2016期中数学试卷
泰安市新泰市2016届九年级上期中数学试卷含答案解析
一、选择题(本大题共 20 小题,在每小题给出的四个选项中,只有一个是正确的,请将正确的选 项选出来,每小题选对得 3 分,错选、不选或选出的答案超过一个,均记零分) 1.下列四个三角形中,与图中的三角形相似的是( )
A.
B.
C.
D.
2.如图,点 P 是▱ ABCD 边 AB 上的一点,射线 CP 交 DA 的延长线于点 E,则图中相似的三角形 有( )
上述四个方法中,正确的个数是( ) A.4 个 B.3 个 C.2 个 D.1 个
11.如图,在⊙O 中,A、B、C、D 均在圆上,∠BAC=25°,∠CED=30°,则∠BOD 的度数是 ()
A.55° B.110° C.125°下列结论不一定成立的是( )
A. B. C.
D.
17.已知如图,CO、CB 是⊙O′的弦,⊙O′与坐标系 x、y 轴交于 B、A 两点,∠OCB=60°,点 A 的 坐标为(0,1),则⊙O′的弦 OB 的长为( )
A.1 B.2 C. D.2 18.如图所示,在圆⊙O 内有折线 OABC,其中 OA=6,BC=16,∠A=∠B=60°,则 AB 的长为 ()
A.0.28m B.0.385m C.0.4m D.0.3m
5.如图,在平行四边形 ABCD 中,点 E 在边 DC 上,DE:EC=3:1,连接 AE 交 BD 于点 F,则 △DEF 的面积与△BAF 的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1 6.在 Rt△ABC 中,∠C=90°,sinA= ,则 tanB 的值为( ) A. B. C. D.
A.0 对 B.1 对 C.2 对 D.3 对
南阳市2016秋期中高二数学期中试题(答案版)
2016秋南阳市高二数学期中试题答案一、选择题(本大题满分60分,每小题5分):1、已知:全集{}12>=x x U ,集合{}0342<+-=x x x A ,则=A C U ( C ) A 、(1,3) B 、),3[)1,(+∞-∞Y C 、),3[)1,(+∞--∞Y D 、),3()1,(+∞--∞Y3、已知:1>x ,则1-+x x 的最小值为( B ) A 、4 B 、5 C 、6 D 、7 提示:5114)1(21]14)1[(14=+-⋅-≥+-+-=-+x x x x x x 4、等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=15,则S 7的值是(B ) A 、28B 、35C 、42D 、7提示:4622a a a =+,54=a ,3572)(74717==+=a a a S 5、已知:数列}{n a 为等比数列,其前n 项和t S n n +=-13,则t 的值为( C )A 、1-B 、3-C 、31- D 、1提示:t t S n n n+⋅=+=-33131,31-=t 或者利用t S n n +=-13求出数列前三项。
6、在△ABC 中,根据下列条件解三角形,则其中有两个解的是( D ) A 、b = 10,A = 45°,B = 60° B 、a = 60,c = 48,B = 120°C 、a = 7,b = 5,A = 75°D 、a = 14,b = 16,A = 45° 提示:A 选择支是“AAS ”,B 选择支是“SAS ”,显然只有一解。
7是用无理数表示有理数的一个范例。
由此,=5a (B ) A 、3 B 、5 C 、8 D 、13提示:斐波那契数列:21--+=n n n a a a ,所以,只须求出1,121==a a8、已知在正项等比数列{a n }中,a 1=1,a 2a 4=16,则|a 1-12|+|a 2-12|+…+|a 8-12|=(B ).A 、224B 、225C 、226D 、256 9、不等式11>++bx ax 的解集为),3()1,(+∞--∞Y ,则不等式022<-+b ax x 的解集为( A )A 、)2,3(--B 、)31,21(-- C 、),2()3,(+∞---∞Y D 、),31()21,(+∞---∞Y提示:11>++bx ax 得0)]1()1)[((>-+-+b x a b x ,由题知方程0)]1()1)[((=-+-+b x a b x 的二根为-1和3 ,易得:3,5-==b a10、在△ABC 中,若2222sin )sin(ba b a C B A +-=-,则△ABC 的形状是( D ). A 、锐角三角形 B 、直角三角形 C 、等腰三角形 D 、等腰或直角三角形提示:)sin(sin B A C +=,易得B A b A B a cos sin cos sin 22=,所以B A 2sin 2sin =,故π=+=B A B A 2222或者11、某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是(C ) A 、2日和5日 B 、5日和6日 C 、6日和11日 D 、2日和11日 提示:1~12日期之和为78,三人各自值班的日期之和相等,故每人值班四天的日期之和是26,甲在1日和3日都有值班,故甲余下的两天只能是10号和12号;而乙在8日和9日都有值班,8+9=17,所以11号只能是丙去值班了。
【人教版】2016届九年级上期中数学试卷及答案解析
九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。
在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。
2016-2017学年七年级(上)期中数学试卷及答案解析
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
辽宁省锦州中学2016届高三上学期期中数学试卷(理科) 含解析
2015—2016学年辽宁省锦州中学高三(上)期中数学试卷(理科)一、选择题(本题共12个小题,每题5分,共60分,四个选项中只有一个正确)1.已知U={1,2,3,4,5,6},M={1,3,4,5},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=U C.(∁U N)∪M=U D.(∁U M)∩N=N2.设z=1﹣i,则+z2=()A.﹣1﹣i B.1﹣i C.﹣l+i D.l+i3.在△ABC中,角A,B,C的对应边分别为a,b,c,若,则角C的值为()A.B.C.或 D.或4.已知方程x2+(m+2)x+m+5=0有两个正根,则实数m的取值范围是()A.m≤﹣2 B.m≤﹣4 C.m>﹣5 D.﹣5<m≤﹣45.在框图中,设x=2,并在输入框中输入n=4;a i=i(i=0,1,2,3,4).则此程序执行后输出的S值为()A.26 B.49 C.52 D.986.给出下列四个命题:(1)若α>β且α、β都是第一象限角,则tanα>tanβ;(2)“对任意x∈R,都有x2≥0"的否定为“存在x0∈R,使得<0”;(3)已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则(¬p)∨q为真命题;(4)函数是偶函数.其中真命题的个数是()A.1 B.2 C.3 D.47.设函数,若f(x)+f′(x)为奇函数,则φ=()A.B.C.D.8.设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2]B.[0,2]C.[1,+∞)D.[0,+∞)9.△ABC的三边长度分别是2,3,x,由所有满足该条件的x构成集合M,现从集合M中任取一x值,所得△ABC恰好是钝角三角形的概率为()A. B.C.D.10.一抛物线型拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m时,则水面宽为() A.m B.2m C.4。
5m D.9m11.椭圆(m>1)与双曲线(n>0)有公共焦点F1,F2.P是两曲线的交点,则=()A.4 B.2 C.1 D.12.已知函数,g(x)=f(x)+m,若函数g(x)恰有三个不同零点,则实数m的取值范围为()A.(1,10)B.(﹣10,﹣1) C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知某几何体的三视图如图所示,(图中每一格为1个长度单位)则该几何体的全面积为.14.若方程x+y﹣6+3k=0仅表示一条直线,则实数k的取值范围是.15.已知△ABC,点A(2,8)、B(﹣4,0)、C(4,﹣6),则∠ABC的平分线所在直线方程为.16.已知双曲线C:,A、B是双曲线上关于原点对称的两点,M是双曲线上异于A、B的一点,直线MA、MB的斜率分别记为k1,k2,且k1∈[﹣3,﹣1],则k2的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.已知x2+y2=9的内接三角形ABC中,A点的坐标是(﹣3,0),重心G的坐标是,求:(Ⅰ)直线BC的方程;(Ⅱ)弦BC的长度.18.已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)数列的前n项和S n.19.已知A,B,C为锐角△ABC的三个内角,向量=(2﹣2sinA,cosA+sinA),=(1+sinA,cosA ﹣sinA),且⊥.(Ⅰ)求A的大小;(Ⅱ)求y=2sin2B+cos(﹣2B)取最大值时角B的大小.20.甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数ξ的分布列和数学期望.21.已知函数.(Ⅰ)当a<0时,若∃x>0,使f(x)≤0成立,求a的取值范围;(Ⅱ)令g(x)=f(x)﹣(a+1)x,a∈(1,e],证明:对∀x1,x2∈[1,a],恒有|g(x1)﹣g(x2)|<1.22.已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;l1,l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E交C,D两点,AB,CD的中点分别为M,N.(Ⅰ)求椭圆E的方程;(Ⅱ)求l1的斜率k的取值范围;(Ⅲ)求的取值范围.2015-2016学年辽宁省锦州中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每题5分,共60分,四个选项中只有一个正确)1.已知U={1,2,3,4,5,6},M={1,3,4,5},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=U C.(∁U N)∪M=U D.(∁U M)∩N=N【考点】交、并、补集的混合运算.【专题】计算题;集合.【分析】根据集合的基本运算即可得到结论.【解答】解:由补集的定义可得∁U M={2,6},则(∁U M)∪M={1,2,3,4,5,6}=U,故选:C【点评】本题主要考查集合的基本运算,比较基础.2.设z=1﹣i,则+z2=()A.﹣1﹣i B.1﹣i C.