高二数学随机变量及其概率分布1

合集下载

高中数学 第二章 随机变量及其分布学案 新人教A版选修2-3-新人教A版高二选修2-3数学学案

高中数学 第二章 随机变量及其分布学案 新人教A版选修2-3-新人教A版高二选修2-3数学学案

二随机变量及其分布1.条件概率的性质(1)非负性:0≤P(B|A)≤1.(2)可加性:如果是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件的性质(1)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).(2)对于事件A与B及它们的和事件与积事件有下面的关系:P(A+B)=P(A)+P(B)-P(AB).3.二项分布满足的条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n次独立重复试验中某事件发生的次数.4.均值与方差的性质(1)若η=aξ+b(a,b是常数),ξ是随机变量,则η也是随机变量,E(η)=E(aξ+b)=aE(ξ)+b.(2)D(aξ+b)=a2D(ξ).(3)D(ξ)=E(ξ2)-[E(ξ)]2.5.正态变量在三个特殊区间内取值的概率(1)P(μ-σ<X≤μ+σ)≈0.682 7.(2)P(μ-2σ<X≤ μ+2σ)≈0.954 5.(3)P(μ-3σ<X≤μ+3σ)≈0.997 3.1.求分布列时要检验概率的和是否为1,如果不是,要重新检查修正.2.要注意识别独立重复试验和二项分布.3.在记忆D(aX+b)=a2D(X)时要注意D(aX+b)≠a D(X)+b,D(aX+b)≠a D(X).4.易忽略判断随机变量是否服从二项分布,盲目使用二项分布的期望和方差公式计算致误.主题1 条件概率口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则:(1)第一次取出的是红球的概率是多少?(2)第一次和第二次都取出的是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的是红球的概率是多少? 【解】 记事件A :第一次取出的是红球;事件B :第二次取出的是红球.(1)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次取出的是红球,第二次是其余5个球中的任一个,符合条件的有4×5个,所以P (A )=4×56×5=23.(2)从中随机地不放回连续抽取两次,每次抽取1个,所有基本事件共6×5个;第一次和第二次都取出的是红球,相当于取两个球,都是红球,符合条件的有4×3个,所以P (AB )=4×36×5=25. (3)利用条件概率的计算公式,可得 P (B |A )=P (AB )P (A )=2523=35.条件概率的两个求解策略(1)定义法:计算P (A ),P (B ),P (AB ),利用P (A |B )=P (AB )P (B )⎝ ⎛⎭⎪⎫或P (B |A )=P (AB )P (A )求解. (2)缩小样本空间法:利用P (B |A )=n (AB )n (A )求解.其中(2)常用于古典概型的概率计算问题.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A.110B.15C.25D.12解析:选C.设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B|A )=P (AB )P (A )=1512=25.故选C.主题2 相互独立事件的概率与二项分布为了解某校今年高三毕业班报考飞行员的学生的体重情况,将所得的数据整理后,画出了如图所示的频率分布直方图,已知图中从左到右的前三组的频率之比为1∶2∶3,其中第2组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选3人,设X 表示体重超过60 kg 的学生人数,求X 的分布列.【解】 (1)设该校报考飞行员的人数为n ,前三个小组的频率分别为p 1,p 2,p 3,则由条件可得⎩⎪⎨⎪⎧p 2=2p 1,p 3=3p 1,p 1+p 2+p 3+(0.037+0.013)×5=1,解得p 1=0.125,p 2=0.25,p 3=0.375.又p 2=0.25=12n,解得n =48,所以该校报考飞行员的总人数为48.(2)由(1)可得,估计抽到一个报考学生的体重超过60 kg 的概率为P =1-(0.125+0.25)=58, 依题意有X ~B ⎝ ⎛⎭⎪⎫3,58,故P (X =k )=C k 3⎝ ⎛⎭⎪⎫58k·⎝ ⎛⎭⎪⎫383-k,k =0,1,2,3.所以随机变量X 的分布列为X 0 1 2 3P27512 135512 225512 125512求相互独立事件同时发生的概率需注意的三个问题(1)“P (A B)=P (A )P (B)”是判断事件是否相互独立的充要条件,也是解答相互独立事件概率问题的唯一工具.(2)涉及“至多”“至少”“恰有”等字眼的概率问题,务必分清事件间的相互关系. (3)公式“P (A +B)=1-P (A B)”常应用于求相互独立事件至少有一个发生的概率.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B.设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望. 解:记E ={}甲组研发新产品成功,F ={}乙组研发新产品成功,由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={}至少有一种新产品研发成功,则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220,因为P (X =0)=P (EF )=13×25=215,P (X =100)=P (EF )=13×35=315=15, P (X =120)=P (EF )=23×25=415, P (X =220)=P (EF )=23×35=615=25.故所求的分布列为X 0 100 120 220 P2151541525数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+1 32015=2 10015=140.主题3 离散型随机变量的均值与方差(2017·高考全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解】 (1)由题意知,X 所有可能取值为200,300,500,由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4,P (X =500)=25+7+490=0.4. 因此X 的分布列为X 200 300 500 P0.20.40.4(2)200瓶,因此只需考虑200≤n ≤500. 当200≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n .因此E (Y )=2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n . 当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n . 因此E (Y )=2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n . 所以n =300时,Y 的数学期望达到最大值,最大值为520元.求离散型随机变量的期望与方差的步骤一次同时投掷两枚相同的正方体骰子(骰子质地均匀,且各面分别刻有1,2,2,3,3,3六个数字).(1)设随机变量η表示一次掷得的点数和,求η的分布列;(2)若连续投掷10次,设随机变量ξ表示一次掷得的点数和大于5的次数,求E (ξ),D (ξ). 解:(1)由已知,随机变量η的取值为:2,3,4,5,6. 投掷一次正方体骰子所得点数为X ,则P (X =1)=16,P (X =2)=13,P (X =3)=12,即P (η=2)=16×16=136,P (η=3)=2×16×13=19, P (η=4)=2×16×12+13×13=518, P (η=5)=2×13×12=13,P (η=6)=12×12=14.故η的分布列为P 2 3 4 5 6 η136195181314(2)由已知,满足条件的一次投掷的点数和取值为6,设其发生的概率为p ,由(1)知,p =14,因为随机变量ξ~B ⎝ ⎛⎭⎪⎫10,14, 所以E (ξ)=np =10×14=52,D (ξ)=np (1-p )=10×14×34=158.主题4 正态分布设X ~N (10,1).(1)证明:P (1<X <2)=P (18<X <19); (2)设P (X ≤2)=a ,求P (10<X <18).【解】 (1)因为X ~N (10,1),所以,正态曲线φμ,σ(x )关于直线x =10对称,而区间(1,2)和(18,19)关于直线x =10对称,所以⎠⎛12φμ,σ(x )d x =⎠⎛1819φμ,σ(x )d x ,即P (1<X <2)=P (18<X <19).(2)因为P (X ≤2)+P (2<X ≤10)+P (10<X <18)+P (X ≥18)=1,P (X ≤2)=P (X ≥18)=a , P (2<X ≤10)=P (10<X <18),所以,2a +2P (10<X <18)=1, 即P (10<X <18)=1-2a 2=12-a .