华南理工大学半导体物理第六章课件PPT课件
合集下载
半导体物理与器件ppt课件
2.23
h h K为波数=2π/λ, λ为波长。 2mE 15 P
2.3薛定谔波动方程的应用
2.3.2无限深势阱(变为驻波方程) 与时间无关的波动方程为:
2 x 2m 2 E V x x 0 2 x
2.13
由于E有限,所以区域I和III 中:
课程主要内容
固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章
1
绪论
什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
分别求解与时间无关的波动方程、与时间有关的波 动方程可得自由空间中电子的波动方程为:
j j x, t A exp x 2mE Et B exp x 2mE Et
2.22
说明自由空间中的粒子运动表现为行波。 沿方向+x运动的粒子: x, t A exp j kx t
18
2.3薛定谔波动方程的应用
无限深势阱(前4级能量)
随着能量的增加,在任意给 定坐标值处发现粒子的概率 会渐趋一致
19
2.3薛定谔波动方程的应用
2.3.3阶跃势函数
入射粒子能量小于势垒时也有一定概率穿过势垒 (与经典力学不同)
20
2.3薛定谔波动方程的应用
2.3.3阶跃势函数 Ⅰ区域 21 x 2mE 2 1 x 0 2.39 2
华南理工大学半导体物理第六章课件
E f Ei 0 n0 ni exp kT Ei 0 E f p0 ni exp kT
E f Ei E f Ei 0 eV ( x ) n ni exp kT ni exp kT exp kT eV ( x ) n0 exp kT
Ei 0 Eis 2e f
由Eis Ei 0 eVs,所以Vs
1 Ei 0 Eis 2 f ,即: Vs 2 f e
强反型层条件: Vs 2 f
第六章 半导体表面及界面特性
• 6.1 半导体表面态 • 6.2 表面电场效应 • 6.3 空间电荷区的进一步分析 • 6.4 金属与半导体接触的物理特性 • 6.5 金属与半导体接触的电流-电压 特性 • 6.6 MIS结构的电容-电压特性
0 r kT x LD x LD LD ,所以 V x Ae Be 2 P e 0
由边界条件: 1.x 时,V x 0; 2. x 0时, V x Vs知:
12
V x Vs e x LD Vs为表面势 P0e 2 P0 e 2 所以 V x x Vs e x LD kT kT LD为德拜长度,为了屏蔽外电场而形成的空间电荷区厚度。
eP x P0
所以 eP0 e
eV x kT
P x P0e eV x / kT
2 e P0 当eV x kT时 1 V x ; kT
e 2 P0 d 2V x 2 所以,泊松方程为 V x V x L D dx 2 kT 0 r
华南理工大学半导体物理绪论课件
1. 集成电路最重要是两大因素:一个叫市场,一个叫人 才。中国市场很大,人才济济。中国集成电路发展非 常宽广。 集成电路产业化基地为集成电路的发展,高技术的发 展提供了一个技术服务平台。这个平台既是研发的平 台,又是孵化的平台。 这个平台提供的是整合资源和公共服务。这个平台可 以充分集中和利用公用资源。 集成电路的发展前景,它的竞争力,它的潜力,它的 创造力都表现在知识产权,就是表现在人的头脑当中, 这就需要创新。
长江中上游地区
人口: 348 mln US$245 bn 出口: US$11 bn
长三角地区
人口: 136 mln GDP: US$256 bn 出口: US$100 bn
西南地区
人口: 137 mln GDP: US$72 bn 出口: US$4 bn
珠三角地区
人口: 119 mln GDP: US$344 bn 出口: US$156 bn
内容简介
• • • • • • • • 绪言 半导体的晶体结构 半导体能带 半导体中载流子的统计分布 半导体的导电性 非平衡载流子 半导体表面及MIS结构 半导体的物理效应
