数列章末总结
数列章末归纳总结课件
(2)由(1)知等比数列{bn}中,b1=3,公比 q=2, 所以 an+1-2an=3×2n-1. 于是a2nn++11-a2nn=34, 因此数列{a2nn}是首项为12,公差为34的等差数列,2ann=12+(n -1)×34=34n-14. 所以 an=(3n-1)·2n-2.
已知数列{an}中,a1=1,an=2S2nS-n2 1(n≥2). (1)求证数列{S1n}是等差数列; (2)求通项公式 an. [分析] 依据式子特征,将 an=Sn-Sn-1 代入已知条件,建 立关于 Sn 的关系,构造出新的数列.
[解析] 购买时付款 300 万元,则欠款 2 000 万元,依题 意分 20 次付清,则每次交付欠款的数额依次购成数列{an},
故 a1=100+2 000×0.01=120(万元), a2=100+(2 000-100)×0.01=119(万元), a3=100+(2 000-100×2)×0.01=118(万元), a4=100+(2 000-100×3)×0.01=117(万元), …
当
n≥2
时
,
an
=
Sn
-
Sn
-
1
=
2S2n 2Sn-1
=
2·2n1-12 2·2n1-1-1
=
2 2n-13-2n.
∴数列的通项公式为
1
n=1
an=
2
2n-13-2n
n≥2
.
五、数列的实际应用
用分期付款的方式购买一批总价为 2 300 万元的 住房,购买当天首付 300 万元,以后每月的这一天都交 100 万 元,并加付此前欠款的利息,设月利率为 1%.若从首付 300 万 元之后的第一个月开始算分期付款的第一个月,问分期付款的 第 10 个月应付多少万元?全部贷款付清后,买这批住房实际 支付多少万元?
数列章末归纳整合1
网络构建 专题归纳 解读高考 高考真题
3t+1 1≤ ≤40, 2 ∴ 1≤2t≤40,
79 1 3≤t≤ 3 , 解得 1≤t≤20. 2
章末归纳整合
网络构建
专题归纳
解读高考
高考真题
网络构建
专题归纳
解读高考
高考真题
专题一
数列的概念与函数特性
1.数列中的数是按一定“顺序”排列的,可以看成一个定义域 为正整数集(或它的有限子集)的函数当自变量从小到大依 次取值时对应的一系列函数值.因此,数列的表示方法中 就有了类似于函数表示方法中的列表法、图像法、通项公 式法. 2.数列的分类:按项数有限还是无限分为有穷数列和无穷数 列;按项与项之间的大小关系可分为递增数列、递减数 列、摆动数列和常数列.
来表示.
3.数列是项关于序号的函数,是一种特殊的函数,其特殊性在 于数列的定义域是N+(或其有限子集{1,2,3,…,n}),在我 们利用数列的通项公式求其最大项(或最小项)时,要特别注 意这一点,否则会产生错解.
网络构建
专题归纳
解读高考
高考真题
【例1】 求数列{-2n2+9n+3}的最大项.
解 已知-2n
网络构建 专题归纳 解读高考 高考真题
2.等比数列的概念、性质、通项公式是高考的必考内容,特 别是与其他知识的交汇点,一直是考查的重要热点之一, 常见的考题有: (1)判断、证明数列是等比数列; (2)运用通项公式求数列中的项; (3)解决数列与函数、三角、向量、几何等知识交汇点问 题; (4)涉及递推关系的推理及运算问题.
数列章末总结
数列章末总结1.探索并掌握一些基本的数列求前n项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,一、课前准备(1)有关概念:1°数列:按一定次序排列的一列数,数列中的每一个数叫做数列的项。
2°数列的通项公式:如果数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,这个公式就叫做数列的通项公式。
3°数列的递推公式:如果已知数列{a n}的第一项(或前n项,且任一项a n与它的前一项a n-1(或前n项)间的关系可以用一个式子来表示,那么这个公式就叫做这个数列的递推公式。
4°若数列{a n}的前n项和为S n则aS S nS nnn n=-≥=⎧⎨⎩-1121()()※数列通项公式的求法数列的通项公式是数列的核心内容之一。
它如同函数中的解析式一样,对研究数列的性质起着重要的作用。
围绕数列的通项公式,不仅可以判断数列的类型,研究数列的项的变化规律与趋势,而且还便于研究数列的前n 项和,因此求数列的通项公式往往是解决数列问题的突破口,在解题时,根据题目所给条件的不同,可以采用不同的方法求数列的通项公式,常见方法如下: 1.叠加法(累加法)对于形如a n+1-a n =f(n)型的,用叠加法例1:已知数列{a n }中,a 1=1,且a n+1-a n =3n-n ,求数列{a n }的通项公式。
变式:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
2.叠乘法(累乘法)对于形如1()n na f n a +=)型的,用叠加法 例2:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。
变式:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
3.构造法其他的,已知数列递推公式求an ,用构造法(构造等差或等比数列) 例3:数列{}n a 中11=a ,)2(1211≥+=-n a a n n ,求该数列的通项公式n a 。
数列公式及结论总结
等差数列
等比数列
通项公式
通项公式的推广式
性质
若
则
若
则
等差(比)中项
数列的求和公式
或
推导方法:倒序相加法.
或
推导方法:错位相减法.
2、等比数列性质应用时密切关注相应项下标和的关系.
(1)若 (项数相同)是等比数列,则 , 仍是等比数列.
(2)若数列 成等差数列,则数列 成等比数列.
(3)若数列 成等差数列,则数列 仍是等比数列.
(4)等比数列的单调性
设 是等比数列,公比为 ,则
当 或 时,数列 是递增数列;
当 或 时,数列 是递减数列;
当 时,数列 是常数列;
当 时,数列 是摆动数列,各项正负相间.
3、等比数列和的性质
若是公比 的等比数列, 为前 项和,则 成公比为 的等比数列.
裂项相消法
又是把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩有限项再求和
7、常见的裂项公式:
① ;
② ;
③ .