根据正态曲线的对称性求解概率的三个关键点(1)正态曲线与x 轴围成的图形面积为1;(2)正态曲线关于直线x =μ对称,则正态曲线在对称轴x =μ的左右两侧与x 轴围成的面积都为0.5;(3)可以利用等式P (X ≥μ+c )=P (X ≤μ-c )(c >0)对目标概率进行转化求解.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )(参考数据:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)≈68.27%,P (μ-2σ<X ≤μ+2σ)≈95.45%,P (μ-3σ<X ≤μ+3σ)≈99.73%.) A .1 193 B .1 359 C .2 718D .3 413解析:选B.对于正态分布N (-1,1),μ=-1,σ=1,正态曲线关于x =-1对称,故题图中阴影部分的面积为12×(0.954 5-0.682 7)=0.135 9,所以点落入题图中阴影部分的概率P =0.135 91=0.135 9,所以投入10 000个点,落入阴影部分的个数约为10 000×0.1359=1 359., [A 基础达标]1.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.447 B .0.628 C .0.954D .0.997解析:选C.因为随机变量ξ服从标准正态分布N (0,σ2), 所以正态曲线关于x =0对称.又P (ξ>2)=0.023, 所以P (ξ<-2)=0.023.所以P (-2≤ξ≤2)=1-2×0.023=0.954.2.船队若出海后天气好,可获利5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知,天气好的概率为0.6,则出海效益的均值是( ) A .2 000元 B .2 200元 C .2 400D .2 600元解析:选B.出海效益的均值为E (X )=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).3.盒中装有10个乒乓球,其中5个新球,5个旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A.35 B.110C.49D.25解析:选C.A ={}第一次取到新球,B ={}第二次取到新球,则n (A )=C 15C 19,n (AB )=C 15C 14.所以P (B |A )=P (AB )P (A )=C 15C 14C 15C 19=49.4.某人射击一次命中目标的概率为12,则此人射击6次,3次命中且恰有2次连续命中的概率为( )A .C 36⎝ ⎛⎭⎪⎫126B .A 24⎝ ⎛⎭⎪⎫126C .C 24⎝ ⎛⎭⎪⎫126D .C 14⎝ ⎛⎭⎪⎫126解析:选B.根据射手每次射击击中目标的概率是12,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为C 36⎝ ⎛⎭⎪⎫126,恰有两次连续击中目标的概率为A 24C 36,故此人射击6次,3次命中且恰有2次连续命中的概率为C 36⎝ ⎛⎭⎪⎫126·A 24C 36=A 24⎝ ⎛⎭⎪⎫126. 5.甲命题:若随机变量ξ~N (3,σ2),若P (ξ≤2)=0.3,则P (ξ≤4)=0.7.乙命题:随机变量η~B (n ,p ),且E (η)=300,D (η)=200,则p =13,则正确的是( )A .甲正确,乙错误B .甲错误,乙正确C .甲错误,乙也错误D .甲正确,乙也正确解析:选D .随机变量ξ服从正态分布N (3,σ2),所以曲线关于ξ=3对称,所以P (ξ≤4)=1-P (ξ≤2)=0.7,所以甲命题正确;随机变量η~B (n ,p ),且E (η)=np =300,D(η)=np (1-p )=200,解得p =13,所以乙命题正确.6.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数,则E (X )=________. 解析:每一次摸得红球的概率为610=35,由X ~B (4,35).则E (X )=4×35=125.答案:1257.两位工人加工同一种零件共100个,甲加工了40个,其中有35个合格,乙加工了60个,其中有50个合格,令事件A 为“从100个产品中任意取一个,取出的是合格品”,事件B 为“从100个产品中任意取一个,取到甲生产的产品”,则P (A |B )=________. 解析:由题意知P (B )=40100,P (AB )=35100,故P (A |B )=P (AB )P (B )=3540=78.答案:788.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.解析:由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为C 23(23)2(13)1=49.答案:499.甲、乙、丙三人打算趁股市低迷之际“入市”.若三人在圈定的10支股票中各自随机购买一支(假定购买时每支股票的基本情况完全相同).(1)求甲、乙、丙三人恰好买到同一支股票的概率; (2)求甲、乙、丙三人中至少有两人买到同一支股票的概率. 解:(1)三人恰好买同一支股票的概率为P 1=10×110×110×110=1100.(2)三人中恰好有两人买到同一支股票的概率为P 2=10×C 23×⎝ ⎛⎭⎪⎫1102×910=27100.由(1)知,三人恰好买到同一支股票的概率为P 1=1100,所以三人中至少有两人买到同一支股票的概率为P =P 1+P 2=1100+27100=725.10.某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放”演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 解:(1)ξ的所有可能取值为0,1,2. 依题意P (ξ=0)=C 34C 36=15.P (ξ=1)=C 24C 12C 36=35.P (ξ=2)=C 14C 22C 36=15.所以ξ的分布列为(2)则P (C)=C 34C 36=420=15.所以所求概率为P (C)=1-P (C)=1-15=45.(3)P (B )=C 25C 36=1020=12,P (B |A )=C 14C 25=410=25.[B 能力提升]11.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销运动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时.(1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=(1-14-12)×(1-16-23)=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512.(2)由题意得,ξ所有可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124,所以ξ的分布列为E (ξ)=0×24+40×4+80×12+120×4+160×24=80.12.某学校的功能室统一使用“佛山照明”的一种灯管,已知这种灯管使用寿命ξ(单位:月)服从正态分布N (μ,σ2),且使用寿命不少于12个月的概率为0.8,使用寿命不少于24个月的概率为0.2.(1)求这种灯管的平均使用寿命μ;(2)假设一间功能室一次性换上4支这种新灯管,使用12个月时进行一次检查,将已经损坏的灯管换下(中途不更换).求至少两支灯管需要更换的概率.解:(1)因为ξ~N (μ,σ2),P (ξ≥12)=0.8,P (ξ≥24)=0.2,所以P (ξ<12)=0.2,显然P (ξ<12)=P (ξ>24).由正态分布密度函数的对称性可知,μ=12+242=18,即每支这种灯管的平均使用寿命是18个月.(2)每支灯管使用12个月时已经损坏的概率为1-0.8=0.2,假设使用12个月时该功能室需要更换的灯管数量为η支,则η~B (4,0.2),故至少两支灯管需要更换的概率P =1-P (η=0)-P (η=1)=1-C 04×0.84-C 14×0.83×0.21≈0.18.13.(选做题)(2017·山西太原二模)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种:方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖? 解:(1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9.即顾客A 所获奖金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5.若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝ ⎛⎭⎪⎫2,310.设所得奖金为w 3元,则E (w 3)=2×310×15=9.结合(1)可知,E (w 1)=E (w 3)<E (w 2).所以顾客A 应该按方案a 抽奖两次,按方案b 抽奖一次.。

