计算机组成原理 运算方法和运算器ppt课件

合集下载

计算机组成原理(本全)课件

计算机组成原理(本全)课件
计算机组成原理(本 全)课件
目录
CONTENTS
• 计算机系统概述 • 中央处理器(CPU) • 存储器系统 • 输入输出(I/O)系统 • 计算机的体系结构 • 计算机的软件系统
01 计算机系统概述
计算机的发展历程
第一代计算机
电子管计算机,20世纪40年代 中期至50年代末期,主要用于
军事和科学研究领域。
CPU每个时钟周期执行的指令数,是 衡量CPU性能的重要指标。
03 存储器系统
存储器的分类和作用
分类
根据存储器的功能和位置,可以分为内存和外存两大类。内存是计算机内部存储器,用 于存放运算数据和程序代码;外存则是计算机外部存储器,用于长期保存大量数据和程
序。
作用
存储器是计算机的重要组成部分,它负责存储程序运行过程中所需的数据、指令等信息 ,使得CPU能够快速、准确地读取和写入数据,从而完成程序的执行。
软件系统
包括系统软件和应用软件两大类。
操作系统
是计算机的软件系统中最基本、最重要的部分,负责 管理和调度计算机的软硬件资源。
计算机的工作原理
二进制数制
计算机内部采用二进制数制进行运算和存储。
指令和程序
计算机按照程序中预定的指令序列进行自动执 行。
存储程序原理
将程序和数据存储在计算机内部,根据指令从存储器中取出数据和指令进行运 算和传输。
内存的工作原理和组织结构
工作原理
内存由多个存储单元组成,每个单元可以存储一个二进制数 。当CPU需要读取或写入数据时,会通过地址总线发送地址 信号,内存控制器根据地址信号找到对应的存储单元,完成 数据的读取或写入操作。
组织结构
内存的组织结构通常采用线性编址方式,即将内存单元按照 一定顺序排列,每个单元都有一个唯一的地址。内存的容量 大小由地址总线的位数决定,地址总线位数越多,可访问的 内存单元数量就越多。

计算机组成原理(本全PPT)白中英

计算机组成原理(本全PPT)白中英

16
(347) 8 =3×82+4×81+7×80=(103)10 (347.5) 8 =3×82+4×81+7×80+5×8-1 =(231.625)10 (34E.5) 16 =3×162+4×161+14×160+5×16-1 =(846.3125)10
17
2、不同数制间的转换 1>十进制八,十六进制二进制 法则 整数部分:除8(16)取余数 小数部分:乘8(16)取整 重复循环
27
任意十进制N,可以化为 N=M×10E 其中M为小数,E为整数 一个数S的任意进制表示 (S)R=m×Re m :尾数,是一个纯小数。 e :比例因子的指数,称为浮点的指数,是一个 整数。 R :比例因子的基数,对于二进计数值的机器 是一个常数,一般规定R 为2,8或16。
28
浮点表示法:把一个数的有效数字和数的范围 在计算机的一个存储单元中分别予以表示, 这种把数的范围和精度分别表示的方法,数 的小数点位置随比例因子的不同而在一定范 围内自由浮动。 对于:101.1101(=0.1011101×20011) 只需存放0.1011101和0011即010111010011
33
当浮点数的①尾数为 0,不论其阶码为何值,或者 ②阶码的值遇到比它能表示的最小值还小时, 不管其尾数为何值,计算机都把该浮点数看成 零值,称为机器零。
浮点数转换的实例见P18
34
IEEE754浮点数格式说明 一个规格化的32位浮点数x的真值可表示为 x=(-1)s×(1.M)×2E-127 e=E-127 其中E的范围是1~254(阶码范围-126~+127), 0和255作特殊用途: ①浮点数+0, -0:E=0,M=0时表示x=(-1)S×0 ②+∞,-∞:E=255,M=0时x= (-1)S×∞ • IEEE754的32位浮点数表示的除0外的绝对值最小的数: s 00000001 0000 0000 0000 0000 0000 000 x=(-1)S×2-126×1.0 • IEEE754的32位浮点数表示的除∞外的绝对值最大的数: s 11111110 1111 1111 1111 1111 1111 111 x=(-1)S×2127×(2-2 -23)