错位相减法
适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和
倒序相加法
等差数列前 项和公式的推导方法一般适用于一个等差数列和一个等比数列的积所成数列
并项求和法
把数列中若干项结合到一起,形成一个新的可求和的数列,此时,数列中若干项结合到一起,形成一个新的可求和的数列,此时,数列中的想可能正、负相间出现或呈现周期性.一般适用于符号数列 或 与阶差数列 ( 为 的多项式)的积组成的数列
4、由递推公式求数列通项公式
类型
方法
(即:已知前n项和Sn求 )
(即:已知前n项积Tn求 )
数列详细知识点归纳总结
数列详细知识点归纳总结一、数列的定义数列是指按一定的顺序排列的一组数字的有限序列或无限序列。
具体地说,如果给定一个数集合{a1, a2, a3, ... },那么这个数集合就可以构成一个数列,其中a1、a2、a3...就是数列的项,而它们的下标1、2、3...就是自然数的序列。
在数列中,通常用{an}或a1, a2, a3, ...表示。
其中an称为数列的通项,表示数列中第n项的具体数值。
如果数列有限项,那么它就是一个有限数列,如果数列项数为无穷多,那么它就是一个无穷数列。
二、常见数列1.等差数列如果一个数列中任意两个相邻的项之间的差是一个常数d,那么这个数列就是等差数列。
等差数列的通项公式为an = a1 + (n-1)d,其中n为项号,a1为首项,d为公差。
2.等比数列如果一个数列中任意两个相邻的项之间的比是一个常数q,那么这个数列就是等比数列。
等比数列的通项公式为an = a1*q^(n-1),其中n为项号,a1为首项,q为公比。
3.斐波那契数列斐波那契数列是一个非常有趣的数列,它的定义是f(1) = 1, f(2) = 1, f(n) = f(n-1) + f(n-2) (n > 2)。
即从第三项开始,每一项都是前两项之和。
4.调和数列调和数列是指数列an=1/n,其中n为自然数。
它的通项公式为an=1/n,调和数列是一个无穷数列。
5.几何级数几何级数是指等比数列的前n项和,也就是Sn = a1*(1-q^n)/(1-q),其中a1为首项,q为公比。
对于几何级数来说,只有在|q|<1的时候,级数的前n项和才有极限,也即收敛。
三、数列的性质1.有界性数列的有界性是指数列的各项都被一个常数M所限制。
如果数列的绝对值|an|对任意n都小于或等于M,那么数列就是有界的。
数列的单调性是指数列的项是单调递增或单调递减的。
如果对于所有的n,an+1>=an或者an+1<=an,则数列是单调的。
数列知识点归纳总结文字
数列知识点归纳总结文字一、数列的概念数列是按一定顺序排列的一系列数,数列中的每一个数称为这个数列的项。
数列一般用{}表示,例如{1, 2, 3, 4, 5}就是一个数列,这个数列有5个项。
二、数列的分类1. 等差数列等差数列是一个数列,其中每一项与它后面的项之差都是一个常数,这个常数称为公差。
等差数列通项公式为:an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。
2. 等比数列等比数列是一个数列,其中每一项与它前面的项之比都是一个常数,这个常数称为公比。
等比数列通项公式为:an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。
3. 部分和数列部分和数列是指数列的前n项和数构成的一个新数列。
部分和数列通常分为求和方法、性质及相关研究。
4. 斐波那契数列斐波那契数列是指这样的数列:第1项、第2项都为1,从第3项开始,每一项都等于它前两项之和。
斐波那契数列通项公式为:Fn = F(n-1) + F(n-2),其中Fn为第n项。
5. 幂和数列幂和数列是指通项为各项的幂次和的数列。
幂和数列通项公式为:an = a1 + a2 + a3 + ... + an,其中n为项数。
三、数列的性质1. 数列的有界性如果数列的值在某一范围内,那么这个数列是有界的。
2. 数列的单调性如果数列中的每一项都大于或等于它前面的一项,那么这个数列是递增的。
如果数列中的每一项都小于或等于它前面的一项,那么这个数列是递减的。
3. 数列的极限性数列的极限性是指当n趋于无穷大时,数列的项趋于一个常数L,称数列收敛,常数L称为数列的极限。
如果数列的项没有极限,那么称数列发散。
4. 数列的求和公式对于等差数列,求和公式为:Sn = n(a1 + an)/2,其中Sn为前n项和。
对于等比数列,求和公式为:Sn = a1*(1-r^n)/(1-r),其中Sn为前n项和。
四、数列的应用1. 数学定理证明数列对于证明数学定理、推导公式等具有重要作用,如用等差数列证明等差数列的求和公式:Sn=n(a1+an)/2。
必修五第二章数列归纳总结
必修五第二章数列归纳总结一、数列1. 数列的定义数列是按一定次序排成的一列数, 从函数观点看, 数列是定义域为正整数集(或它的有限子集)的函数f(n), 当自变量n 从1开始依次取正整数时所对应的一列函数值f(1), f(2), …, f(n), ….通常用an 代替f(n).于是数列的一般形式为a1, a2, …, an, …, 简记为{an}.一、数列1. 数列的定义数列是按一定次序排成的一列数, 从函数观点看, 数列是定义域为正整数集(或它的有限子集)的函数f(n), 当自变量n 从1开始依次取正整数时所对应的一列函数值f(1), f(2), …, f(n), ….通常用an 代替f(n).于是数列的一般形式为a1, a2, …, an, …, 简记为{an}.3. an 与Sn 的关系设Sn =a1+a2+a3+…+an,则a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1(n ≥2). 二、等差数列1. 等差数列的定义如果一个数列从第二项起, 每一项与它的前一项的差都等于同一个常数, 这样的数列叫做等差数列.2. 等差中项如果三数a 、A.b 成等差数列, 则A 叫做a 和b 的等差中项, ∴A = .3. (1)通项公式a n =a 1+(n -1)d .推导方法: 累加法an =(an -an -1)+(an -1-an -2)+…+(a2-a1)+a1.(2)前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . 推导方法: 倒序相加法.4. 用函数观点认识等差数列(1)an =nd +(a1-d)是n 的一次函数.(2)Sn = n2+(a1- )n, 是关于n 的常数项为零的二次函数.5. 等差数列的判定方法(1)定义法: an +1-an =d(常数)(n ∈N*)⇔{an}是等差数列;(2)中项公式法: 2an +1=an +an +2(n ∈N*)⇔{an}是等差数列;(3)通项公式法: an =kn +b(k, b 是常数)(n ∈N*)⇔{an}是等差数列;(4)前n 项和公式法:Sn =An2+Bn(A 、B 是常数)(n ∈N*)⇔{an}是等差数列.(5){a n }是等差数列⇔{S n n}是等差数列 6. 