电磁感应综合应用
电磁感应现象综合应用练习题
电磁感应综合应用练习题一、选择题 1 .如下图,MN 、PQ 为两平行金属导轨,M.P 间连接一阻值为R 的电阻,导轨处于匀强磁场中,磁感应强度为B,磁场方向与导轨所在平面垂直,图中磁场方向垂直XM×XXXNx 纸面向里,有一金属圆环沿两导轨滑动、速度为与导轨接触良好,圆环的直MXC 词X 径d 与两导轨间的距离相等,设金属环与导轨的电阻均可忽略,当金属环向右做XWk 与X 匀速运动时( ) XP*X*KQx A.有感应电流通过电阻R,大小为啥B.没有感应电流通过电阻R C.没有感应电流流过金属圆环,因为穿过圆环的磁通量不变 D.有感应电流流过金属圆环,且左、右两局部流过的电流相同2.两根相距为1.的足够长的金属直角导轨如下图放置,它们各有一边在同一水平面内,另一边垂直 于水平面.质量均为根的金属细杆时、Cd 与导轨垂直接触形成闭合同导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为“,导轨计,回路总电阻为2K.整个装置处于磁感应强度大小为B,方向竖直向磁场中.当ab 杆在平行于水平导轨的拉力F 作用下以速度历沿导轨匀时,”杆也正好以速度也向下匀速运动.重力加速度为g.以下说法正是Oβ2Γ2τjl A.M 杆所受拉力F 的大小为“根g+一∕~⅛.Cd 杆所受摩擦力为零 B 路,杆与 Q >尸k 电阻不卜卜上的匀强速运动Z 1 1确的选项 C.回路中的电流强度为吟抖D.〃与S 大小的关系为〃=器氏3.如图甲所示,圆形金属框与一个平行金属导轨相连,并置于水平桌面上.圆形金属框面积为S,内有垂直于线框平面的磁场,磁感应强度8随时间看的变化关系如图乙所示.0~lS 内磁场方向垂直线框平面向里.长为£、电阻为〃的导体棒置于平行金属导轨上,且与导轨接触良好.导轨和导体 棒处于另一匀强磁场中,其磁感应强度恒为民,方向平面向里.假设不计其余各处的电阻,当导体棒始终时,其所受的静摩擦力后(设向右为力的正方向)随时图象为() 4.图4中两条平行虚线之间存在匀强磁场,虚线间的磁场方向垂直纸面向里.助力是位于纸面内的梯形线圈,ad 与6C 间的上£=0时刻,曲边与磁场区域边界重合.现令线圈以恒定的速度P 沿区域边界的方向穿过磁场区域.取沿z1.—1.d-a 的感应电流为正,穿越磁场区域的过程中,感应电流下随时间f 变化的图线可能是( 5.如图甲所示,正三角形导线框&A 放在匀强磁场中静止不动,磁线框平面垂直,磁感应强度8随时间1的变化关系如图乙所示,t 磁感应强度的方向垂直纸面向里.以下图中能表示线框的他边受到 随时间r 的变化关系的是(规定水平向左为力的正方向)( 6.线圈通以如下图的随时间变化的电流,那么()B 1Z T ) 距离为1,距离也为垂直于磁场那么在线圈 场方向与=O 时刻,的磁场力产垂直导轨保持静止间变化的 A. B. C. D. 0~乙时间内线圈中的自感电动势最大G~打时间内线圈中的自感电动势最大£2~23时间内线圈中的自感电动势最大力〜£2时间内线圈中的自感电动势为零7.图中(八)~(d )分别为穿过某一闭合回路的磁通量⑦随时间£变化的图象,关于回路中产生的感应电动势以下论述正确的选项是() A.图(八)中回路产生的感应电动势恒定不变B.图(b )中回路产生的感应电动势一直在变大C.图(C )中回路在0~G 时间内产生的感应电动势小于在时间内产生的感应电动势 D.图(d )中回路产生的感应电动势先变小再变大8.如下图,金属直棒AB 垂直置于水平面上的两条平行光滑导轨轨接触良好,棒AB 和导轨电阻可忽略不计.导轨左端接有电阻R,平面的匀强磁场向下穿过平面.现以水平向右的恒定外力F 使AB 上,棒与身垂直于导棒向右动,f 秒末AB 棒速度为0,那么()A.f 秒内恒力的功等于电阻R 释放的电热B.t 秒内恒力的功大于电阻R 释放的电热C.t 秒内恒力的平均功率等于∕∙D.t 秒内恒力的平均功率大于E9 .如下图,竖直平面内放置的两根平行金属导轨,电阻不计,匀强磁场方 x •向垂直纸面向里,磁感应强度B=0.5T,导体棒帅、Cd 长度均为0.2m,电阻均为 x βxx 0.1Ω,重力均为0.1N,现用力F 向上拉动导体棒力,使之匀速上升(导体棒油、 J f ∣1.Cd 与导轨接 触良好),此时Cd 静止不动,那么n 匕上升时,以下说法正确的选项是X XX () A.n 匕受到的拉力大小为2NB.nb 向上运动的速度为2m/s Ch_4TdC.在2s 内,拉力做功,有0.4J 的机械能转化为电能D.在2s 内,拉力做功为0.6J10 .两根足够长的光滑导轨竖直放置,间距为1.,底端接阻值为R 的电阻.将质量为〃Z 的金属棒悬挂在•个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂 直,如图5所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长释放,那么( )A.释放瞬间金属棒的加速度等于重力加速度gB.金属棒向下运动时,流过电阻R 的电流方向为R2J2vC.金属棒的速度为。
高考物理三轮冲刺:电磁感应综合应用+教案
电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。
电磁感应规律的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
2020版高考一轮复习:第10章 第3节 电磁感应定律的综合应用