二十世纪是科学革命的世纪,重大的科学发现与理论 创新不但改变了科学技术本身,也改变了人们的自然观、世 界观,改变了人类社会的文明进程
世界第一只晶体管
• 世界第一块集 成电路(TI, 1958)) • J. S. Kilby
集成电路的战略地位和关键作用
• 信息是客观事物状态和运动特征的一种普遍形式,与材料 和能源一起是人类社会的三大资源。知识经济的支柱产 业—微电子产业和科学技术对我国以及世界经济都有着举 足轻重的作用,成为一个国家综合国力的重要标志之一。 • 微电子芯片和软件是信息产业的基础和核心。原始硅材料 经过人们的设计和一系列特定的工艺技术加工创造,将体 现信息采集、加工、运算、传输、存储和随动执行功能的 信息系统集成并固化在硅芯片上,成为信息化的基础,一 芯千金。 • 现代经济发展的数据表明,GDP每增长100需要10元左右 电子信息工业产值和1元集成电路产值的支持。以单位质量 钢筋对GDP的贡献为1计算,则小汽车为5,彩电为30,计 算机为1000,而集成电路的贡献率则高达2000。微电子 技术和产业成为世界各国综合国际竞争力的标志之一。
长江中上游地区
人口: 348 mln US$245 bn 出口: US$11 bn
长三角地区
人口: 136 mln GDP: US$256 bn 出口: US$100 bn
西南地区
人口: 137 mln GDP: US$72 bn 出口: US$4 bn
珠三角地区
人口: 119 mln GDP: US$344 bn 出口: US$156 bn
内容简介
• • • • • • • • 绪言 半导体的晶体结构 半导体能带 半导体中载流子的统计分布 半导体的导电性 非平衡载流子 半导体表面及MIS结构 半导体的物理效应
二十世纪是科学革命的世纪,重大的科学发现与理论 创新不但改变了科学技术本身,也改变了人们的自然观、世 界观,改变了人类社会的文明进程
世界第一只晶体管
• 世界第一块集 成电路(TI, 1958)) • J. S. Kilby
集成电路的战略地位和关键作用
• 信息是客观事物状态和运动特征的一种普遍形式,与材料 和能源一起是人类社会的三大资源。知识经济的支柱产 业—微电子产业和科学技术对我国以及世界经济都有着举 足轻重的作用,成为一个国家综合国力的重要标志之一。 • 微电子芯片和软件是信息产业的基础和核心。原始硅材料 经过人们的设计和一系列特定的工艺技术加工创造,将体 现信息采集、加工、运算、传输、存储和随动执行功能的 信息系统集成并固化在硅芯片上,成为信息化的基础,一 芯千金。 • 现代经济发展的数据表明,GDP每增长100需要10元左右 电子信息工业产值和1元集成电路产值的支持。以单位质量 钢筋对GDP的贡献为1计算,则小汽车为5,彩电为30,计 算机为1000,而集成电路的贡献率则高达2000。微电子 技术和产业成为世界各国综合国际竞争力的标志之一。
半导体物理学ppt课件
在电场
②当电流密度一定时, dEF/dx与载流子浓
度成反比 ③上述讨论也适用于电子子系及空穴子系
(用准费米能级取代费米能级):
J =n
dEF dx
J =p
dEF dx
35
36
★ 正向偏压下的p-n结
①势垒: ♦ 外电压主要降落
于势垒区 ♦ 加正向偏压V, 势
垒高度下降为 e(VD-V),
荷区的产生—复合作用。 P型区和N型区的电阻率都足够低,外加电压全部降落
在过渡区上。
57
准中性区的载流子运动情况
稳态时, 假设GL=0
0
DN
d 2np dx2
n p
n
......x
xp
0
DP
d 2pn dx2
边界条件:
pn
p
......x
xn
图6.4
欧姆接触边界
以及工作温度
24
③接触电势差:
♦ pn结的势垒高度—eVD 接触电势差—VD
♦ 对非简并半导体,饱和电离近似,接触 电势为:
VD
kT e
ln nn0 np0
kT e
ln