等差数列的性质(1)下标和与项的和的关系在等差数列中, 若p +q =m +n, 则有ap +aq =am +an ;若2m =p +q, 则有2am =ap +aq, (p, q, m, n ∈N*).(2)任意两项的关系在等差数列{an}中, m 、n ∈N*, 则am -an =(m -n)d 或am =an +(m -n)d 或 =d.(3)在等差数列中, 等距离取出若干项也构成一个等差数列, 即an, an +m, an +2m, …为等差数列, 公差为md.等差数列的依次n项的和也构成一个等差数列, 即Sn, S2n-Sn, S3n-S2n, ……为等差数列, 公差为n2d.即下标成等差的项成等差数列, 下标和成等差的具有相同构成规律的项的和成等差数列.(4)设等差数列{an}的公差为d, 那么d>0⇔{an}是递增数列;d<0⇔{an}是递减数列;d=0⇔{an}是常数数列.(5)①数列{λan+b}仍为等差数列, 公差为λd.若{bn}, {an}都是等差数列, 则{an±bn}仍为等差数列, {λ1an+λ2bn}(λ1, λ2为常数)也是等差数列.②项数为n的等差数列中, n为奇数时, 设m= , 则S奇-S偶=am, = , Sn=na 中=nam.n为偶数时, S偶-S奇= d.③若{an}与{bn}为等差数列, 且前n项和分别为Sn与S′n, 则= .④等差数列{an}中, 若an=m, am=n(m≠n), 则am+n=0.⑤若数列{an}的前p项和为Sp=q, 前q项和为Sq=p(p≠q), 则Sp+q=-(p+q).⑥若数列{an}的前n项和为Sn, Sp=Sq(p≠q), 则Sp+q=0.三、等比数列1. 等比数列的定义一般地, 如果一个数列从第2项起, 每一项与它的前一项的比等于同一个常数, 这个数列就叫做等比数列.2. 等比中项如果三个数a、G、b成等比数列, 那么G叫做a和b的等比中项, 即G2=ab.3. 等比数列的通项公式an=a1·qn-1(n∈N*).推导方法: 累乘法: ·……·=qn-1.4. 等比数列的前n项和当q=1时, Sn=na1,当q≠1时. Sn==.推导方法: 乘公比、错位相减法.5. 等比数列的判定方法(1)an+1=anq(q是不为0的常数, n∈N*, an≠0)⇔{an}是等比数列.(2)an=cqn-1(c, q均是不为0的常数, n∈N*)⇔{an}是等比数列.(3)an+12=an·an+2(an≠0, n∈N*)⇔{an}是等比数列.(4)Sn=A·qn-A(A.q为常数且A≠0, q≠0,1)⇔{an}是公比不为1的等比数列.6. 等比数列的主要性质(1)下标和与项的积的关系在等比数列{an}中, 若m、n、p、q∈N*且m+n=p+q, 则am·an=ap·aq.特别地, 若2m=p+q, 则ap·aq=am2;a1an=a2an-1=a3an-2=….(2)任意两项的关系若{an}为等比数列, 则=qm-n或am=an·qm-n(m、n∈N*).(3)等间隔的k项和(或积)仍成等比数列.例如: {an}是等比数列, 则①a1, a3, a5, …, a2n-1;②a1+a2, a2+a3, a3+a4, …;③a1a2, a2a3, a3a4, …;④a1+a2, a3+a4, a5+a6……均成等比数列.(4)等比数列{a n}的单调性当, 或时, {an}为递增数列;当或时, {an}为递减数列.(5)①{an}是等比数列⇒{c·an}是等比数列(c≠0).②{an}、{bn}均为等比数列⇒{an·bn}、{ }仍是等比数列.③若{an}是等比数列, 则{an2}、{ }(an>0)、{ }、{|an|}均为等比数列.④非零常数列既是等差数列, 也是等比数列.⑤若{an}是等差数列, 则{ban}是等比数列.若{an}是正项等比数列, 则{lgan}是等差数列.误区警示1. 数列与数集应予区别, 数列中的数排列有序, 数集中的元素无序;数列中的数可重复出现, 数集中的元素互异.2. 并不是每一个数列都有通项公式, 给出前n项时, 写出的通项公式可以不止一个.3.已知{an}的前n项和Sn求an时,用an=求解应注意分类讨论.an=Sn-Sn-1是在n≥2条件下求出的, 应检验a1是否适合. 如果适合, 则合写在一块, 如果不适合, 则分段表示. 千万注意用an=Sn-Sn-1判断数列{an}是否为等差(或等比)数列时, 不要忘记验证a1是否满足.如: Sn=n2+n时, {an}是等差数列.Sn=n2+n+1时, {an}不是等差数列.Sn=2n-1时, {an}是等比数列.Sn=2n+1时, {an}不是等比数列.4. 在讨论等差数列{an}的前n项和Sn的最值时, 不要忽视n是整数的条件及含0项的情形.如: 在等差数列{an}中, 已知a1=20, 前n项和为Sn, 且如S10=S15, 求当n取何值时, Sn有最大值, 并求出它的最大值.取最大值的应为S12和S13.5. G是a、b的等比中项 G=.6. 在应用等比数列的前n项和公式时, 一定要对q=1与q≠1进行分类讨论.7.等比数列中隐含着各项不为零、公比不为零, 项与公比的符号有着密切的联系, 解题时应特别注意.。
第四章 数列(章末小结)高二数学课件(人教A版2019选择性必修第二册)
方法总结 (1)等差数列中利用等差中项将已知等式化简求出基本量,注意由 判断出使得 取最大值时的项数;(2)等比中项有两个值,注意在等比数列中偶数项的符号一致,奇数项的符号一致.本题考查了数学抽象和逻辑推理的核心素养.
题型3 裂项相消法求和
[解析] 设数列 的前 项和为 ,当 时, ;当 时, ,经检验, 也符合上式, .又 , .
题型探究·悟思路
, ,∴数列 是以5为首项, 为公比的等比数列, .
方法总结 注意由 求 时,分两步完成后要判断 是否符合当 时的式子,若符合可统一为一个式子,若不符合则需要分段写出.
长,因此每一段铁丝总是前面的相邻2段之和),依次为1, , , , , , , , , ,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时 达到最大,为10.
我们看到“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了.这里,三角形的三边关系定理和斐波那契数列发生了一个联系. 在这个问题中, ,这个143是斐波那契数列的前 项和,我们是把144超出143的部分加到最后的一个数上,如果加到其他数上,就有3段可以构成三角形了.
题型7 数列的单调性
例7 已知数列 中, ( , 且 ).
(1)若 ,求数列 中的最大项和最小项的值;
(2)若对任意的 ,都有 成立,求实数 的取值范围.
方法指导 (1)先代入 的值,构造函数判断其单调性,再求出最大项和最小项;(2)先构造函数判断 的单调性,再由条件列出不等式,求出实数 的取值范围.
题型2 等差、等比数列的性质
例2
(1) 设数列 为等差数列,其前 项和为 ,已知 , ,若对任意 都有 成立,则 的值为( ).A. B. C. D.