甲
乙
A
B
C
D
B [对棒受力分析,棒受的静摩擦力 Ff=F 安=BIL,电动势 E=ΔΔBt S,感应 电流 I=ER=ΔΔBt ·RS,0~1 s 和 3~4 s 内的感应电流大小和方向相同,电流从下向 上通过导体棒,安培力向左,静摩擦力向右,为正;1~2 s 和 4~5 s 内,感应 电流为零,导体棒不受安培力,也不受静摩擦力;2~3 s 和 5~6 s 内,电流从 上向下流过导体棒,安培力向右,静摩擦力向左,为负,大小和 0~1 s 内相同, 所以 B 正确。]
A
B
C
D
A [由 E=BLv 可知,导体棒由 b 运动到 ac 过程中,切割磁感线有效长度 L 均匀增大,感应电动势 E 均匀增大,由欧姆定律可知,感应电流 I 均匀增大。 由右手定则可知,感应电流方向由 M 到 N,由左手定则可知,导体棒所受安培 力水平向左,大小不断增大,故只有选项 A 正确。]
2.(多选)在如图甲所示的电路中,螺线管匝数 n=1 500 匝,横截面积 S= 20 cm2。螺线管导线电阻 r=1 Ω,R1=4 Ω,R2=5 Ω,C=30 μF。在一段时间内, 穿过螺线管的磁场的磁感应强度 B 按如图乙所示的规律变化,则下列说法中正 确的是( )
甲
乙
A.螺线管中产生的感应电动势为 1.2 V B.闭合 S,电路中的电流稳定后电容器上极板带正电 C.电路中的电流稳定后,电阻 R1 的电功率为 5×10-2 W D.S 断开后,通过 R2 的电荷量为 1.8×10-5 C
[考法指导] 电磁感应中确定电源的方法 1判断产生电磁感应现象的那一部分导体电源。 2动生问题棒切割磁感线产生的电动势 E=Blv,方向由右手定则判断。 3感生问题磁感应强度的变化的电动势 E=nΔΔBt·S,方向由楞次定律判断。 而电流方向都是等效电源内部负极流向正极的方向。
运用电磁感应原理工作
运用电磁感应原理工作
电磁感应原理是指当导体或线圈与外部变化的磁场相互作用时,会产生感应电动势和感应电流。
利用电磁感应原理,可以实现许多实际应用,例如:
1. 发电机:通过旋转导线圈在磁场中产生感应电动势,将机械能转化为电能。
2. 变压器:利用交变电流在线圈中产生的交变磁场,在另一根线圈中感应出电动势,实现电能的传输和变压。
3. 感应加热:通过在导体中通过高频交流电流,产生感应电流产生热量,实现加热的效果。
4. 感应计量电能表:利用电流在线圈中产生的磁场与固定磁场的作用,测量电能的使用情况。
5. 电磁铁:通过通电线圈在磁铁中产生的磁场,实现吸附或释放物体的功能。
6. 电磁感应传感器:通过感应电流、电动势的变化来检测和测量物理量,例如温度、速度、压力等。
电磁感应原理的应用广泛,是电器、电机、通信、能源等领域的基础。
电磁感应规律综合应用的常见题型
电磁感应规律综合应用的常见题型 一、 电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路2.电源电动势和路端电压(1)电动势:E Blv =或E n tϕ∆=∆. (2)电源正、负极:用右手定则或楞次定律确定.(内电路电流由低电势到高电势,外电路由高电势到底电势)。
(3)路端电压:U E Ir IR =-=3、电路问题分析方法(1)确定看做电源的导体(2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向;(3)画等效电路图;(4)运用闭合电路欧姆定律、串并联电路性质、电功率等公 式联立求解.例1.如图9-3-1所示,在磁感应强度为0.2 T 的匀强磁场中,有一长为0.5 m 、电阻为1.0 Ω的导体AB 在金属框架上以10 m/s 的速度向右滑动,R 1=R 2=2.0 Ω,其他电阻不计,求流过导体AB 的电流I.例2、(2012·浙江理综)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。
如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘幅条构成。
后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡。
在支架上装有磁铁,形成了磁感应强度B=0.10T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1、外半径为r 2、张角θ=π/6 。
后轮以角速度 ω=2πrad/s 相对于转轴转动。
若不计其它电阻,忽略磁场的边缘效应。
(1)当金属条ab 进入“扇形”磁场时,求感应电动势E ,并指出ab 上的电流方向;(2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差Uab 随时间t 变化的Uab -t 图象;(4)若选择的是“1.5V 、0.3A ”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价二、 电磁感应中的动力学问题(一)应用知识:1、安培力的大小:由感应电动势E=BLv ,感应电流I=E/R,和安培力公式F=BIL 得22B l v F R= 2、安培力方向判断:先用右手定则判定电流方向,在用左手定则确定安培力方向。
专题10电磁感应 第3讲电磁感应定律的综合应用(教学课件)-高考物理一轮复习
4.电磁感应中图像类选择题的两个常用方法