第七章 随机变量及其分布【章末复习】-2022-2023学年高二数学【单元通关复习】(人教A版201

第七章 随机变量及其分布【章末复习】-2022-2023学年高二数学【单元通关复习】(人教A版201

2 重点题型
反思感悟 (1)利用公式P(B∪C|A)=P(B|A)+P(C|A)可使条件概率的计算 较为简单,但应注意这个性质的使用前提是“B与C互斥”. (2)为了求复杂事件的概率,往往需要把该事件分为两个或多个互斥事件, 求出简单事件的概率后,相加即可得到复杂事件的概率.
跟踪训练1 抛掷两颗质地均匀的骰子各一次. (1)向上的点数之和为7时,其中有一个的点数是2的概率是多少? 解 记事件A表示“两颗骰子中,向上的点数有一个是2”,事件B表 示“两颗骰子向上的点数之和为7”, 则事件AB表示“向上的点数之和为7,其中有一个的点数是2”, 则 P(B)=366=16,P(AB)=326=118,
解 甲公司送餐员日平均送餐单数为 38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7, 则甲公司送餐员日平均工资为80+4×39.7=238.8(元), 因为乙公司送餐员日平均工资为241.8元,238.8<241.8, 所以推荐小王去乙公司应聘.
反思感悟 (1)求分布列的关键是根据题意确定随机变量的所有可能取值 和取每一个值时的概率,然后列成表格的形式即可. (2)根据统计数据做出决策时,可根据实际情况从均值的大小关系作出比 较后得到结论.
当 a=38 时,X=38×6=228,P=550=110; 当 a=39 时,X=39×6=234,P=1500=15; 当 a=40 时,X=40×6=240,P=1500=15; 当 a=41 时,X=40×6+1×7=247,P=2500=25; 当 a=42 时,X=40×6+2×7=254,P=550=110,
送餐单数 38 39 40 41 42
天数
10 15 10 10 5
乙公司送餐员送餐单数频数表:

