤13时,xπ=π•42•(13﹣h ),即h=13﹣,现在0≤x≤144;当1≤h<4时,xπ=π•42•9+π•22•(4﹣h ),即,现在144<x≤156.∴函数单调递减,且144<x≤156时,递减速度变快. 应选:A .【思路点拨】每分钟淌下πcm3药液,当液面高度离进气管4至13cm 时,x 分钟淌下液体的体积等于大圆柱的底面积乘以(13﹣h ),当液面高度离进气管1至4cm 时,x 分钟淌下液体的体积等于大圆柱的体积与小圆柱底面积乘以(4﹣h )的和,由此即可取得瓶内液面与进气管的距离为h 与输液时刻x 的函数关系.【题文】9. 函数|1|,1()21,1xa x f x x, 假设关于x 的方程22()(25)()50f x af x a有五个不同的实数解, 那么a 的取值范围是( )A.55(2,)(,)22+∞ B.(2,) C.[2,) D. 55[2,)(,)22【知识点】根的存在性及根的个数判定;分段函数的应用.B9 B10 【答案解析】A 解析:由方程2f2(x )﹣(2a+5)f (x )+5a=0解得, f (x )=或f (x )=a ,那么x=1时,方程2f2(x )﹣(2a+5)f (x )+5a=0的一个解,那么2|x ﹣1|=﹣1与2|x ﹣1|=a ﹣1还要在(﹣∞,1)∪(1,+∞)上有四个不同的解, 那么a ﹣1=2|x ﹣1|>1且a ﹣1≠﹣1,即a >2且a.应选A .【思路点拨】先化简方程,从而简化问题,转化为2|x ﹣1|=﹣1与2|x ﹣1|=a ﹣1在(﹣∞,1)∪(1,+∞)上有四个不同的解.【题文】10. 假设概念域在[0,1]的函数()f x 知足: ① 关于任意12,[0,1]x x ,当12x x <时,都有12()()f x f x ;②(0)0f ;③1()()32x f f x ;④(1)()1f x f x ,则19()()32014f f +=( ) A.916 B .1732 C .174343 D .5121007【知识点】函数的值.B1【答案解析】B 解析:∵f(1﹣x )+f (x )=﹣1,令x=0; ∴f(1)+f (0)=﹣1,又∵f(0)=0;∴f(1)=﹣1; 令x=可得,2f ()=﹣1,∴f()=﹣; 在f (x )中令x=1,那么f ()=f (1)=﹣,又∵关于任意x1,x2∈[0,1],当x1<x2时,都有f (x1)≥f(x2); ∴在[,]上,f (x )≡﹣. f ()=•f()=f ()=()3•f()=()4•f(),=﹣.故=﹣﹣=﹣;应选B .【思路点拨】由题意给出的四个性质可推出在[,]上,f (x )≡﹣;从而求出的值.二. 填空题: 本大题共6小题,考生作答5小题,每题5分,共25分,把答案填在答题卡相应位置上。
重庆市重庆一中2021届高三数学上学期第一次月考试题 文 含解析(含解析)
重庆一中2021届高三上学期第一次月考数 学 试 题 卷(文科)【试卷综析】这套试题大体符合高考温习的特点,稳中有变,变中求新,适当调整了试卷难度,表现了稳中求进的精神.,重视学科基础知识和大体技术的考察,同时偏重考察了学生的学习方式和思维能力的考察,有相当一部份的题目灵活新颖,知识点综合与迁移.以它的知识性、思辨性、灵活性,基础性充分表现了考素养,考基础,考方式,考潜能的检测功能.一、选择题:(每题5分,共计50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)【题文】一、已知为虚数单位,假设1(,)1ia bi ab R i +=+∈-,那么a b +=( )A .0B .C .1-D .2 【知识点】复数相等的充要条件.L4【答案解析】B 解析:∵a+bi====i ,∴a=0,b=1.∴a+b=1.应选:D .【思路点拨】利用复数的运算法那么和复数相等即可得出.【题文】二、命题“假设函数mx e x f x-=)(在),0[+∞上是减函数,那么1>m ”的否命题是( ) A .假设函数mx e x f x-=)(在),0[+∞上不是减函数,那么1≤m B .