计算机组成原理第1章ppt课件

计算机组成原理第1章ppt课件
和电路实现。
浮点数的表示与运算
浮点数的概念
浮点数是指小数点位置可以浮 动的数,用于表示更大范围、
更高精度的数值。
浮点数的表示方法
通常采用IEEE 754标准表示, 包括符号位、指数位和尾数位 。
浮点数的加减运算
需要进行对阶、尾数加减、规 格化等步骤,同时处理溢出和 舍入等问题。
浮点数的乘除运算
需要设计高效的算法和电路实 现,包括浮点乘法、浮点除法
地址译码器
将地址寄存器中的地址转换为对 应存储单元的选择信号。
存储体
由大量存储单元组成,每个存储 单元可存放一个字节或多个字节 的数据。
读写控制电路
根据CPU的命令控制存储器的读 写操作。
主存储器的性能指标与优化
存储容量
主存储器可以容纳的二进制信息量,通常以字节(Byte)为单位进 行衡量。
存取时间
逻辑门电路
基本逻辑门电路
介绍与门、或门、非门等 基本逻辑门电路的工作原 理和实现方法。
复合逻辑门电路
讲解与非门、或非门、异 或门等复合逻辑门电路的 工作原理和实现方法。
逻辑门电路的应用
介绍逻辑门电路在数字电 路中的应用,如组合逻辑 电路的设计和实现等。
03
计算机中的数据表示
数值数据的表示
定点数表示法
计算机的发展
计算机经历了从机械式计算机、电子管计算机、晶体管计算机、集成电路计算 机到超大规模集成电路计算机的五个发展阶段。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入 输出设备等,是计算机的物理基
础。
软件系统
包括系统软件和应用软件,是计算 机的逻辑基础。
数据
是计算机处理的对象,包括数值数 据、非数值数据和多媒体数据等。

《计算机组成原理》课件

《计算机组成原理》课件
指令结束
将结果存回内存或寄存器 。
CPU的性能指标
速度
执行指令的速度,通常以MIPS(百万条 指令每秒)表示。
功耗
CPU在工作时的能耗。
集成度
CPU中晶体管的数量和密度。
可靠性
CPU在正常工作条件下无故障运行的概率 。
03
存储器
内存的分类与结构
分类
根据存储介质,内存可以分为RAM(随机存取存储器)和ROM(只读存储器)。RAM又可以分为DRAM(动态 随机存取存储器)和SRAM(静态随机存取存储器)。
谢谢您的聆听
THANKS
《计算机组成原理》ppt课件
CONTENTS
• 计算机系统概述 • 中央处理器 • 存储器 • 输入输出系统 • 总线系统 • 计算机系统可靠性及安全性
01
计算机系统概述
计算机的发展历程
机械计算机时代
1946年第一台电子计算机ENIAC诞生,占地170平方米,重30吨,运算速度5000次/秒。
晶体管计算机时代
20世纪50年代中期至60年代,计算机体积缩小,运算速度提高,可靠性增强。
集成电路计算机时代
20世纪60年代末至70年代初,微处理器出现,个人电脑开始进入市场。
大规模集成电路计算机时代
20世纪70年代中期至今,计算机体积更小,性能更高,应用领域更广泛。
计算机系统的组成
硬件系统
包括中央处理器、存储器、输入输出设备 等物理部件。
结构
内存主要由存储单元阵列、地址译码器和数据输入/输出缓冲器组成。每个存储单元阵列负责存储数据,地址译 码器负责将地址码转换为相应的存储单元的地址,数据输入/输出缓冲器则负责数据的读写操作。
内存的工作原理