﹣l+i D.l+i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把z=1﹣i代入+z2,然后利用复数代数形式的乘除运算化简.【解答】解:∵z=1﹣i,∴+z2===1+i﹣2i=1﹣i.故选:B.【点评】本题考查了复数代数形式的乘除运算,是基础的运算题.3.在△ABC中,角A,B,C的对应边分别为a,b,c,若,则角C的值为()A.B.C.或 D.或【考点】余弦定理.【专题】计算题;转化思想;解三角形.【分析】利用余弦定理表示出cosC,将已知等式代入求出cosC的值,即可确定出C的度数.【解答】解:∵△ABC中,a2+b2﹣c2=ab,∴cosC==,则C=,故选:A.【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.已知方程x2+(m+2)x+m+5=0有两个正根,则实数m的取值范围是()A.m≤﹣2 B.m≤﹣4 C.m>﹣5 D.﹣5<m≤﹣4【考点】二次函数的性质.【专题】计算题.【分析】由方程x2+(m+2)x+m+5=0有两个正根,根据实数的性质,由韦达定理(一元二次方程根与系数的关系)可得,x1+x2>0,x1•x2>0,进而构造出m的不等式组,解不等式组,即可求出实数m的取值范围.【解答】解:若方程x2+(m+2)x+m+5=0有两个正根x1,x2,由韦达定理(一元二次方程根与系数的关系)可得:x1+x2=﹣(m+2)>0,x1•x2=m+5>0解得:﹣5<m<﹣2,又由△>0得,m<﹣4,或m>4,故:﹣5<m<﹣4故选D【点评】本题考查的知识点是二次函数的性质,一元二次方程根与系数的关系,其中由韦达定理(一元二次方程根与系数的关系)结合已知,构造出关于m的不等式组,是解答本题的关键.5.在框图中,设x=2,并在输入框中输入n=4;a i=i(i=0,1,2,3,4).则此程序执行后输出的S值为()A.26 B.49 C.52 D.98【考点】程序框图.【专题】计算题;图表型;数学模型法;算法和程序框图.【分析】执行程序框图,依次写出每次循环得到的k,S的值,当k=0时不满足条件k>0,退出循环,输出S的值为98.【解答】解:模拟执行程序框图,可得第1次执行循环体,k=3,S=3+4×2=11,满足条件k>0,第2次执行循环体,k=2,S=2+11×2=24,满足条件k>0,第3次执行循环体,k=1,S=1+24×2=49,满足条件k>0,第4次执行循环体,k=0,S=0+49×2=98,不满足条件k>0,退出循环,输出S的值为98.故选:D.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.6.给出下列四个命题:(1)若α>β且α、β都是第一象限角,则tanα>tanβ;(2)“对任意x∈R,都有x2≥0”的否定为“存在x0∈R,使得<0”;(3)已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则(¬p)∨q为真命题;(4)函数是偶函数.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【专题】综合题;转化思想;综合法;简易逻辑.【分析】对4个命题分别进行判断,即可得出结论.【解答】解:(1)若α>β且α、β都是第一象限角,比如α=,β=,则tanα=tanβ,故(1)错;(2)这是含有一个量词的命题的否定,否定的规则是改变量词再否定结论,正确;(3)已知命题p:所有有理数都是实数,是真命题,q:正数的对数都是负数,为假命题,则(¬p)∨q 为假命题,不正确;(4)函数是奇函数,不正确.故选:A.【点评】本题考查命题的真假判断,考查学生分析解决问题的能力,知识综合性强.7.设函数,若f(x)+f′(x)为奇函数,则φ=() A.B.C.D.【考点】导数的运算.【专题】导数的概念及应用.【分析】对函数求导结合两角差的正弦公式,代入整理可得,根据奇函数的性质可得x=0时函数值为0,代入可求φ的值【解答】解:∵,∴φ),则f(x)+f′(x)==,∵f(x)+f′(x)为奇函数,令g(x)=f(x)+f′(x),即函数g(x)为奇函数∴g(0)=0,∴,∵0<φ<π,∴故选D.【点评】本题考查了两角差的正弦公式,函数的求导公式,函数的性质,是基础题.8.设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.[﹣1,2]B.[0,2]C.[1,+∞)D.[0,+∞)【考点】对数函数的单调性与特殊点.【专题】分类讨论.【分析】分类讨论:①当x≤1时;②当x>1时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.【解答】解:当x≤1时,21﹣x≤2的可变形为1﹣x≤1,x≥0,∴0≤x≤1.当x>1时,1﹣log2x≤2的可变形为x≥,∴x≥1,故答案为[0,+∞).故选D.【点评】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.9.△ABC的三边长度分别是2,3,x,由所有满足该条件的x构成集合M,现从集合M中任取一x值,所得△ABC恰好是钝角三角形的概率为()A. B.C.D.【考点】几何概型.【专题】计算题;转化思想;综合法;概率与统计.【分析】根据△ABC的三边长度分别是2,3,x,,1<x<5,区间长度为4,△ABC 恰好是钝角三角形,x的取值范围是(1,)∪(,5),区间长度为(4﹣+),即可求出概率.【解答】解:由题意,△ABC的三边长度分别是2,3,x,,∴1<x<5,区间长度为4,△ABC恰好是钝角三角形,∴x的取值范围是(1,)∪(,5),区间长度为(4﹣+),∴从集合M中任取一x值,所得△ABC恰好是钝角三角形的概率为.故选:A.【点评】此题考查学生灵活运用余弦定理化简求值,会求一元二次不等式组的解集,是一道综合题.学生在做题时应注意钝角三角形这个条件.10.一抛物线型拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m时,则水面宽为()A.m B.2m C.4.5m D.9m【考点】抛物线的简单性质.【专题】计算题.【分析】建立适当的直角坐标系,设抛物线方程为x2=﹣2Py(P>0),由题意知抛物线过点(2,﹣2),进而求得p,得到抛物线的标准方程.进而可知当y0=﹣3时x02的值,最后根据水面宽为2|x0|求得答案.【解答】解:建立适当的直角坐标系,设抛物线方程为x2=﹣2Py(P>0),由题意知,抛物线过点(2,﹣2),∴4=2p×2.∴p=1.∴x2=﹣2y.当y0=﹣3时,得x02=6.∴水面宽为2|x0|=2.【点评】本题主要考查了抛物线的性质.属基础题.11.椭圆(m>1)与双曲线(n>0)有公共焦点F1,F2.P是两曲线的交点,则=()A.4 B.2 C.1 D.【考点】双曲线的简单性质;椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由题设中的条件,设两个圆锥曲线的焦距为2c,椭圆的长轴长2m,双曲线的实轴长为2n,由它们有相同的焦点,得到m2﹣n2=2,根据双曲线和椭圆的定义可得|PF1|+|PF2|=2m,|PF1|﹣|PF2|=2n,△PF1F2 中,由三边的关系得出其为直角三角形,由△PF1F2的面积公式即可运算得到结果.【解答】解:由题意设两个圆锥曲线的焦距为2c,椭圆的长轴长2m,双曲线的实轴长为2n,由它们有相同的焦点,得到m2﹣1=n2+1,即m2﹣n2=2.不妨令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2n,①由椭圆的定义|PF1|+|PF2|=2m,②①2+②2得|PF1|2+|PF2|2=2n2+2m2,∴|PF1|•|PF2|=m2﹣n2=2,∴cos∠F1PF2|==0,∴△F1PF2的形状是直角三角形△PF1F2的面积为•PF1•PF2=×2=1.故选C.【点评】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,解决本题的关键是根据所得出的条件灵活变形,求出焦点三角形的边长来.12.已知函数,g(x)=f(x)+m,若函数g(x)恰有三个不同零点,则实数m的取值范围为()A.(1,10)B.(﹣10,﹣1)C.D.【考点】函数零点的判定定理.【专题】函数思想;数形结合法;函数的性质及应用.【分析】根据函数单调性作出f(x)的函数图象,根据函数f(x)的图象得出m的范围.【解答】解:当x≤0时,f′(x)=(2﹣2x)e x+(2x﹣x2)e x=(2﹣x2)e x.∴当x<﹣时,f′(x)<0,当﹣x<0时,f′(x)>0,∴f(x)在(﹣∞,﹣)上单调递减,在(﹣,0)上单调递增,当x<0时,f(x)<0,f(﹣)=﹣,f(0)=0.当x>0时,f(x)在(0,3)上单调递增,在(3,+∞)上单调递减,f(3)=10,→﹣∞,作出f(x)的大致函数图象如图:∵g(x)=f(x)+m恰有三个不同零点,∴﹣m=f(x)有三个解,∴f(﹣)<﹣m<0,∴0<m<,故选:C.【点评】本题考查了函数零点的个数判断,常借助函数图象来判断.属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知某几何体的三视图如图所示,(图中每一格为1个长度单位)则该几何体的全面积为4+4.【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;立体几何.【分析】由三视图知该几何体是高为2的正四棱锥,结合图中数据求出它的全面积.【解答】解:由三视图可知,该几何体是高为2的正四棱锥,且正四棱锥的底面边长为2;所以四棱锥侧面三角形的高为=,侧面三角形的面积为×2×=;又底面面积为22=4,所以该几何体的全面积为S=4+4×=4+4.故答案为:.【点评】本题考查了空间几何体三视图的应用问题,也考查了几何体表面积的计算问题,是基础题目.14.若方程x+y﹣6+3k=0仅表示一条直线,则实数k的取值范围是k=3或k<0.【考点】曲线与方程.【专题】计算题;直线与圆.【分析】先将原方程变形,再分类讨论,即可求得实数k的取值范围.【解答】解:原方程可变形为(﹣3)2=9﹣3k,∴=±+3①显然,k=3时,x+y=9;当0≤k<3时,①式右边有两值,则直线不唯一;当k<0时,①式右边一正一负,负值不满足,故所求k的取值范围是k=3或k<0.故答案为:k=3或k<0.【点评】本题考查曲线与方程,考查学生分析解决问题的能力,比较基础.15.已知△ABC,点A(2,8)、B(﹣4,0)、C(4,﹣6),则∠ABC的平分线所在直线方程为x﹣7y+4=0.【考点】待定系数法求直线方程.【专题】方程思想;综合法;直线与圆.【分析】先求出三角形ABC是等腰直角三角形,作出∠ABC的角平分线BD,求出D点坐标,BD的斜率,再用点斜式求得所在直线方程即可.【解答】解:如图示:,∵k AB=,k BC=﹣,∴AB⊥BC,∵|AB|==10,|BC|==10,∴|AB|=|BC|,∴△ABC是等腰直角三角形,作出∠ABC的角平分线BD,∴直线BD是线段AC的垂直平分线,D是AC的中点,∴D(3,1),由k AC=﹣7得:k BD=,∴直线BD的方程是:y=1=(x﹣3),整理得:x﹣7y+4=0,故答案为:x﹣7y+4=0.