假设函数mx e x f x -=)(在),0[+∞上是减函数,那么1≤m C .若1>m ,那么函数mx e x f x-=)(在),0[+∞上是减函数 D .若1≤m ,那么函数mx e x f x -=)(在),0[+∞上不是减函数 【知识点】四种命题.A2【答案解析】A 解析:否定命题的条件作条件,否定命题的结论作结论,即可取得命题的否命题.命题“假设函数mx e x f x-=)(在),0[+∞上是减函数,那么1>m ”的否命题是:假设函数mx e x f x-=)(在),0[+∞上不是减函数,那么m≤1.应选:A .【思路点拨】直接写出命题的否命题,即可取得选项.【题文】3、如下图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的 成绩(单位:分),已知甲组数据的中位数为15,乙组数据的平均数为16.8,那么y x ,的值别离为( )A . 5,2B . 5,5C . 8,5D .8,8 【知识点】茎叶图.I2【答案解析】C 解析:∵甲组数据的中位数为15,∴10+y=15,∴y=5;又∵乙组数据的平均数为16.8,∴9+15+(10+x )+18+24=16.8×5,∴x=8;∴x ,y 的值别离为8,5; 应选:C .【思路点拨】由甲组数据的中位数求出y 的值,乙组数据的平均数求出x 的值. 【题文】4、以下函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )A .()2x f x -=B .2()1f x x =+C .3()f x x = D .21()f x x =【知识点】函数奇偶性的判定;函数单调性的判定与证明.B3 B4【答案解析】D 解析:只有函数21()f x x =,2()1f x x =+是偶函数,而函数3()f x x =是奇函数,()2xf x -=不具有奇偶性.而函数21()f x x =,2()1f x x =+中,只有函数21()f x x =在区间(,0)-∞上单调递增的.综上可知:只有D 正确.应选:D .【思路点拨】利用函数函数的奇偶性和单调性即可判定出. 【题文】五、阅读右边程序框图,为使输出的数据为31, 那么判定框中应填入的条件为( ) A .4i ≤ B .5i ≤ C .6i ≤ D .7i ≤ 【知识点】程序框图.L1乙组甲组48x 59210472y 9【答案解析】A 解析:程序在运行进程中各变量的值如下表示: S i 是不是继续循环 循环前 1 1 第一圈 3 2 是 第二圈 7 3 是 第三圈 15 4 是 第四圈 31 5 否因此当i≤4时.输出的数据为31, 应选A .【思路点拨】析程序中各变量、各语句的作用,再依照流程图所示的顺序,可知该程序的作用是利用循环求S 的值,咱们用表格列出程序运行进程中各变量的值的转变情形,不难给出答案. 【题文】六、设0.53x =,3log 2y =,cos2z =,那么( )A .z y x <<B .z x y <<C .y z x <<D .x z y <<【知识点】对数值大小的比较.B7 【答案解析】A 解析:∵x=30.5=>1,0=log31<y=log32<log33=1,z=cos2<0,∴z<y <x .应选:A .【思路点拨】利用指数函数、对数函数、三角函数的性质求解.【题文】7、假设函数()sin cos f x a x x ωω=-的相邻两个零点的距离为π,且它的一条对称轴为π32=x ,那么()3f π-等于( ) A .2 B . 3- C .3 D . 2-【知识点】两角和与差的正弦函数.C5【答案解析】D 解析:∵函数()sin cos f x a x x ωω=-的相邻两个零点的距离为π,∴ •=π,求得ω=1.再依照函数的一条对称轴为π32=x ,可得asin ﹣cos=±,平方可得=0,求得a=. 那么f (x )=sinx ﹣cosx=2(sinx ﹣cosx )=2sin (x ﹣),()3f π-=2sin (﹣﹣)=2sin (﹣)=﹣2sin =﹣2,应选:D . 