(课标通用)2018年高考数学一轮复习 第八章 立体几何大题冲关 理
2018届高三数学(理)一轮复习考点规范练:第八章 立体几何40 Word版含解析
考点规范练40空间点、直线、平面之间的位置关系基础巩固1.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线2.在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定3.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M, O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面5.设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,) 〚导学号37270476〛6.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件7.b是平面α外一条直线,下列条件中可得出b∥α的是()A.b与α内一条直线不相交B.b与α内两条直线不相交C.b与α内无数条直线不相交D.b与α内任意一条直线不相交8.已知直线l⊥平面α,直线m⊂平面β,则α∥β是l⊥m的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b;⑤若a⊥b,b∥c,则a⊥c;⑥若a∥b∥c,则a,b,c共面.其中真命题的序号是.10.如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)几何体A1GH-ABC是三棱台;(3)平面EF A1∥平面BCHG.能力提升11.以下四个命题中,①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A, B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.正确命题的个数是()A.0B.1C.2D.312.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直13.若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5 〚导学号37270477〛14.已知m,n,l为不同直线,α,β为不同平面,给出下列命题,其中真命题的序号是(填上所有真命题的序号).①m∥l,n∥l⇒m∥n;②m∥α,n∥α⇒m∥n;③m⊥α,n⊥β,α∥β⇒m∥n;④m⊥α,α⊥β,n⊥β⇒m⊥n;⑤m与l异面,n与l异面⇒m与n异面;⑥m与l共面,n与l共面⇒m与n共面.15.已知空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.(1)求证:BC与AD是异面直线.(2)求证:EG与FH相交.高考预测16.如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF.(1)求证:EF⊥A1C1;(2)在棱C1C上确定一点G,使A,E,G,F四点共面,并求此时C1G的长.参考答案考点规范练40空间点、直线、平面之间的位置关系1.A解析选项A是面面平行的性质定理,是由公理推证出来的,而公理是不需要证明的.2.D解析如图,在正方体ABCD-A1B1C1D1中,取l1为BC,l2为CC1,l3为C1D1.满足l1⊥l2,l2⊥l3.若取l4为A1D1,则有l1∥l4;若取l4为DD1,则有l1⊥l4.因此l1与l4的位置关系不确定,故选D.3.D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上,同理可知,点C也在γ与β的交线上.4.A解析连接A1C1,AC,则A1C1∥AC,所以A1,C1,A,C四点共面.所以A1C⊂平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1.又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上.同理A,O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线.5.A解析此题相当于一个正方形沿着对角线折成一个四面体,长为a的棱长一定大于0且小于6.A解析l 1,l2是异面直线⇒l1,l2不相交,即p⇒q;而l1,l2不相交l1,l2是异面直线,即q p.故p是q的充分条件,但不是q的必要条件.7.D解析只有在b与α内所有直线都不相交,即b与α无公共点时,b∥α.8.A解析若α∥β,则由l⊥α知l⊥β,又m⊂β,可得l⊥m,若α与β相交(如图),设α∩β=n,当m ∥n时,由l⊥α可得l⊥m,而此时α与β不平行,于是α∥β是l⊥m的充分不必要条件,故选A.9.①④⑤解析①由平行线的传递性(公理4)知①正确;②举反例:在同一平面α内,a⊥b,b⊥c,有a∥c;③举反例:如图的长方体中,a∥γ,b∥γ,但a与b相交;④垂直于同一平面的两直线互相平行,知④正确;⑤显然正确;⑥由三棱柱的三条侧棱知⑥错.10.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵A1G AB,∴AA1与BG必相交.设交点为P,则同理设CH∩AA1=Q,则,∴P与Q重合,即三条直线AA1,GB,CH相交于一点.又由棱柱的性质知平面A1GH∥平面ABC,∴几何体A1GH-ABC为棱台.(3)∵E,F分别为AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.11.B解析①中显然是正确的;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③构造长方体或正方体,如图显然b,c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.12.D解析两条平行线中一条与第三条直线垂直,另一条直线也与第三条直线垂直,故选D.13.B解析特殊值法.当n=3时,正三角形的三个顶点之间两两距离相等,故n=3符合;当n=4时,联想正四面体的四个顶点之间两两距离相等,故n=4符合.由此可以排除选项A,C,D.故选B.14.①③④解析由平面的基本性质4知①正确;平行于同一平面的两条直线可以平行、相交,也可以异面,故②错误;m∥n,故③为真命题;m⊥n,故④为真命题;如图(1),长方体中,m与l异面,n1,n2,n3都与l异面,但n2与m相交,n1与m异面,n3与m平行,故⑤为假命题;如图(2),长方体中,m与l共面,n与l共面,但m与n异面,故⑥为假命题.(1)(2)15.证明(1)假设BC与AD共面,不妨设它们所共平面为α,则B,C,A,D∈α.所以四边形ABCD为平面图形,这与四边形ABCD为空间四边形相矛盾,所以BC与AD 是异面直线.(2)如图,连接AC,BD,则EF∥AC,HG∥AC,因此EF∥HG.同理EH∥FG,则四边形EFGH为平行四边形.又EG,FH是▱EFGH的对角线,所以EG与FH相交.16.(1)证明如图所示,连接B1D1,∵ABCD-A1B1C1D1为正方体,∴四边形A1B1C1D1为正方形.∴A1C1⊥B1D1.∵BB1⊥平面A1B1C1D1,∴A1C1⊥BB1.∵B1D1∩BB1=B1,∴A1C1⊥平面BB1D1D.∵EF⊂平面BB1D1D,∴EF⊥A1C1.(2)解如图所示,假设A,E,G,F四点共面,则A,E,G,F四点确定平面AEGF,∵ABCD-A1B1C1D1为正方体,∴平面AA1D1D∥平面BB1C1C.∵平面AEGF∩平面AA1D1D=AE,平面AEGF∩平面BB1C1C=GF,∴由平面与平面平行的性质定理得AE∥GF,同理可得AF∥GE,因此四边形AEGF为平行四边形,∴GF=AE.在Rt△ADE中,AD=a,DE=DD1=,∠ADE=90°,由勾股定理得AE=a,在直角梯形B1C1GF中,下底B1F=BB1=a,腰B1C1=a,GF=AE=a,由勾股定理可得GF==a,结合图形可知C1G<B1F,解得C1G=a.。
2018高考数学(文)(人教新课标)大一轮复习配套文档第八章 立体几何 单元测试卷 Word版含答案
一、选择题:本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的..已知互相垂直的平面α,β交于直线.若直线,满足∥α,⊥β,则( ).∥ .∥ .⊥.⊥解:因为⊥β,⊂β,所以⊥.故选..()某几何体的三视图如图所示(单位:),则该几何体的体积是()..解:该几何体为一个正方体和一个正四棱锥的组合体,其体积=+×××=().故选..一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( ).球.三棱锥 .正方体.圆柱解:球的三视图是三个相同的圆,三棱锥的三视图可以是三个全等的三角形,正方体的三视图可能是三个相同的正方形,而当圆柱的底面放置在水平面上时,其俯视图是圆,正视图是矩形.故选..()如图,在正方体中,,分别为,的中点,则下列直线中与直线相交的是( ).直线.直线 .直线.直线解:在同一个平面内不平行的两条直线或有公共交点的两条直线为相交直线,可判断选项正确.故选. .如图,在正方体中,,分别是棱,的中点,则与平面的位置关系是( ).∥平面.与平面相交 .在平面内.与平面的位置关系无法判断解:正方体中,,分别是棱,的中点,取的中点,连接,,则∥,∥,所以∥平面,∥平面,又因为∩=,所以平面∥平面,从而可得∥平面.故选..一个四面体的顶点在空间直角坐标系中的坐标分别是(,,),(,,),(,,),(,,),画该四面体三视图中的正视图时,以平面为投影面,则得到的正视图可以为( )解:如图所示,点(,,),(,,),(,,),(,,),此四点恰为正方体上四个点,且构成一个棱长为的正四面体,该正四面体在投影面上的正视图为正方形.故选..已知正四棱柱中,=,为中点,则异面直线与所成角的余弦值为( )解:取的中点,连接,则∠为所求的角,设=,∠=+×)===.故选..()已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是( )....解:由三视图知,该几何体是四棱锥,其直观图如图,四个侧面中面积最大的是△,由题设知=,=,==,所以=,取中点,连接,,则⊥,所以⊥,==,所以△=·=.故选..()已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ).π.π解:将等腰直角三角形绕其斜边所在直线旋转一周,可得到两个同底的圆锥,因此=π·()·=π.故选..半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( )π∶π∶.π∶.π∶解:将半球补成整个球,同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体恰好是球的内接长方体,那么这个长方体的体对角线就是它的外接球的直径.设正方体的棱长为,球的半径为,则()=++(),即=.所以半球=×π=π=π,正方体=.所以半球∶正方体=π∶=π∶.故选..已知正四棱柱中,=,=,为的中点,则直线与平面的距离为( )..解:如图,连接,交于,连接,在△中,易证∥.从而∥平面,所以直线到平面的距离即为点到平面的距离,设为.由等体积法,得=△×==△×=××××=.又因为在△中,=,==,。
2018高考数学复习第八章立体几何教师用书理