高二数学选修2-3第二章 随机变量及其分布

高二数学选修2-3第二章  随机变量及其分布

§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。

2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。

3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。

所有基本事件构成的集合称为,常用大写希腊字母表示。

2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。

互斥事件的概率加法公式。

3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。

6.几何概型中的概率定义:P(A)= 。

三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。

常用表示。

2.如果随机变量X的所有可能的取值,则称X为。

四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。

(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。

(3)抛掷两枚骰子得到的点数之和。

(4)某项试验的成功率为0.001,在n次试验中成功的次数。

(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。

变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。

例3△ABC中,D,E分别为AB,AC的中点,向△ABC内部随意投入一个小球,求小球落在△ADE 中的概率。

五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。

高中数学随机变量及其分布内容简介

高中数学随机变量及其分布内容简介

高中数学随机变量及其分布内容简介
随机变量是概率论中的重要概念,指的是一个变量的取值由随机试验的结果决定。

在高中数学中,我们常常接触到一些常见的随机变量及其分布,这些内容是数学学习中的重要一环。

首先,我们要了解离散随机变量及其分布。

离散随机变量是指只取有限个或可数无限个可能值的随机变量。

在离散随机变量的分布中,最常见的是二项分布和泊松分布。

二项分布是指在n次独立重复的伯努利试验中成功的次数的概率分布,而泊松分布则是用于描述单位时间(或单位面积、单位体积)内随机事件发生的次数的分布。

另外,连续随机变量及其分布也是我们需要了解的内容。

连续随机变量是指取值在一段或多段连续区间内的随机变量。

在连续随机变量的分布中,最常见的是正态分布和指数分布。

正态分布是一种在数学、物理、工程领域中非常常见的分布,其形状呈钟形曲线,具有均值和标准差这两个参数。

而指数分布则是描述独立随机事件发生的时间间隔的分布。

在学习高中数学中的随机变量及其分布时,我们需要掌握如何计算随机变量的期望值、方差以及概率分布等重要性质。

通过学习随机变量及其分布,我们可以更好地理解概率论中的概念,为后续的数学学习打下坚实的基础。

总的来说,高中数学中的随机变量及其分布是一项重要的内容,通过学习这一部分知识,我们可以更好地理解概率论的相关概念,提高数学分析和问题解决的能力。

希望同学们能够认真学习这一部分内容,掌握其中的关键知识点,为未来的学习和发展打下良好的基础。

2.1随机变量及其概率分布

2.1随机变量及其概率分布

例1
袋中有3只红球, 只白球 从中任意取出3只球 只白球, 只球, 袋中有 只红球,2只白球,从中任意取出 只球, 只红球 写出所有的基本事件,并观察取出的3只球中的红 写出所有的基本事件,并观察取出的 只球中的红 球的个数. 球的个数. 我们将3只红球分别记作 只红球分别记作1, , 号 我们将 只红球分别记作 ,2,3号,2只白球分别 只白球分别 记作4,5号,则该试验的所有基本事件为: 记作 , 号 则该试验的所有基本事件为: )(1, , )( )(1, , ) (1,2,3)( ,2,4)( ,2,5) , , )( )(1, , )( )(1, , ) (1,3,4)( ,3,5)( ,4,5) , , )( )(2, , )( )(2, , ) (2,3,4)( ,3,5)( ,4,5) , , )( (3,4,5) , , )
例题分析:
例 4、同时掷两颗质地均匀的骰子, 、同时掷两颗质地均匀的骰子, 观察朝上一面出现的点数。求两颗骰 观察朝上一面出现的点数。 的概率分布, 子中出现的最大点数 X 的概率分布, 并求 X 大于 2 小于 5 的概率 P(2<X<5).
例题分析:
个灯泡, 例 5、已知盒中有 10 个灯泡,其 、 个正品, 个次品.需要从中 中 8 个正品,2 个次品 需要从中 取出 2 个正品,每次取出 1 个, 个正品, 取出后不放回, 取出后不放回,直到取出 2 个正 品为止.设 为取出的次数, 品为止 设ξ为取出的次数,求ξ 的分布列
此表称为随机变量X的概率分布表。它和① 此表称为随机变量 的概率分布表。它和①都叫做随 机变量X的概率分布。 机变量 的概率分布。
随机变量X的概率分布列:
X P x1 p1 x2 p2 … … xn pn

随机变量及其分布方法总结经典习题及解答

随机变量及其分布方法总结经典习题及解答

随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

常用大写英文字母X、Y等或希腊字母ξ、η等表示。

2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。

解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。

2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为0­1分布或两点分布,并记为X~0­1分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。