数列所有知识点归纳总结
数列所有知识点归纳总结数列在数学中是一个重要的概念,它是由一系列按特定规律排列的数所组成的序列。
在数列的学习中,我们需要了解其基本概念、性质和常见的分类种类。
本文将对数列的各个知识点进行归纳总结,帮助读者更好地理解和掌握这一部分的数学知识。
一、数列的基本概念1. 数列的定义:数列是由一系列按照一定规律排列的数所组成的序列。
2. 项与序号:数列中的每个数称为项,用a₁,a₂,a₃,...表示;项所对应的位置称为序号,用n表示。
3. 数列的通项公式:数列中每一项与其序号之间存在着一定的关系,可以用一个公式表示,称为数列的通项公式。
二、数列的性质1. 数列的有界性:数列可能是有界的(存在上界或下界),也可能是无界的(既没有上界也没有下界)。
2. 数列的单调性:数列可以是递增的或递减的,也可以是常数列(即所有项相等)。
3. 数列的有限性:数列可以是有限的(只有有限个项),也可以是无限的(有无穷个项)。
4. 数列的周期性:部分数列具有周期性,即从某一项开始,每隔一定项都重复出现相同的数列。
三、常见数列的分类1. 等差数列:数列中每一项与前一项之差都相等的数列,通项公式为an = a₁ + (n-1)d,其中a₁为首项,d为公差。
2. 等比数列:数列中每一项与前一项之比都相等的数列,通项公式为an = a₁ * r^(n-1),其中a₁为首项,r为公比。
3. 斐波那契数列:数列中每一项是前两项之和的数列,通项公式为an = a(n-1) + a(n-2),其中a₁ = 1,a₂ = 1。
4. 幂次数列:数列中每一项都是一定的幂的数列,通项公式为an = a₁ * (n^p),其中a₁为首项,p为幂次。
四、数列求和1. 等差数列的求和:对于公差为d的等差数列,其前n项和为Sn = (n/2)(a₁ + an) = (n/2)(2a₁ + (n-1)d)。
2. 等比数列的求和:对于公比为r的等比数列(r≠1),其前n项和为Sn = a₁(1 - r^n) / (1 - r)。
数列知识点终结
数列知识点终结数列(Sequence)是数学中的一种基本概念,可以说在数学的各个领域都有广泛的应用。
它是由一系列按照特定规则排列的数所组成的集合。
数列可以用来描述自然现象、物理规律、金融市场等各种现实问题,因此掌握数列的基本概念和性质对于我们的数学学习和问题解决能力都具有重要意义。
本文将以“数列知识点终结”为主题,对数列的基本概念、数列的分类、数列的常见性质以及数列的应用进行系统的整理和总结,帮助读者更好地理解和掌握数列的知识。
一、数列的基本概念数列是由一系列按照特定规则排列的数所组成的集合。
它可以用一个通项公式来表示,通常用字母表示数列的第n项,如an或un。
数列中的每一项按照一定的规律递增或递减,这个规律可以是等差、等比等。
二、数列的分类根据数列的规律,我们将数列分为等差数列、等比数列和其他特殊数列。
1.等差数列:等差数列是指数列中的每一项与它的前一项之差都相等。
其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是指数列中的每一项与它的前一项之比都相等。
其通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比。
3.其他特殊数列:除了等差数列和等比数列外,还有斐波那契数列、调和数列等其他特殊数列。
它们的规律更为复杂,但在实际问题中也有一定的应用价值。
三、数列的常见性质数列具有一系列的常见性质,掌握这些性质可以帮助我们更好地理解和分析数列。
1.数列的有界性:有界数列是指数列中的所有项都在某个范围内。
如果数列的项都是递增或递减的,并且存在上界或下界,那么这个数列就是有界的。
2.数列的递增性和递减性:递增数列是指数列中的每一项都大于前一项,递减数列则相反,每一项都小于前一项。
3.数列的极限:数列的极限是指当n趋向于无穷大时,数列中的项的极限值。
根据数列的性质和规律,我们可以判断数列的极限是否存在,并求出其极限值。
四、数列的应用数列在实际问题中有广泛的应用,特别是在自然科学、经济金融等领域。
高中数学选择性必修二 第4章数列章末复习与总结高二数学(
[例 7] (1)已知数列an,a1=2,an=1+ana-n1-1(n≥2),求 an; (2)已知数列an满足 an+1=3an+2(n∈N *),a1=1,求通项公 式 an. [解] (1)由 an=1+ana-n1-1两边取倒数得a1n-an1-1=1, ∵数列a1n是首项为a11=12,公差为 1 的等差数列. ∴a1n=12+(n-1)=n-12=2n2-1.∴an=2n2-1.
bn-1
=an1-1(n≥2,
n∈N
*),
Tn=b1+b2·3+b3·32+…+bn·3n-1,证明:数列4Tn-3n·bn为 等差数列.
[解] (1)因为 an+1=3an, an+1
所以 an =3,又 a1=3,因此an是首项为 3,公比为 3 的等比数列,
所以 an=3n,a4=34=81. Sn=311--33n=32(3n-1), S5=32×(35-1)=363.
an
可用公式
an=SS1n-n=Sn1-1,n≥2
求解.
3.由递推公式求数列通项:对于递推公式确定的数列的求
解,通常可以通过递推公式的变换,转化为等差数列或等比数
列问题,有时也用到一些特殊的转化方法与特殊数列.
4.待定系数法(构造法):求数列通项公式的方法灵活多 样,特别是由给定的递推关系求通项公式,对于观察、分析、 推理能力要求较高.通常可对递推式变换,转化成特殊数列 (等差或等比数列)来求解,这种方法体现了数学中化未知为已 知的转化思想,而运用待定系数法变换递推公式中的常数就 是一种重要的转化方法.
1,n为奇数,
②取 a=2,q=1 时,an=
bn=2(n∈N*).
2,n为偶数.
此时bn是等比数列,而an不是等比数列.