第八章⎪⎪⎪ 立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图1.空间几何体的结构特征 (1)多面体的结构特征(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1] (1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A.圆柱 B.圆锥C.球体 D.圆柱、圆锥、球体的组合体(2)下列说法正确的是( )A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析] (1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D 错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案] (1)C (2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2] (1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)( )A.①②⑥ B.①②③ C.④⑤⑥ D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案] (1)B (2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3] 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )[解析] 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是( )A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B 因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为 C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )A.4 cm2 B.4 2 cm2C.8 cm2 D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl .2.空间几何体的表面积与体积公式[例1] 其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3 D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝ ⎛⎭⎪⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选 C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎪⎫4-222=5,所以该正四棱台的表面积S = 2+4 ×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝ ⎛⎭⎪⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. [解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ABCD 中AB =2, ∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4. (3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c=2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎪⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′BCD的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎪⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( ) A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR26×⎝⎛⎭⎪⎫233R 2=π2.[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+ 23 2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2 C .6π D.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B.3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O ABC =V C AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ABC最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027. 8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A 根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36 C.23 D.22 解析:选A 由于三棱锥S ABC 与三棱锥O ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S ABC 的高是三棱锥O ABC 高的2倍,所以三棱锥S ABC 的体积也是三棱锥O ABC 体积的2倍.在三棱锥O ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎪⎫332=63,所以V S ABC =2V O ABC =2×13×34×63=26.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A 错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3 B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( )A .8πB .12π C.32π D .3π解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝ ⎛⎭⎪⎫233-R 2+⎝ ⎛⎭⎪⎫632,解得R =32,所以外接球的表面积S=4πR 2=3π.5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r = 22 2+ 22 2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S △PAD =12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13, 即三棱锥P MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M PBC =V P MBC =13×92×1=32.答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆锥,下面是底面圆的半径为1 m 、高为4 m 的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m 3).答案:20π39.如图,正方形O ′A ′B ′C ′的边长为a ,它是一个水平放置的平面图形的直观图,则原图形OABC 的周长是________.解析:由斜二测画法的规则可知,原图形OABC 是一个平行四边形. 在原图形OABC 中OB =22a ,OA =a , 且OA ⊥OB ,∴AB =3a ,∴原图形OABC 的周长为2(a +3a )=8a .答案:8a10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 答案:3 三、解答题11.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,则⎝ ⎛⎭⎪⎫h 22+r 2=R 2, 即h =2R 2-r 2.因为S =2πrh =4πr ·R 2-r 2= 4πr 2· R 2-r 2≤4πr 2+R 2-r 2 24=2πR 2,当且仅当r 2=R 2-r 2, 即r =22R 时,取等号, 即当内接圆柱底面半径为22R ,高为2R 时,其侧面积的值最大,最大值为2πR 2. 12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ; (2)求该几何体的表面积S .。
2018届高三(新课标)数学(理)大一轮复习教师用书第八章立体几何Word版含解析
第八章⎪⎪⎪立 体 几 何 第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图1.空间几何体的结构特征 (1)多面体的结构特征(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C 当正视图为等腰三角形时,则高应为2,且应为虚线,排除A ,D ;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA 形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式[例1]分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4 3 B.5π+16+4 3C.4π+16+2 3 D.5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3. [答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝ ⎛⎭⎪⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π.[答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132. (2)如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3π B.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027. 8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A 根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36 C.23D.22解析:选A 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎫332=63,所以VS -ABC =2V O -ABC =2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A 错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3 B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163 B.203 C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π.5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S △PAD =12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆锥,下面是底面圆的半径为1 m 、高为4 m 的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m 3).答案:20π39.如图,正方形O ′A ′B ′C ′的边长为a ,它是一个水平放置的平面图形的直观图,则原图形OABC 的周长是________.解析:由斜二测画法的规则可知,原图形OABC 是一个平行四边形. 在原图形OABC 中OB =22a ,OA =a , 且OA ⊥OB ,∴AB =3a ,∴原图形OABC 的周长为2(a +3a )=8a . 答案:8a10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V 142π=588π196π=3(寸).答案:3 三、解答题11.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,则⎝⎛⎭⎫h 22+r 2=R 2, 即h =2R 2-r 2.因为S =2πrh =4πr ·R 2-r 2=4πr 2·(R 2-r 2)≤4π(r 2+R 2-r 2)24=2πR 2, 当且仅当r 2=R 2-r 2, 即r =22R 时,取等号, 即当内接圆柱底面半径为22R ,高为2R 时,其侧面积的值最大,最大值为2πR 2. 12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ; (2)求该几何体的表面积S .解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3.所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1,。