【点评】本题主要考查直线的倾斜角和斜率,用点斜式求直线的方程,体现了数形结合以及转化的数学思想,属于基础题.16.已知双曲线C:,A、B是双曲线上关于原点对称的两点,M是双曲线上异于A、B的一点,直线MA、MB的斜率分别记为k1,k2,且k1∈[﹣3,﹣1],则k2的取值范围是[﹣3,﹣1].【考点】双曲线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】设出点A,点M,点B的坐标,求出斜率,将点A,B的坐标代入方程,两式相减,再结合k1∈[﹣3,﹣1],即可求得结论.【解答】解:由题意,设A(x1,y1),M(x2,y2),则B(﹣x1,﹣y1)∴k1•k2=•=,∵﹣=1,﹣=1,∴两式相减可得=3∵k1∈[﹣3,﹣1],∴k2∈[﹣3,﹣1].故答案为:[﹣3,﹣1].【点评】本题考查双曲线的方程,考查双曲线的几何性质,考查直线的斜率公式和点差法的运用,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.已知x2+y2=9的内接三角形ABC中,A点的坐标是(﹣3,0),重心G的坐标是,求:(Ⅰ)直线BC的方程;(Ⅱ)弦BC的长度.【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】(Ⅰ)要求三角形顶点的坐标,可先将它们的坐标设出来,根据重心的性质,我们不难求出BC边上中点D的坐标,及BC所在直线的斜率,代入直线的点斜式方程即可求出答案.(Ⅱ)求出圆心到BC所在直线的距离,即可求出弦BC的长度.【解答】解:(I)设B(x1,y1),C(x2,y2),则由已知得;y1+y2=﹣3所以BC中点坐标为,故所以BC所在直线方程为:,即4x﹣8y﹣15=0﹣﹣﹣﹣﹣(II)由(I)得圆心到BC所在直线的距离为所以弦BC的长度为.﹣﹣﹣﹣﹣【点评】本题考查三角形重心的性质,中点坐标公式,直线的点斜式方程.属于中档题.18.已知数列{a n}的首项,,n=1,2,3,….(Ⅰ)证明:数列是等比数列;(Ⅱ)数列的前n项和S n.【考点】数列的求和;等比关系的确定.【专题】转化思想;综合法;等差数列与等比数列.【分析】(Ⅰ)由,两边取倒数可得:,变形为,即可证明;另解:设,则,可得,即可证明.(Ⅱ)由(Ⅰ)知:,再利用等比数列的前n项和公式即可得出.【解答】解:(Ⅰ)∵,两边取倒数可得:,∴,又,∴,∴数列是以为首项,为公比的等比数列.另解:设,则,所以,得2b n+1=b n,而,所以命题得证.(Ⅱ)由(Ⅰ)知,即,∴.∴.【点评】本题考查了等比数列的定义通项公式及其前n项和公式、“取倒数法”,考查了推理能力与计算能力,属于中档题.19.已知A,B,C为锐角△ABC的三个内角,向量=(2﹣2sinA,cosA+sinA),=(1+sinA,cosA ﹣sinA),且⊥.(Ⅰ)求A的大小;(Ⅱ)求y=2sin2B+cos(﹣2B)取最大值时角B的大小.【考点】三角函数的化简求值;三角函数的最值.【专题】计算题.【分析】(Ⅰ)根据两向量的垂直,利用两向量的坐标求得(2﹣2sinA)(1+sinA)+(cosA+sinA)(cosA﹣sinA)=0,利用同角三角函数的基本关系整理求得cosA的值,进而求得A.(Ⅱ)根据A的值,求得B的范围,然后利用两角和公式和二倍角公式对函数解析式化简整理后.利用B的范围和正弦函数的单调性求得函数的最大值,及此时B的值.【解答】解:(Ⅰ)∵,∴(2﹣2sinA)(1+sinA)+(cosA+sinA)(cosA﹣sinA)=0⇒2(1﹣sin2A)=sin2A﹣cos2A⇒2cos2A=1﹣2cos2A⇒cos2A=.∵△ABC是锐角三角形,∴cosA=⇒A=.(Ⅱ)∵△ABC是锐角三角形,且A=,∴<B<∴=1﹣cos2B﹣cos2B+sin2B=sin2B﹣cos2B+1=sin(2B﹣)+1当y取最大值时,2B﹣=,即B=.【点评】本题主要考查了三角函数的化简求值,向量的基本性质.考查了学生对基础知识的掌握和基本的运算能力.20.甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数ξ的分布列和数学期望.【考点】相互独立事件的概率乘法公式;离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】计算题.【分析】(Ⅰ)用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=,分析可得“至少有1人面试合格"与“三人面试全不合格”为对立事件,由对立事件的概率,计算可得答案;(Ⅱ)根据题意,易得ξ的可能取值为0,1,2,3,分别计算其概率可得分布列,由期望的计算公式,结合分布列计算可得ξ的期望.【解答】解:(Ⅰ)用A,B,C分别表示事件甲、乙、丙面试合格.由题意知A,B,C相互独立,且P(A)=P(B)=P(C)=.至少有1人面试合格的概率是.(Ⅱ)ξ的可能取值为0,1,2,3,==.==.P(ξ=2)=P(•B•C)=.所以,ξ的分布列是ξ0 1 2 3P \frac{3}{8} \frac{3}{8} \frac{1}{8} \frac{1}{8}ξ的期望=1.【点评】本题考查对立事件、相互独立事件的概率计算与由分布列求期望的方法,关键是明确事件之间的关系,准确求得概率.21.已知函数.(Ⅰ)当a<0时,若∃x>0,使f(x)≤0成立,求a的取值范围;(Ⅱ)令g(x)=f(x)﹣(a+1)x,a∈(1,e],证明:对∀x1,x2∈[1,a],恒有|g(x1)﹣g (x2)|<1.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【专题】综合题.【分析】(I)求出函数f(x)的导函数,令导函数等于0求出根,列出x,f′(x),f(x)的情况变化表,通过表得到函数的最小值,令最小值小于等于0即可.(II)求出g(x)的导函数,判断出导函数的符号,得到函数g(x)递减,求出g(x)的最大值及最小值,通过分析法只需证得最大值与最小值差的绝对值小于1即可,构造新函数h(x),h(x)的导函数,判断出其符号,进一步求出h(x)的最大值,得证.【解答】解:(I)当a<0,由.令f′(x)=0,∴列表:xf′(x) ﹣0 +f(x)减函数极小值增函数这是.∵∃x>0,使f(x)≤0成立,∴,∴a≤﹣e,∴a范围为(﹣∞,﹣e].(Ⅱ)因为对∀x∈[1,a],,所以g(x)在[1,a]内单调递减.所以.要证明|g(x1)﹣g(x2)|<1,只需证明<1,即证明<0.令,>0,所以在a∈(1,e]是单调递增函数,所以<0,故命题成立.【点评】本题考查导数在最大值与最小值问题中的应用,解题的关键是利用导数研究出函数的单调性,判断出函数的最值,本题第二小题是一个不等式证明的问题,即不等式恒成立问题,恒成立的问题一般转化最值问题来求解.22.已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;l1,l2是过点P(0,2)且互相垂直的两条直线,l1交E于A,B两点,l2交E交C,D两点,AB,CD的中点分别为M,N.(Ⅰ)求椭圆E的方程;(Ⅱ)求l1的斜率k的取值范围;(Ⅲ)求的取值范围.【考点】直线与圆锥曲线的综合问题.【专题】计算题.【分析】(1)设椭圆的标准方程,根据离心率求得a和c关系,进而根据a求得b,则椭圆的方程可得.(2)由题意知,直线l1的斜率存在且不为零设直线l1和l2的方程,分别于椭圆方程联立消去y,根据判别式求得k的范围,最后综合可得答案.(3)设A(x1,y1),B(x2,y2),M(x0,y0),根据韦达定理求得x0和y0的表达式,进而表示M和N的坐标,最后表示出根据k的范围确定答案.【解答】解:(Ⅰ)设椭圆方程为,由∴椭圆方程为;(2)由题意知,直线l1的斜率存在且不为零∵,∴.由消去y并化简整理,得(3+4k2)x2+16kx+4=0根据题意,△=(16k)2﹣16(3+4k2)>0,解得.同理得,∴;(Ⅲ)设A(x1,y1),B(x2,y2),M(x0,y0)那么,∴,∴同理得,即∴∵,∴∴即的取值范围是.【点评】本题主要考查了直线与圆锥曲线的综合问题.此类题综合性强,要求学生要有较高地转化数学思想的运用能力,能将已知条件转化到基本知识的运用.。
2015~2016学年第一学期初一数学期中考试试卷及答案
2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。
2016届九年级(下)期中数学试卷(解析版)
九年级(下)期中数学试卷学校:班级:教师:科目:得分:一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣22.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a43.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=08.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.二、填空题(共8小题,每小题3分,满分24分)11.4是的算术平方根.12.因式分解:x2y﹣y=.13.函数中,自变量x的取值范围是.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为.16.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为千瓦时(保留两个有效数字).17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为cm(结果保留π).18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.三、解答题(本大题共76分)19.计算:.20.先化简,再求值:,其中.21.解不等式组,并把解集在数轴上表示出来.22.解方程:.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 1007:00﹣8:00 2 43 11 n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为,F的坐标为;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.2015-2016学年九年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.如果a与﹣2的和为0,那么a是()A.2 B.C.﹣D.﹣2【考点】相反数.【分析】根据相反数的概念,互为相反数的两个数和为0,即可得出答案.【解答】解:由题意得a﹣2=0,则a=2.故选A.2.下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=﹣a6 C.