定性分析电磁感应过程中物理量的变化趋势(增大还是减小)、 排除法 变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正
负,以排除错误的选项 根据题目所给条件定量写出两个物理量之间的函数关系,然 函数法 后由函数关系对图像进行分析和判断
例2 (2020年山东卷)(多选)如图所示,平面直角坐标系的第一和第
的铜圆环,规定从上向下看时,铜环中的感应电流I,沿顺时针方向为
正方向.图乙表示铜环中的感应电流I随时间t变化的图像,则磁场B随
时间t变化的图像可能是下图中的
()
甲
乙
【答案】B
2.(2021年广东一模)(多选)如图所示,绝缘的水平面上固定有两条 平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放 置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上.现两 金 属 棒 分 别 以 初 速 度 2v0 和 v0 同 时 沿 导 轨 自 由 运 动 , 先 后 进 入 磁 场 区 域.已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离 开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
()
【答案】AB
【解析】a 棒以速度 2v0 先进入磁场切割磁感线产生的感应电流为 i0 =Bl·R2v0,a 棒受安培阻力做变减速直线运动,感应电流也随之减小,即 i-t 图像的斜率逐渐变小;设当 b 棒刚进入磁场时 a 棒的速度为 v1,此 时的瞬时电流为 i1=BRlv1.若 v1=v0,即 i1=BRlv0=i20,此时双棒双电源反 接,电流为零,不受安培力,两棒均匀速运动离开,i-t 图像中无电流 的图像,故 A 正确,C 错误.
【解析】导体棒向右切割磁感线,由右手定则,知电流方向为 b 指 向 a,由图像可知金属杆开始运动经 t=5.0 s 时,电压为 0.4 V,根据闭 合电路欧姆定律,得 I=UR=00..44 A=1 A,故 A 正确;根据法拉第电磁感 应定律,知 E=BLv,根据电路结构,可知 U=R+R rE,解得 v=5 m/s, 故 B 错误;
高三物理电磁感应的综合应用
D
图9-3-2 B.
A.
C.
D.
热点二
电磁感应中的动态分析问题
【例2】[2009年高考福建理综卷]如图9-3-3所示,固定放置在同一水平面内的两根平行长直金属导轨的间距 为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ。 现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离l时,速度恰好达到最大(运动过程中 杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g。则此过程( B D) A.杆的速度最大值为(F-μmg)R/(B2d2) B.流过电阻R的电量为Bdl/(R+r) C.恒力F做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F做的功与安培力做的功之和大于杆动能的变化量
【解析】本题考查受力分析、电磁感应、能量守恒等知识, 主要考查学生理解、推理能力。当v最大时有F=f+F安,即 图9-3-3 F=μmg+B2d2v/(R+r),v=(F-μmg)(R+r)/(B2d2);通过电阻R的电量 q=ΔΦ/(R+r)=Bdl/(R+r);由动能定理有WF+Wf+WF安=ΔEk,其Wf<0,WF安<0,故B、D对。 【名师支招】解决动态问题的基本方法: 受力分析→运动分析(确定运动过程和最终的稳定状态)→由牛顿第二定律列方程求解。 运动的动态结构:
3B 2 r 2 v1 9m 2 gR 2 v2 2 【答案】(1) g (2) 4 4 4mR 32 B r 2g
4 B 2 r 2a 4 B 2 r 2 v3 (3) F t ma mg 3R 3R
电磁感应规律的综合应用
电磁感应规律的综合应用(一) (电路)荥阳市第二高级中学1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于_____.(2)该部分导体的电阻或线圈的电阻相当于电源的_____,其余部分是_______.2.电源电动势和路端电压(1)电动势:E=____或E=___. (2)路端电压:U=IR=_____.电源的正、负极可用右手定则或楞次定律判定.【例证1】在同一水平面中的光滑平行导轨P、Q相距l=1 m,导轨左端接有如图所示的电路.其中水平放置的两平行板电容器两极板M、N间距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计,磁感应强度B=0.5 T的匀强磁场竖直穿过导轨平面,当金属棒ab沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m=1×10-14 kg,电荷量q=-1×10-14 C的微粒恰好静止不动.已知g=10 m/s2,在整个运动过程中金属棒与导轨接触良好,且运动速度保持恒定.试求:(1)匀强磁场的方向;(2)ab两端的电压;(3)金属棒ab运动的速度.【例证2】、如图所示,直角三角形导线框abc固定在匀强磁场中,ab是一段长为L、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为L/2 .