NDNA ni2
♦ VD与二边掺杂有关,
与Eg有关
25
电势
图6-8
电子势能(能带)
26
④平衡p-n结的载流子浓度分布: ♦ 当电势零点取x=-xp处,则有: EC (x) EC qV (x)
52
53
54
理想二极管方程
PN结正偏时
55
理想二极管方程
PN结反偏时
②当电流密度一定时, dEF/dx与载流子浓
度成反比 ③上述讨论也适用于电子子系及空穴子系
(用准费米能级取代费米能级):
J =n
dEF dx
J =p
dEF dx
35
36
★ 正向偏压下的p-n结
①势垒: ♦ 外电压主要降落
于势垒区 ♦ 加正向偏压V, 势
垒高度下降为 e(VD-V),
荷区的产生—复合作用。 P型区和N型区的电阻率都足够低,外加电压全部降落
在过渡区上。
57
准中性区的载流子运动情况
稳态时, 假设GL=0
0
DN
d 2np dx2
n p
n
......x
xp
0
DP
d 2pn dx2
边界条件:
pn
p
......x
xn
图6.4
欧姆接触边界
以及工作温度
24
③接触电势差:
♦ pn结的势垒高度—eVD 接触电势差—VD
♦ 对非简并半导体,饱和电离近似,接触 电势为:
VD
kT e
ln nn0 np0
kT e
ln
NDNA ni2
♦ VD与二边掺杂有关,
与Eg有关
25
电势
图6-8
电子势能(能带)
26
④平衡p-n结的载流子浓度分布: ♦ 当电势零点取x=-xp处,则有: EC (x) EC qV (x)
52
53
54
理想二极管方程
PN结正偏时
55
理想二极管方程
PN结反偏时
大学物理课件半导体基础 共94页PPT资料
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如:
• 当受外界热和光的作用时,它的导电能 力明显变化。
势垒电容:势垒区是积累空间电荷的区域,当电压变化时, 就会引起积累在势垒区的空间电荷的变化,这样所表现出 的电容是势垒电容。
-N
扩散电容:为了形成正向电流
+
(扩散电流),注入P 区的少子
P
(电子)在P 区有浓度差,越靠
近PN结浓度越大,即在P 区有电
子的积累。同理,在N区有空穴的
积累。正向电流大,积累的电荷
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
i
iL
稳压管的技术参数:
UzW10V,Izmax20mA, ui
R
DZ
iZRL uo
Izmin5mA
负载电阻 RL 2k。要求当输入电压由正常值发
生20%波动时,负载电压基本不变。
求:电阻R和输入电压 ui 的正常值。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
(1-3)
半导体的导电机理不同于其它物质,所以它具有 不同于其它物质的特点。例如:
• 当受外界热和光的作用时,它的导电能 力明显变化。
势垒电容:势垒区是积累空间电荷的区域,当电压变化时, 就会引起积累在势垒区的空间电荷的变化,这样所表现出 的电容是势垒电容。
-N
扩散电容:为了形成正向电流
+
(扩散电流),注入P 区的少子
P
(电子)在P 区有浓度差,越靠
近PN结浓度越大,即在P 区有电
子的积累。同理,在N区有空穴的
积累。正向电流大,积累的电荷
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(1-8)
二、本征半导体的导电机理 1.载流子、自由电子和空穴
在绝对0度(T=0K)和没有外界激发时,价 电子完全被共价键束缚着,本征半导体中没有 可以运动的带电粒子(即载流子),它的导电 能力为 0,相当于绝缘体。
i
iL
稳压管的技术参数:
UzW10V,Izmax20mA, ui
R
DZ
iZRL uo
Izmin5mA
负载电阻 RL 2k。要求当输入电压由正常值发
生20%波动时,负载电压基本不变。