【思路点拨】根据函数()sin cos f x a x x ωω=-的相邻两个零点的距离为π,求得ω=1.再根据函数的一条对称轴为x=π,可得asin ﹣cos =±,平方求得a=,可得函数f (x )的解析式,从而求得()3f π-的值 【题文】八、某几何体的三视图如下图所示,那么该几何体的体积为( ) A .30 B .24 C .18 D .12【知识点】由三视图求面积、体积.G2【答案解析】B 解析:由三视图知该几何体是高为5的三棱柱截去同底且高为3的三棱锥所得几何体,棱柱的体积等于=30,所截棱锥的体积为:=6,故组合体的体积V=30﹣6=24,应选:B .【思路点拨】由已知中的三视图,可得该几何体是一个以俯视图为底面的三棱柱载去一个同底不等高的三棱锥所得,求出棱柱及棱锥的底面面积和高,代入棱柱和锥体体积公式,相减可得答案.【题文】九、已知函数3()sin 1(,,)f x a x bx cx a b c R =+++∈, (lg(lg3))3f =,那么3(lg(log 10))f =( )A .3B .1-C .3-D .2014 【知识点】函数的值.B1【答案解析】B 解析:∵3()sin 1(,,)f x a x bx cx a b c R =+++∈,(lg(lg3))3f =, 43233正视图左视图俯视图∴asin(lg (lg3))+b (lg (lg3))3+c (lg (lg3))+1=3, ∴asin(lg (lg3))+b (lg (lg3))3+c (lg (lg3))=2,∴f(lg (log310))=f[﹣((lg (lg3))]=﹣[asin (lg (lg3))+b (lg (lg3))3+c (lg (lg3))]+1 =﹣2+1=﹣1.应选:B .【思路点拨】利用对数性质和函数性质求解.【题文】10、已知函数22,0()4cos 1,0x x f x x x x ⎧+≥=⎨⋅+<⎩,且方程()1f x mx =+在区间[2]ππ-,内有两个不等的实根, 那么实数m 的取值范围为( )A.[4,2]-B. (4,3)-C. (4,2){4}-D.[2,4] 【知识点】分段函数的应用.B9【答案解析】C 解析:直线y=mx+1过定点(0,1),作出函数f (x )的图象如图:由图象可知,当直线y=mx+1y 与f (x )=x2+2在第一象限相切时,知足方程f (x )=mx+1在区间[﹣2π,π]内有三个不等的实根,现在x2+2=mx+1,即x2﹣mx+1=0,那么判别式△=m2﹣4=0,解得m=2或m=﹣2(舍去). 当直线y=mx+1在x=0时与f (x )=4xcosx+1相切时,有两个不等的实根, 现在f′(x )=4cosx ﹣4sinx ,m=f′(0)=4,现在知足条件.当m <0,由4xcosx+1=mx+1,即m=4cosx ,当现在方程m=4cosx 在[﹣2π,0)只有一个解时,即m=﹣4,现在方程f (x )=mx+1在区间[﹣2π,π]内有1个实根, 现在不知足条件.综上知足条件的m 的取值范围为﹣4<m <2或m=4,应选:C 【思路点拨】作出函数f (x )的图象,利用数形结合即可取得结论. 二、填空题:(每题5分,共计25分,把答案填在答题卡的相应位置.)【题文】1一、已知集合1{}A x y x ==,2{}B y y x ==,那么A B =【知识点】交集及其运算.A1【答案解析】(0,)+∞ 解析:∵集合A={x|y=}={x|x≠0},B={y|y=x2}={y|y≥0}, ∴A∩B={x|x>0}=(0,+∞).故答案为:(0,+∞). 【思路点拨】利用交集概念求解. 【题文】1二、假设两个非零向量,a b 知足a b a b +=-,那么向量a 与b 的夹角为【知识点】数量积表示两个向量的夹角.F3【答案解析】2π解析:∵,为非零向量,且|+|=|﹣|,∴|+|2=|﹣|2,∴=,即,∴与夹角为.故答案为:.【思路点拨】由,为非零向量,且|+|=|﹣|,知|+|2=|﹣|2,由此取得,从而取得与夹角为.