(ab)3=ab3D.a8÷a2=a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3•a2=a5,故A错误;B、(﹣a2)3=﹣a6,故B正确;C、应为(ab)3=a3b3,故C错误;D、应为a8÷a2=a6,故D错误.故选:B.3.在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形的个数为()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的概念进而判断得出答案.【解答】解:在等边三角形、正方形、菱形和等腰梯形中,是中心对称图形有正方形、菱形共有2个.故选:B.4.下面四个几何体中,俯视图为四边形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是指从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.5.下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小【考点】随机事件;全面调查与抽样调查;众数;方差.【分析】利用必然事件的定义、普查和抽样调查的特点、众数的定义、方差的定义即可作出判断.【解答】解:A、打开电视,正在播放《新闻联播》是随机事件,故本选项错误,B、想了解某饮料中含色素的情况,应用抽样调查,故本选项正确,C、数据1,1,2,2,3的众数是1、2,故本选项错误,D、一组数据的波动越大,方差越大,故本选项错误,故选B.6.从1~9这九个自然数中任取一个,是2的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】先从1~9这九个自然数中找出是2的倍数的有2、4、6、8共4个,然后根据概率公式求解即可.【解答】解:1~9这九个自然数中,是2的倍数的数有:2、4、6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是:.故选B.7.下列关于x的一元二次方程中一定有实数根的是()A.x2﹣2x+4=0 B.x2+2x+4=0 C.x2﹣2x﹣4=0 D.x2+4=0【考点】根的判别式.【分析】分别求出每个一元二次方程根的判别式△与0的关系,进而选择正确的选项.【解答】解:A、x2﹣2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;B、x2+2x+4=0,△=4﹣4×4=﹣12<0,此选项错误;C、x2﹣2x﹣4=0,△=4+4×4=20>0,此选项正确;D、x2+4=0,△=0﹣4×4=﹣16<0,此选项错误;故选C.8.在半径等于4cm的圆内有长为4cm的弦,则此弦所对的圆周角为()A.60°B.120°C.30°或150°D.60°或120°【考点】圆周角定理;解直角三角形.【分析】先画图,再根据垂径定理得出AC,根据三角函数得出∠O,由圆周角定理得出答案.【解答】解:如图,过点O作OD⊥AB,交⊙O于点D,交AB于点C,∵OA=4,AB=4,∴AC=2,∴sin∠O==,∴∠O=60°,∴∠E=60°,∴∠F=120°,故选D.9.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.10.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. a B.a C.D.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【解答】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故选:D.二、填空题(共8小题,每小题3分,满分24分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.因式分解:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提公因式y,再利用平方差进行二次分解即可.【解答】解:原式=y(x2﹣1)=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).13.函数中,自变量x的取值范围是x≠﹣5.【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+5≠0,解得x≠﹣5.故答案为x≠﹣5.14.如图,AB∥CD,∠C=20°,∠A=55°,则∠E=35°.【考点】平行线的性质.【分析】根据平行线的性质求出∠EFD,根据三角形外角性质得出∠E=∠EFD﹣∠C,代入求出即可.【解答】解:∵AB∥CD,∠A=55°,∴∠EFD=∠A=55°,∵∠C=20°,∴∠E=∠EFD﹣∠C=55°﹣20°=35°,故答案为:35°.15.已知a﹣2b=﹣2,则4﹣2a+4b的值为8.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,将已知等式的值代入计算即可求出值.【解答】解:∵a﹣2b=﹣2,∴4﹣2a+4b=4﹣2(a﹣2b)=4+4=8.故答案为:816.某市南线路段的304盏太阳能路灯一年大约可节电226 900千瓦时,226 900千瓦时用科学记数法表示为 2.3×105千瓦时(保留两个有效数字).【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.题中226 900有6位整数,n=6﹣1=5.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:226 900=2.269×105≈2.3×105.故答案为:2.3×105.17.已知扇形的圆心角为120°,半径为15cm,则扇形的弧长为10πcm(结果保留π).【考点】弧长的计算.【分析】根据弧长公式计算.【解答】解:l===10πcm.18.如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为.【考点】反比例函数系数k的几何意义.【分析】先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=|k|=2,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=|k|=2,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是s1=2,s2=,s3=,∴图中阴影部分的面积之和=2++=2.故答案为:2.三、解答题(本大题共76分)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别根据绝对值的性质、负整数指数幂的运算法则及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=3+1﹣2+3=5.20.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.21.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式2﹣x>0,移项得x<2,对不等式两边乘以6,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:22.解方程:.【考点】解分式方程.【分析】由于x2﹣4=(x+2)(x﹣2),本题的最简公分母是(x+2)(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边同乘(x﹣2)(x+2),得:x(x+2)﹣(x2﹣4)=1,化简,得2x=﹣3,∴x=,检验:当x=时,(x﹣2)(x+2)≠0,∴x=是原方程的根.23.如图,在△ABC中,AB=AC,点O是BC的中点,连接AO,在AO的延长线上取一点D,连接BD,CD(1)求证:△ABD≌△ACD;(2)当AO与AD满足什么数量关系时,四边形ABDC是菱形?并说明理由.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)利用全等三角形的判定方法结合SAS得出即可;(2)利用菱形的判定方法对角线互相垂直且平分的四边形是菱形得出即可.【解答】(1)证明:∵AB=AC,点O是BC的中点,∴∠BAO=∠CAO,在△ABD和△ACD中∵,∴△ABD≌△ACD(SAS);(2)解:当AO=AD时,四边形ABDC是菱形.理由:∵AO=AD,∴AO=DO,又∵BO=CO,AO⊥BC,∴四边形ABDC是菱形.24.吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1)同学们一共随机调查了多少人?(2)请你把统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?【考点】扇形统计图;用样本估计总体;条形统计图.【分析】(1)根据替代品戒烟30人占总体的10%,即可求得总人数;(2)根据求得的总人数,结合扇形统计图可以求得药物戒烟的人数,从而求得警示戒烟的人数,再根据各部分的人数除以总人数,即可求得各部分所占的百分比;(3)根据扇形统计图中“强制戒烟”的百分比即可回答其概率,再进一步根据样本估计总体.【解答】解:(1)30÷10%=300(人).∴一共调查了300人.(2)由(1)可知,总人数是300人.药物戒烟:300×15%=45(人);警示戒烟:300﹣120﹣30﹣45=105(人);105÷300=35%;强制戒烟:120÷300=40%.完整的统计图如图所示:(3)设该市发支持“强制戒烟”的概率为P,由(1)可知,P=120÷300=40%=0.4.支持“警示戒烟”这种方式的人有10000•35%=3500(人).25.如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一不明国籍的渔船C,求此时渔船C与海监船B的距离是多少.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】首先过点B作BD⊥AC于D,由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,则可求得∠ACD的度数,然后利用三角函数的知识求解即可求得答案.【解答】解:由题意可知,∠BAC=45°,∠ABC=90°+15°=105°,∴∠ACB=180°﹣∠BAC﹣∠ABC=30°.作BD⊥AC于D.在Rt△ABD中,(海里),在Rt△BCD中,(海里).答:此时渔船C与海监船B的距离是海里.26.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.