求:电阻R和输入电压 ui 的正常值。
《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响
《半导体物理第六章》课件
以可靠性测试、光电性能测试、尺寸测量为例,介绍半导体器件的特殊测试方法。
3
故障分析
讲解半导体器件的故障定位和与制造
学习IC设计的基本流程和制造 工艺。
集成电路器件
掌握集成电路的种类、分类及 其基本原理。
分立元件和模拟器件
介绍分立元件、模拟器件和数 字器件的基本特性和应用。
工作原理
掌握p-n结的基本构造、电学性质及工 作原理。
光电二极管
讲解光电二极管的内部结构、工作方 式和应用。
光电器件与半导体器件
发光二极管
介绍LED的特性、类型及应用。
传感器
介绍传感器的种类、原理及应用。
太阳能电池
掌握太阳能电池的工作原理和结构。
集成电路
学习集成电路的发展历史、制作工艺及设计 方法。
半导体材料与工艺
材料制备
掌握制备单晶硅和多晶硅的方 法及原理。
光刻工艺
学习光刻胶制备、光刻芯片制 造和相关工艺。
等离子刻蚀
讲解等离子刻蚀的基本原理和 工艺过程。
洁净室技术
介绍半导体器件制造中的洁净 室技术和要求。
半导体器件的特性与检测
1
电学特性
讲解电感、电容、电阻、电压及电流等基本电学特性。
2
特殊测试
半导体结构
讲解半导体的基本结构和制备 工艺。
载流子与能带理论
1 费米能级
介绍半导体中费米能级 的概念及作用。
2 载流子统计
掌握电子与空穴的贡献 对半导体电学特性的影 响。
3 掺杂
讲解杂质原子掺杂对半 导体特性的影响。
p-n结及其应用
1
二极管
2
掌握二极管的类型、电学特性和应用。
3
半导体器件物理 课件 第六章
p沟道耗尽型MOSFET 零栅压时已存在反型沟道,VTP>0
37
耗尽型:栅压为0时已经导通 N沟(很负才关闭) P沟(很正才关闭)
增强型:栅压为0时不导通
N沟(正电压开启 “1”导通)
P沟(负电压开启 “0”导通)
38
6.3.2 N 沟道增强型 MOS 场效应管工作原理
1. VGS对半导体表面空间电荷区状态的影响
EFS Ev
费米能级
价带顶能级
6
6.1 MOS电容
小的正栅压情形
表面能带图:p型衬底(2)
(耗尽层)
大的正栅压情形
X dT
(反型层+耗尽层)
EFS Ev
EFS EFi
EFS Ev
EFS EFi
7
6.1 MOS电容
表面能带图:n型衬底(1)
正栅压情形
EFS Ec
EFS EC
8
6.1 MOS电容
小的负栅压情形
n型
(耗尽Hale Waihona Puke )大的负栅压情形n型
(反型层+耗尽层)
表面能带图:n型衬底(2)
EFS Ec
EFS EFi
EFS Ec
EFS EFi
9
6.1 MOS电容 空间电荷区厚度:表面耗尽情形
表面势 s / s 半导体表面电势与 体内电势之差
Al SiO2 Si : fp 0.228V
(T 300K, Na 1014 cm3)
ms 0.83V
15
6.1 MOS电容 功函数差:n+掺杂多晶硅栅(P-Si)
简并:degenerate 退化,衰退
半导体物理学PPT课件
EA EV
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受 主和施主杂质,它们在禁带中引入了能 级;受主能级比价带顶高 EA,施主能级 比导带底低 ED,均为浅能级,这两种 杂质称为浅能级杂质。
杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
解:(a)
r 1 (1 24
3a)
3a 8
(b)
8 4r3
3 a3
3
16
0.34
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
纯度
极高,杂质<1013cm-3
结构
晶体结构
单胞
对于任何给定的晶体,可以用来形成其晶体结构的 最小单元
半导体中净杂质浓度称为有效杂质 浓度(有效施主浓度;有效受主浓 度)