2018课标版文数一轮(8)第八章-立体几何(含答案)2-第
第二节空间几何体的表面积和体积A 组基础题组1.(2016 广东 3 月适应性考试一空间几何体的三视图以下图,则该几何体的体积为 (A.12B.6C.4D.22.(2015 山东 ,9,5分已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A. B. C.2 πD.4 π3.(2015 课标Ⅱ,6,5 分一个正方体被一个平面截去一部分后 ,节余部分的三视图以下列图 ,则截去部分体积与节余部分体积的比值为 (A. B. C. D.4.(2015 课标Ⅰ,6,5 分《九章算术》是我国古代内容极为丰富的数学名著, 书中有以下问题 :“今有委米依垣内角 ,下周八尺 ,高五尺 .问:积及为米几何?”其意思为 :“在屋内墙角处堆放米 (如图 ,米堆为一个圆锥的四分之一 , 米堆底部的弧长为 8 尺,米堆的高为 5 尺 ,问米堆的体积和堆放的米各为多少 ?”已知 1 斛米的体积约为 1.62 立方尺 ,圆周率约为 3,估量出堆放的米约有 (A.14 斛B.22 斛C.36 斛D.66 斛5.(2017 福建南平模拟如图 ,一个几何体的三视图分别为两个等腰直角三角形和一个边长为 2 的正方形 (含一条对角线 ,则该几何体的侧面积为 (A.8(1+B.4(1+C.2(1+D.1+6.(2016 山西太原一模如图 ,平面四边形 ABCD中,AB=AD=CD=1,BD= ,BD⊥ CD,将其沿对角线 BD 折成四周体 A'-BCD,使平面 A'BD ⊥平面 BCD,若四周体 A'-BCD 的极点在同一个球面上 ,则该球的表面积为 (A.3 πB. πC.4 πD. π7.在棱长为 3 的正方体 ABCD-A 1B1C1D1中,P 在线段 BD 1上,且 = ,M 为线段 B1C1上的动点 ,则三棱锥 M-PBC 的体积为.8.一个几何体的三视图以下图(单位 :m,则该几何体的体积为m3.9.已知 H 是球 O 的直径 AB 上一点 ,AH ∶ HB=1 ∶ 2,AB ⊥平面α ,H为垂足 , α截球 O 所得截面的面积为π,则球 O 的表面积为.10.(2015 课标Ⅱ ,19,12 分如图 ,长方体 ABCD-A 1B 1C1D 1中 ,AB=16,BC=10,AA 1=8,点 E,F 分别在A 1B 1,D1C1上 ,A 1E=D 1F=4. 过点 E,F 的平面α与此长方体的面订交 ,交线围成一个正方形 .(1 在图中画出这个正方形(不用说明画法和原因;(2 求平面α把该长方体分红的两部分体积的比值.B 组提高题组11.如图 ,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A.6B.9C.12D.1812.(2017 贵州遵义模拟某几何体的三视图以下图,则该几何体的表面积为(A.24+12B.24+5C.12+15D.12+1213.某几何体的三视图以下图,则该几何体的体积为(A.16+8 πB.8+8 πC.16+16 Dπ.8+16 π14.(2015 课标Ⅱ ,10,5 分已知锥 O-ABC 体积的最大值为A,B 是球 O 的球面上两点36,则球 O 的表面积为 (,∠ AOB=90°,C 为该球面上的动点.若三棱A.36 πB.64 Cπ.144 πD.256 π15.(2017 安徽师大附中某个长方体被一个平面所截,获得的几何体的三视图以下图,则这个几何体的体积为 (A.4B.2C.4D.816.(2016 课标全国Ⅱ ,19,12 分如图 ,菱形 ABCD 的对角线 AC 与 BD 交于点 O,点 E,F 分别在AD,CD 上 ,AE=CF,EF 交 BD 于点 H.将△ DEF 沿 EF 折到△D'EF 的地点 .(1 证明 :AC ⊥HD';(2 若 AB=5,AC=6,AE= ,OD'=2 ,求五棱锥D'-ABCFE的体积.答案全解全析A 组基础题组1.D该几何体为四棱锥P-ABCD, 此中 PA⊥平面 ABCD, 如图 ,则该几何体的体积为V= ×2× ×(2+1 ×2=2.2.B依题意知,该几何体是以为底面半径,为高的两个同底圆锥构成的组合体,则其体积为π(2× ×2=π,应选B.3.D如图,由已知条件可知,截去部分是以△ABC为底面且三条侧棱两两垂直的正三棱锥D- ABC. 设正方体的棱长为a,则截去部分的体积为a3,节余部分的体积为a3- a3= a3,它们的体积之比为 .应选 D.4.B设圆锥底面的半径为R 尺 ,由× 2π R=8得 R= , 进而米堆的体积V= ×πR2×5= ( 立方尺 ,所以堆放的米约有≈22(斛.应选B.5.B由已知中的三视图可得该几何体的直观图以下图:底面为正方形 ,AB=AD=2, 棱锥的高为SA=2. SB=SD=2 ,CD ⊥ SD,CB ⊥ SB,所以 S侧=S +S +S +S△SAB △SAD △SCB △SCD△SAB △ SCB=2S +2S=2× ×2×2+2 × ×2×2=4+4 .应选 B.6.A 由题意可得 BD=A'C= ,BC= , △ BDC 与△ A'BC 都是以 BC 为斜边的直角三角形 ,由此可得BC 中点到 A',B,C,D 四个点的距离相等,故可得该三棱锥的外接球的直径为,所以该外接球的表面积 S=4π×=3π.7.答案分析∵ =,∴点 P到平面 BC 1 1到平面 BC1C 的距离是点D C 距离的 ,即为 =1,∵ M 为线段B1C1上的点 ,∴S△MBC = ×3×3= ,∴ V M-PBC =V P-MBC = ××1= .8.答案分析该几何体由一个圆锥和一个圆柱构成2 ×π×23 ,故体积 V=π×1×4+ 2= (m .9.答案分析如图 ,设截面小圆的半径为r,球的半径为R,由于 AH ∶ HB=1 ∶ 2,所以 OH= R. 由勾股定理,有 R2=r2+OH 2,又由题意得πr2=π,则 r=1,故 R2=1+ , 即 R2= .由球的表面积公式 ,得所求表面积 S=4πR2= .10.分析(1 交线围成的正方形EHGF 如图 :(2 作 EM ⊥AB, 垂足为 M, 则 AM=A1E=4,EB1=12,EM=AA1=8.由于 EHGF 为正方形 ,所以 EH=EF=BC=10.于是 MH= =6,AH=10,HB=6.由于长方体被平面α分红两个高为10 的直棱柱 ,所以其体积的比值为.B 组提高题组11.B由三视图可得,该几何体为以下图的三棱锥,其底面△ABC 为等腰三角形且BA=BC,AC=6,AC 边上的高为3,SB⊥底面 ABC, 且 SB=3, 所以该几何体的体积V= × ×6×3×3=9. 应选 B.12.A由已知可得该几何体为三棱柱,底面是斜边长为4,斜边上的高为的直角三角形,棱柱的高为4,故棱柱的表面积S=2× ×4×+4 ×4+4×4sin 30 °+4×4cos 30 °=24+12 , 应选 A.13.A由三视图可知该几何体由长方体和圆柱的一半构成2、 2,圆柱的底面半径为2,高为 4.所以该几何体的体积为.此中长方体的长、宽、高分别为V=4×2×2+ π× 22× 4=16+8应选π.A.4、14.C △AOB 的面积为定值,当 OC 垂直于平面AOB 时 ,三棱锥O-ABC 的体积获得最大值.由R3=36 得 R=6. 进而球O 的表面积S=4π R2=144π故.选C.15.D依据题中三视图可得该几何体的直观图以下图,则这个几何体的体积为2×2×3×=8. 故选 D.16.分析 (1 证明 :由已知得 AC ⊥BD,AD=CD.又由 AE=CF 得 = ,故 AC∥EF.由此得 EF⊥HD,EF ⊥HD', 所以 AC ⊥HD'.(2由 EF∥AC 得 ==.由 AB=5,AC=6 得 DO=BO= =4.所以 OH=1,D'H=DH=3.于是 OD'2+OH2=(2 2+12=9=D'H2,故OD'⊥OH.由(1 知 AC ⊥HD', 又 AC ⊥BD,BD ∩HD'=H, 所以 AC⊥平面 BHD', 于是 AC ⊥OD'. 又由 OD' ⊥ OH,AC∩OH=O,所以OD'⊥平面ABC.又由 =得 EF=.五边形 ABCFE 的面积 S= ×6×8- ××3= .所以五棱锥D'-ABCFE 的体积 V= ××2 = .。
2018高考数学文大一轮复习习题 第八章 解析几何 含答
第八章⎪⎪⎪解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是1.(教材习题改编)若过两点A (-m,6),B (1,3m )的直线的斜率为12,则m =________. 答案:-22.(教材习题改编)已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.答案:x +13y +5=03.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a.依题意2+a =1+2a,解得a =1或a =-2.答案:1或-21.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.1.经过点A (2,-3),倾斜角等于直线y =x 的2倍的直线方程为________. 解析:直线y =x 的斜率k =1,故倾斜角为π4,所以所求的直线的倾斜角为π2,则所求的直线方程为x =2.答案:x =22.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0. ②若直线不过原点. 设x a +y a=1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0考点一 直线的倾斜角与斜率基础送分型考点——自主练透1.(2016·绥化一模)直线x sin α+y +2=0的倾斜角的取值范围是( )A .1.倾斜角与α斜率k 的关系当α∈⎣⎢⎡⎭⎪⎫0,π2且由0增大到π2⎝ ⎛⎭⎪⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝ ⎛⎭⎪⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝ ⎛⎭⎪⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的2种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.考点二 直线的方程重点保分型考点——师生共研(1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 解:(1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时, 设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程, 解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx ,则-5k =2, 解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).已知点A (3,4),求满足下列条件的直线方程:(1)经过点A 且在两坐标轴上截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线在x 轴,y 轴上的截距均为a . ①若a =0,即直线过点(0,0)及(3,4). ∴直线的方程为y =43x ,即4x -3y =0.