《计算机组成原理》ppt课件

《计算机组成原理》ppt课件

VS
挑战
在计算机组成原理的发展过程中,面临着 许多挑战和问题,如处理器的性能和功耗 问题、存储器的速度和容量问题、系统的 可靠性和安全性问题等。这些问题需要不 断研究和探索,以推动计算机组成原理的 持续发展。
THANKS
感谢您的观看
解释定点数与浮点数的表示方法,包括整数和实数的表示。
逻辑代数基础
1 2
逻辑变量与逻辑函数
引入逻辑变量和逻辑函数的概念,为后续的逻辑 运算打下基础。
基本逻辑运算
介绍与、或、非三种基本逻辑运算及其性质。
3
复合逻辑运算
阐述其他复合逻辑运算,如异或、同或等。
逻辑门电路
基本门电路
01
介绍与门、或门、非门等基本门电路的工作原理及实现。
01
03 02
I/O接口的功能和基本结构
数据传输寄存器
命令/状态寄存器
控制逻辑电路
I/O控制方式
优点
控制简单,易于实现
缺点
CPU利用率低,实时性差
I/O控制方式
优点
提高了CPU的利用率,实时性较好
缺点
中断次数多,开销大,数据丢失问题
I/O控制方式
优点
数据传输速度快,CPU干预少
缺点
需要专门的DMA控制器,硬件开销大
指令的执行过程
取指周期
从内存中读取指令,并放入指令 寄存器IR中。
中断周期
在执行过程中,如果出现中断请 求,则进入中断周期,保存现场 信息,并转向中断服务程序。
分析周期
对取回的指令进行分析,确定指 令的操作性质和操作数地址。
执行周期
根据分析结果,执行相应的操作 ,如算术运算、逻辑运算、数据 传输等。

计算机组成原理(本全)ppt课件

计算机组成原理(本全)ppt课件

定点数的加减法实现
通过硬件电路实现定点数的加减法,包括加 法器、减法器等。
浮点数的加减运算
浮点数的表示方法
包括IEEE 754标准中浮点数的表示方法、规格化表示 和精度。
浮点数的加减法规则
包括阶码和尾数的运算规则、对阶操作、尾数加减运 算和结果规格化等。
浮点数的加减法实现
通过硬件电路实现浮点数的加减法,包括浮点加法器 、浮点减法器等。
指令的执行过程与周期
指令执行过程
取指、译码、执行、访存、写回等阶段 。
VS
指令周期
完成一条指令所需的时间,包括取指周期 、间址周期、执行周期等。
07
中央处理器(CPU)
CPU的功能与组成
控制器
负责指令的取指、译码和执行,控制 数据和指令在CPU内部的流动。
运算器
执行算术和逻辑运算,包括加、减、 乘、除、与、或、非等操作。
多核处理器与并行计算
多核处理器
将多个处理器核心集成在一个芯片上,每个核心可以独立执行指令,提高处理器的并行 处理能力。
并行计算
利用多核处理器或多个处理器同时处理多个任务或数据,加速计算过程,提高计算效率 。
08
输入输出系统
I/O接口与I/O设备
I/O接口的功能
实现主机与外设之间的信息交换,包括数据 缓冲、信号转换、设备选择等。
乘法与除法运算
浮点数的乘除法运算
包括浮点数的乘法、除法和平方根运算等。
定点数的乘除法运算
包括原码一位乘法、补码一位乘法、原码除 法和补码除法等。
乘除法运算的实现
通过硬件组成与设计
运算器的基本组成
包括算术逻辑单元(ALU)、寄存器组、数据总线等。
运算器的设计原则

计算机组成原理计算机的运算方法(共56张PPT)精选全文

计算机组成原理计算机的运算方法(共56张PPT)精选全文

10 0001 0000
0000
0001
……
……
1001
1010
0
00110000
1
00110001
……
9
00111001
A
16 0001 0110
1111
F
由于ASCII码低四位与BCD码相同,转换方便。 ASCII码左移四位得BCD码, BCD码前加0011得ASCII码。
一般采用二进制运算的计算机中不采用BCD码,矫正不方便。 商用计算机中采用BCD码,专门设置有十进制运算电路。
八进制数与十六进制数之间,可将二进制数作为中介进行转换。
、数值的处理(数制转换)
3) BCD码(十进制):P214-215
如果计算机以二进制进行运算和处理时,只要在输入输出处理时进
行二 / 十进制转换即可。
但在商业统计中,二 / 十进制转换存在两个问题:
(1)转换占用实际运算很大的时间; (2)十进制的,无法用二进制精确表示;
例:将(0. 1)10转换成二进制数 ( 要求5位有效位) 。
结果
0.1×2
最高位 0 .2×2
… 0 .4×2
0 .8×2
1 .6×2
1 .2×2
0 .4×2
直到乘积的小数部分为0,
或结果已满足所需精度要求为止.
0 .8×2
最低位 1 .6000
可能永远乘不完,小数部分不为0, 意味存在一点误差。
2 105
余数
结果
2 52
1
2 26
0
2 13
0
26
1
23
0
21
1
0
1
直到商等于0为止