杂质的高度补偿( NA ND )
现
肖特基缺陷
只存在空位而无间隙原子 间隙原子和空位这两种点缺陷受温度影响较
大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
E(0)
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受 主和施主杂质,它们在禁带中引入了能 级;受主能级比价带顶高 EA,施主能级 比导带底低 ED,均为浅能级,这两种 杂质称为浅能级杂质。
杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
解:(a)
r 1 (1 24
3a)
3a 8
(b)
8 4r3
3 a3
3
16
0.34
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
纯度
极高,杂质<1013cm-3
结构
晶体结构
单胞
对于任何给定的晶体,可以用来形成其晶体结构的 最小单元
半导体中净杂质浓度称为有效杂质 浓度(有效施主浓度;有效受主浓 度)
杂质的高度补偿( NA ND )
现
肖特基缺陷
只存在空位而无间隙原子 间隙原子和空位这两种点缺陷受温度影响较
大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
E(0)
半导体物理第六章PPT课件课件
《半导体物理第六章》PPT课件
电子和空穴的扩散方程可进一步变换为下式:
上述两式就是在掺杂和组分均匀的条件下,半导体材 料中过剩载流子浓度随着时间和空间变化规律的方程。
《半导体物理第六章》PPT课件
扩散方程的物理意义: 与时间相关的扩散方程描述过剩载流子浓度随着时间和 空间位置的变化规律。
《半导体物理第六章》PPT课件来自这一节将详细讨论过剩载流子运动的分析方法。
《半导体物理第六章》PPT课件
6.2.1 连续性方程 如下图所示的一个微分体积元,一束一维空穴流在
x处进入微分体积元,又在x+dx处离开微分体积元。 空穴的流量:Fpx+,单位:个/cm2-s,则有下式成立:
《半导体物理第六章》PPT课件
《半导体物理第六章》PPT课件
6.3.1 双极输运方程的推导
利用方程: 扩散方程; 泊松方程;
(泊松方程能建立过剩电子浓度及过剩空穴浓度与内 建电场之间的关系),其表达式为:
其中εS是半导体材料的介电常数。 《半导体物理第六章》PPT课件
扩散方程中的
项不能忽略。
《半导体物理第六章》PPT课件
双级输运方程的推导: 半导体中的电子和空穴是成对产生的,因此电子和空 穴的产生率相等,即:
Eapp:外加电场; Eint:内建电场。
《半导体物理第六章》PPT课件
内建电场倾向于将过剩电子和过剩空穴保 持在同一空间位置,因此这些带负电的过剩电 子和带正电的过剩空穴就会以同一个等效的迁 移率或扩散系数共同进行漂移或扩散运动。 这种现象称为双极扩散或双极输运过程。
《半导体物理第六章》PPT课件
§6.3 双极输运
在第5章中,导出的电子电流密度方程和空穴电流密 度方程中,引起漂移电流的电场指的是外加的电场。
电子和空穴的扩散方程可进一步变换为下式:
上述两式就是在掺杂和组分均匀的条件下,半导体材 料中过剩载流子浓度随着时间和空间变化规律的方程。
《半导体物理第六章》PPT课件
扩散方程的物理意义: 与时间相关的扩散方程描述过剩载流子浓度随着时间和 空间位置的变化规律。
《半导体物理第六章》PPT课件来自这一节将详细讨论过剩载流子运动的分析方法。
《半导体物理第六章》PPT课件
6.2.1 连续性方程 如下图所示的一个微分体积元,一束一维空穴流在
x处进入微分体积元,又在x+dx处离开微分体积元。 空穴的流量:Fpx+,单位:个/cm2-s,则有下式成立:
《半导体物理第六章》PPT课件
《半导体物理第六章》PPT课件
6.3.1 双极输运方程的推导