(1)求证:DC为⊙O切线;(2)若DC=1,AC=,①求⊙O半径长;②求PB的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连结OC,如图,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OC∥AD,由于CD⊥AD,所以OC⊥CD,则根据切线的判定定理得到DC为⊙O切线;(2)①连结BC,如图,在Rt△ACD中利用勾股定理计算出AD=2,再Rt△ACD∽Rt△ABC,利用相似比计算出AB=,从而得到⊙O半径长为;②证明△EOC∽△EAD,然后利用相似比可计算出BE的长.【解答】(1)证明:连结OC,如图,∵AC平分∠EAB,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∴DC为⊙O切线;(2)解:①连结BC,如图,在Rt△ACD中,∵CD=1,AC=,∴AD==2,∵AB为直径,∴∠ACB=90°,∵∠1=∠2,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,即:AB=2:,∴AB=,∴⊙O半径长为;②∵OC∥AD,∴△EOC∽△EAD,∴=,即=,∴BE=.27.如图,一次函数y=kx+2的图象与反比例函数的图象交于点P,点P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,.(1)求点D的坐标及BD长;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围;(4)若双曲线上存在一点Q,使以B、D、P、Q为顶点的四边形是直角梯形,请直接写出符合条件的Q点的坐标.【考点】反比例函数综合题;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;直角梯形;相似三角形的判定与性质.【分析】(1)把x=0代入y=kx+2即可求出D的坐标;根据相似三角形的判定得出=,求出AP,即可求出BD;(2)根据三角形PBD的面积求出P的坐标,把P的坐标分别代入一次函数和反比例函数的解析式求出即可;(3)根据图象上P的坐标求出即可;(4)作DQ∥x轴,把y=2代入反比例函数的解析式,求出即可.【解答】解:(1)在y=kx+2中,当x=0,得:y=2,∴点D的坐标是(0,2),∵AP∥OD,∴△PAC∽△DOC,∵=,∴==,∴AP=6,∵BD=6﹣2=4,答:点D的坐标是(0,2),BD的长是4.(2)∵S△PBD=PB•BD=×PB×4=4,∴BP=2,∴P(2,6),把P(2,6)分别代入y=kx+2和y=得:k=2,m=12,∴一次函数的解析式是y=2x+2,反比例函数的解析式是y=,(3)由图形可知一次函数的值大于反比例函数值的x的取值范围是x>2.(4)Q(6,2).28.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 1 45 5 100 7:00﹣8:00 2 43 11 n ……………根据所给图表信息,解决下列问题:(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【分析】(1)根据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.【解答】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.29.如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动的时间为t秒(t≥0).(1)点E的坐标为(t,t),F的坐标为(10﹣t,t);(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使△PEF为直角三角形?若存在,请求出此时t的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)过点A作AD⊥OB,由点A的坐标为(6,8),可得OD=6,AD=8,然后由勾股定理得:OA=10,由OA=OB可得:OB=10,进而可得:BD=4,进而可得点B的坐标为:(10,0),然后设OA的关系式:y=kx,然后将A(6,8)代入即可得直线OA的关系式,然后设直线AB的关系式为:y=kx+b,然后将A,B两点代入,即可确定直线AB的关系式,由过点Q作x轴的平行线分别交OA,AB于E,F,可知点Q、E、F三点的纵坐标相等均为t,然后由点E在OA上,点F在AB上,将点E、F的纵坐标分别代入对应的关系式,即可得到得到点E、F的坐标;(2)由EF∥OP,欲使四边形POFE是平行四边形,只需EF=OP即可,从而可得关于t的等式,解答即可;(3)分三种情况讨论:①PE⊥EF,②PE⊥PF,③EF⊥PF即可.【解答】解:(1)过点A作AD⊥OB,垂足为D,如图1,∵点A的坐标为(6,8),∴OD=6,AD=8,由勾股定理得:OA=10,∵OA=OB,∴OB=10,∴BD=4,∴点B的坐标为:(10,0),设直线OA的关系式:y=kx,将A(6,8)代入上式,得:6k=8,解得:k=,所以直线OA的关系式:y=x,设直线AB的关系式为:y=kx+b,将A,B两点代入上式得:,解得:,所以直线AB的关系式为:y=﹣2x+20,∵过点Q作x轴的平行线分别交OA,AB于E,F,∴点Q、E、F三点的纵坐标相等,∵动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,∴t秒后,OQ=t,OP=2t,∴Q、E、F三点的纵坐标均为t,将点E的纵坐标t代入y=x,得:x=t,∴E点的坐标为:(,t),将点E的纵坐标t代入y=﹣2x+20,得:x=10﹣t,∴F点的坐标为:(10﹣t,t),故答案为:(t,t),(10﹣t,t);(2)由(1)知:E(t,t),F(10﹣t,t),∴EF=10﹣t﹣t=10﹣t,∵四边形POFE是平行四边形,∴EF∥OP,且EF=OP,即10﹣t=2t,解得:t=,∴当t为时,四边形POFE是平行四边形;(3)过点E作EM⊥OB,垂足为M,过点F作FN⊥OB,垂足为N,可得四边形EMNF是矩形,如图2,①当EF⊥PF时,PE2+PF2=EF2,由(1)知:OM=t,EM=FN=t,ON=10﹣t,EF=10﹣,∴PM=,PN=10﹣,∵PE2=ME2+MP2,PF2=PN2+FN2,∴t2+(t)2+(10﹣t)2+t2=(10﹣)2,解得:t1=0(舍去),t2=;②当PE⊥EF时,如图3,可得四边形EPNF是矩形,∵四边形EPNF是矩形,∴EF=PN,即:EF=ON﹣OP,∴10﹣=10﹣﹣2t,解得t=0(舍去);③当EF⊥PF时,如图4,可得四边形EMPF是矩形,∵四边形EMPF是矩形,∴EF=MP,即EF=OP﹣OM,∴10﹣=2t﹣t,解得:t=4,∴当t=和4时,使△PEF为直角三角形.2016年8月8日。
2016届九年级上学期期中考试数学试卷(20210521174856)
2015-2016 学年上学期期中教课质量检测九年级数学试卷(满分: 150 分考试时间: 120 分钟 )一、选择题(共10 题,每题 4 分,满分 40 分,每题只有一个正确的选项,请在答题卡相应的地点上填写)1. 以下方程是一元二次方程的是()A . 2x 27 3 y1B. 5x 2+ 1 +4=0xC . 7x5 x2xD. ax 2bx c 0322. 一元二次方程 x 2=2x 的解是()A .x=2B . x=0C . x =﹣ 2, x =0D . x =2, x=01 2123. 依据以下表格对应值:x3.24 3.25 3.26ax 2 bx c-0.020.010.03 判断对于 x 的方程 ax 2 bxc 0( a 0) 的一个解 x 的范围是()A . x <3.24B . 3.24< x < 3.25 4.C .3.25< x < 3.26D . 3.25< x < 3.28以下命题中真命题是()A . 平行四边形的对角线相等B . 正方形的对角线相等C . 菱形的对角线相等D . 矩形的对角线相互垂直5. 如图, AD ∥ BE ∥ CF ,直线 l 1, l 2 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,= , DE=6 ,则 DF 的值为( )A .4B .9C . 10D .156. 已知一个两位数,个位上的数字比十位上的数字少 4,这个两位数 十位和个位互换地点后,新两位数与原两位数的积为 1612 ,那么原数中较大的两位数是()第 5题图A .95B . 59C .26D . 627. 已知 a,d,c,b 是成比率线段,此中 a=3cm,b=2cm,c=6cm, 则 d 的长度为()A .4cmB . 1cmC . 9cmD . 5cm8. 在一个不透明的袋子中有 20 个除颜色外均同样的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中.经过大批重复摸球试验后,发现摸到红球的频率稳固于 0.4.由此可估计出袋中红球的个数约为( )A . 4B . 6C . 8D .12BA9. 如图,在正方形 ABCD 的外侧,作等边三角形ADE , AC ,BE 相F交于点 F ,则∠ BFC 为( )EA .45°B .55°CD( 第 9 题 )C. 60° D . 75°10.如图,我们把挨次连结随意四边形ABCD 各边中点所得四边形 EFGH 叫中点四边形.若四边形ABCD 的面积记为S1,中点四边形EFGH 的面积记为S2,则 S1与 S2的数目关系是A .S13S2B.2S13S2C. S12S2D.3S1 4S2第10题二.提空题:(共 6 小题,每题 4 分,满分24 分,将答案填入答题卡的相应地点)11. 若x3 ,则x y_______ .y y12.已知菱形的两条对角线分别是2cm,3cm,则它的面积是13.如图,在四边形 ABCD 中,对角线 AC, BD 交于点 O,OA=OC, OB=OD,增添一个条件使四边形ABCD 是菱形,那么所增添的条件能够是(写出一个即可) .14. 若对于 x 的一元二次方程2a 的取值范围是ax+3x ﹣ 1=0 有两个不相等的实数根,则15. 已知a b ck ,则 k 的值为b c a c a b16.如图,菱形 ABCD的边长为 4,∠ BAD=120° , 点 E 是 AB 的中点,点 F 是 AC上的一动点,则EF+BF的最小值是三、解答题(共8 题,满分 86 分)17.解一元二次方程(共 3 小题,每题 4 分,满分12 分)( 1)7x26x10(2)3x(x2)(22x)(3) x 1 x 2 2x 418.(共 3 小题,每题 3 分,满分9 分)如图,把边长为 2cm 的正方形剪成四个全等的直角三角形,请用这四个直角三角形拼成切合以下要求的图形(所有用上,互不重叠且不留缝隙),把你的拼法画出来 . (设每个方格边长为 1cm)(1)不是正方形的菱形 ABCD(2)不是正方形的矩形 A1B1C1D1(3)不是矩形和菱形的平行四边形A2B2C2D219.(满分 8 分)已知 : 如图,平行四边形ABCD 的两条对角线订交于点BE⊥ AC, CF ⊥ BD ,垂足分别为E, F.且 BE=CF.求证:平行四边形 ABCD 是矩形AE FO O,DB C(第 19题)20.