【题文】13、在不等式组1 02 0 0x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的平面区域内随机地取一点P ,那么点P 恰好落在第二象限的概率为【知识点】几何概型;简单线性计划.E5 K3【答案解析】92解析:不等式组1 02 0 0x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的平面区域为一直角三角形,其面积为=,点P 恰好落在第二象限平面区域为一直角三角形,其面积为=,∴点P 恰好落在第二象限的概率为=.故答案为:.【思路点拨】先依照不等式组画出平面区域,然后求出区域的面积,和点P 恰好落在第二象限区域内的面积,最后利用几何概型的概率公式解之即可.【题文】14、已知直线:l x y -+=14360和直线:pl x =-22,假设抛物线:()C y px p =>220上的点到直线l 1和直线l2的距离之和的最小值为2,那么抛物线C 的方程为 【知识点】抛物线的简单性质.H7【答案解析】y x =24 解析:设抛物线上的一点P 的坐标为(a2,2a ),那么P 到直线l2:x=﹣的距离d2=a2+;P 到直线:l x y -+=14360的距离d1=,那么d1+d2=+a2+=a2﹣a++,当a=时,P 到直线l1和直线l2的距离之和的最小值为2, ∴p=2,∴抛物线C 的方程为y2=4x 故答案为:y2=4x .【思路点拨】设出抛物线上一点P 的坐标,然后利用点到直线的距离公式别离求出P 到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方式,求出距离之和的最小值,即可得出结论.【题文】1五、给出概念:设()'f x 是函数()y f x =的导数,()''f x 是函数()'f x 的导数,假设方程()0''=f x 有实数解x ,那么称点00(,())x f x 为函数()y f x =的“拐点”.重庆武中高2021级某学霸经探讨发觉:任何一个一元三次函数32()f x ax bx cx d =+++(0)a ≠都有“拐点”,且该“拐点”也为该函数的对称中心.假设3231()122f x x x x =-++,那么【知识点】利用导数研究函数的单调性.B12【答案解析】2014解析:由3231()122f x x x x=-++,∴f′(x)=3x2﹣3x﹣,∴f′′(x)=6x﹣3,由f′′(x)=6x﹣3=0,得x=,∴f()=1,∴f(x)的对称中心为(,1),∴f(1﹣x)+f(x)=2,∴f()+f()=f()+f()=…=f()+f()=2∴=2021故答案为:2021【思路点拨】求出原函数的导函数,再求出导函数的导函数,由导函数的导函数等于0求出x的值,可得f(1﹣x)+f(x)=2,从而取得那么122014()()() 201520152015f f f+++的值.三、解答题:(本大题共6小题,共计75分,解许诺写出文字说明、证明进程或演算步骤.)【题文】1六、(本小题总分值13分,第(Ⅰ)问6分,第(Ⅱ)问7分)城市公交车的数量太多容易造成资源的浪费,太少又难以知足乘客的需求,为此,重庆市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时刻作为样本分成5组,如下图(单位:min),回答以下问题.组别候车时间人数一[0,5)2二[5,10)6三[10,15)4四[15,20)2五[20,25]1(Ⅰ)估量这60名乘客中候车时刻少于10min的人数;(Ⅱ)假设从表中的第三、四组中任选两人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.【知识点】列举法计算大体事件数及事件发生的概率;古典概型及其概率计算公式.K2【答案解析】(Ⅰ) 32(Ⅱ)8 15解析:(Ⅰ)候车时刻少于10min 的概率为2681515+=, 故候车时刻少于10min 的人数为8603215⨯=.(Ⅱ)将第三组乘客别离用字母,,,a b c d 表示,第四组乘客别离用字母,A B 表示,那么随机选取的2人所有可能如,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB ,共有15种不同的情形,其中两人恰好来自不同组包括8种情形,故所求概率为815.