2022-2023学年高二下数学:随机变量及其分布(附答案解析)

2022-2023学年高二下数学:随机变量及其分布(附答案解析)

第1页(共21页)2022-2023学年高二下数学:随机变量及其分布一.选择题(共8小题)1.(2021春•河西区期中)已知随机变量的分布列如表:X012P0.2a b若E (X )=1,则D (X )=()A .0.1B .0.2C .0.4D .0.62.(2021秋•徐州期中)某单位招聘员工,先对应聘者的简历进行评分,评分达标者进入面试环节.现有1000人应聘,他们的简历评分X 服从正态分布N (60,102),若80分及以上为达标,则估计进入面试环节的人数为()(附:若随机变量X ~N (μ,σ2),则P (μ﹣σ<X <μ+σ)=0.6827,P (μ﹣2σ<X <μ+2σ)≈0.9545,P (μ﹣3σ<X <μ+3σ)≈0.9973.)A .12B .23C .46D .1593.(2021秋•孝感期中)在一次运动会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛中甲获胜的概率为0.6,乙获胜的概率为0.4,已知比赛规则是3局2胜制,则乙获得冠军的概率为()A .0.288B .0.352C .0.648D .0.2564.(2021秋•常州期中)某个班级有55名学生,其中男生35名,女生20名,男生中有20名团员,女生中有12名团员.在该班中随机选取一名学生,如果选到的是团员,那么选到的是男生的概率为()A .B .C .D .5.(2020春•鼓楼区校级期末)某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于的是()A .至少有1个深度贫困村B .有1个或2个深度贫困村C .有2个或3个深度贫困村D .恰有2个深度贫困村6.(2021春•邯郸期中)随机变量ξ的概率分布列为,k =1,2,3,4,其中c 是常数,则P (ξ≤2)的值为()。