(共 3 小题,每空 2 分,第三小题 5 分,满分9 分)一个不透明袋子中有 1 个红球, 1 个绿球和 n 个白球,这些球除颜色外无其余差异.( 1)当 n 1时,从袋中随机摸出 1 个球,摸到红球和摸到白球的可能性能否同样?(在答题卡相应地点填“同样”或“不同样”);( 2)从袋中随机摸出一个球,记录其颜色,而后放回.大批重复该实验,发现摸到绿球的频次稳固于0.25,则 n 的值是 ________;(3)在( 2)的条件下,从袋中随机摸出两个球,请用树状图或列表方法表示所有等可能的结果,并求出摸出的两个球颜色不一样的概率.21.(满分 9 分)如图,菱形 ABCD 的对角线AC , BD 订交于点 O,点 E, F 分别是边 AB, AD 的中点 .( 1)请判断△ OEF 的形状,并说明原因( 2)当△ OEF 知足什么条件时,菱形ABCD是正方形 . 请说明原因 .22.(满分 7 分)为了美化环境,某市加大了对城市绿化的投资,2012 年用于绿化的投资为200 万,到 2014 年用于绿化的投资达到288 万,求这两年绿化投资的年均匀增添率.23.(满分 9 分 ) 某批发商以每件 50 元的价钱购进 800 件 T 恤.第一个月以单价 80 元销售,售出了 200 件;第二个月假如单价不变,估计仍可售出 200 件,批发商为增添销售量,决定降价销售,依据市场检查,单价每降低 1 元,可多售出10 件,但最低单价应高于购进的价格;第二个月结束后,批发商将对节余的T 恤一次性清仓销售,清仓时单价为40 元.设第二个月单价降低x 元.( 1)填表(不需化简):时间第一个月第二个月清仓时单价(元)8040销售量(件)200( 2)假如批发商希望经过销售这批T 恤赢利 9 000 元,那么第二个月的单价应是多少元?24.(满分 10 分)定义:长宽比为n :1(n为正整数)的矩形称为n 矩形.下边,我们经过折叠的方式折出一个 2 矩形,如图①所示.操作 1 :将正方形ABCD 沿过点 B 的直线折叠,使折叠后的点 C 落在对角线BD 上的点 G 处,折痕为BH .操作 2 :将 AD 沿过点 G 的直线折叠,使点A,点 D 分别落在边AB, CD 上,折痕为 EF.则四边形BCEF 为2 矩形.证明:设正方形ABCD 的边长为由折叠性质可知 BG BC 1 ,∴ABFE.1,则 BD1212 2 .AFEBFE90 ,则四边形 BCEF 为矩形 .A DF G∴EF∥ AD.∴BG BF ,即BD AB∴ BF 1 .21BF.21EHB C第 24 题图①∴ BC: BF 1:12 :1. 2∴四边形 BCEF 为 2 矩形.阅读以上内容,回答以下问题:( 1)在图①中,所有与CH 相等的线段是__________( 2)已知四边形BCEF 为 2 矩形,模拟上述操作,获得四边形BCMN ,如图②,求证:四边形BCMN 是 3 矩形;( 3)将图②中的 3 矩形BCMN沿用(2)中的方式操作 3 次后,获得一个“n 矩形”,则n的值是_______.EFNP M QB第 24题图②C25.(满分 13 分)猜想与证明:如图 1 摆放矩形纸片 ABCD 与矩形纸片 ECGF,使 B 、 C、 G 三点在一条直线上, CE 在边 CD 上,连结 AF ,若 M 为 AF 的中点,连结 DM 、ME ,猜想DM=ME .易证结论建立(无需证明)拓展与延长:(1)若将”猜想与证明“中的纸片换成正方形纸片变,则 DM和ME的关系为...(2)如图 2 摆放正方形纸片ABCD 与正方形纸片ABCD 与正方形纸片ECGF,使点 F 在边ECGF,其余条件不CD 上,点 M 仍为AF 的中点,试证明(1)中的结论仍旧建立.一、选择题(每题 4 分,共 40 分)题号 1 2 3 4 5 6 7 8 9 10 答案CDBBDDCCCC二、填空题(每题4 分,共 24 分)11. 412. 3cm 213. AB BC (或 AB AD 或 AD AC 或DC BC 或 ACBD )14. a9且 a 015.1或 116.2 742三、解答题17、( 1)解:这里 a7 , b6 , c 1b 24ac6 2 47 18 -----2分x6 827x 137 2, x 23 2-----4 分7( 2)解: 3x x 2 2 x2 0x 2 3x 2-----2 分x 2 0 或 3x2 0x 1 2, x 22 -----4 分3( 3)解:x1 x2 2 x 2x 1 x 2 2 x 2x 2 x 1 0-----2 分 x 20 或 x 1 0x 1 2, x 2 1-----4 分18、(1) ------3 分(2) ------6 分(3)(画出一种即可) ----9 分19、证明:BE AC, CF BDBEO CFO 90-----------------------------------------1分又四边形 ABCD 是平行四边形OB 1BD , OA1 AC -----------------------------------------3分22在 BEO和 CFO中BEO CFOBOE COFBE CFBEO CFO AASOB OC BD AC ------- - --------------------------------------------------6分----------------------------------------------------------7分平行四边形 ABCD 是矩形------------------------------------------8分20、( 1)同样---------------2分( 2) 2 ------------------4 分( 3)解:所有可能出现的结果以下:第一次红绿白1白 2第二次绿白1白2红白1白2红绿白2红绿白1-----------------7 分由树状图可知共有 12 种等可能事件,此中两次摸出的球颜色不一样的结果共有10种,因此两次摸出的球颜色不一样的概率为10,即 5---------------------9分12621、( 1)解:OEF 是等腰三角形。
(2016-2017)六年级上册数学期中检测试卷(一)(二)(三)
人教版六年级上册数学期中试卷班级姓名成绩一、填空题.(每题1分,共23分)1、7/16 ×5/9 表示的意义是(),7/16 ÷5/9 表示的意义是(),a÷cb (a、b、c都不为0)表示的意义是().2、6/5 =18:()=():20=():25 =()÷40=( )(填小数)3、一个长方形的长是6厘米,宽是0.4分米,长与宽的最简整数比是(),比值是().4、把5千克糖平均分成6包,每包糖重()/()千克,每包糖是5千克的()/().5、一条公路长10千米,第一次修了1/4 ,第二次又修了1/4 千米,两次共修了()千米,还剩()千米.6、5吨的1/3 与()的1/2 相等;比6千米的1/3 还多1/3 米是()米.7、10以内质数的和的倒数是().8、一个三角形,三个内角的度数的比是2:3:5,最小的内角是()度,最大的内角是()度,这个三角形是()三角形.9、汽车4小时行了全程的2/5 ,每小时行45千米,全程长()千米,行完全程需()小时.10、20千克比16千克多()/(),16千克比20千克少()/().二、你会判断吗?正确的在()里打“√”,错误的打“×”(5分)1、自然数的倒数都比它本身小.()2、在1千克水中加入40克糖,这时糖占糖水的1/25 .()3、一个数除以1/5 ,这个数就增加4倍.()4、a÷3/4 =b÷1/4 ,那么a一定小于b.()5、甲数加上它的1/7 ,正好是乙数,关系式是:甲数×(1+1/7 )=乙数.()三、选择正确答案的序号填在括号里.(6分)1、125÷1/100 ×8=()①100000 ②10 ③100002、一个比的比值是2/5 ,如果后项乘以1/3 ,前项不变,则新的比值是.()①1/15 ②2/15 ③5/63、一个数的3/8 是35 ,求这个数的算式是.()①3/8 ×35 ②35 ÷3/8 ③3/8 ÷35 ④35 ×3/84、一根绳子剪去1/4 后,剩下的部分与3/4 米比较()①剩下的长;②一样长;③剩下的短;④不能确定.5、六(2)班有男生40人,男生和女生人数的比是10:9,全班有()人.①70 ②74 ③76 ④786、一件商品涨价1/5 后,又降价1/5 ,现价比原价().①贵;②便宜;③同样多.四、计算题.(31分)1、直接写得数.(8分)1÷1/3 =1-1/2 -1/3 =5/8 ×2/3 =5/6 ×(1/8+0.625 )=1/6 ×1/2=2/9 ÷3/5 =(3/18 +7/9 )×0=1/2 +7/12 =2、下面各题,怎样简便就怎样算.(10分)8/13 ÷7+1/7 ×6/13 1/2 ×2/5 +9/10 ÷9/20 (1/2 +2/3 +3/4 )×247/13 ÷[1/14 ÷(4/23 -1/2 )] 2/9 +1/2 ÷4/5 +3/83、解方程.(4分)3/5 x-17 =1 (4/5 +3.2)x=2/34、列式计算.(9分)(1)从3/8 的倒数里减去1/4 的2/3 ,差是多少?(2)2/3 与1/4 的差等于一个数的5/6 ,这个数是多少?(3)甲数是5的1/5 ,乙数的1/5 是5,两数相差多少?五、解决问题.(35分)1、看图列式,(4分)2、实验小学五年级有3个班,一班有42人,二班的人数是一班的5/6 ,三班的人数比二班的2倍少16人,五年级共有学生多少人?(5分)3、吴山农场去年种小麦150公顷,今年比去年增加了1/5 ,今年种小麦多少公顷?(请写出数量关系,5分)4、某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?(5分)5、一堆煤,先用去总数的2/5 ,又用去总数的4/9 ,这时用去的比剩下的多31吨,这堆煤共有多少吨?(5分)6、打一份文稿,单独打小明要15小时,小刚要12小时,如果两人合打,几小时后可以完成这份文稿的2/3?(5分)六年级上学期期中试卷一、填空题。
吉林省长春市2016届九年级上期中数学试卷含答案解析
2015-2016学年吉林省长春市九年级(上)期中数学试卷一、选择题:每小题3分,共24分。
1.化简的结果是()A.2 B.4 C.4D.82.若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3 D.x<33.若,则的值是()A. B.C.D.4.一元二次方程x(x﹣2)=0的解是()A.x=0 B.x1=2 C.x1=0,x2=2 D.x=25.一元二次方程x2+2=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.只有一个实数根6.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为()A.6米B.7米C.8.5米D.9米7.如图,某小区有一块长为18米、宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地(图中阴影部分),它们的面积之和为60平方米,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x米,则下列所列方程正确的是()A.(18﹣2x)(6﹣2x)=60 B.(18﹣3x)(6﹣x)=60 C.(18﹣2x)(6﹣x)=60 D.(18﹣3x)(6﹣2x)=608.如图,△ABE和△CDE是以点E为位似中心的位似图形,点E的坐标为(1,0),若点A、C、D 的坐标分别是(3,4)、(2,2)、(3,1).则点D的对应点B的坐标是()A.(4,2) B.(4,1) C.(5,2) D.(5,1)二、填空题:每小题3分,共18分。