经典:计算机组成原理-第2章-运算方法和运算器

经典:计算机组成原理-第2章-运算方法和运算器
1加法器的流水线时钟周期至少为90ns10ns100ns如果采用同样的逻辑电路但不是流水线方式则浮点加法所需的时间为300ns因此4级流水线加法器的加速比为30010032当每个过程段的时间都是75ns时加速比为300754例30已知计算一维向量xy的求和表达式如下
第二章:运算方法和运算器
2.1 数据与文字的表示方法 2.2 定点加法、减法运算 2.3 定点乘法运算 2.4 定点除法运算 2.5 定点运算器的组成 2.6 浮点运算方法和浮点运算器
其中尾数域所表示的值是1.M。因为规格化的浮点数的尾数域最
左位(最高有效位)总是1。故这一位经常不予存储,而认为隐藏
在小数点的左边。
64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏
移值是1023。因此规格化的64位浮点数x的真值为:
x=(-1)s ×(1.M) × 2E-1023 e=E-1023
[X]反=1.x1x2...xn 对于0,有[+0]反=[-0]反之分:
[+0]反=0.00...0
[-0]反=1.11...1
我们比较反码与补码的公式
[X]反=2-2-n+X
[X]补=2+X
可得到 [X]补=[X]反+2-n
8
若要一个负数变补码,其方法是符号位置1,其余各位0变1,1变 0,然后在最末位(2-n)上加1。
10100.10011=1.010010011*24 e=4 于是得到:S=0,E=4+127=131=10000011, M=010010011 最后得到32位浮点数的二进制存储格式为: 0100 0001 1010 0100 1100 0000 0000 0000=(41A4C000)164

计算机组成原理第3章 运算器和运算方法

计算机组成原理第3章 运算器和运算方法

第三章运算方法和运算器3.1补码的移位运算1、左移运算:各位依次左移,末位补0对于算术左移,若没有改变符号位,左移相当于乘以2。

2、右移运算:算术右移:符号位不变,各位(包括符号位)依次右移。

(相当于除以2)逻辑右移:最高位补0,其余各位依次右移例1:已知X=0.1011 ,Y=-0.0101 求 [0.5X]补;[0.25X]补;[-X]补;2[-X]补;[0.5Y]补;[0.25Y]补; [-Y]补;2[-Y]补[X]补=0.1011 [Y]补=1.1011[0.5X]补=0.01011 [0.5Y]补=1.11011[0.25X]补=0.001011 [0.25Y]补=1.111011[-X]补=1.0101 [-Y]补=0.01012[-X]补=0.1010 (溢出) 2[-Y]补=0.10103.2定点加减法运算及其实现3.2.1 补码加减法运算方法由于计算机中的进行定点数的加减运算大都是采用补码。