利用方程: 扩散方程; 泊松方程;
(泊松方程能建立过剩电子浓度及过剩空穴浓度与内 建电场之间的关系),其表达式为:
其中εS是半导体材料的介电常数。 《半导体物理第六章》PPT课件
扩散方程中的
项不能忽略。
《半导体物理第六章》PPT课件
双级输运方程的推导: 半导体中的电子和空穴是成对产生的,因此电子和空 穴的产生率相等,即:
Eapp:外加电场; Eint:内建电场。
《半导体物理第六章》PPT课件
内建电场倾向于将过剩电子和过剩空穴保 持在同一空间位置,因此这些带负电的过剩电 子和带正电的过剩空穴就会以同一个等效的迁 移率或扩散系数共同进行漂移或扩散运动。 这种现象称为双极扩散或双极输运过程。
《半导体物理第六章》PPT课件
§6.3 双极输运
在第5章中,导出的电子电流密度方程和空穴电流密 度方程中,引起漂移电流的电场指的是外加的电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12页/共68页
Ec
b. 积累层:VG<0时,电场由体 内指向表面,能带向上弯曲,
E fM
Ei
形成空穴势阱,多子空穴被吸
E fs
引至表面附近,因而表面空穴
Ev
浓度高于体内,形成多子积累,
成为积累层。
(b)积累层(VG<0) (Vs<0)
Ec
c. 耗尽层:VG>0时,表面处空
Ei E fs
穴被排斥走,当空穴势垒足够 高时,表面层价带空穴极为稀
E fM
Ev
少,可认为该层多子空穴被耗
尽,称为耗尽层。
(c)耗尽层(VG>0)
第13页/共68页
Ec
d. 反型层:若VG足够高, 使得在表面处的少子电子浓
Ei E fs
度高于了多子空穴的浓度, 则表面处导电类型就发生改
E fM
Ev
变,称为反型层。
(d)反型层(VG>0) ①开始出现反型层的条件: Ei EF
• 实际表面由于薄氧化层的存在,使降低。
• 此外表面处还存在由于晶体缺陷或吸附原子 等原因引起的表面态;这种表面态的数值与 表面经过的处理方法有关。
第3页/共68页
• 由表面态(表面能级)的性质和费米能级的位置,它们可能成为施主或受主 能级,或者成为电子-空穴对的复合中心。
Ec
Ei Ei0 (e)V (x)
eVs
Ei 0 Ef
所以,
Vs
1 e
Ei0 E f
f
Ev
表面势=费米势时
反型层的条件: Vs f
第14页/共68页
②强反型层出现的条件(以MOS场效应晶体管的电导沟 道为例):P型衬底表面处的电子密度等于体内的空穴浓度时。
Ec
ns
ni
exp
E f Eis kT
第六章 半导体表面及界面特性
• 6.1 半导体表面态 • 6.2 表面电场效应 • 6.3 空间电荷区的进一步分析 • 6.4 金属与半导体接触的物理特性 • 6.5 金属与半导体接触的电流-电压 特性
• 半导体表面态为施主态时,它可能是中性的,也可能向导带提供电子后变成 正电荷,表面带正电;若表面态为受主态,表面带负电。则表面附近可动电 荷会重新分布,形成空间电荷区和表面势,而使表面层中的能带发生变化。
第4页/共68页
测量表明硅表面能级分两组,一组是施主能 级,靠近价带;一组位受主能级,靠近导带。 Si(111)面上的表面态密度≈8×1014cm-2 Si—SiO2交界面处,表面态密度≈1011cm-2
第5页/共68页
第六章 半导体表面及界面特性
• 6.1 半导体表面态 • 6.2 表面电场效应 • 6.3 空间电荷区的进一步分析 • 6.4 金属与半导体接触的物理特性 • 6.5 金属与半导体接触的电流-电压 特性
第6页/共68页
M
I
i
VG
V
S
Vx
VG Vs
di
0
xd
金属和半导体中电荷分布情况不同
一、表面势
以MIS(金属—绝缘体—半 导体)电容器为例,金属空 间电荷区很薄,可看成一层 电荷,其面密度为Qsc,则:
i Qsc 0 i
di为氧化层厚度;
xd为半导体空间电荷区厚度;
x
Vs为表面势(即:半导体表面相 对于体内的电势差).