②若a ≠0,设所求直线的方程为x a +y a=1, 又点(3,4)在直线上,∴3a +4a=1,∴a =7.∴直线的方程为x +y -7=0.综合①②可知所求直线的方程为4x -3y =0或x +y -7=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 故所求直线的方程为x -y +1=0或x +y -7=0. 考点三 直线方程的综合应用题点多变型考点——多角探明直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题.常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)与圆相结合求直线方程的问题.角度一:与基本不等式相结合的最值问题1.过点P (4,1)作直线l 分别交x 轴,y 轴正半轴于A ,B 两点,O 为坐标原点. (1)当△AOB 面积最小时,求直线l 的方程. (2)当|OA |+|OB |取最小值时,求直线l 的方程. 解:设直线l :x a +y b=1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b=1.(1)4a +1b =1≥24a ·1b=4ab,所以ab ≥16,当且仅当a =8,b =2时等号成立,所以当a =8,b =2时, △AOB 的面积最小,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )⎝ ⎛⎭⎪⎫4a +1b =5+a b +4b a ≥5+2a b ·4ba=9,当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,则点P 横坐标的取值范围为( ) A .⎣⎢⎡⎦⎥⎤-1,-12 B .[]-1,0C .D .⎣⎢⎡⎦⎥⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎢⎡⎦⎥⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12.角度三:与圆相结合求直线方程的问题3.在平面直角坐标系xOy 中,设A 是半圆O :x 2+y 2=2(x ≥0)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是____________________.解析:直线OA 的方程为y =x ,代入半圆方程得A (1,1), ∴H (1,0),直线HB 的方程为y =x -1,代入半圆方程得B ⎝ ⎛⎭⎪⎫1+32,-1+32.所以直线AB 的方程为y -1-1+32-1=x -11+32-1,即3x +y -3-1=0. 答案:3x +y -3-1=0处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.(2017·衡阳一模)已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是________.解析:依题意可得|x 0+3y 0-2|10=|x 0+3y 0+6|10,化简得x 0+3y 0+2=0,又y 0<x 0+2,k OM =y 0x 0,在坐标轴上作出两直线,如图,当点M 位于线段AB (不包括端点)上时,k OM >0,当点M 位于射线BN 上除B 点外时,k OM <-13.所以y 0x 0的取值范围是⎝⎛⎭⎪⎫-∞,-13∪(0,+∞).答案:⎝⎛⎭⎪⎫-∞,-13∪(0,+∞)一抓基础,多练小题做到眼疾手快1.直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A .33B . 3C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0D .x +y +1=0解析:选D 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0.3.若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( )A .(-6,-2)B .(-5,-3)C .(-∞,-6)D .(-2,+∞)解析:选A 解方程组⎩⎪⎨⎪⎧y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以k +6>0且k +2<0,所以-6<k <-2.故选A .4.(2017·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________.解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈ B .(-∞,-2]∪D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是.5.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .2 2 C . 2D .16解析:选A ∵点P (x ,y )在直线x +y -4=0上,∴y =4-x ,∴x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.6.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为________.解析:若直线过原点,则直线方程为3x +2y =0;若直线不过原点,则斜率为1,方程为y +3=x -2,即为x -y -5=0,故所求直线方程为3x +2y =0或x -y -5=0.答案:3x +2y =0或x -y -5=07.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是.答案:8.(2016·沈阳一模)若直线l :x a +yb=1(a >0,b >0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析:由直线l :x a +yb=1(a >0,b >0)可知直线在x 轴上的截距为a ,在y 轴上的截距为b .求直线在x 轴和y 轴上的截距之和的最小值,即求a +b 的最小值.由直线经过点(1,2)得1a +2b=1.于是a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +2b =3+b a +2a b ,因为b a +2a b≥2b a ·2ab=22当且仅当b a =2ab时取等号,所以a +b ≥3+22,故直线l 在x 轴和y 轴上的截距之和的最小值为3+22.答案:3+2 29.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k+4,由已知,得(3k +4)⎝ ⎛⎭⎪⎫4k+3=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程. 解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32, 所以l AB :y =3+32(x -1), 即直线AB 的方程为(3+3)x -2y -3-3=0. 三上台阶,自主选做志在冲刺名校1.已知曲线y =1e x +1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________.解析:y ′=-e xx +2=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x·1ex =2(当且仅当e x =1e x ,即x =0时取等号),所以e x+1e x +2≥4,故y ′=-1e x+1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎪⎫-1+2k k,0,B (0,1+2k ). 又-1+2k k<0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式|P 1P 2|=x 2-x 12+y 2-y 121.(教材习题改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A . 2 B .2- 2 C .2-1D .2+1解析:选C 由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1.2.已知直线l 1:ax +(3-a )y +1=0,l 2:x -2y =0.若l 1⊥l 2,则实数a 的值为________. 解析:由题意,得aa -3=-2,解得a =2.答案:21.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2. 答案:2考点一 两条直线的位置关系(基础送分型考点——自主练透)1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.2.已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A ∵l 1∥l 2,∴4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合),∵l 2⊥l 3,∴2×1+1×n =0,解得n =-2,∴m +n =-10.3.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7. 即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1. 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法在判断两直线位置关系时,比例式1A 2与1B 2,1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题重点保分型考点——师生共研已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1, ∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P 点的坐标为________.解析:法一:设P (a ,b ),则⎩⎨⎧2a -3b +6=0,a 2+b 2=a +2+b -2,解得a =3,b =4.∴P 点的坐标为(3,4). 法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l 1与l 2:x +y -1=0平行,且l 1与l 2的距离是2,则直线l 1的方程为______________________.解析:因为l 1与l 2:x +y -1=0平行, 所以可设l 1的方程为x +y +b =0(b ≠-1). 又因为l 1与l 2的距离是2, 所以|b +1|12+12=2,解得b =1或b =-3,即l 1的方程为x +y +1=0或x +y -3=0. 答案:x +y +1=0或x +y -3=03.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围为________. 解析:由题意得,点P 到直线的距离为 |4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15, 解得0≤a ≤10,所以a 的取值范围是.答案:.考点三 对称问题题点多变型考点——多角探明对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称;(3)线关于线对称.角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=0角度二:点关于线对称2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________.