(1)公式:[X+Y]补=[X]补+[Y]补[X-Y]补=[X]补+[-Y]补(证明过程见教材P38)例1 X=0.001010 Y=-0.100011 求[X-Y]补,[X+Y]补解:[X]补=0.001010 [-Y]补=0.100011则 [X-Y]补=[X]补+[-Y]补=0.001010 + 0.100011=0.101101 [X]补=0.001010 [Y]补=1.011101则 [X+Y]补=[X]补+[Y]补=0.001010 + 1.011101=1.100111例2:已知X=+0.25,Y=-0.625,求X+Y; X-Y写出计算的过程.例3:已知X=25,Y=-9,求X+Y; X-Y写出计算的过程.例4:已知X=-25,Y=-9,求X+Y; X-Y写出计算的过程.解: (8位二进制表示)例2: X=0.0100000 Y=-0.1010000[X]补=0.0100000 [Y]补=1.0110000则 [X+Y]补=[X]补+[Y]补=0.0100000 + 1.0110000=1.1010000[X+Y]原=-0.0110000=(-0.375)D[X]补=0.0100000 ,[-Y]补=0.1010000则 [X-Y]补 = [X]补+[-Y]补 = 0.0100000+0.1010000=0.1110000[X+Y]原 = 0.1110000 =(0.875)D例3: X=+0011001 Y=-0001001[X]补=00011001,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 00011001 + 11110111= 00010000[X+Y]原 =+0010000=(+16)D[X]补= 00011001 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 00011001 + 00001001= 00100010[X+Y]原 = +0100010 =(34)D例4: X=-0011001 Y=-0001001[X]补=11100111,[Y]补=11110111则 [X+Y]补 = [X]补+[Y]补= 11100111 + 11110111[X+Y]原 =-00100010=(-34)D[X]补= 11100111 ,[-Y]补= 00001001则 [X-Y]补 = [X]补+[-Y]补= 11100111 + 00001001= 11110000[X+Y]原 = -0010000 =(-16)D3.2.2 定点加减法运算中的溢出问题溢出:运算结果大于机器所能表示的最大正数或者小于机器所能表示的最小负数.溢出只是针对带符号数的运算.比如:[X]补=0.1010,[Y]补=0.1001,那么[X]补+[Y]补=1.0011(溢出)溢出是一种错误,计算机中运算时必须能够发现这个现象,并加以处理判断溢出的方法:1、采用变形补码法[X+Y] 变补=[X] 变补+[Y] 变补[X-Y] 变补=[X] 变补+[-Y] 变补例1 X=0.1011 Y=0.0011 求[X+Y]补解: [X]变补 = 00.1011, [Y]变补 = 00.0011[X+Y]变补 = 00.1011 + 00.0011 = 00.1110所以 [X+Y]补 = 0.1110例2 X=0.1011 Y=0.1001 求[X+Y]补解: [X]变补 = 00.1011 [Y]变补 = 00.1001[X+Y]变补 = 00.1011 + 00.1001 = 01.0100运算结果的两符号位是01,不相同,发生溢出,因第一符号位是0,代表正数,所以称这种溢出为“正溢出”。

计算机组成原理PPT课件

计算机组成原理PPT课件

图像处理软件
如Photoshop、GIMP等,用于编辑、处理 和美化图像。
游戏软件
提供娱乐和休闲功能,丰富人们的生活。
软件开发与维护
需求分析
对软件的功能需求进行详细分析,确 定软件的目标和功能。
02
设计阶段
根据需求分析结果,设计软件的架构、 模块和接口等。
01
03
编码阶段
根据设计文档,使用编程语言实现软 件的各个模块。
数据运算与逻辑运算
数据运算
加法、减法、乘法、除法等。
逻辑运算
与运算、或运算、非运算等。
运算器
加法器、乘法器、比较器等。
数据存储与访问方式
数据存储
内存、硬盘、闪存等。
访问方式
随机访问、顺序访问等。
存储结构
线性结构、树形结构、图形结构等。
06 计算机系统性能评价
计算机性能指标
运算速度
指计算机完成一项操作所需的时间, 包括CPU运算速度、内存存取速度等。
按用途
通用计算机和专用计算机。
计算机的应用领域
数据处理
企业、政府等组织 的数据存储、分析 和处理。
辅助设计
建筑设计、机械设 计、影视制作等领 域。
科学计算
天气预报、物理模 拟、工程设计等领 域。
自动控制
工业生产、交通管 理、智能家居等领 域。
网络通信
电子邮件、社交媒 体、在线会议等领 域。
02 计算机硬件组成
接口是连接设备与总线的桥梁,常 见的接口包括USB、HDMI等。
03 计算机软件组成
系统软件
操作系统ห้องสมุดไป่ตู้
是计算机系统的基本软件,负责管理计算机的硬件和应用程序,提供 计算机系统的控制、管理、维护等功能。