【思路点拨】(Ⅰ)候车时刻少于10分钟的人数所占的比例为,用60乘以此比例,即得所求.(Ⅱ)从这6人当选2人作进一步的问卷调查,①用列举法列出上述所有可能情形共有15种,②用列举法求得抽到的两人恰好来自不同组的情形共计8种,由此求得抽到的两人恰好来自不同组的概率. 【题文】17、(本小题总分值13分,第(Ⅰ)问6分,第(Ⅱ)问7分)在ABC 中,角,,A B C 的对边别离为,,a b c ,假设向量2(,)m b c a bc =++, (,1)n b c =+-,且0m n =.(Ⅰ)求角A 的大小; (Ⅱ)若3a =ABC 的面积的最大值.【知识点】正弦定理;余弦定理.菁优C8【答案解析】(Ⅰ)2.3A π=(Ⅱ)3解析:(Ⅰ)因为0m n =,因此22()0b c a bc +--=,即222.b c a bc +-=- 故2221cos .222b c a bc A bc bc +--===- 又(0,)A π∈,因此2.3A π=(Ⅱ)由(Ⅰ)及3a =223.b c bc +=-又222b c bc +≥(当且仅当b c =时取等号),故32bc bc -≥,即 1.bc ≤故1123sin 1sin 2234ABCSbc A π=≤⨯=【思路点拨】(Ⅰ)由两向量的坐标及两向量数量积为0,列出关系式,再利用余弦定理表示出cosA ,将得出关系式代入求出cosA 的值,即可确信出角A 的大小;(Ⅱ)利用余弦定理列出关系式,把cosA 与a 的值代入,并利用大体不等式求出bc 的最大值,即可确信出三角形ABC 面积的最大值.【题文】1八、(本小题总分值13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤为偶函数,且其图象上相邻的一个最高点和最低点间的距离为(Ⅰ)求()f x 的解析式; (Ⅱ)假设2()sin 3f αα+=,求)141tan παα-++的值.【知识点】由y=Asin (ωx+φ)的部份图象确信其解析式;同角三角函数大体关系的运用.C2 C4【答案解析】(Ⅰ)()cos f x x =(Ⅱ)59-解析:(Ⅰ)因为()sin()(0,0)f x x ωϕωϕπ=+>≤≤为偶函数,故2πϕ=,从而()sin()cos 2f x x x πωω=+=.再由()f x图象上相邻的一个最高点和最低点间的距离为,知2Tπ=,从而2T π=,故1ω=. 因此()cos f x x =.(Ⅱ) 原式2sin 2cos 212sin cos 2sin 2sin cos sin cos sin 1cos cos αααααααααααα-++===++.由条件知2cos sin 3αα+=,平方得412sin cos 9αα+=,从而52sin cos 9αα=-.【思路点拨】(1)函数f (x )=sin (ωx+ϕ)(ω>0,0≤ϕ≤π)为偶函数,其图象上相邻的一个最高点和最低点之间的距离,确信函数的周期,求出ω,确信ϕ的值,求出f (x )的解析式;(2)把上一问求出的结果代入函数的解析式,取得角的正弦与余弦的和,用诱导公式和二倍角公式把所给的式子进行整理,依照同角的三角函数之间的关系取得结果.【题文】1九、(本小题总分值12分,第(Ⅰ)问5分,第(Ⅱ)问7分)已知函数()ln ()f x x a x a R =+∈.(I )若1a =-时,求曲线()y f x =在点1x =处的切线方程;(II )假设0a ≤,函数()f x 没有零点,求a 的取值范围.【知识点】利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数研究函数的单调性.有B12 【答案解析】(Ⅰ)1y =(Ⅱ)e 0a -<≤解析:(I )'()(0)x af x x x +=> ,切点为(1,1),/(1)0f =,故切线方程为1y =.