解析:设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝ ⎛⎭⎪⎫-3313,413.答案:A ′⎝ ⎛⎭⎪⎫-3313,413角度三:线关于线对称3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-y -y 0,得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.1.与直线3x -4y +5=0关于x 轴对称的直线方程为________.解析:设A (x ,y )为所求直线上的任意一点, 则A ′(x ,-y )在直线3x -4y +5=0上,即3x -4(-y )+5=0,故所求直线方程为3x +4y +5=0. 答案:3x +4y +5=02.已知点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是________.解析:由题意得线段AB 的中点⎝ ⎛⎭⎪⎫-12,2在直线y =kx +b 上,故⎩⎪⎨⎪⎧23·k =-1,-12k +b =2,解得k =-32,b =54,所以直线方程为y =-32x +54.令y =0,即-32x +54=0,解得x =56,故直线y =kx +b 在x 轴上的截距为56.答案:563已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a --·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0一抓基础,多练小题做到眼疾手快1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A .平行B .垂直C .相交但不垂直D .不能确定解析:选C 由⎩⎪⎨⎪⎧2x +y +m =0,x +2y +n =0,可得3x +2m -n =0,由于3x +2m -n =0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直.2.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1),即2x +y -2=0.故选C .3.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D 由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.4.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则|c +6|=⎪⎪⎪⎪⎪⎪c +32,解得c =-154,所以l 的方程为12x +8y -15=0.答案:12x +8y -15=05.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:解方程组⎩⎪⎨⎪⎧2x -y =-10,y =x +1,可得⎩⎪⎨⎪⎧x =-9,y =-8,所以直线2x -y =-10与y =x +1的交点坐标为(-9,-8), 代入y =ax -2,得-8=a ·(-9)-2, 所以a =23.答案:23二保高考,全练题型做到高考达标1.已知A (2,3),B (-4,0),P (-3,1),Q (-m ,m +1),若直线AB ∥PQ ,则m 的值为( ) A .-1 B .0 C .1D .2解析:选C ∵AB ∥PQ , ∴k AB =k PQ ,即0-3-4-2=m +1-1-m --, 解得m =1,故选C .2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )A .423 B .4 2 C .823D .2 2解析:选C ∵l 1∥l 2, ∴1a -2=a 3≠62a, 解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪⎪⎪6-232=823.3.(2016·浙江温州第二次适应性)已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -1=0,则“m =1”是“l 1⊥l 2”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).5.已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0解析:选B 因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎪⎨⎪⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.6.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-797.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2---3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形. 故S =|AB |·|AD |=-2+-2×-2+-2-2=25.答案:258.l 1,l 2是分别经过点A (1,1),B (0,-1)的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________________.解析:当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以当l 1,l 2间的距离最大时,直线l 1的斜率为k =-12,所以当l 1,l 2间的距离最大时,直线l 1的方程是y -1=-12(x -1),即x +2y-3=0.答案:x +2y -3=09.已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)当l 1∥l 2时,求a 的值; (2)当l 1⊥l 2时,求a 的值.解:(1)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由l 1∥l 2可得⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-a +,解得a =-1.综上可知,a =-1.法二:由l 1∥l 2知⎩⎪⎨⎪⎧A 1B 2-A 2B 1=0,A 1C 2-A 2C 1≠0,即⎩⎪⎨⎪⎧aa --1×2=0,aa 2--1×6≠0⇒⎩⎪⎨⎪⎧a 2-a -2=0,a a 2-⇒a =-1.(2)法一:当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合;当a ≠1时,l 1:y =-a 2x -3,l 2:y =11-ax -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎫-a 2·11-a =-1⇒a =23.法二:∵l 1⊥l 2, ∴A 1A 2+B 1B 2=0,即a +2(a -1)=0,得a =23.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l 1:Ax +By +C =0外一点, 所以Ax 0+By 0+C =k ,k ≠0.若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,而k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P .2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,所以直线l 恒过定点(-2,3). (2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大. 又直线PA 的斜率k PA =4-33+2=15,所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x+y+7=0.第三节圆的方程1.圆的定义及方程点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.1.(2016·全国甲卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )A.-43B.-34C . 3D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(教材习题改编)圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________.解析:设圆心C 的坐标为(a ,b ), 则a =-1+12=0,b =2+42=3,故圆心C (0,3). 半径r =12|AB |=12[1--]2+-2=2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=23.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.(2016·浙江高考)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:由二元二次方程表示圆的条件可得a 2=a +2,解得a =2或-1.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,配方得⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54<0,不表示圆;当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.答案:(-2,-4) 5考点一 圆的方程基础送分型考点——自主练透1.(2017·石家庄质检)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为( )A .x 2+y 2=1 B .(x -3)2+y 2=1 C .(x -1)2+y 2=1D .x 2+(y -3)2=1解析:选A 因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.2.圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0D .x 2+y 2-10x =0解析:选B 设圆心为(0,b ),半径为r ,则r =|b |,所以圆的方程为x 2+(y -b )2=b 2.因为点(3,1)在圆上,所以9+(1-b )2=b 2,解得b =5.所以圆的方程为x 2+y 2-10y =0.3.(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .2 6B .8C .4 6D .10解析:选C 设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎪⎨⎪⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0. 令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26), ∴|MN |=46,故选C .4.(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2, 所以圆C 的半径r =|CM |=4+5=3,所以圆C的方程为(x-2)2+y2=9.答案:(x-2)2+y2=91.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法:①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上.(3)两圆相切时,切点与两圆圆心共线.解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.考点二与圆有关的最值问题题点多变型考点——多角探明与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想.