计算机组成原理第3章

计算机组成原理第3章

补码加、减运算举例
【例】已知x =-0.10111,y=-0.10001,求 1/2(x+y) 。 解: ∵[x]变补=11.01001,[y]变补=11.01111, ∴[ 1/2x]变补=11.10101,[ 1/2y]变补=11.10111;[ 1/2x] 变补是对[x]变补右移一位得到的,由于移位时丢掉了最低位1, 所以对[x]变补右移一位得到的结果(11.10100)进行修正, 即在最低位加1,便得到[ 1/2x]变补。 [ 1/2(x+y)]变补= [ 1/2x]变补+[ 1/2y]变补=11.10101+ 11.10111=11.01100 溢出判断:由于结果的双符号位相同,未产生溢出,运算结果正 确
2、补码加、减运算具体实现
补码表示的数的加减运算可以采用同一个电路实现。其核 心部分是全加器(运算电路的延迟时间
则全加器的Si的时间延迟为6T(每级异或门的延迟为3T),Ci+1的 时间延迟为5T。 则:一个n位的行波进位加法器的时间延迟ta为: ta=n×2T+9T
原码一位乘法举例
举例:假定 X=0.1101 Y=0.1011
原码一位乘法实现电路
实现原理框图:
Cj A Af CR 加法器 =1 Cn C Cn 移 位 脉 冲
&
& Bf C f Cn CT Q
启动
时钟脉冲
B
结束
2.2 2、原码两位乘法原理
两位乘数的取值可以有四种可能组合,每种组合对应于以下操作: 00 相当于0×X,部分积Pi右移2位,不进行其它运算; 01 相当于1×X,部分积Pi+ X后右称2位; 10 相当于2×X,部分积 Pi+ 2X后右移2位; 11 相当于3×X,部分积 Pi + 3X后右移2位。 上面出现了 + 1X, + 2X, + 3X 三种情况,+X 容易实现,+2X可把X左移1 位得2X,在机器内通常采用向左斜1位传送来实现。可是+3X一般不能一次完成, 如分成两次进行,又降低了计算速度。解决问题的办法是备: 以 +(4X-X) 来 代替 +3X运算,在本次运算中只执行 -X, 而 +4X 则归并到下一步执行,因为 下一步运算时,前一次的部分积已右移了两位,上一步欠下的 +4X 在本步已 变成 +X。实际线路中要用一个触发器C来记录是否欠下+4X的操作尚未执行, 若是,则1→C。因此实际操作要用Yi-1 Yi C三位的组合值来控制乘法运算操 作,运算规则如表2.12所示。

计算机组成原理ppt课件

计算机组成原理ppt课件

常见输入输出接口类型和特点比较
要点一
常见输入输出接口类型
要点二
特点比较
常见的输入输出接口类型包括PS/2接口、USB接口、HDMI 接口、DisplayPort接口、SATA接口等。
不同的输入输出接口类型具有不同的特点,如传输速度、支 持热插拔、连接方式等。例如,USB接口支持热插拔和即插 即用,而SATA接口则主要用于连接硬盘和光驱等存储设备。
定点数表示与运算方法
定点数表示方法
阐述定点数的表示方法,包括符号位、 数值位等,并介绍定点数的范围及精 度。
定点数加减运算
详细讲解定点数的加减运算方法,包 括补码加减运算等。
定点数乘除运算
介绍定点数的乘除运算方法,包括原 码乘除、补码乘除等算法。
定点数运算器的设计
阐述定点数运算器的设计原理和实现 方法,包括加法器、减法器、乘法器 和除法器等。
当中断发生时,计算机首先保存当前程序的执行状态,然后转去执行中断处理程序。中断处理程序执行完毕 后,计算机再返回原程序继续执行。这个过程需要由计算机的操作系统来管理和控制。
THANK YOU
指令系统设计原则和优化策略
有效性原则
指令系统应能有效地支持高级 语言的实现,提高程序执行效 率。
兼容性原则
新设计的指令系统应尽可能与 已有的指令系统保持兼容。
完备性原则
指令系统应满足程序设计的各 种需求,具备完备性。
规整性原则
指令系统应尽可能规整,简化 硬件实现和软件编程。
优化策略
采用流水线技术、超标量技术、 乱序执行技术等优化策略,提 高指令执行速度和效率。
高速缓冲存储器(Cache)原理及应用
Cache原理
Cache是一种高速缓冲存储器,它位于CPU和内存之间,用于存储CPU最近访问过的数 据和指令。通过Cache技术,可以提高CPU访问内存的效率和速度。