磁场的磁感应强度为B,方向垂直纸面向里.现有一段长度为L/2 ,电阻为R/2 的均匀导体棒MN架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度v向b端滑动,滑动中始终与ac平行并与导线框保持良好接触,当MN滑过的距离为L/3时,导线ac中的电流为多大?方向如何?针对练习:1、用均匀导线做成的正方形线圈边长为l ,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以 t B∆∆的变化率增强时,则( )A.线圈中感应电流方向为acbdaB.线圈中产生的电动势22∙∆∆=t Bl EC.线圈中a 点电势高于b 点电势D.线圈中a 、b 两点间的电势差为22∙∆∆t Bl2、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平, 且与导轨接触良好.已知某时刻后两灯泡保持正常发光,重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.3、如右图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40 m ,电阻不计,导轨所在平面与磁感应强度B 为0.50 T 的匀强磁场垂直.质量m 为6.0×10-3 kg ,电阻为1.0 Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0 Ω的电阻R 1.当杆ab达到稳定状态时以速率为v 匀速下滑,整个电路消耗的电功率P 为0.27 W ,重力加速度取10 m/s2,试求速率v 和滑动变阻器接入电路部分的阻值R 2.4、两根光滑的长直金属导轨MN 、M'N'平行置于同一水平面内,导轨间距为l,电阻不计,M 、M'处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C 。
电磁感应 综合应用
感悟:解决感应电路综合题的一般思路是“先电后力”,
即: 先作“源”的分析—分离出电路中由电磁感应所产生的电源,求 出电源参数E和r。 再进行“路”的分析—分析电路结构,弄清串、并联关系;
然后是“力”的分析—分析力学研究对象的受力情况,尤其注意 其所受的安培力:
接着进行“运动”状态的分析—根据力和运动的关系,判断出正 确的运动模型; 最后是“能量”的分析—寻找电磁感应过程和力学对象的运动过 程中其能量转化和守恒的关系。
电磁感应综合应用
常考考点: 1、 电磁感应与电路(电路计算、变化 分析)综合。 2、 电磁感应与受力、运动的综合。 3、电磁感应与能量综合。
高考展望: 电磁感应是电磁学中最为重要的内 容,其应用是高考的重点和热点。 它既与电路的分析计算密切相关, 又与力学中牛顿运动定律、动能定 理、能量转化和守恒定律等有机结 合。每年高考必考。题型有选择、 填空和计算等,经常以压轴题出现 。
变式3:如果ab棒长度为2L,ab棒以b为
轴,以角速度ω逆时针转90°的过程中,流 过R的电荷量为多少?
小结:电磁感应中电路问题的解题思路:
•2、画等效电路图,明确内、外电路。 3、结合闭合电路知识进行分析计算。
高考题型(二)——电磁感应中的动力学、 能量转化综合问题
变式训练2:如果题目没有告诉导轨是
否光滑,而是告诉:当金属棒沿导轨下滑 距离为6m时,速度恰好达到最大值2m/s。 第二问又如何求呢?
小结:电磁感应中的动力学、能量问题的基
本思路:
• 1.对研究对象进行正确的受力分析、运动分 析。 • 2.明确各力的做功情况及伴随能量转化的情 况。 • 3.利用动能定理、能量守恒定律列方程求解。
• 思考:把电磁感应和动力学联系起来 的桥梁是什么?安培力与什么有关? 安培力的功和电能变化有什么关系?
第三讲___电磁感应定律的综合应用
题型三、电磁感应现象中的图象问题
对图象问题应看清坐标轴所代表的物理量,清楚图
线的形状、点、斜率、截距、与横轴所围的面积等的意
义,并结合楞次定律、右手定则判定感应电流方向及用
法拉第电磁感应定律计算感应电动势大小,最后结合闭 合电路欧姆定律、牛顿运动定律等进行相关计算.
例 3 、 (2011· 山东卷 ) 如图所示,两固定的竖直光滑 金属导轨足够长且电阻不计.两质量、长度均相同的导 体棒 c 、 d ,置于边界水平的匀强磁场上方同一高度 h 处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c, c刚进入磁场即匀速运动,此时再由静止释放 d,两导体 棒与导轨始终保持良好接触.用 ac 表示 c 的加速度, Ekd 表 示 d 的 动 能 , xc 、 xd 分 别 表 示 c 、 d 相 对 释 放 点 的 位 移.下图中正确的是( BD )
练、 (2010· 重庆 ) 法拉第曾提出一种利用河流发电的设想,
并进行了实验研究.实验装置的示意图可用图表示,两块
面积均为 S的矩形金属板,平行、正对、竖直地全部浸在
河水中,间距为d,水流速度处处相同,大小为v,方向水
平.金属板与水流方向平行,地磁场磁感应强度的竖直分 量为B,水的电阻率为ρ,水面上方有一阻值为R的电阻通 过绝缘导线和电键K连接到两金属板上,忽略边缘效 应.求:
(2)a棒质量ma;
(3)a棒在磁场中沿导轨向上运动时所受的拉力F.