常见的命题角度有:(1)斜率型最值问题;(2)截距型最值问题;(3)距离型最值问题.角度一:斜率型最值问题1.(2016·抚顺模拟)已知实数x,y满足方程x2+y2-4x+1=0,求yx的最大值和最小值.解:原方程可化为(x-2)2+y2=3,表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率,所以设yx=k,即y=kx.当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3,解得k =±3.所以y x的最大值为3,最小值为-3.角度二:截距型最值问题2.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x的最大值为-2+6,最小值为-2-6.角度三:距离型最值问题3.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为-2+-2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-43.与圆有关的最值问题的3种常见转化法(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.1.设点P 是函数y =-4-x -2图象上的任意一点,点Q 坐标为(2a ,a -3)(a∈R),则|PQ |的最小值为________.解析:函数y =-4-x -2的图象表示圆(x -1)2+y 2=4的下半圆.令点Q 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =2a ,y =a -3,得y =x2-3,即x-2y -6=0,作出图象如图所示.由于圆心(1,0)到直线x -2y -6=0的距离d =|1-2×0-6|12+-2=5>2,所以直线x -2y -6=0与圆(x -1)2+y 2=4相离,因此|PQ |的最小值是5-2.答案:5-22.已知m >0,n >0,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是________.解析:因为m >0,n >0,直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,所以圆心C (1,1)到直线的距离为半径1,所以|m +1+n +1-2|m +2+n +2=1,即|m +n |=m +2+n +2.两边平方并整理得mn =m +n +1.由基本不等式mn ≤⎝⎛⎭⎪⎫m +n 22可得m +n +1≤⎝ ⎛⎭⎪⎫m +n 22,即(m +n )2-4(m +n )-4≥0,解得m +n ≥2+22. 当且仅当m =n 时等号成立.答案:已知A (2,0)为圆x 2+y 2=4上一定点,B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.。
2018届高三数学(理)1轮复习考点规范练:第8章 立体几何39 Word版含解析
考点标准练39空间几何体的外表积与体积根底稳固1.圆柱被一个平面截去一局部后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如下图.假设该几何体的外表积为16 +20π,那么r =()A.1B.2C.4D.82.一个四面体的三视图如下图,那么该四面体的外表积是()A.1 +B.1 +2C.2 +D.23.如图,直三棱柱ABC -A1B1C1的六个顶点都在半径为1的半球面上,AB =AC,侧面BCC1B1是半球底面圆的内接正方形,那么侧面ABB1A1的面积为()A. B.1 C. D.4.(2021山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下列图所示.那么该几何体的体积为()A.πB.πC.πD.1 +π5.底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,那么该球的体积为()A. B.4π C.2π D. 〚导学号37270348〛6.?九章算术?是我国古代内容极为丰富的数学名著,书中有如下问题: "今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?〞其意思为: "在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?〞1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如下图,那么该几何体的体积是.8.某四棱柱的三视图如下图,那么该四棱柱的体积为.9.(2021邯郸一模)三棱锥P -ABC内接于球O,P A =PB =PC =2,当三棱锥P -ABC的三个侧面的面积之和最|大时,球O的外表积为.〚导学号37270349〛10.在三棱柱ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,那么三棱锥P -A1MN的体积是.11.一个上、下底面为正三角形且两底面中|心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如下图.正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的外表积S.能力提升13.如图,在多面体ABCDEF中,四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF =2,那么该多面体的体积为()A. B. C. D. 〚导学号37270350〛14.某几何体的三视图如下图,那么该几何体的体积为()A. +πB. +πC. + 2πD. +2π15.(2021浙江,理11)某几何体的三视图如下图(单位:cm),那么该几何体的外表积是cm2,体积是cm3.如图,长方体ABCD -A1B1C1D1中,AB =16,BC =10,AA1 =8,点E,F分别在A1B1,D1C1上,A1E =D1F =4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两局部体积的比值.(高|考)预测17.球的直径SC =4,A,B是该球球面上的两点,AB =,∠ASC =∠BSC =30°,那么棱锥S -ABC的体积为()A.3B.2C.D.1 〚导学号37270351〛参考答案考点标准练39空间几何体的外表积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其外表积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的外表积的一半组成.∴S表=2r×2r +2r2 +πr×2r +4πr2 =5πr2 +4r2 =16 +20π,解得r =2.2.C解析由三视图可得该四面体的直观图如下图,平面ABD⊥平面BCD,△ABD与△BCD为全等的等腰直角三角形,AB =AD =BC =CD =取BD的中点O,连接AO,CO,那么AO⊥CO,AO =CO =1.由勾股定理得AC =,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC =S△ACD =,S△ABD =S△BCD =1,所以四面体的外表积为2 +3.C解析由题意知,球心在侧面BCC1B1的中|心O上,BC为△ABC所在圆面的直径,所以∠BAC =90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM =,MC1 =,OC1 =R =1(R为球的半径),所以=1,即x =,那么AB =AC =1.所以侧面ABB1A1的面积S =1 =4.C解析由三视图可知,上面是半径为的半球,体积为V1 =,下面是底面积为1,高为1的四棱锥,体积V2 =1×1 =,应选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r = =1,所以V球=13 =应选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR =8,∴R =∴体积V =πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,那么该几何体的体积是43 =32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S =(1 +2)×1 =,故四棱柱的体积V =S·h =9.12π解析由题意三棱锥P -ABC的三条侧棱P A,PB,PC两两互相垂直,三棱锥P -ABC的三个侧面的面积之和最|大,三棱锥P -ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的外表积为4π×()2 =12π.10解析由题意,可得直三棱柱ABC -A1B1C1如下图.其中AB =AC =AA1 =BB1 =CC1 =A1B1 =A1C1 =1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN =,NP =1.∴S△MNP =1 =∵点A1到平面MNP的距离为AM =,11.解如下图,三棱台ABC -A1B1C1中,O,O1分别为两底面中|心,D,D1分别为BC和B1C1的中点,那么DD1为棱台的斜高.由题意知A1B1 =20,AB =30,那么OD =5,O1D1 =,由S侧=S上+S下,得3(20 +30)×DD1 =(202 +302),解得DD1 =,在直角梯形O1ODD1中,O1O ==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V =1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S =2×(1×1 +1 +1×2) =6 +213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG =HF =,AG =GD =BH =HC =,所以S△AGD =S△BHC =1 =所以V =V E -ADG +V F -BHC +V AGD -BHC=2V E -ADG +V AGD -BHC=2 +1 =14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2 =π·12·2 =π,所以该几何体的体积V =V1 +V2 = +π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4) =32(cm3).由于两个长方体重叠局部为一个边长为2的正方形,所以其外表积为2×(2×2×2 +4×2×4) -2×(2×2) =72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,那么AM =A1E =4,EB1 =12,EM =AA1 =8.因为EHGF为正方形,所以EH =EF =BC =10.于是MH = =6,AH =10,HB =6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC =∠SBC =90°.又∠ASC =∠BSC =30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S -ABC =V S -ABD +V C -ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC =30°,SC =4,所以AC =2,SA =2 由于AD =同理在Rt△BSC中也有BD =又AB =,所以△ABD为正三角形.所以V S -ABC =S△ABD·SC=()2·sin 60°×4 =,所以选C.。
2018年高考数学课标通用理科一轮复习真题演练:第八章
课外拓展阅读
“两向量同向”意义不清致误分析
[典例] 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.