(II )当0a =时,()f x x =在概念域(0,)+∞上没有零点,知足题意; 当0a <时,函数()f x 与'()f x 在概念域上的情形如下表:()f a -是函数()f x 的极小值,也是函数()f x 的最小值,因此,当()(ln()1)0f a a a -=-->,即e a >-时,函数()f x 没有零点. 综上所述,当e 0a -<≤时,()f x 没有零点.【思路点拨】(I )求出a=﹣1时,函数f (x )和导数,求得切点和切线的斜率,即可取得切线方程;(II )讨论当a=0时,当a <0时,求出函数的单调区间和极值,判定也是最值,且与0的关系,即可判定零点的情形. 【题文】20、(本小题总分值12分,第(Ⅰ)问5分,第(Ⅱ)问7分)如图,正方形ABCD 所在平面与直角三角形ABE 所在的平面相互垂直,AE AB ⊥,设,M N 别离是,DE AB 的中点,已知2AB =,1AE = (Ⅰ)求证://MN 平面BEC ; (Ⅱ)求点E 到平面BMC 的距离.ENMD CBA【知识点】直线与平面平行的判定;点、线、面间的距离计算.G4 G11【答案解析】 解析:(Ⅰ)证明:取EC 中点F ,连接,MF BF .由于MF 为CDE ∆的中位线,因此1//,2MF CD MF CD =;又因为1//,2NB CD NB CD=,因此//,NB MF NB MF =因此四边形NBFM 为平行四边形,故//MN BF ,而BF ⊆平面BEC ,MN ⊄平面BEC , 因此//MN 平面BEC ;(Ⅱ)因为//MN 平面BEC ,因此:因为,AB AD AB AE ⊥⊥,因此AB ⊥平面EAD ,故AB AM ⊥,从而: 因为//CD AB ,因此CD ⊥平面EAD ,故CD DM ⊥,从而:在BMC ∆中,22MB MC BC ===,因此BMC ∆的面积112222BMC S BC ∆=⋅=⨯=因此1133E BMC BMC V S h -∆=⋅=(其中h 表示点E 到平面BMC 的距离),即1133h =,解出h =,因此点E 到平面BMC【思路点拨】(Ⅰ)取EC 中点F ,连接MF ,BF .由线线平行证明线面平行,(Ⅱ)将体积等价转化,求出体积,再求出底面面积,从而求高,得距离.【题文】2一、(本小题总分值12分,(Ⅰ)小问5分,(Ⅱ)小问7分)中心在原点,核心在x 轴上的椭圆的离心率为,且通过点Q .假设别离过椭圆的左、右核心12,F F 的动直线12,l l 相交于点P ,且与椭圆别离交于A 、B 与C 、D 不同四点,直线OA 、OB 、OC 、OD 的斜率1234,,,k k k k 知足1234k k k k +=+.(Ⅰ)求椭圆的方程;(Ⅱ)是不是存在定点M 、N ,使得PM PN+为定值?假设存在,求出点M 、N 的坐标;假设不存在,说明理由.【知识点】直线与圆锥曲线的关系;椭圆的标准方程.所有H5 H8【答案解析】(Ⅰ)22132x y +=(Ⅱ)存在定点M、N为(0,1)±,使得点P知足PM PN +为定值。
2021届重庆一中高三上学期第一次周考数学试题(2020.9)
2020年重庆一中高2021级高三上期第一次周考数学试题卷2020.9一、单项选择题:本大题共8小题,每小题5分,共40分。
1.设=,则=A. B. C. D.2.已知为实数,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3、设函数在区间上单调递减,则实数的取值范围是A. B. C. D.4.函数的导数为对任意的正数都有成立,则A. B. C. D.的大小不确定5.著名数学家华罗庚曾说“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休”,在数学的学习和研究中,常用函数的图像研究函数的性质,也常用函数的解析式来琢磨函数图像特征,则函数的图像大致是6.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为,(i=1,2).已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的倍,则与最接近的是(当较小时,)A.1.24B.1.25C.1.26D.1.277.已知函数,其中为函数的导数,则A.2B.2019C.2018D.08.已知函数,若方程有且只有两个不同的实数根,则实数的取值范围是A. B. C. D.二、多项选择题:本大题共4小题,每小题5分,共20分。