计算机组成原理第五章(白中英版)PPT课件

计算机组成原理第五章(白中英版)PPT课件
指令周期 : CPU从内存取出一条指令并执行完这 条指令的时间总和 取指时间+执行指令时间
CPU周期 : 又称机器周期(总线周期),CPU访问 内存所花的时间较长,因此用CPU从内存读取一条指 令字的所需的最短时间来定义
时钟周期 : 通常称为节拍脉冲或T周期。一个CPU 周期包含若干个时钟周期T
相互关系: 1个指令周期 = 若干个CPU周期 1个CPU周期 = 若20干21 T周期
2021
时序产生器 (3/4)
三、3级时序信号的关系 1、一台计算机机内的控制信号一般均由若干个周期
状态,若干个节拍电位及若干个时标脉冲这样3级 控制时序信号定时完成。 2、3级控制时序信号的宽度均成正整数倍同步关系。 周期状态之间,节拍电位之间,时标脉冲之间既 不容许有重叠交叉,又不容许有空白间隙,应该 是能一个接一个地准确连接,一个降落另一个升 起而准确切换的同步信号。
(2) 对指令进行译码,并产生相应的操作控制信号, 送往相应的部件,启动规定的动作;
(3) 指挥并控制CPU、内存与输入/输出(I/O)设 备之间数据流动的方向
• 运算器是数据加工处理部件,所进行的全部操作由 控制器发出的控制信号指挥
(1) (2)执行所有的逻辑运算,并进行逻辑测试
2021
CPU的基本模型
2021
5.1.1 CPU的功能
★ 指令控制
★ 操作控制 CPU产生每条指令所对应的操作信号,并把各种
操作信号送往相应的部件,从而控制这些部件按指令 的要求进行动作
★ 时间控制 对各种操作的实施时间进行定时
★ 数据加工 对数据进行算术运算和逻辑运算处理
2021
5.1.2 CPU的基本组成
• 控制器完成对整个计算机系统操作的协调与指挥。 (1) 控制机器从内存中取出一条指令,并指出下一条 指令在内存中的位置;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结论:符号位为 0 表示负值
符号位为 1 表示正值
举例:n=7
〔X〕移=128+X 其中 -128≤x ≤127
13
意义:
0
128
0
255
X移
-128
x 127
比较:
〔+1011〕补
〔 +1011 〕移
〔-1011 〕补 〔-1011 〕移
14
课堂练习:设机器字长为16位,其中4位用来表示 阶码,12位用来表示尾数,阶符和尾符各占一位。 求该浮点数用补码表示时的最大值、最小值和最小 绝对值。
器本身能够表示的数据范围,这时就会产生溢 出现象。
上溢 下溢
23
判断溢出的方法: (1)单符号位法:V=C f + C 0
0 无溢出 V=
1 有溢出 (2)变形补码: V=Sf1+ S f2
0 无溢出 V=
1 有溢出
举例:
24
§2.2 定点加法/减法运算
• 基本的二进制加法/减法器 (1)一位全加器 (2)N位行波进位加法/减法器 结构:由N个一位全加器组成 工作原理:
16
Ms Es E1 E2 … Em
M1 M2 … Mn
数符1位
阶码8位
尾数23位
真值=(-1)S·2E-127 ·(1.M)
举例:按IEEE754标准写出176.0652的真值表达 式和存储格式。
17
作业:
某浮点格式如下表所示,阶码部分连阶符共 m+1位,补码表示,以2为底;尾数共n+1位, 含一位数符,补码表示,规格化。
3
2 章 运算方法和运算器
主要内容
❖数据与文字在计算机中的表示方法 ❖定点加法、减法运算 ❖定点乘法运算 ❖定点除法运算 ❖定点运算器的组成 ❖浮点运算方法和浮点运算器
4
§2.1 数据与文字在计算机中的的表 示方法
数值数据的表示三要素:进位计数制、小数点、符号。
• 进位计数制:凡是按进位方式计数的数值就 叫做进位计数制。
基数:该进位制中允许选用的基本数码的个数。
权:与数码位置有关的常数,简称 “权”。
• 进位计数制的相互转换
十进制
二进制
二进制
十进制
5
定点数 • 数据格式
浮点数
①定点整数: 0≤︱X︱≤2n﹣1
X0 X1 X2
……
Xn
符号位
②定点小数: 0≤︱X︱≤1﹣2﹣n
X0 X1 X2
……
Xn
符号位
6
③浮点数 : 表示形式: N=±RE ·M E------阶码 M------尾数 R-------与所采用的进制有关
2 回顾
1.什么是存储程序的概念?冯.诺依曼计算 机的基本思想是什么?
2.计算机系统的硬件由哪些基本功能部件组 成?主要功能是什么?
3.为什么要讨论计算机系统的层次结构? 4.存储单元、地址、存储容量
1
2
2 回顾
ห้องสมุดไป่ตู้
控制器