数列知识点总结及结论
数列知识点总结及结论一、数列的概念及分类数列是按照一定的顺序排列的一组数的集合。
在数学中,数列是一个非常重要的概念,它被广泛应用在各个领域,如微积分、概率论、离散数学等。
数列有多种分类方式,根据数列的各个项之间的关系不同可以将数列分为等差数列、等比数列、递推数列等。
在日常生活中,数列也有着广泛的应用,如金融领域中的利息计算,物理学中的等速运动等。
二、等差数列等差数列是一种非常简单的数列,其特点是数列中每一项与前一项的差是一个常数。
等差数列的通项公式为An = A1 + (n-1)d。
其中An表示等差数列中第n项的值,A1表示等差数列的首项,d表示等差数列的公差。
例如,1,3,5,7,9就是一个公差为2的等差数列。
在等差数列中,我们可以根据已知的条件,求出数列的首项、公差、任意项的值,以及数列的前n项和等一系列问题。
三、等比数列等比数列是另一种常见的数列,其特点是数列中每一项与前一项的比是一个常数。
等比数列的通项公式为An = A1 * q^(n-1)。
其中An表示等比数列中第n项的值,A1表示等比数列的首项,q表示等比数列的公比。
例如,1,2,4,8,16就是一个公比为2的等比数列。
在等比数列中,也可以根据已知的条件,求出数列的首项、公比、任意项的值,以及数列的前n项和等一系列问题。
四、递推数列递推数列是一种通过前一项来定义后一项的数列。
其通项公式并不是一个固定的公式,而是通过给定的递推关系来确定。
例如,斐波那契数列就是一个著名的递推数列,其定义为F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)。
通过这个递推关系,我们可以得到斐波那契数列的每一项的值。
递推数列在计算机科学中有着广泛的应用,如动态规划算法、图论算法等。
它们的特点是可以通过已知的前几项来求得后面的项,而不需要知道整个数列的所有项。
五、数列的运算数列的运算是数列学习中的重要内容之一。
在数列的运算中,主要包括数列的加法、减法、乘法、除法等。
高中数学选择性必修二 第四章 数列(章末复习)单元复习全面过
一.知识系统整合1.知识网络2.知识梳理二. 规律方法收藏(1)在求等差数列和等比数列的通项公式时,分别用到了累加法和累乘法;(2)在求等差数列和等比数列的前n项和时,分别用到了倒序相加和错位相减.(3)等差数列和等比数列各自都涉及5个量,已知其中任意三个求其余两个,用到了方程思想.(4)在研究等差数列和等比数列单调性,等差数列前n项和最值问题时,都用到了函数思想.(5)等差数列和等比数列在很多地方是相似的,发现和记忆相关结论时用到了类比.三.学科思想培优一、数学抽象数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法和思想,认识数学结构与体系.在本章中,主要表现在构造新数列,及数列的函数性质中.【典例1】(2021·河南高三月考(理))“春雨惊春清谷天,夏满芒夏署相连,秋处露秋寒霜降,冬霜雪冬小大寒”,这首二十四节气歌,记录了中国古代劳动人民在田间耕作长期经验的积累和智慧.“二十四节气”已经被列入联合国教科文组织人类非物质文化遗产代表作名录.我国古代天文学和数学著作《周牌算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度)二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则晷长为七尺五寸时,对应的节气为( )A .春分、秋分B .雨水、处暑C .立春、立秋D .立冬、立夏【答案】A【解析】设从夏至开始到冬至,各节气的晷长分别为1a ,2a ,3a ,…,13a , 则夏至时晷长为115a =(寸),冬至时晷长为13135a =(寸), 因为每个节气晷长损益相同,则{}n a 为等差数列,设公差为d , 所以131121512135a a d d =+=+=, 解得10d =,所以()15110105n a n n =+-⨯=+, 由75n a =,得7n =,即晷长七尺五寸对应的节气为从夏至开始的第七个节气,即秋分; 设从冬至开始到夏至,每个节气的晷长为n b ,则()()135********n b n n =+-⋅-=-+, 由75n b =,得7n =,即晷长七尺五寸对应的节气是从冬至开始的第七个节气,即春分. 所以晷长为七尺五寸时,对应的节气为春分和秋分.故选:A.【典例2】(2021·河南驻马店市·高三期末(文))1975年,考古工作者在湖南省云梦县睡虎地秦墓出土了大量记载秦法律令的竹简,其中包括徭律一条.徭律是秦代关于徭役的法律,其中规定:服徭戍迟到处以申斥和赀罚.失期三日到五日,谇;六日到旬,赀一盾;过旬,赀一甲.意思是:迟到2天以内算正常,不处罚;迟到3~5天,口头批评;迟到6~10日,罚一面盾牌;迟到10天以上,罚一副甲胄.若有一队服徭役的农民从甲地出发前往乙地,甲、乙两地相距900里,第一天行60里,以后每天都比前一天少行2里,要求18天内到达,则该队服徭役的农民最可能受到的惩罚是( ). A .无惩罚 B .谇C .赀一盾D .赀一甲【答案】C【解析】由题意知,每日行走的路程成等差数列,记为{}n a , 因为首项为60,公差为2-,所以2=-+n a n 62. 设从甲地到乙地用k 天,则602629002-+⨯=k k ,即2619000-+=k k ,解得25k =或36k =(舍), 即从甲地出发前往乙地所用的时间为25天, 因为要求18天到达,所以迟到了7天,又因为迟到6~10日,罚一面盾牌,故应赀一盾.故选:C.【典例3】(2021·宁夏吴忠市·高三一模(文))已知数列{}n a满足1a =*1,n n n +∈N .(1)求数列{}n a 的通项公式; (2)设*n nb n =∈N ,数列{}n b 的前n 项和n S ,求证:1n S <.【答案】(1))*n a n =∈N;(2)证明见解析.【解析】(11n n +=,得1n n a a += ∴32121nn a aa a a a ⋅=-12n n⋅=-,∴1a =∴)*na n =∈N .(2)由(1)得n n b a ===,∴12111111112231n n S b b b n n=+++=-+-++-=-+ 当*n ∈N 时,0>,∴1n S <,即证. 二、数学运算数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养,主要表现为:理解运算对象,掌握运算法则,探究运算思路,求得运算结果.在本章中,主要表现在求等差、等比数列的特定项,公差(公比),前n 项和,项数的运算中.【典例4】(2021·河南郑州市·高二期末(文))在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4 B .8C .16D .24【答案】C【解析】∴{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∴{}n b 是等差数列,所以7119216b b b +==. 故选:C .【典例5】(2021·湖北荆州市·荆州中学高二期末)设等比数列{}n a 的前n 项和为n S ,若10512S S =,则155S S =( ) A .12B .13C .23D .34【答案】D【解析】{}n a 是等比数列,51051510,,S S S S S ∴--也称等比数列,10512S S =,设5102,S k S k ==, 则105S S k -=-,15102k S S ∴-=,则1532k S =, 15533224kS S k ∴==.故选:D. 【典例6】(2021·安徽六安市·高三一模(文))设等差数列{}n a 的前n 项和为n S ,公差0d >且2217a a =,则n S 取得最小值时,n 的值为( )A .3B .4C .3或4D .4或5【答案】C【解析】由2217a a =,可得()()17170a a a a +-=,因为0d >,所以170a a -≠,所以17 0a a +=,所以44200a a =⇒=.因为0d >,所以{}n a 是递增数列,所以1234560a a a a a a <<<=<<<,显然前3项和或前4项和最小.