练、如图甲所示,P、Q为水平面内平行放置的金属长直 导轨,间距为 d ,处在大小为 B 、方向竖直向下的匀强磁场中, 一根质量为 m、电阻为 r的导体棒 ef垂直于 P、 Q放在导轨上, 导体棒ef与P、Q导轨之间的动摩擦因数为μ.质量为M的正方形 金属框abcd,边长为L,每边电阻均为r,用细线悬挂在竖直平 面内,ab边水平,线框的a、b两点通过细导线与导轨相连,金 属框上半部分处在大小为 B、方向垂直框面向里的匀强磁场中, 下半部分处在大小也为 B、方向垂直框面向外的匀强磁场中, 不计其余电阻和细导线对a、b点的作用力.现用一电动机以恒 定功率沿导轨方向水平牵引导体棒ef向左运动,从导体棒开始 运动计时,悬挂线框的细线拉力 FT 随时间的变化如图乙所示, 求: (1)t0时间以后通过ab边的电流; (2)t0时间以后导体棒ef运动的速度; (3)电动机的牵引力功率P.
第九章第3单元__电磁感应的综合应用
如图所示,一对光滑的平行金属导轨固定在同一水平面内,
导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻。一质量m=
0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置 于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T。棒在
水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀
解析:在PQ棒右侧放金属棒时,回路中会有感应电流,
使金属棒加速,PQ棒减速,当获得共同速度时,回路
中感应电流为零,两棒都将匀速运动,A、B项错误。 当一端或两端用导线连接时,PQ的动能将转化为内能 而最终静止,C、D两选项正确。 答案:CD
2.如图2所示,用粗细相同的铜丝做成边长分 别为L和2L的两只闭合线框a和b,以相同 的速度从磁感应强度为B的匀强磁场区域
2.(2013· 福州模拟)如图9-3-16所示,在
x≤0的区域内存在匀强磁场,磁场的方 向垂直于xOy平面(纸面)向里。具有一
图9-3-16
定电阻的矩形线框abcd位于xOy平面内,线框的ab边 与y轴重合。令线框从t=0时刻起由静止开始沿x轴正 方向做匀加速运动,则线框中的感应电流I(取逆时针 方向为电流正方向)随时间t的变化图线(I-t图线)可
图9-3-18
进入磁场的这段时间内,线框运动的速度—时间图象 不可能是图9-3-19中的 ( )
图9-3-19
解析:当ab边刚进入磁场时,若线框所受安培力等于重
力,则线框在从ab边开始进入磁场到cd边刚进入磁场前
做匀速运动,故A是可能的;当ab边刚进入磁场时,若线 框所受安培力小于重力,则线框做加速度逐渐减小的加 速运动,最后可能做匀速运动,故C情况也可能;当ab边 刚进入磁场时,若线框所受安培力大于重力,则线框做 加速度逐渐减小的减速运动,最后可能做匀速运动,故D 可能;线框在磁场中不可能做匀变速运动,故B项是不可
9-3电磁感应中的综合应用
高考物理总复习
3.解决此类问题的步骤 (1)用法拉第电磁感应定律和楞次定律(包括右手定则) 确定感应电动势的大小和方向. (2)画出等效电路图,写出回路中电阻消耗的电功率的 表达式. (3)分析导体机械能的变化,用能量守恒关系和稳定状 态时受力特点及功率关系列方程,联立求解.
人 教 实 验 版
必考内容
人 教 实 验 版
必考内容
第9章
第3讲
高考物理总复习
[解析] (1)设小灯泡的额定电流为 I0,则:
2 P=I0R
①
人 教 实 验 版
由题意,小灯泡保持正常发光,流经 MN 的电流 I=2I0 此时金属棒 MN 受力平衡,下落速度最大,则: mg=BIL③ mg 联立①②③,解得:B= 2L R . P ②
高考物理总复习
(2)棒过 cd 时下落高度为 h=2rcos30° 3r = 1 2 速度为 v2,根据能量守恒得 mgh- mv2=Q 2 可得 v 2=5.0m/s 1 此时棒以下圆弧电阻为 R1= R=3Ω,棒以上圆弧电 6 5 阻为 R2= R=15Ω 6 R1R2 电路总电阻 R′= =2.5Ω R1+R2
必考内容 第9章 第3讲
高考物理总复习
电磁感应中的力学问题
命题规律 根据物体所受的力,分析运动状态,确
人 教 实 验 版
定某时刻的速度或加速度、最终速度等物理量.
必考内容
第9章
第3讲
高考物理总复习
如下图甲所示,一对足够长的平行光滑轨道固 定在水平面上,两轨道间距 l=0.5m,左侧接一阻值为 R =1Ω 的电阻.有一金属棒静止地放在轨道上,与两轨道垂 直,金属棒及轨道的电阻皆可忽略不计,整个装置处于垂 直轨道平面竖直向下的匀强磁场中.t=0 时,用一外力 F 沿轨道方向拉金属棒,使金属棒以加速度 a=0.2m/s2 做匀 加速运动,外力 F 与时间 t 的关系如下图乙所示.
专题十 第3讲 电磁感应定律的综合应用
ab 杆下滑过程中某时刻的受力示意图;
(2)在加速下滑过程中,当 ab 杆的速度大小为 v 时,求此 时 ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.