新教材2021_2022学年高二数学下学期暑假巩固练习6随机变量及其分布一

新教材2021_2022学年高二数学下学期暑假巩固练习6随机变量及其分布一

12021-2022学年高二数学下学期暑假巩固练习6 随机变量及其分布(一)一、单选题.1.已知离散型随机变量的分布列如表所示,则表中值等于( )012A .B .C .D .2.设随机变量的分布列为,、、,其中为常数,则( )A .B .C .D .3.袋中有3个白球、5个黑球,从中任取2个球,下列选项中可以用随机变量表示的是( )A .至少取到1个白球B .至多取到1个白球C .取到白球的个数D .取到球的个数4.济南素有“四面荷花三面柳,一城山色半城湖”的美名.现有甲、乙两位游客慕名来到济南旅游,分别准备从大明湖、千佛山、趵突泉和五龙潭4个旅游景点中随机选择其中一个景点游玩.记事件:甲和乙至少一人选择千佛山,事件:甲和乙选择的景点不同,则条件概率( )A .B .C .D .5.某区有A 、B 两所学校,其中A 校有男教师10人,女教师5人,B 校有男教师3人,女教师6人.为了响应国家号召,实现教育资源的优化和均衡,决定从A 校随机抽一名教师调到B 校,然后在B 校的10名教师中随机抽一名教师去培训学习,在从B 校抽出来的参与培训学习的为男教师的条件下,从A 校调到B 校的教师为女教师的概率是( )ξp ξP 04.p03.05.03.02.01.ξ()()1CP k k k ξ==+1k =23C 1522P ξ⎛⎫<<=⎪⎝⎭29233489A B ()P B A =7167837672A .B .C .D .6.市场上某种商品由三个厂家同时供应,甲厂家的供应量是乙厂家的2倍,乙、丙两个厂家的供应量相等,且甲、乙、丙三个厂家的产品的次品率分别为2%,2%,4%,则市场上该商品的次品率为( )A .B .C .D .7.已知随机变量的分布列如下表,若,,则( )2A .B .C .D .8.设样本数据的均值和方差分别为1和4,若,,…,10,且,,...,的均值为5,则方差为( )A .5B .8C .11D .16二、多选题.9.下列说法正确的是( )A .,,则B .,,互斥且,,,则C .若,且,,,则D .设,,是一组两两互斥的事件,,且,,2,3,则3111325120035.005.0025.0075.X ()1E X =()212D X +=p =X aP12p -12p131415161210,,...,x x x 3i i y mx =+1,2i =1y 2y 10y ()0P A >()0P A >()()()()()P B P A P B A P A P B A=⋅+1A 2A 3A ()10P A >()20P A >()30P A >()()()13i i i P B P A P B A ==∑123A A A =ΩU U ()10P A >()20P A >()30P A >()()()13i i i P B P A P B A ==∑1A 2A 3A 123A A A =ΩU U ()0i P A >1i =310.在2021年的高考中,数学出现了多项选择题.假设某一道多项选择题有四个选项1、2、3、4,其中正确选项的个数有可能是2个或3个或4个,这三种情况出现的概率均为,且在每种情况内,每个选项是正确选项的概率相同.根据以上信息,下列说法正确的是( )A .某同学随便选了三个选项,则他能完全答对这道题的概率高于B .1选项是正确选项的概率高于C .在1选项为正确选项的条件下,正确选项有3个的概率为D .在1选项为错误选项的条件下,正确选项有2个的概率为11.已知随机变量的分布列如下表:01记“函数是偶函数”为事件,则( )A .B .C .D .三、填空题.12.若,,其中,则______.()()()13i i i P B P A P B A ==∑13110121312X X 1-Pa13b()()3sin2x Xf x x π+=∈R A ()23P A =()23E X =()223E X a =-()223E X =()21P x ξβ≤=-()11P x ξα≥=-12x x <()12P x x ξ≤≤=413.有朋自远方来,选乘火车、汽车、飞机来的概率分别为,,,对应迟到的概率分别为,,,则他会迟到的概率为______.14.随机变量X 的分布列为XP若,,成等差数列,则公差的取值范围是______.15.对某种型号的仪器进行质量检测,每台仪器最多可检测3次,一旦发现问题,则停止检测,否则一直检测到3次为止,若该仪器一次检测出现问题的概率为,设检测次数为,则的数学期望为______.四、解答题.16.6名同学和1名老师去参观“伟大征程——庆祝中国共产党成立100周年特展”,参观结束后他们排成一排照相留念.(结果用数值表示)(1)若老师站在正中间,同学甲要与老师相邻,则不同的排法共有多少种;(2)同学甲、同学乙、老师三人互不相邻的排法有多少种?(3)在同学甲与老师相邻的前提下,同学乙也与老师相邻的概率是多少?06.03.01.03.04.01.1x 2x 3x 1p 2p 3p 1p 2p 3p d 02.X X517.某单位有A ,B 两个餐厅为员工提供午餐与晚餐服务,甲、乙两位员工每个工作日午餐和晚餐都在单位就餐,近100个工作日选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)甲员工30天20天40天10天乙员工20天25天15天40天假设甲、乙员工选择餐厅相互独立,用频率估计概率.(1)分别估计一天中甲员工午餐和晚餐都选择A 餐厅就餐的概率,乙员工午餐和晚餐都选择B 餐厅就餐的概率;(2)记X 为甲、乙两员工在一天中就餐餐厅的个数,求X 的分布列和数学期望;(3)试判断甲、乙员工在晚餐选择B 餐厅就餐的条件下,哪位员工更有可能午餐选择A 餐厅就餐,并说明理由.18.甲、乙两选手比赛,每局比赛甲获胜的概率为,乙获胜的概率为,采用了“3局2胜制”(这里指最多比赛3局,先胜2局者为胜,比赛结束).若仅比赛2局就结束的概率为.(1)求的值;(2)若采用“5局3胜制”(这里指最多比赛5局,先胜3局者为胜,比赛结束),求比赛局数的分布列和数学期望.(),A A (),A B (),B A (),B B ()E X p 1p -1325p X6参考答案一、单选题.1.【答案】B【解析】由离散型随机变量的分布列得,解得,故选B .2.【答案】D【解析】由已知可得,则,因此,,故选D .3.【答案】C【解析】选项A ,B 是随机事件;选项D 是定值2;选项C 可能的取值为0,1,2,可以用随机变量表示,故选C .4.【答案】D【解析】根据题意,甲和乙至少一人选择千佛山的情况有种,甲和乙选择的景点不同,且至少一人选择千佛山的情况有种,所以,故选D .5.【答案】A【解析】记“从A 校调到B 校的教师为女教师”为事件M ,记“从B 校抽出来的参与培训学习的为男教师”为事件N ,则,又“从B 校抽出来的参与培训学习的为男教师”包含两种情况:ξ0.40.31p ++=0.3p =()()()111312*********P P P C C ξξξ⎛⎫=+=+==++== ⎪⨯⨯⨯⎝⎭43C =()()4118191523123222P P P ξξξ⎛⎫=+==+⎫=⎪⨯⎝⎛<<= ⎭⎪⎝⎭⨯44337⨯-⨯=1123C C 6⨯=()67P B A =131()31010P MN =⨯=7从A 校抽取到B 校的教师为男教师;从A 校抽取到B 校的教师为女教师,,,故选A .6.【答案】C 【解析】设,,分别表示取到甲、乙、丙厂家的产品,B 表示取到次品,由题意得,,,,,由全概率公式得,故选C .7.【答案】B【解析】由题意得,,∴,①由方差的性质知,,又,∴,∴,即,所以,将代入①式,得.