故选:C【典例7】(2021·河南许昌市·高二期末(理))在数列{}n a 中,11a =,22a =,对n *∀∈N ,215322n n n a a a ++=-,则2021a =( ) A .20183212⎛⎫- ⎪⎝⎭B .20193212⎛⎫- ⎪⎝⎭C .20203212⎛⎫- ⎪⎝⎭D .20213212⎛⎫- ⎪⎝⎭【答案】C 【解析】由215322n n n a a a ++=-得2113()2n n n n a a a a +++-=-∴数列1{}n n a a +-是以211a a -=为首项,32为公比的等比数列, 1*13()()2n n n a a n N -+∴-=∈∴当2n ≥时,11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+23101133331222231213123212n n n n ----⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫- ⎪⎝⎭=+-⎛⎫=- ⎪⎝⎭经检验,1n =时成立.132()12n n a -∴=-.2020202132()12a ∴=-,故选:C.【典例8】(2021·广西河池市·高二期末(理))已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .10101011【答案】C【解析】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C 【典例9】【多选】(2020·广东揭阳市·揭阳三中高二期中)已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( ) A .342n a n =- B .16S 为n S 的最小值C .1216272a a a +++= D .1230450a a a +++=【答案】AC【解析】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确; 121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=,故D 错误.故选:AC.三、逻辑推理逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养,主要表现为:掌握推理基本形式和规则,发现问题和提出问题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流.本章主要表现求数列的通项公式,在等差,等比数列判定、数列求和及数列开放题运用等方面. 【典例10】【多选】(2020·湖北高二期中)已知数列{}n a 的前n 项和n S 满足()2141n n S S n ++=+,下列说法正确的是( )A .若首项11a =,则数列{}n a 的奇数项成等差数列B .若首项11a =,则数列{}n a 的偶数项成等差数列C .若首项11a =,则15477S =D .若首项1a a =,若对任意*n ∈N ,1n n a a +<恒成立,则a 的取值范围是()3,5【答案】BCD【解析】由()2141n n S S n ++=+∴得()2124n n S n S n-+=≥∴,∴-∴可得()()12241421484n n a a n n n n +-=+==+++()2n ≥∴, 所以()()14213n n n a a n -+-≥=∴,∴-∴可得()1183n n a a n +-=-≥,因此数列{}n a 从第三项开始,奇数项成等差,偶数项也成等差;若11a =,即111S a ==,则()212411S S +=+,即21216a a +=,所以214a =; 由()322421S S +=+得32362a S +=,则36a =; 由()432431S S +=+得43264a S +=,则422a =; 所以3158a a -=≠,428a a -=,因此数列{}n a 的奇数项不成等差数列,偶数项成等差数列,即A 错,B 正确; 此时()()151********......S a a a a a a a =++++++++()()327717711787847722a a ⨯-⨯-⎡⎤⎡⎤=++⨯++⨯=⎢⎥⎢⎥⎣⎦⎣⎦,即C 正确;因为37215,,,...,n a a a a +成公差为8的等差数列,2482,,,...,n a a a a 也成公差为8的等差数列; 为使对任意*n ∈N ,1n n a a +<恒成立, 只需1234a a a a <<<,若1a a =,由()21241116S S +=+=,则2162a a =-;由()32242136S S +=+=,可得2336242a S a =-=+;由()43243164S S +=+=得34642242a S a =-=-所以42242162a a a a <+<-<-,解得35a <<,即D 正确.故选:BCD. 【典例11】(2021·辽宁大连市·高三期末)在①2*31,4(n S n kn n N k =-+∈为常数),①*1(,n n a a d n N d +=+∈为常数),①*1,,(0n n a qa q n N q +=>∈为常数)这三个条件中任选一个,补充到下面问题中,若问题中的数列存在,求数列()1*1n n n a N a +⎧⎫⎨⎭∈⎬⎩的前10项和;若问题中的数列不存在,说明理由.问题:是否存在数列{}*()∈n a n N ,其前n 项和为n S ,且131,4,a a ==___________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析【解析】如果选择①,由11332,,a S a S S =⎧⎨=-⎩即31142743324k k k ⎧=-+⎪⎪⎨⎪=--+⎪⎩ 解得3414k k ⎧=⎪⎪⎨⎪=-⎪⎩该方程组无解, 所以该数列不存在.如果选择*1,(n n a a d n N d +=+∈②为常数),即数列{}n a 为等差数列,由131,4==a a ,可得公差31322a a d -==, 所以3122n a n =- 所以12231011122310111112111111538a a a a a a a a a a a a ⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪⎝⎭ 如果选择*1(0,,n n a qa q n N q +=>∈③为常数),即数列{}n a 为等比数列,由131,4==a a,可得公比2q ==,所以11114(2)1n n n n n a a a a +-÷=≥, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭是首项为12,公比为14的等比数列,所以其前10项和为1021134⎛-⎫ ⎪⎝⎭. 【典例12】(2021·江苏徐州市·徐州一中高三期末)设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.【答案】(1)存在,2k =或3k =;(2)证明见解析.【解析】(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,得 ()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦, 整理得1(2)(3)2306n n k k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠,则1111n n n c a p b q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++, ()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列.【典例13】(2021·云南昆明市·高二期末(文))已知{}n a 是等差数列,{}n b 是递增的等比数列且前n 和为n S ,112822,10a b a a ==+=,___________.