甲 图 10-3-3
乙
解:(1)如图 71,重力 mg,竖直向下; 支持力 N,垂直斜面向上;安培力 F,沿斜面向上. (2)当 ab 杆速度为 v 时,感应电动势 E=BLv, E BLv 此时电路电流 I=R= R B2L2v ab 杆受到安培力 F=BIL= R B2L2v 根据牛顿运动定律,有 ma=mgsinθ-F=mgsinθ- R B2L2v 得 ab 杆的加速度 a=gsinθ- mR . B2L2v (3)当 R =mgsinθ 时, mgRsinθ ab 杆达到最大速度 vm,所以 vm= B2L2 . 图71
定则判断它们的方向,分析出相关物理量之间的函数关系,确
定其大小和方向及在坐标中的范围.
(2)图象的初始条件,方向与正、负的对应,物理量的变化
趋势,物理量的增、减或方向正、负的转折点都是判断图象的 关键. 4.解题时要注意的事项 (1)电磁感应中的图象定性或定量地表示出所研究问题的 函数关系. (2)在图象中 E、I、B 等物理量的方向通过物理量的正负来 反映. (3)画图象要注意纵、横坐标的单位长度定义或表达.
(1)通过棒 cd 的电流 I 是多少,方向如何?
(2)棒 ab 受到的力 F 多大? (3)棒 cd 每产生 Q=0.1 J 的热量,力 F 做的功 W 是多少?
图 10-3-6
解:(1)棒cd 受到的安培力Fcd=BIl
①
棒cd 在共点力作用下平衡,则Fcd=mgsin30°
②
由①②式代入数据解得I=1 A,方向由右手定则可知由d 到c.
专题:法拉第电磁感应定律综合应用
【例5】如图所示,竖直平面内有一金属环,半径为a,总 电阻为R,磁感应强度为B的匀强磁场垂直穿过环平面,与环的 最高点A铰链连接的长度为2a、电阻为R/2的导体棒AB由水平 位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则 这时AB两端的电压大小为( )
【例6】(2012· 课标全国· 19)如 图所示,均匀磁场中有 一由半圆弧 及其直径构成的导线框,半圆直径与磁场边缘 重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大 小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的 轴以角速度ω匀速转动半周,在线框中产生感应电流.现使 线框保持图中所示位置,磁感应强度大小随时间线性变 化.为了产生与线框转动半周过程中同样大小的电流,磁感 应强度随时间的变化率 ΔB/Δt的大小应为 ( ) A.4ωB0/π B.2ωB0/π C.ωB0/π D.ωB0/2π
【例4】(2013福建,18)如图,矩形闭合线框在匀强 磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab 边和cd边刚进入磁场的时刻。线框下落过程形状不变,ab 边始终保持与磁场水平边界OO′ 平行,线框平面与磁场方向 垂直。设OO′ 下方磁场磁场区域足够大,不计空气影响,则 下列哪一个图像不可能反映线框下落过程中速度v随时间t变 化的规律( )
M v P a 2R e c C R B b f d N 2v Q
【例6】如图所示,在匀强磁场中,与磁感应强度B成 30°角放置一矩形线圈,线圈长l1=10cm、宽l2=8cm,共 100匝,线圈电阻r=1.0Ω,与它相连的电路中,电阻 R1=4.0Ω,R2=5.0Ω,电容C=50μF,磁感应强度变化如图 乙所示,开关S在t0=0时闭合,在t2=1.5s时又断开,求: (1)t=1.0s时,R2中电流的大小及方向; (2)S断开后,通过R2的电量。
物理第一轮总复习精讲课件:93电磁感应规律的综合应用
9.如图所示,有一用铝板 制成的U型框,将一质量为 m的带电小球用绝缘细线悬 挂在框中,使整体在匀强磁 场中沿垂直于磁场方向向左以速度v匀速运动,悬挂拉力为FT,则( ) A.悬线竖直,FT=mg B.悬线竖直,FT>mg C.悬线竖直,FT<mg D.无法确定FT的大小和方向
【方法与知识感悟】对电磁感应电路问题的理解 对电源的理解 电源是将其它形式的能转化为电能的装置.在电磁感应现象里,通过导体切割磁感线和线圈磁通量的变化而将其它形式的能转化为电能. 对电路的理解 内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.