9.比较大小:2 (填“>”、“<”或“=”).10.点A(2,4)关于x轴对称的点的坐标是.11.若x=1是关于x的一元二次方程x2﹣2mx+3=0的一个根,则m的值是.12.如图,△BDE∽△BCA,若=,DE=6,则AC的长度是.13.如图,要测量池塘两端A、B的距离,可先取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA,连结BC并延长到E,使CE=CB,连结ED.若量出DE的长为25米,则池塘宽AB 为米.14.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D是AC中点,过点D作DE⊥AC交BC于点E,则CE的长度是.三、解答题:本大题共10小题,共78分。
人教版2016届九年级上期中联考数学试卷及答案
2015-2016学年度第一学期期中考试九年级数学试卷及答案一、选择题(每小题3分,共30分)1.将方程化为一元二次方程10832=-x x 的一般形式,其中二次项系数,一次项系数,常数项分别是A .3,-8,-10B .3,-8, 10C . 3, 8,-10D . -3 ,-8,-10 2.用配方法解方程2250x x --=时,原方程应变形为A .2(1)6x += B .2(2)9x += C .2(1)6x -= D .2(2)9x -= 3.在下列四个图案中,不是中心对称图形的是 AB .C .D .4.将二次函数2)1(2--=x y 的图象先向右平移1个单位,再向上平移1个单位后顶点为A .(1,3)B .(2,-1)C .(0,-1)D .(0,1) 5.如图,在△ABC 中,∠CAB =65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为A.35°B.40°C.50°D.65°6.如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为A .20cm 2B .15cm 2C .10cm 2D .25cm 27.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A. 1011)1(2=+x B. 910)1(2=+x C. 101121=+x D. 91021=+x8.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m .水面下降2.5m ,水面宽度增加A .1 mB .2 mC .3 mD .6 m第5题图 第6题图9.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是10.一元二次方程:M :20ax bx c ++=; N :20cx bx a ++=,其中a c ≠0,a ≠c ,以下四个结论:①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根; ②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果m 是方程M 的一个根,那么m1是方程N 的一个根; ④如果方程M 和方程N 有一个相同的根,那么这个根必是1x =正确的个数是 A .1 B .2 C .3 D .4二、填空题(每题3分,共18分)11.若点)1,2(A 与点B 是关于原点O 的对称点,则点B 的坐标为 12.一元二次方程x 2﹣2x =0的解是13.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m 2的矩形空地,则原正方形空地的边长是14.二次函数k x x y +--=322的图象在x 轴下方,则k 的取值范围是15.在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),点2015A 的坐标为 .16.如图,在△ABC 中,∠ACB=90,D 为边AB 的中点,E,F 分别为边AC ,BC 上的点,且AE=AD ,BF=BD ,若DE=22,DF=4,则AB 的长为 三、解答题( 共8道小题,共72分)17. (本题满分8分)已知关于x 的方程x 2+2x +a ﹣2=0 (1)若方程有一根为1,求a 的值;FEDC BA第16题图第13题图P Q OOO OO yy y y yx x x x xA .B .C .D .第9题图(2)若a=1,求方程的两根.18. (本题满分8分)四边形ABCD 是正方形,E 、F 分别是DC和CB 的延长线上的点,且DE=BF ,连接AE 、AF 、EF . (1)求证:△ADE≌△ABF;(2)填空:△ABF 可以由△ADE 绕旋转中心 点,按顺时针方向旋转 度得到; 19. (本题满分8分)已知关于x 的方程x 2-2(k -1)x+k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若21211x x x x -=+,求k 的值.20. (本题满分8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (-4,3)、B (-3,1)、C (-1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1;②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2. (2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.21. (本题满分8分)如图,已知ABC ∆是等边三角形.(1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将BCE ∆绕点C 顺时针旋转60°至ACF ∆,连接EF.猜想线段AB,DB,AF 之间的数量关系;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系; (3)请选择(1)或(2)中的一个猜想进行证明.第18题图第20题图 A A E22.(本题满分10分)已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x 元(x 为整数),每星期的销售利润为w 元.(1)求w 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元? (3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果. 23. (本题满分10分)如图(1),在Rt △ABC 中,∠A =90°,AC =AB =4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,如图(2),设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)求证:BD 1= CE 1 ;(2)当∠=1CPD 2∠1CAD 时,求1CE 的长;(3)连接PA,PAB ∆面积的最大值为 .(直接填写结果)24.(本题满分12分)如图,已知抛物线错误!未找到引用源。
北京101中学2016-2017学年下学期初中七年级期中考试数学试卷(解析版)
北京101中学2016-2017学年下学期初中七年级期中考试数学试卷一、选择题共10小题。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 下列如图所示的图案,分别是奔驰、奥迪、三菱、大众汽车的车标,其中可以看作由“基本图案”经过平移得到的是( )A. B. C. D.【答案】B【解析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是B .故选B .2. 16的算术平方根是( )A. 8B. 4C.D. ±8±4【答案】B【解析】16的算术平方根是.16=4故选B.3. 若,则下列不等式变形正确的是( )a >b A. B. C. D. a +5<b +5a 3<b 33a −2>3b −2−4a >−4b【答案】C【解析】A 选项:在不等式a >b 的两边同时加上5,不等式仍成立,即a+5>b+5.故A 选项错误;B 选项:在不等式a >b 的两边同时除以3,不等式仍成立,即 < .故B 选项错误;a 3b3C 选项:在不等式a >b 的两边同时乘以3,再减去2,不等式仍成立,即3a-2>3b-2.故C 选项正确;D 选项:在不等式a >b 的两边同时乘以-4,不等号方向改变,即-4a <-4b .故D 选项错误;故选C .【点睛】不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4. 下列各数中, 无理数是( )A. B. 3.14 C. D. 43−275π【答案】D【解析】根据无理数就是无限不循环小数可得:A 选项:=2是有理数, 故与题意不符..4B 选项:3.14是有理数,故与题意不符.C 选项:=-3是有理数, 故与题意不符.3-27D 选项:是无限不循环小数,所以也是无限不循环小数,是无理数,故与题意相符.π5π故选D.5. 若,则点所在的象限是 ( )m <0P(3,2−m)A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】因为m<0,所以-m>0,所以2-m>0,故选A.6. 与是某正数的两个平方根, 则实数的值是 ( )a −13−2a a A. 4 B. C. 2 D. −43−2【答案】C学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...7. 有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②两条直线被第三条直线所截,同旁内角互补;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直;④在同一平面内,过一点有且只有一条直线与已知直线垂直。
广西来宾市2016届九年级上期中数学试卷含答案解析
由题意得:a+b=17, a b=30,
∴ab=60, ∴a2+b2=(a+b)2﹣ 2ab=172﹣ 2×60=169=c2, ∴c=13; 故选:D. 【点评】本题考查了勾股定理、直角三角形面积的计算;熟练掌握勾股定理,根据题意求 出 a2+b2 是解决问题的关键.