在每小题给出的四个选项中,有多项符合题目要求。
全部选对得5分,部分选对得3分,有选错的得0分。
9.直线能作为下列()函数的图像的切线.A.=B.C.D.10.已知实数满足等式,则下列关系式中不可能成立的是A. B. C D.11.设函数是定义在R上的函数,满足,且对任意的xR,恒有,已知当x[0,2]时,,则有A.函数的最大值是1,最小值是B.函数是周期函数,且周期为2C.函数在上递减,在上递增D.当时,12.若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有()A.B.C.D.三、填空题:本大题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年重庆一中高 2021 级高三上期第一次月考
数学试题卷 2020.9
本卷满分 150 分,考试时间 120 分钟
一、单项选择题。
本大题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有1项是符合题目要求的.
1. 设集合 A = {y |y =ln (1−x )} , B = {y |y =√4−2x },则 A ∩B= ( )
A. [0,2)
B. (0,2)
C. [0,2]
D. [0,1)
2.a,b ∈(0,+∞), A =√a +√b , B =√a +b ,则 A ,B 的大小关系是(
) A. A<B B. A>B C. A ≤B D. A ≥ B
3.已知直线 l 是曲线 y =√x +2x 的切线,则 l 的方程不可能是
A.5x −2y +1=O
B.4x −2y +1=O
C.13x −6y +9=O
D.9x − 4y + 4 = 0
4.中国传统扇文化有着极其深厚的底蕴。
一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为S 1 ,画面中剩余部分的面积为S 2,当 S 1 与S 2的比值为
√5−12 时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为(
) A.(3−√5)π B. (√5−1)π
C. (√5+1)π
D. (√5−2)π 5. 若函数f (x )={a x ,2<x ≤a log a (x −2),x >a
(其中a >0,且a ≠1)存在零点,则实数 a 的取值范围是 A.(12,1)U (1,3) B.(1,3] C.(2,3) D.(2,3]
6. 己知0<ω≤2,函数f (x )=sin (ωx )−√3cos (ωx ),对任意x ∈R ,都有f (π3−x)=−f (x ),则 ω 的值
为(
) A. 12 B. 1 C.32 D. 2
7. 函数f (x )=2cos x +sin 2x 的一个个单调递减区间是(
)
A.(π4,π2)
B.(0,π6)
C.(π2,π)
D. (5π6
,π) 8.设函数 f (x )在 R 上存在导数f ′(x ),对任意的 x ∈R ,有f (x )+f (−x )=2cos x ,且在 [0,+∞)上有f ′(x )>−sin x ,则不等式 f (x )−f (π2−x)≥cos x −sin x 的解集是
A.(−∞,π4]
B.[π4,+∞)
C.(−∞,π6]
D.[π6,+∞)
二、多项选择题。
本大题共 4 小题,每小题 5 分,共 20 分。
在每小题给出的选项中,有多项符合题目要求,全部选对的得 5分,部分选对的得 3 分,有选错的得 0 分.
9.已知ΔABC 中,角 A , B ,C 的对边分别为 a ,b ,c 且 sin 2B =sin A sin C ,则角 B 的值不可能是( )
A.450
B.600
C. 75°
D. 90°。