[错因分析] 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ,b 方向相同或相反.
[解析] 由题意知,a ∥b ,
所以x 1=x 2+y -22
=y 3, 即⎩⎪⎨⎪⎧
y =3x ,①x 2+y -2=2x .② 把①代入②,得
x 2+x -2=0,(x +2)(x -1)=0,
解得x =-2或x =1.
当x =-2时,y =-6;
当x =1,y =3.
当⎩⎪⎨⎪⎧
x =-2,y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.
当⎩
⎪⎨⎪⎧ x =1,y =3时,b =(1,2,3)=a , a 与b 同向,所以⎩⎪⎨⎪⎧
x =1,y =3. [答案] 1,3
温馨提醒
1.两向量平行和两向量同向不是等价的,同向是平行的一种情
况,两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件.
2.若两向量a,b满足a=λb(b≠0)且λ>0,则a,b同向;在a,b的坐标都是非零的条件下,a,b的坐标对应成比例且比值为正值.。
2018年高考数学课标通用理科一轮复习真题演练:第八章
真题演练集训1.[2016·新课标全国卷Ⅱ]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明:由已知,得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6,得 DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解:如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD →′的方向为z 轴正方向,建立空间直角坐标系H -xyz.则H (0,0,0),A (-3,-1,0),B (0,-5,0), C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0), AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n|m||n|=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.2.[2016·山东卷]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ; (2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.(1)证明:设FC 的中点为I ,连接GI ,HI ,在△CEF 中,因为点G 是CE 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H 是FB 的中点, 所以HI ∥BC .又HI ∩GI =I ,OB ∩BC =B ,所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)解:解法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz.由题意,得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3). 故BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量, 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33.因为平面ABC的一个法向量n=(0,0.1),所以cos〈m,n〉=m·n|m||n|=77.所以二面角F-BC-A的余弦值为7 7.解法二:如图,连接OO′.过点F作FM垂直OB于点M,则有FM∥OO′.又OO′⊥平面ABC,所以FM⊥平面ABC.可得FM=FB2-BM2=3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BM sin 45°=6 2,从而FN=422,可得cos ∠FNM=77.所以二面角F-BC-A的余弦值为7 7.3.[2016·新课标全国卷Ⅲ]如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD 上一点,AM=2MD,N为PC的中点.(1)证明:MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明:由已知,得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN . 由N 为PC 的中点知,TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)解:取BC 的中点E ,连接AE . 由AB =AC ,得AE ⊥BC , 从而AE ⊥AD , 且AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2, AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN 所成角的正弦值为8525.4.[2015·新课标全国卷Ⅰ]如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC 可知,AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322.从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解:如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G -xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.5.[2015·新课标全国卷Ⅱ]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 因为四边形EHGF 为正方形, 所以EH =EF =BC =10.于是MH =EH 2-EM 2=6, 所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系D -xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE →=(10,0,0),HE →=(0,-6,8). 设n =(x ,y ,z )是平面α的法向量, 则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3). 又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面α所成角的正弦值为4515.课外拓展阅读巧用向量法求立体几何中的探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略.1.条件追溯型解决立体几何中的条件追溯型问题的基本策略是执果索因.其结论明确,需要求出使结论成立的充分条件,可将题设和结论都视为已知条件,即可迅速找到切入点.这类题目要求考生变换思维方向,有利于培养考生的逆向思维能力.[典例1]如图所示,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且AB=4,SA=3.E,F分别为线段BC,SB上的一点(端点除外),满足SFBF=CEBE=λ,当实数λ的值为________时,∠AFE为直角.[思路分析][解析]因为SA⊥平面ABCD,∠BAD=90°,故可建立如图所示的空间直角坐标系A-xyz.因为AB =4,SA =3,所以B (0,4,0),S (0,0,3).设BC =m ,则C (m,4,0),因为SF BF =CE BE =λ,所以SF →=λFB →.所以AF →-AS →=λ(AB →-AF →).所以AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3). 所以F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎫m 1+λ,4,0, 所以FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. 因为F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ, 要使∠AFE 为直角,即F A →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,所以16λ=9,解得λ=9 16.[答案]9 162.存在判断型以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐,此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于涉及的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.[典例2]如图所示,四边形ABCD是边长为1的正方形,MD ⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AMN?若存在,求线段AS的长;若不存在,请说明理由.[思路分析][解] (1)如图所示,以D 为坐标原点,建立空间直角坐标系D -xyz .依题意,得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0, 所以NE →=⎝ ⎛⎭⎪⎫-12,0,-1,AM →=(-1,0,1), 因为|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010.(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN .连接AE ,如图所示.因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ),又EA →=⎝ ⎛⎭⎪⎫12,-1,0, 所以ES →=EA →+AS →=⎝ ⎛⎭⎪⎫12,λ-1,λ. 由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ ES →·AM →=0,ES →·AN →=0,即⎩⎨⎧ -12+λ=0,(λ-1)+λ=0,解得λ=12,此时AS →=⎝ ⎛⎭⎪⎫0,12,12,|AS →|=22. 经检验,当|AS |=22时,ES ⊥平面AMN .故在线段AN 上存在点S ,使得ES ⊥平面AMN ,此时|AS |=22.3.结论探索型立体几何中的结论探索型问题的基本特征是:给出一定的条件与设计方案,判断设计的方案是否符合条件要求.此类问题的难点是“阅读理解”和“整体设计”两个环节,因此,应做到审得仔细、找得有法、推得有理、证得有力,整合过程无可辩驳.[典例3]某设计部门承接一产品包装盒的设计(如图所示),客户除了要求AB,BE边的长分别为20 cm,30 cm外,还特别要求包装盒必须满足:①平面ADE⊥平面ADC;②平面ADE与平面ABC所成的二面角不小于60 °;③包装盒的体积尽可能大.若设计出的样品满足:∠ACB与∠ACD均为直角且AB长20 cm,矩形DCBE的边长BE=30 cm,请你判断该包装盒的设计是否符合客户的要求,并说明理由.[思路分析]建立空间直角坐标系→验证所给样品是否满足条件①②③→得出结论[解]该包装盒的样品设计符合客户的要求.理由如下:因为四边形DCBE为矩形,∠ACB与∠ACD均为直角,所以以C为原点,分别以直线CA,CB,CD为x轴、y轴、z轴建立如图所示的空间直角坐标系C-xyz.因为BE=30 cm,AB=20 cm,设BC=t cm,则AC=400-t2cm,则A (400-t 2,0,0),B (0,t,0),D (0,0,30),E (0,t,30),设平面ADE 的法向量为n 1=(x ,y ,z ),DA →=(400-t 2,0,-30),DE →=(0,t,0),因为n 1·DA →=0且n 1·DE →=0,所以⎩⎪⎨⎪⎧400-t 2x -30z =0,ty =0, 取x =1,则n 1=⎝ ⎛⎭⎪⎫1,0,400-t 230. 又平面ADC 的一个法向量CB →=(0,t,0),所以n 1·CB →=1×0+0×t +400-t 230×0=0,所以n 1⊥CB →,所以平面ADE ⊥平面ADC ,所以满足条件①.因为平面ABC 的一个法向量为n 2=(0,0,1), 设平面ADE 与平面ABC 所成二面角的平面角为θ,则cos θ≤12,所以cos θ=|cos 〈n 1,n 2〉|=400-t 2301+400-t 2900≤12,所以10≤t ≤20,即当10≤t <20时,平面ADE 与平面ABC 所成的二面角不小于60°.由∠ACB 与∠ACD 均为直角知,AC ⊥平面DCBE ,该包装盒可视为四棱锥A -BCDE ,所以V A -BCDE =13S 矩形BCDE ·AC=13·30t ·400-t 2=10·t 2(400-t 2)≤10⎝ ⎛⎭⎪⎫t 2+400-t 222=2 000, 当且仅当t 2=400-t 2,即t =10 2 cm 时,V A -BCDE 的体积最大,最大值为2 000 cm 3.而10<t =102<20,可以满足平面ADE 与平面ABC 所成的二面角不小于60°的要求.综上可知,该包装盒的设计符合客户的要求.方法总结解决立体几何中的结论探索型问题的策略是:先把题目读懂,全面、准确地把握题目所提供的所有信息和题目提出的所有要求,分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,在此基础上建立空间直角坐标系,把所求的问题转化为空间几何体中的证明线面位置关系、角与最值等问题.。