3.下列方程中,两个实数根之和为 2 的一元二次方程是(
6.一元二次方程 x2+2x+2=0 的 根的情况是(
)
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.无实数根
7.将方程 x2﹣ 6x﹣ 5=0 化为(x+m)2=n 的形式,则 m,n 的值分别是( ) A.3 和 5 B.﹣ 3 和 5 C.﹣ 3 和 14 D.3 和 14
8.二次函数 y=﹣ 2(x+1)2+3 的图象的顶点坐标是( ) A.(1,3) B.(﹣ 1,3) C.(1,﹣ 3) D.(﹣ 1,﹣ 3)
9.下列函数中属于二次函数的是(
)
A.y=x(x+1) B.x2y=1 C.y=2x2﹣ 2(x2+1) D.y=
10.二次函数 y=ax2+bx+c 的图象如图,则点 M(b, )在(
2.一个直角三角形的面积是 30,其两直角边的和是 17,则其斜边长为(
)
A.17 B.26 C.30 D.13
【考点】勾股定理.
【分析】设两直角边为 a、b,斜边为 c,由题意得 a+b=17, ab=30,求出 a2+b2=(a+b)
2﹣ 2ab=169=c2,即可得出斜边长. 【解答】解:设两直角边为 a、b,斜边为 c,
山东省济宁市微山县2016届九年级上期中数学试卷及答案解析
2015-2016学年山东省济宁市微山县九年级(上)期中数学试卷一、精心选一选(本大题共10小题,每小题3分,满分30分,在每题所给出的四个选项中,只有一项是符合题意的,把所选前的字母代号填在卷Ⅱ的答题栏内,相信你一定能选对!)1.将一元二次方程5x2﹣1=4x化成一般形式后,二次项系数和一次项系数分别为( ) A.5,﹣1 B.5,4 C.5,﹣4 D.5x2,﹣4x2.下列函数一定属于二次函数的是( )A.y=3x﹣2 B.y=C.y=ax2+bx+c D.y=﹣(k2+1)x2+kx﹣k3.下面四个图案中,既是轴对称图形又是中心对称图形的是( )A. B.C.D.4.如图,OA,OB,OC都是⊙O的半径,如果∠CAB=2∠CBA,那么下列结论正确的是( )A.∠OCB=2∠O AB B.∠BOC=2∠AOC C.BC=2AC D.AB=2AC5.下列事件中,属于不可能事件的是( )A.买一注福利彩票,一定会中大奖B.明天太阳从东方升起C.经过有交通信号灯的路口,遇到绿灯D.猴子在水中捞到月亮6.已知抛物线y=ax2+b(a≠0)在平面直角坐标系中的位置如图所示,那么一元二次方程ax 2﹣x+b=0根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.无法判断7.如图,菱形ABCD的对角线相交于坐标原点,点A的坐标为(a,2),点B的坐标为(﹣1,﹣),点C的坐标为(2,c),那么a,c的值分别是( )A.a=﹣1,c=﹣B.a=﹣2,c=﹣2 C.a=1,c=D.a=2,c=28.在学习了“25.1.2”概率后,平平和安安两位同学做掷质地均匀的正方体骰子试验,它们共做了120次试验,试验的结果如下表:1 2 3 4 5 6向上一面的点数出现的次数14 18 12 16 40 20综合上表,平平说:“如果投掷600次,那么向上一面点数是6的次数正好是100次.”安安说:“一次实验中向上一面点数是5的概率最大”.你认为平平和安安的说法中正确的是( ) A.平平 B.安安 C.都正确D.都错误9.已知:如图,⊙O是△ABC的内切圆,下列说法错误的是( )A.点O在△ABC的三边垂直平分线上B.点O在△ABC的三个内角平分线上C.如果△ABC的面积为S,三边长为a,b,c,⊙O的半径为r,那么r=D.如果△ABC的三边长分别为5,7,8,那么以A、B、C为端点三条切线长分别为5,3,210.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是( )A.4:5 B.2:5 C.:2 D.:二、细心填一填(本大题共有5个小题,每题3分,共15分,请把结果直接填在题中的横线上,只要你仔细运算,积极思考,相信你一定能填对!)11.已知x=﹣1是一元二次方程ax2+bx﹣2=0的一个根,那么b﹣a的值等于__________.12.在一个不透明的布袋中,装有除颜色不同外其它都相同的2个红球,3个白球,5个黑球,将它们摇晃均匀后随机摸出一个球,摸到红球的概率是__________.13.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为16,那么所围成的圆锥的高为__________.14.如图,点E在正方形ABCD的边CD上,把△ADE绕点A顺时针旋转90°至△ABF位置,如果AB=,∠EAD=30°,那么点E与点F之间的距离等于__________.15.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过(﹣1,0)点(如图所示),康康依据图象写出了四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④;康康所写结论正确的有__________(只填序号)三、认真答一答(本大题共7小题,满分55分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马井学校2015-2016学年(下)期中考试试卷
一、选择题(每小题3分,共30分)
1.下面四个图形中,∠1与∠2是对顶角的图形的个数是( ) A .0 B .1 C .2 D .3
1
2
1
2
1
2
1
2
2.如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )
A . 75°
B . 55°
C . 40°
D . 35°
3、下列命题中,是假命题的是( ) A 、同旁内角互补 B 、对顶角相等
C 、直角的补角仍然是直角
D 、两点之间,线段最短是
4. 若m >n ,下列不等式不一定成立的是( )
(A )m +2>n +2 (B )2m >2n (C )2
2n m > (D )22n m >
5. 在数轴上表示不等式组20260
x x +>⎧⎨
-≤⎩的解集,正确的是( )
A. -2
3
B.
-2
3
C.
-2
3
D.
-2
3
6.已知3,2
x y =-=⎧⎨
⎩是方程2x+ky=4的一个解,则k 的值是( ) A.2 B.3 C.4 D.5
7.若方程组31
33
x y k x y +==⎧⎨+=⎩,的解x ,y 满足01x y <+<,则k 的取值范围是( )
A.40k -<<
B.10k -<<
C.08k <<
D.4k >-
8.成渝路内江至成都全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇.相遇时,小汽车比小客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )
A.
20771706
6x y x y +=+=⎧⎪⎨⎪⎩ B.
20
771706
6x y x y -=+=⎧⎪⎨⎪⎩ C.
20
771706
6x y x y +=-=⎧⎪
⎨⎪⎩ D.
7
71706677206
6x y x y +=-=⎧⎪⎪⎨
⎪⎪⎩
9.如图9,A 、B 、C 、D 中的哪幅图案可以通过图9平移得到( )
10. 若不等式组11
x x m <⎧⎨
>-⎩恰有两个整数解,则m 的取值范围是( )
A .-1≤m <0
B .-1<m ≤0
C .-1≤m ≤0
D .-1<m <0 二、填空题(每小题3分,共24分)
11. 若方程456m n m n x y -+-=是二元一次方程,则____m =, ____n =. 12. 方程4320x y +=的所有非负整数解为: 13.已知732=+y x ,用含x
的代数式表示y = __________。
14.如图,已知∠1=∠2=80°,∠3=102°,则∠4=__________。
15.如图,已知AB∥CD,CD∥BF,则∠B+∠C=____________。
(14题) (16题) (15题)
16.如图3,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道
最短,这样设计的依据是________________________. 17. 不等式5335x x -<+的最大整数解是 ;
18.对于任意实数m
、n ,定义一种运算3m n mn m n =--+※,等式的右边是通常的加减和乘法运
算.例如:353535310=⨯--+=※.请根据上述定义解决问题:若27a x <<※,且解集中有两个整数解,则a 的取值范围是__________. 三、解答题(46分) 19(5分)解方程组 21,3211x y x y +=-=⎧⎨
⎩①;②
(图9)
20(5分)解不等式组
()5x 34x 4x 132x
-<⎧⎪⎨-+≥⎪⎩
21.(6分)甲、乙两人同解方程组()()5151422ax y x by +=⎧⎪⎨=-⎪⎩
时,甲看错了方程()1中的a ,解得21x y =⎧⎨=⎩,乙看错()2中的b ,解得54x y =⎧⎨
=⎩试求2002
2006
10b a ⎛⎫+- ⎪⎝⎭
的值.
22、(6分)如图,已知∠AGD =∠ACB ,∠1=∠2。
求证:CD ∥EF 。
(填空并在后面的括号中填理由)
证明:∵∠AGD =∠ACB ( )
∴DG ∥____ ( ) ∴∠3=____ ( ) ∵∠1=∠2 ( )
∴∠3=____ (等量代换)
∴___∥___( )
21
B
D E
F
G
A
C
3
23、(5分)已知:如图∠1=∠2,∠C=∠D,∠A=∠F 相等吗?试说明理由
H G
2 1F
E
D
C
B
A
24(5分).如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格.
25(6分)某山区有23名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某校学生积极捐款,初中各年级学生捐款数额与用其恰好资助受捐助
(2)初三年级学生的捐款解决了其余贫困中、小学生学习的费用,请求出初三年级学生可捐助的贫困中、小学生人数各是多少?
26.(8分)学校为了奖励优秀学生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电
脑比购买3台学习机多600元,购买2台平板电脑和3台学习机共需8400元.
(1)求购买1台平板电脑和1台学习机各需多少元?
(2)学校根据实际情况,决定平板电脑和学习机共100台,要求购买的总费用不超过168000元,且购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?。