算 机


高速缓存

件 系


主存储器

组 成

外存设备

线
运算器
输入设备 输出设备
9
• 数的机器码表示 ① 原码
纯整数〔X〕原 =
X,
2n > x ≥ 0
2n – x = 2n + |x| , 0≥ x > - 2n
纯小数〔X〕原 = X ,
1>x≥0
1 – x = 1 + |x| , 0≥ x > -1
特点:表示简单易懂,但运算复杂,另外还存在 零表示的不唯一性。
10
• 数的机器码表示 ② 反码
Es E1 E2 … Em
阶符
阶码
Ms M1 M2 … Mn
数符
尾数
常用补码或移码表示
常用补码或原码表示
7
表示范围: 假如阶码和尾数均为原码表示:
32位浮点数:数符1位、阶码8位、尾数23位 32位定点整数:
8
溢出
负浮点数
负浮点数 溢出
溢出 负浮点数 负下溢 正下溢 负浮点数 溢出
★浮点数的规格化表示: ︱M︱ ≥0.5
当 M=0 加法 当 M=1 减法
典型值
浮点数代码
非零最小正数 10…0,0.10……0
最大正数
01…1,0.11……1
绝对值最小负数 10…,1.10……0
绝对值最大负数 01…1,1.00……0
真值 ? ? ? ?
表示范围:? 分辨率:?
18
❖ 非数值数据的表示(略)
❖ 校验码
思想:让写入的信息符合某种约定的规律,在 读出时检验其读出信息是否仍符合这一约定规律。
2n+1+x = 2n+1-|x| , 0≥ x ≥ -2n
X,
1>x≥0
纯小数〔X〕补 =
2 + x = 2 - |x| , 0≥ x > -1
特点:符号位是通过运算得到的,可直接参与运算; 另外零的表示具有唯一性。
12
④ 移码
定义:假如X为n+1位(包括一位符号位)则:
〔X〕移
= 2n + x , 2n -1> x ≥ - 2n 其中:x为真值 2n为符号位的位权
纯整数〔X〕反 =
X, (2n+1 – 1)+ x ,
2n > x ≥ 0 0≥ x > - 2n
纯小数〔X〕反 =
X, (2 – 2-n)+ x ,
1>x≥0 0≥ x > -1
特点:表示简单易懂,但运算复杂;另外还存在 零表示的不唯一性。
11
• 数的机器码表示
③ 补码
纯整数〔X〕补 =
X,
2n > x ≥ 0
最大值 最小值
0 111 0 1111 1111 111 0 111 1 0000 0000 000
最小绝对值 0 000 0 0000 0000 001
15
补充:IEEE754标准中浮点数的定义
1985年IEEE提出了IEEE754标准。该标准规定 基数为2,阶码E用移码表示,尾数M用原码表示, 根据原码的规格化方法,最高数字位总是1,该标 准将这个1缺省存储,使得尾数表示范围比实际存 储多一位。以单精度格式为例:书
21
§2.2 定点加法/减法运算
• 补码减法 补码加法公式:[X-Y]补=[X]补+[-Y]补
特点:*将减法转化为加法 *符号位参加运算
问题的提出: [-Y]补=?
举例:
[-Y]补= [Y]补+2- n / 20
定点小数
定点小数
22
§2.2 定点加法/减法运算
溢出概念与检测方法: 当两个数相加或相减的运算结果超出了机
“冗余校验” 奇偶校验:根据代码字的奇偶性质进行编码。
奇偶校验电路结构图如下:
19
并行奇偶统计电路
C/C (校验位形成)
F(校错信号)
D7 D6 D5 D4 D3 D2 D1 D0
校 验 位
20
§2.2 定点加法/减法运算
• 补码加法 补码加法公式: [X+Y]补= [X]补+[Y]补
证明:
特点 * 符号位参加运算; * 如果是小数,则模2意义相加; * 如果是整数,则模 2n+1 意义相加。
相关文档
最新文档