在①2345,,4b b b 成 等差数列,①12n n S λ+=+(λ为常数)这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件分别解答,按第一个解答计分).(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n T .【答案】条件选择见解析;(1)n a n =,2n n b =;(2)212222n n n n T +=-++. 【解析】选∴解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=. 由题意知132452,24b b b b ⎛⎫=⋅=+ ⎪⎝⎭,得324522b b b =+, 设等比数列{}n b 的公比为2222,522q b q b b q ⋅=+,即22520q q -+=, 解得2q ,或12q =,由数列{}n b 为递增等比数列可知12q =不合题意, 所以{}n b 是一个以2为首项,2为公比的等比数列.1222n n n b -∴=⨯=(2)由(1)知2n n n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+,()212(1)212n n n n T -+∴=+- 212222n n n n T +∴=-++. 选∴解:(1)设等差数列{}n a 的公差为d ,1281122,10,2810,1,1a a a a d a d =+=∴+=∴==,1(1)1n a n n ∴=+-⨯=.令1n =,则111112,42,2S b S λλλ+=+∴==+=∴=-,122n n S +∴=-当2n ≥时,()()1122222n n n n n n b S S +-=-=---=当1n =时,12b =也满足上式.2n n b =(2)由(1)知2n n n a b n +=+,()()()()1231222322n n T n ∴=++++++⋯++,()123(123)2222n n T n ∴=+++⋯+++++⋯+,()212(1)212n n n n T -+∴=+-,212222n n n n T +∴=-++ 四、数学建模数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养,主要表现在:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题,在本章主要表现在数列的的实际应用问题中.【典例14】(2021·河南信阳市·高二期末(理))“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第六个单音的频率为( )A.B. CD【答案】B【解析】由题意知,十三个单音的频率构成等比数列{}n a,公比为 ∴第六个单音的频率561a a q =⋅=.故选:B.【典例15】(2021·河南高二期末(文))疫苗是解决“新冠病毒”的关键,为了早日生产“新冠病毒”疫苗,某研究所计划建设n 个实验室,从第1到第n 实验室的建设费用依次构成等差数列,已知第7实验室比第2实验室的建设费用高15万元,第3实验室和第6实验室的建设费用共为61万元,现在总共有建设费用438万元.则该研究所最多可以建设的实验室个数是( )A .10个B .11个C .12个D .13个【答案】C【解析】设第n 实验室的建设费用为n a 万元,其中1,2,3n =, 由题意可得723615152761a a d a a a d -==⎧⎨+=+=⎩,解得1203a d =⎧⎨=⎩,则()23133720222n n n S n n n -=+=+, 令438n S ≤,即23378760n n +-≤且n N +∈,解得12n ≤.所以最多可以建设12个实验室.故选:C.【典例16】(2021·上海普陀区·曹杨二中高二期末)某公司自2020年起,每年投入的设备升级资金为500万元,预计自2020年起(2020年为第1年),因为设备升级,第n 年可新增的盈利()()5801,5100010.6,6n n n n a n -⎧-≤⎪=⎨-≥⎪⎩(单位:万元),求: (1)第几年起,当年新增盈利超过当年设备升级资金;(2)第几年起,累计新增盈利总额超过累计设备升级资金总额.【答案】(1)第7年;(2)第12年.【解析】(1)当5n ≤时,80(1)500na n =->,解得7.25n >,即8n ≥,不成立, 当6n ≥时,51000(10.6)500n n a -=->,即50.60.5n -<,50.6n -随着n 的增大而减小, 当6n =时,650.60.60.5-=<不成立,当7n =时,750.60.360.5-=<成立,故第7年起,当年新增盈利超过当年设备升级资金;(2)当5n =时,累计新增盈利总额5123450801602403208005005S a a a a a =++++=++++=<⨯,可得所求n 超过5,当6n ≥时,55600(10.6)1000(5)50010.6n n S S n n --=+-->-, 整理得530.611.4n n -+⨯>,由于530.6n -⨯随着n 的增大而减小又当11n =时,1151130.611.4-+⨯<,故不成立,当12n =时,1251230.611.4-+⨯>,故成立,故从第12年起,累计新增盈利总额超过累计设备升级资金总额.。
数列章末归纳总结
06
数列的未来发展与展望
数学理论的发展
数学理论不断深化
随着数学学科的发展,数列理论将不断得到深化和拓展,新 的数学工具和方法将被引入,推动数列理论的进步。
数学与其他学科的交叉融合
数列作为数学的一个重要分支,将与其他学科如物理、化学 、计算机科学等产生更多的交叉融合,为解决实际问题提供 新的思路和方法。
05
数列的学习重点与难点
学习重点
数列的定义与性质
理解数列的基本概念,掌握数 列的性质,如递增、递减、有
界等。
等差数列与等比数列
掌握等差数列和等比数列的定 义、性质和通项公式,理解数 列的极限概念。
数列的求和
掌握数列求和的基本方法,如 裂项相消法、错位相减法等。
数列的应用
理解数列在实际问题中的应用 ,如增长率、复利、人口统计
物理领域
物理学中的很多现象 可以用数列来表示和 描述,如周期性运动、 波动等。
在信号处理和通信中, 数列被用来表示和传 输信号。
在量子力学和统计物 理中,数列被用来描 述微观粒子的状态和 相互作用。
工程领域
在计算机科学中,数列被广泛 应用于算法设计和数据结构中, 如排序算法、动态规划等。
在控制工程中,数列被用来描 述和控制系统中的参数和变量。
几何法
总结词
利用几何图形和性质,解决数列问题。
详细描述
几何法是利用几何图形和性质来解决数列问题的一种方法。例如,对于等差数列和等比数列,可以通过构造等差 数列和等比数列的几何图形来直观地理解其性质和变化规律。
函数法
总结词
将数列问题转化为函数问题,利用函数性质解决。
详细描述
函数法是将数列问题转化为函数问题,利用函数的性质来解决数列问题的一种方法。例如,对于一些 复杂的数列问题,可以通过构造相应的函数,利用函数的单调性、周期性等性质来求解。
数列全部知识点归纳总结
数列全部知识点归纳总结数列是高中数学中的一个重要概念,广泛应用于数学和其他学科的问题中。
它是由一组按照特定规律排列的数所组成的序列。
在数列中,每一个数被称为序列的项,而序列中的规律则被称为递推公式。
本文将对数列的基本概念、常见数列类型、性质及应用进行全面的知识点归纳和总结。
一、基本概念数列是由一组按特定顺序排列的数所组成的序列。
数列的每个数被称为序列的项,通常用字母表示,如a1, a2, a3等。
数列中每个项的位置被称为项号,通常用下标表示,如a1, a2, a3的项号分别为1, 2, 3。
数列也可以用函数来表示,即f(n),其中n表示项号。
二、常见数列类型1.等差数列:等差数列是指数列中相邻两项之差都相等的数列。
它的递推公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是指数列中相邻两项之比都相等的数列。
它的递推公式为an = a1 * r^(n-1),其中a1为首项,r为公比。