故选B .241311()31031030P N ∴=⨯+⨯=()3()=()11P MN P M N P N ∴=1A 2A 3A ()10.5P A =()()230.25P A P A ==()10.02P B A =()20.02P B A =()30.04P B A =()()()()()()()112233P B P A P B A P A P B A P A P B A =++0.50.020.250.020.250.040.025=⨯+⨯+⨯=()1102122E X p a p ⎛⎫=⨯-+⨯+⨯= ⎪⎝⎭212a p +=()()214D X D X +=()212D X +=()12D X =()()()()22211101121222D X p a p ⎛⎫=-⨯-+-⨯+-⨯=⎪⎝⎭2210a a -+=1a =1a =14p =88.【答案】D 【解析】因为样本数据的均值和方差分别为和,且,所以的均值为,即,所以方差为,故选D .二、多选题.9.【答案】AD【解析】应用全概率公式要求满足3个条件:①,,…,是一组两两互斥的事件;②;③.只有选项AD 满足,故选AD .10.【答案】BC【解析】若正确选项的个数为2个,则有共6种组合,每种组合为正确答案的概率为,若正确选项的个数为3个,则有共4种组合,每种组合为正确答案的概率为,若正确选项的个数为4个,则有共1种组合,这种组合为正确答案的概率为,1210,,x x x ⋅⋅⋅143i i y mx =+1210,,y y y ⋅⋅⋅135m ⨯+=2m =22416⨯=()()()1ni i i P B P A P B A ==⋅∑1A 2A nA 12n A A A =ΩU UL U B ⊆Ω(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)1113618⨯=(1,2,3),(1,2,4),(1,3,4),(2,3,4)1113412⨯=(1,2,3,4)139对于A ,随便选了三个选项,能完全答对这道题的概率为,错误;对于B ,1选项是正确选项的概率为,正确;对于C ,1选项为正确选项为事件A ,由B 选项知,,正确选项有3个为事件B ,则,正确;对于D ,1选项为错误选项为事件C ,,正确选项有2个为事件D ,则,错误,故选BC .11.【答案】ACD【解析】因为函数是偶函数,所以,,所以,,又因为,所以事件表示,所以,,111210<11131331812342⨯+⨯+=>3()4P A =13()112()3()34P AB P B A P A ⨯===1()4P C =13()218()1()34P CD P D C P C ⨯===()()3sin2x Xf x x π+=∈R 22X k πππ=+k ∈Z 21X k =+k ∈Z 1,0,1X =-A 1X =±()12133P A a b =+=-=()()12101233E X a b b a a=-⨯+⨯+⨯=-=-10随机变量的可能取值为0,1,,,所以,故选ACD .三、填空题.12.【答案】(或)【解析】由概率的基本性质得:,故答案为.13.【答案】【解析】根据题意,他会迟到的概率为,故答案为.14.【答案】【解析】由题意知,,∴,∴.又,∴,∴.2X ()2103P X ==()2213P X a b ==+=()212201333E X =⨯+⨯=1αβ--()1αβ-+()()()12211P x x P x P x ξξξ≤≤=≤+≥-()()1111βααβ=-+--=--1αβ--031.060303040101031⨯+⨯+⨯=.......031.11,33⎡⎤-⎢⎥⎣⎦21p p d=+312p p d=+1231331p p p p d ++=+=113p d =-101p ≤≤1013d ≤-≤2133d -≤≤11同理,由,,∴,∴,即公差的取值范围是,故答案为.15.【答案】【解析】由题意,检测次数可取,则,,,所以,故答案为.四、解答题.16.【答案】(1);(2);(3).【解析】(1)如图:,有7个位置,老师只能排在4号位置,同学甲可排在3或5号位置,其余5位同学可排剩下的5个位置,故共有种排法.(2)可以采用插空法,现将除同学甲、同学乙、老师3人的其余4人进行排列,再将同学甲、同学乙、老师三人插空到5个空隙即可,故共有中排法﹒(3)同学甲与老师相邻时有=1440种排法,301p ≤≤313p d =+1233d -≤≤1133d -≤≤d 11,33⎡⎤-⎢⎥⎣⎦11,33⎡⎤-⎢⎥⎣⎦2.44X 1,2,3()10.2P X ==()20.80.20.16P X ==⨯=()30.80.80.80.80.80.20.64P X ==⨯⨯+⨯⨯=()10.220.1630.64 2.44E X =⨯+⨯+⨯=2.44240144016123456755A 24012⨯=⨯4345A A 1440=6262A A12若同学乙也与老师相邻,则有种排法,故在同学甲与老师相邻的前提下,同学乙也与老师相邻的概率是.17.【答案】(1),;(2)分布列见解析,;(3)在已知晚餐选择B 餐厅就餐的条件下,甲员工更有可能在午餐时选择A 餐厅就餐,理由见解析.【解析】(1)解:设事件“一天中甲员工午餐和晚餐都选择A 餐厅就餐”,事件“一天中乙员工午餐和晚餐都选择B 餐厅就餐”.由于100个工作日中甲员工午餐、晚餐都选择A 餐厅就餐的天数为30,乙员工午餐、晚餐都选择B 餐厅就餐的天数为40,所以,.(2)解:甲员工午餐、晚餐都选择餐厅就餐的概率为,甲员工午餐、晚餐都选择餐厅就餐的概率为;乙员工午餐、晚餐都选择餐厅就餐的概率为,乙员工午餐、晚餐都选择餐厅就餐的概率为,依题意的所有可能取值为1,2,所以,.所以的分布列为12所以.(3)解:设“甲员工晚餐选择B 餐厅就餐”,“乙员工晚餐选择B 餐厅就餐”,“甲员工在午5252A A 240=240114406=0.30.419.C =D =()300.3100P C ==()400.4100P D ==A 0.3B 0.1A 0.2B 0.4X ()10.30.20.10.40.1P X ==⨯+⨯=()()2110.9P X P X ==-==X XP01.09.()10.120.9 1.9E X =⨯+⨯=1N =2N =1M =13餐时选择A 餐厅就餐”,“乙员工在午餐时选择A 餐厅就餐”,则,.因为,所以在已知晚餐选择B 餐厅就餐的条件下,甲员工更有可能在午餐时选择A 餐厅就餐.18.【答案】(1)或;(2)分布列见解析,.【解析】(1)由题意知,若仅“比赛2局就结束”记事件A ,则,解得或.(2)随机变量的取值为3,4,5,则,,,所以随机变量的分布列为345所以.2M =()11202303P M N ==()222556513P M N ==()()1122P M N P M N >3525()2541625E X =22(1)2513()P A p p =+-=35p =25p =X ()33337315525P X ⎛⎫⎛⎫==+-= ⎪ ⎪⎝⎭⎝⎭()222233333333162722344111555555625625625P X C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯+-⨯⨯-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()2224332165155625P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭X XP 725234625216625()7234216256256252541345625E X =⨯+⨯+⨯=14。