2018年高考数学课标通用(理科)一轮复习真题演练第八章 立体几何8-7 Word版含解析
真题演练集训
.[·新课标全国卷Ⅱ]如图,菱形的对角线与交于点,=,=,点,分别在,上,==
,交于点.将△沿折到△′的位置,′=.
()证明:′⊥平面;
()求二面角-′-的正弦值.
()证明:由已知,得⊥,=.
又由=,得=,故∥.
因此⊥,从而⊥′.
由=,=,得
===.
由∥,得==.
所以=,′==.
于是′+=+==′,故′⊥.
又′⊥,而∩=,
所以′⊥平面. ()解:如图,以为坐标原点,的方向为轴正方向,
的方向为轴正方向,′的方向为轴正方向,建立空间直角坐标系-.
则(),(-,-),(,-),
(,-),′(),=(,-),
=(),=().
设=(,,)是平面′的法向量,
则(\\(·(,\(→))=,·(′,\(→))=,))
即(\\(-=,++=,))
所以可取=(,-).
设=(,,)是平面′的法向量,
则(\\(·(,\(→))=,·(′,\(→))=,))
即(\\(=,++=,))
所以可取=(,-).
于是〈,〉=
==-,
〈,〉=.
因此二面角-′-的正弦值是..[·山东卷]在如图所示的圆台中,是下底面圆的直径,是上底面圆′的直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章立体几何高考中立体几何问题的热点题型1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一空间点、线、面的位置关系以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制试题,主要考查公理4及线面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.[典题1] 如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)[证明]在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,AB⊂平面ABC,所以BB1⊥AB.又AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)[证明]证法一:如图①,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .又EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .①②证法二:如图②,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点, 所以HF ∥AB .又E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE .又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF . 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)[解] 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.1.证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,若不能直接用公式时,注意进行体积的转化.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需要说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG . (1)解:点F ,G ,H 的位置如图所示.(2)解:平面BEG ∥平面ACH .证明如下: 因为ABCD -EFGH 为正方体, 所以BC ∥FG ,BC =FG .又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH,与EG交于点O,连接BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG,同理DF⊥BG,又EG∩BG=G,所以DF⊥平面BEG.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证.(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.[典题2] [2017·山东济南调研]如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BDBC 1的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,AA 1⊂平面AA 1C 1C . ∴AA 1⊥平面ABC .(2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,∴AB ⊥AC .∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz.A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0,∴取向量n 1=(0,4,3).由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0,∴取向量n 2=(3,4,0). ∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625.由题图可判断二面角A 1-BC 1-B 1为锐角, 故二面角A 1-BC 1-B 1的余弦值为1625.(3)[解] 假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD →=λBC 1→,∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ).又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 解得λ=925,∵925∈[0,1], ∴在线段BC 1上存在点D ,使得AD ⊥A 1B , 此时BD BC 1=925.1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.热点三 空间向量在立体几何中的应用在高考中主要考查通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线、面的平行与垂直关系,计算空间角(特别是二面角),常与空间几何体的结构特征,空间线、面位置关系的判定定理与性质定理等知识综合,以解答题形式出现,难度中等.常见的命题角度有:[考查角度一] 计算线线角、线面角[典题3] 如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.[解] 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量, AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m|AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2), 设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0), 则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP→|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3], 则cos 2〈CQ →,DP →〉=2t25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.解决与线线角、线面角有关的问题,关键是利用垂直关系建立空间直角坐标系,运用向量的坐标运算求解.[考查角度二] 求二面角[典题4] [2016·浙江卷]如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.(1)[证明] 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC , 所以AC ⊥平面BCK ,因此BF ⊥AC . 又EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK ,又AC ∩CK =C , 所以BF ⊥平面ACFD .(2)[解] 解法一:过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B -AD -F 的平面角. 在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313. 在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以二面角B -AD -F 的平面角的余弦值为34.解法二:如图,延长AD ,BE ,CF相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x 轴、z 轴的正方向,建立空间直角坐标系O -xyz .由题意,得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0) ,E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32. 因此,AC →=(0,3,0),AK →=(1,3,3), AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧ AB →·n =0,AK →·n =0,得⎩⎨⎧ 2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是cos 〈m ,n 〉=m·n |m||n |=34. 所以二面角B -AD -F 的平面角的余弦值为34.1.用向量法解决立体几何问题,可使复杂问题简单化,使推理论证变为计算求解,降低思维难度,使立体几何问题“公式”化,训练的关键在于“归类、寻法”.2.求二面角的余弦值,转化为求两个半平面所在平面的法向量,通过两个平面的法向量的夹角求得二面角的大小,但要注意结合实际图形判断所求角的大小.。