题型二:由给定的有关图象(B-t图、Ф-t图)分析电磁感应过程问题
C
01
02
电容器所带的电荷量为6×10-5 C
通过R的电流是2 A,方向从a到b
2
通过R的电流是2.5 A,方向从b到a
R消耗的电功率是0.16 W
6.如图所示,一有界区域内,存在 着磁感应强度大小均为B,方向分别 垂直于光滑水平桌面向下和向上的匀 强磁场,磁场宽度均为L,边长为L的 正方形导线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是( )
*2.如图甲所示,光滑导体框架abcd水平放置,质量为m的导体棒PQ平行于bc放在ab、cd上,且正好卡在垂直于轨道平面的四枚光滑小钉之间.回路总电阻为R,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感强度B随时间t的变化情况如图乙所示(规定磁感强度方向向上为正),则在0~t时间内,关于回路内的感应电流I及小钉对PQ的弹力FN,的说法正确的是( ) A.I的大小是恒定的 B.I的方向是变化的 C.FN的大小是恒定的 D.FN的方向是变化的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B
上一页
下一页
目 录
退 出
例与练
第十五章 磁 场
2/17/2016 12:11 PM
5 、 如图所示: abcd 是粗细均匀的电阻丝制成的长方形 线框,另一种材料制成的导体棒 MN有电阻,可与保持良 好接触并做无摩擦滑动,线框处在垂直纸面向里的匀强磁 场 B 中,当导体棒 MN 在外力作用下从导线框的左端开始 做切割磁感应线的匀速运动,一直滑到右端的过程中,导 线框上消耗的电功率的变化情况可能为:( ) BCD
E=BLv=0.1×0.4×5=0.2V R并=2/3 Ω I=E /(R并+R)=0.2A UR2 =IR并=0.2×2/3=4/30 V
R1
v
B A
C
R2
Q=C UR2 =4 ×10-8 C
=0.3×10-6
× 4/30
上一页
R1
下一页
E
B
目 录
C
R2
退 出
例与练
第十五章 磁 场
2/17/2016 12:11 PM
等效电路如图b示: M v b B
M
I
ac中的电流 I
E 9E r r并 5R
ac
c
P
N
图a
=2 I/3
a c
即
P 根据右手定则,MP中的感应电流的 方向由P流向M,所以I ac电流的方向由 a流向c。 上一页 下一页 目 录
2Bl v Ia c 5R
R/3
2R/3 Er
图b
b
退 出
例与练
v
M b
R2
N
目 录
退 出
例与练
第十五章 磁 场
2/17/2016 12:11 PM
2、固定在匀强磁场中的正方形导线框abcd,各边长l,其中 ab 是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略 的铜线.磁场的磁感应强度为 B,方向垂直纸面向里,现有一 与ab 段所用材料、粗细、长度都相同的电阻丝PQ架在导线 框上,如图所示,以恒定速度v从ad 滑向bc,当PQ滑过 l / 3 的距离时,通时aP段电阻丝的电流是多大?方向如何? P 解:PQ滑动时产生感应电动势 :E=B l v a b 画出等效电路如图示:R外=2R/9 r=R d
上一页
乙
a
第四单元 电磁感应综合问题 二、电磁感应与力学规律的综合
第十五章 磁 场
2/17/2016 12:11 PM
电磁感应中产生的感应电流在磁场中将受到安培力的 作用,因此,电磁感应问题往往跟力学问题联系在一起。 解决这类电磁感应中的力学问题,不仅要应用电磁学 中的有关规律,如楞次定律、法拉第电磁感应定律、左、 右手定则、安培力的计算公式等,还要应用力学中的有关 规律,如牛顿运动定律、动量定理、动能定理、动量守恒 定律、能量守恒定律等。要将电磁学和力学的知识综合起 来应用。 由于安培力和导体中的电流、运动速度均有关, 所 以对磁场中运动导体不仅要进行受力分析,还要进行运 动分析。
v
c Q a R/3 P 2R/3 b E
R
I总=E /( R外+r )=9B l v/11R
IaP=2I总/3 = 6B l v/11R
电流方向由 P→a
上一页 下一页
目 d录
Q
退 出 c
例与练
第十五章 磁 场
2/17/2016 12:11 PM
• 3、半径为a的圆形区域内有均匀磁场,磁感强度为 B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环 与磁场同心地放置,磁场与环面垂直,其中a=0.4m, b=0.6m,金属环上分别接有灯L1、L2,两灯的电阻均为 R =2Ω,一金属棒MN与金属环接触良好,棒与环的电阻 均忽略不计 • (1)若棒以v0=5m/s的速率在环上向右匀速滑动,求棒 滑过圆环直径OO′ 的瞬时(如图所示)MN中的电动势 和流过灯L1的电流。 • (2)撤去中间的金属棒MN,将右面的半圆环OL2O′ 以OO′ 为轴向上翻转90º,若此时磁场随时间均匀变化, 其变化率为ΔB/Δt=4/π(T/s),求L1的功率。