3.等差数列的前n项和:等差数列的前n项和可以用求和公式Sn = (n/2)(a1+an)来表示,其中n为项数,a1为首项,an为第n项。
4.等比数列的前n项和:等比数列的前n项和可以用求和公式Sn = (a1(r^n-1))/(r-1)来表示,其中n为项数,a1为首项,r为公比。
三、数列的性质1.有界性:数列可以是有界的,也可以是无界的。
有界数列是指数列的所有项都在一定范围内,无界数列则相反。
2.单调性:数列可以是单调递增的、单调递减的或者既不递增也不递减的。
3.周期性:有些数列具有周期性,即数列中的项按照一定的规律循环出现。
4.递推关系:数列中的每一项可以通过前一项和递推公式来推导得到。
四、数列的应用1.数学问题:数列广泛应用于数学问题的求解中,如求解等差数列、等差数列的前n项和等。
2.物理问题:数列也常常用于物理问题的建模与求解中,如描述物体运动的规律等。
3.计算机科学:数列在计算机科学中有着重要的应用,如算法设计、数据压缩等领域。
高中数学数列的公式及结论总结
高中数学数列的公式及结论总结1. 数列的定义数列是指按照一定规律排列的一列数,每个数称为数列的项。
数列的一般表示形式为a1,a2,a3,...,a n,其中a n表示数列的第 n 项。
2. 数列的通项公式数列的通项公式是指表示数列第 n 项的公式。
通项公式的推导需要根据数列的规律进行归纳总结,以下是一些常见的数列通项公式。
2.1. 等差数列通项公式等差数列的规律是每一项与它的前一项之间的差值相等。
设等差数列的首项为a1,公差为d,则等差数列的第n项为:a n=a1+(n−1)d2.2. 等比数列通项公式等比数列的规律是每一项与它的前一项之间的比值相等。
设等比数列的首项为a1,公比为q,则等比数列的第n项为:a n=a1q n−12.3. 斐波那契数列通项公式斐波那契数列是指首项为 1,第二项为 1,从第三项开始,每个数等于它前面两个数之和的数列。
设斐波那契数列的第n项为F n,则它的通项公式为:$$F_n = \\frac{1}{\\sqrt 5}[(\\frac{1+\\sqrt 5}{2})^n - (\\frac{1-\\sqrt5}{2})^n]$$3. 数列的常用结论数列的常用结论是指在运用数列通项公式时可以采用的一些常见结论。
3.1. 等差数列求和公式等差数列前n项和为:$$S_n = \\frac{n(a_1+a_n)}{2}$$3.2. 等比数列求和公式当|q|<1时,等比数列前n项和为:$$S_n = \\frac{a_1 - a_n q}{1-q}$$当|q|>1时,等比数列前n项和为:$$S_n = \\frac{a_1 q^n - a_n}{q - 1}$$3.3. 等差中项的求法等差数列的等差中项m可以表示为:$$m = \\frac{a_n + a_1}{2}$$3.4. 等比中项的求法等比数列的等比中项m可以表示为:$$m = \\sqrt{a_1 a_n}$$4. 总结数列是数学中一个非常重要的概念,它代表着数学世界中的有序性和规律性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回目录
返回目录
网络建构
高考揭秘
n - - (2)解:由于 r1=1,q=3,故 rn=3n 1,从而 =n· 1 n, 3 rn 1 2 n 记 Sn= + +…+ ,则有 r1 r2 rn -1 -2 - Sn=1+2· +3· +…+n· 1 n,① 3 3 3 Sn - - - - =1· 1+2· 2+…+(n-1)· 1 n+n· n.② 3 3 3 3 3 ①-②,得 2Sn - - - - =1+3 1+3 2+…+31 n-n· n 3 3 - 1-3 n 3 3 - - = -n· n= -(n+ )· n. 3 3 2 2 2 3 - 31 n 9 1 3 1- n 9-2n+3· ∴Sn= - (n+ )· = 3 . 4 2 2 4
返回目录
网络建构
高考揭秘
3 3 1 x 的倾斜角记为 θ,则有 tan θ= ,sin θ= . 3 3 2 rn 1 设 Cn 的圆心为(λ n,0),则由题意知 = ,得 λn=2rn;同理 λn+1=2rn+1, λn 2 从而 λn+1=λn+rn+rn+ 1=2rn+ 1,将 λn=2rn 代入, 解得 rn+ 1=3rn. 故{rn}为公比 q=3 的等比数列. (1)证明:将直线 y=
返回目录
网络建构
高考揭秘
3.(2010 年高考江苏卷,理 19)设各项均为正数的数列{an}的前 n 项和为 S n,已知 2a2= a1+a3,数列{ Sn}是公差为 d 的等差数列. (1)求数列{an}的通项公式(用 n,d 表示); (2)设 c 为实数,对满足 m+n=3k 且 m≠n 的任意正整数 m,n,k,不等式 Sm+Sn>cS k 9 都成立.求证:c 的最大值为 . 2
返回目录
网络建构
高考揭秘
(1)解:∵{ Sn}是等差数列,∴2 S2= S1+ S3, 又 2a2=a1+a3, ∴2 a1+a2 = a1+ 3a2, 平方得: 3a1+a2=2 3a1a2, 即( a2- 3a1)2=0, ∴a2=3a1. ∴d= S2- S1=2 a1- a1,即 S1=d. ∴ Sn= S1+(n-1)d=nd,Sn=n2d2. n≥2 时,an=Sn-Sn- 1=n2d2-(n-1)2d2=(2n-1)d2. 且当 n=1 成立,∴an=(2n-1)d2.
返回目录
网络建构
高考揭秘
2.(2010 年高考广东卷,理 4)已知数列{an}为等比数列,Sn 是它的前 n 项和.若 a2·3= a 5 2a1,且 a4 与 2a7 的等差中项为 ,则 S5 等于( ) 4 (A)35 (B)33 (C)31 (D)29
解析:设此等比数列的公比为 q(q≠0),由 a2· 3=2a1 得 a2q3=2a1,而 a1≠0,所以 a1q3 a 1 5 5 1 1 =2;由 a4 与 2a7 的等差中项为 ,得 a1q3+2a1q6= ,所以 2a1q6= ,所以 a1q6= ,综合上 4 2 2 4 a11-q5 1 式得 q= ,a1=16,则所求 S5= =31.故选 C. 2 1-q
高考揭秘
4.(2010 年高考安徽卷,文 21)设 C1,C2,…,Cn,…是坐标平面上的一列圆,它们的 圆心都在 x 轴的正半轴上,且都与直线 y=
3 x 相切.对每一个正整数 n,圆 Cn 都与圆 Cn+1 3 相互外切.以 rn 表示圆 Cn 的半径,已知{rn}为递增数列. (1)证明:{rn}为等比数列; n (2)设 r1=1,求数列{ }的前 n 项和. rn
网络建构
高考揭秘
章末总结
返回目录网ຫໍສະໝຸດ 建构高考揭秘返回目录
网络建构
高考揭秘 (对应学生用书第80页)
返回目录
网络建构
高考揭秘
返回目录
网络建构
高考揭秘
(对应学生用书第80页)
数列是高中数学的主干知识之一,数列试题蕴含着极为丰富的数学思想方法,因此数列 试题仍然是用来考查学生数学能力的良好素材,高考对数列的考查会以两类基本数列为主 (如2010年高考安徽卷,理10,2010年高考广东卷,理4).
结合函数,不等式、解析几何等进行考查(如2010年高考江苏卷,理19,2010年高考安徽卷, 文21) 本章内容是高考的热点,综合题一般放在压轴题的位置,选拔性很强,尤其是理科,文科 难度有所降低.
返回目录
网络建构
高考揭秘
1.(2010年高考安徽卷,理10)设{an}是任意等比数列,它的前n项和,前2n项和与前3n项 和分别为X,Y,Z,则下列等式中恒成立的是( )
(A)X+Z=2Y (B)Y(Y-X)=Z(Z-X)
(C)Y2=XZ (D)Y(Y-X)=X(Z-X) 解析:由等比数列的性质可知:X,Y-X,Z-Y成等比数列,即:(Y-X)2=X(Z-Y).
整理得Y2+X2-2YX=XZ-XY,即Y2-YX=XZ-X2.
所以:Y(Y-X)=X(Z-X).故选D.
返回目录
网络建构
高考揭秘
得 m2+n2>ck2, m2+n2 即 c< . k2 ∵m+n=3k 且 m≠n m2+n2 9m2+n2 9m2+n2 9 ∴ = > . 2 2 2 = 2 k m +n +2mn 2 m+n 9 9 ∴c≤ ,c 的最大值为 . 2 2
返回目录
网络建构