第7页/共68页
二、能带的弯曲
Vs x
0
En En0 eV x 能带弯曲
p0
exp
eV (x) kT
设E f Ei0 (e) f,其中 f 为费米势(表示费米能级的高
低),则
n0
ni
exp
e f kT
,p0
ni
exp e f kT
n
ni
exp
eV
x
kT
f
,p
ni
exp
e
f
V kT
x
N型半导体: f 0;P型半导体: f 0。
四、积累层,耗尽层和反型层
• 达姆能级:清洁表面的表面态所引起的表面能级,彼此靠得很近,形成准连续 的能带,分布在禁带内。
第2页/共68页
• 从化学键的角度,以硅晶体为例,因晶格在 表面处突然终止,在表面最外层的每个硅原 子将有一个未配对的电子,即有一个未饱和 的键,这个键称为悬挂键,与之对应的电子 能态就是表面态。
• 表面缺陷、表面粘污、表面氧化层都可以形 成表面能级。
Vs x
表面态为受主态
表面态为施主态
x
0
x
N型半导体
E
eVs
电子势垒
Ec EF
反型层
Ei
P型半导体
E
Ec
Ei 空穴势垒 EF
Ev
Ev
eVs
Vs 0:能带向上弯,电子势垒,空穴势阱;
Vs 0:能带向下弯,电子势阱,空穴势垒;
EF 保持恒定,热平衡体系不变。电势变化的区域:载流子分布与体内不同。
半导体表面态
• 理想表面:表面层中原子排列的对称性与体内原子完全相同,且表面不附着 任何原子或分子的半无限晶体表面。
• 晶体自由表面的存在使其周期场在表面处发生中断,同样也应引起附加能级。 这种能级称作达姆表面能级。
第1页/共68页
• 在半导体表面,晶格不完整性使势场的周期性被破坏,在禁带中形成局部状态 的能级分布(产生附加能级),这些状态称为表面态或达姆能级。
n0
ni
exp
Ef
Ei0 kT
p0
ni
exp Ei0 E f kT
Ei Ei0 (e)V ( x),则Ei Ei0 eV ( x)
所以
n
ni
exp
E
f kT
Ei
ni
exp
E
f
Ei kT
0
exp
eV ( x) kT
n0
exp
eV ( x) kT
第10页/共68页
同理
p
第8页/共68页
三、载流子浓度的变化
Ec
eVs
Ei (x)
Ef Ei0
Ev
0
x
N型半导体,表面态为受主态,Vs<0
Ei Ei0 (e)V ( x)
第9页/共68页
非简并时:
n
ni
exp
E
f kT
Ei
p
ni
exp
Ei E f kT
设内部电子、空穴浓度为n0,p0,本征费米能级为Ei0。所以,
M
S
VG
O P型
以理想MOS为例,衬底为P型。
第11页/共68页
理想MOS: ⒈金属与半导体不存在接触电势差(费米能级一致); ⒉氧化层中无电荷; ⒊半导体与氧化层中无表面态(界面态)。
Ec
P型样品衬底:
E fM
Ei E fs
a. 平带:VG=0时,能带无弯
Ev
曲,无空间电荷区;
(a)平带(VG=0)
Ef Eis
Ei0 Ef Ev
p0
ni
exp
Ei0 E f kT
p0 ns
E f Eis Ei0 E f e f Ei0 Eis 2e f
由Eis
Ei 0
eVs,所以Vs
1 e
Ei
0
Eis
2
f ,即:Vs
2 f
强反型层条件: Vs 2 f
第15页/共68页