8、如图所示,匀强磁场B=0.1T,金属棒AB长0.4m,与 框架宽度相同,R=1/3 Ω,框架电阻不计,电阻R1= 2 Ω, R2=1 Ω,当金属棒以 5m/s 的速度匀速向右运动时,求: (1)流过金属棒的感应电流多大? (2)若图中电容器C为0.3μF,则充电量多少? 解:画出等效电路如图示: A
A 逐渐增大 B.逐渐减小 C. 先增大后减小 D. 先减小后增大
d
M
c v0 B
P出 Pm
a
N
下一页
b
O r
目 录 退 出
R
上一页
例与练
第十五章 磁 场
2/17/2016 12:11 PM
6、( 04年春季理综 )如图,直角三角形导线框abc固 定在匀强磁场中, ab 是一段长为 l、电阻为R 的均匀导线, ac和bc的电阻可不计,ac长度为l /2。磁场的磁感强度 为B,方向垂直于纸面向里。现有一段长度为l /2 、电阻 为R/2的均匀导体杆MN架在导线框上,开始时紧靠ac, 然后沿ac方向以恒定速度v向 b端滑动,滑动中始终与ac 平行并与导线框保持良好接触。当MN滑过的距离为l /3 时,导线ac中的电流是多大?方向如何? M a b
3BL2 • 由电流定义I=Q/t得: Q1 2R
• 在这一过程中电容器充电的总电量Q=CUm,Um为ab棒 在转动过程中产生的感应电动势的最大值。即 • 解得: Q2 2BL C • (2)当ab棒脱离导轨后C对R放电,通过R的电量为 Q2,所以整个过程中通过 R的总电量为:Q=Q1+Q2
第十五章 磁 场
2/17/2016 12:11 PM
7、(2002年广东)如图所示,半径为R、单位长度电阻为λ 的均匀导电圆环固定在水平面上,圆环中心为 O 。匀强磁场 垂直水平方向向下,磁感强度为B。平行于直径MON的导体 杆,沿垂直于杆的方向向右运动。杆的电阻可以忽略不计, 杆与圆环接触良好,某时刻,杆的位置如图,∠aOb=2θ ,速 度为v。求此时刻作用在杆上的安培力的大小。 解:E= Bv lab=Bv×2Rsin θ 等效电路如图示: 此时弧acb和弧adb的电阻分别为2 λR(π - θ)和 2 R λθ ,
9、如图示,两个电阻的阻值分别为R和2R,其余电阻不计, 电容器的电容量为C,匀强磁场的磁感应强度为B,方向垂直 纸面向里,金属棒ab、cd 的长度均为l ,当棒ab 以速度v 向 左切割磁感应线运动时,当棒cd 以速度2v 向右切割磁感应 线运动时,电容 C 的电量为多大? 哪一个极板带正电? 解:画出等效电路如图示: a 2R e C c
上一页
下一页
目 录
退 出
例与练
第十五章 磁 场
2/17/2016 12:11 PM
• 解析:(1)棒滑过圆环直径OO` 的瞬 时,MN中的电动势 • E1=B2av=0.2×0.8×5=0.8V ① • 等效电路如图(1)所示,流过灯L1的电流 • I1=E1/R=0.8/2=0.4A ② • (2)撤去中间的金属棒MN,将右面的半圆 环OL2O`以OO`为轴向上翻转90º,半圆环 OL1O`中产生感应电动势,相当于电源,灯L2 为外电路,等效电路如图(2)所示,感应电动 势 • E2=ΔФ/Δt=0.5×πa2×ΔB/Δt=0.32V ③ • L1的功率P1=E22/4R=1.28×102W
第十五章 磁 场
2/17/2016 12:11 PM上一页Fra bibliotek下一页
目 录
退 出
第四单元 电磁感应综合问题 一、电磁感应与电路规律的综合
第十五章 磁 场
2/17/2016 12:11 PM
• 问题的处理思路 • 1、确定电源:产生感应感应电动势的那部分 导体或电路就相当于电源,它的感应电动势 就是此电源的电动势,它的电阻就是此电源 的内电阻。根据法拉第电磁感应定律求出感 应电动势,利用楞次定律确定其正负极. • 2、分析电路结构,画等效电路图. • 3、利用电路规律求解,主要有欧姆定律,串 并联规律等.
• 10、如图所示,平行导轨置于磁感应强度为B (方向向 里)的匀强磁场中,间距为L且足够长,左端电阻为R, 其余电阻不计,导轨右端接一电容为C的电容器。现有一 长2L的金属棒ab放在导轨上,ab以a为轴顺时针以角速 度ω匀速转过90°的过程中,通过R的电量为多少? • 分析:要注意电路结构的分析及金属 棒切割过程的分析. • ab沿轨道滑动的过程中,棒上电源电 动势不断增大,通过R的电流不断增大, 电容器不断被充电;当棒即将脱离轨 道时,R上电流达到最大,C被充电量同 时也达到最大.当棒离开轨道时,C放 电,所有电荷通过R
上一页
下一页
目 录
退 出
例与练
第十五章 磁 场
2/17/2016 12:11 PM
解:E=Bl v = 0.4×0.5×5V=1V R1 R并=4/3 Ω I总=3/4 A I1=0.5 A P 1= I12 R1=1/4×2W=0.5W
上一页 下一页
1、如图所示,PQNM是由粗裸导线连接两个定值电阻组 合成的闭合矩形导体框,水平放置,金属棒 ab 与 PQ 、 MN垂直,并接触良好。整个装置放在竖直向下的匀强磁 场 中 , 磁 感 强 度 B=0.4T 。 已 知 ab 长 l =0.5m , 电 阻 R1=2Ω , R2 = 4Ω , 其 余 电 阻 均 忽 略 不 计 , 若 使 ab 以 v=5m/s的速度向右匀速运动,R1上消耗的电热功率为多 少 W。(不计摩擦) P a Q
它们的并联电阻为 F=BI(2Rsinθ)
F=
2vB2 R
R并= 2 Rθ (π-θ)/π
a d c b下一页
目 录