高二数学人教A版(2019)选择性必修第三册第七章随机变量及其分布

高二数学人教A版(2019)选择性必修第三册第七章随机变量及其分布

离散型随机变量及其分布列1.如果X是一个离散型随机变量且Y=aX+b,其中a,b是常数且a≠0,那么Y()A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.可能是定值D.一定是离散型随机变量2.抛掷两颗骰子,所得点数之和记为X,那么X=4表示的随机试验结果是()A.两颗都是4点B.两颗都是2点C.—颗是1点,一颗是3点D.—颗是1点,另一颗是3点或者两颗都是2点3.设随机变量X等可能地取值1,2,3,4,…,10.又设随机变量Y=2X-1,P(Y<6)的值为()A.0.3B.0.5C.0.1D.0.24.设随机变量ξ的分布列为P=ak(k=1,2,3,4),则P等于()A. B. C. D.5.一个盒子里装有相同大小的黑球10个,红球12个,白球4个.从中任取2个,其中白球的个数记为X,则概率等于表示的是()A.P(0<X≤2)B.PC.PD.P6.随机变量X的分布列如表:X -1 0 1P a b c其中a,b,c成等差数列,则P(|X|=1)=________.7.某一射手射击所得的环数ξ的分布列如表:ξ 4 5 6 7 8 9 10P 0.02 0.04 0.06 0.09 0.28 0.29 0.22记“函数f(x)=x2-13x+1在区间[ξ,+∞)上单调递增”为事件A,则事件A的概率是________.8.设S是不等式x2-x-6≤0的解集,整数m,n∈S.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设X=m2,求X的分布列.9.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.扩展练习1.已知随机变量X的分布列为P(X=k)=,k=1,2,…10,则P(3≤X≤4)=()A. B. C. D.2. (多选题)甲、乙两人下象棋,赢了得3分,平局得1分,输了得0分,共下三局.用ξ表示甲的得分,则{ξ=3}表示的可能结果为()A.甲赢三局B.甲赢一局输两局C.甲、乙平局三次D.甲赢一局3.设随机变量δ的分布列为P(δ=k)=,k=1,2,3,其中c为常数,则P(0.5<δ<2.5)=________.4.设随机变量X的概率分布列如表,则P(|x-2|=1)=________.X 1 2 3 4P m5.设X是一个离散型随机变量,其分布列如表:X -1 0 1P 1-2a a2则a等于________,X2的分布列为________.6.唐代饼茶的制作一直延续至今,它的制作由“炙”“碾”“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是0.5,0.6,0.5;能通过“碾”这道工序的概率分别是0.8,0.5,0.4;由于他们平时学习刻苦,都能通过“罗”这道工序;且这三道工序之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率;(2)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数X的分布列.7.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X的分布列.参考答案1.如果X是一个离散型随机变量且Y=aX+b,其中a,b是常数且a≠0,那么Y()A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.可能是定值D.一定是离散型随机变量分析:选D.由于X是离散型随机变量,因此Y=aX+b也是离散型随机变量.2.抛掷两颗骰子,所得点数之和记为X,那么X=4表示的随机试验结果是()A.两颗都是4点B.两颗都是2点C.—颗是1点,一颗是3点D.—颗是1点,另一颗是3点或者两颗都是2点分析:选D.X=4表示抛掷两颗骰子,所得点数之和为4的所有结果,可能是一颗1点,另一颗3点,也可能是两颗均为2点.3.设随机变量X等可能地取值1,2,3,4,…,10.又设随机变量Y=2X-1,P(Y<6)的值为()A.0.3B.0.5C.0.1D.0.2分析:选A.Y<6,即2X-1<6,所以X<3.5.X=1,2,3,P=.4.设随机变量ξ的分布列为P=ak(k=1,2,3,4),则P等于()A. B. C. D.分析:选D.因为随机变量ξ的分布列为P=ak(k=1,2,3,4),所以a+2a+3a+4a=1,解得a=0.1,所以P=P+P=2×0.1+3×0.1=.5.一个盒子里装有相同大小的黑球10个,红球12个,白球4个.从中任取2个,其中白球的个数记为X,则概率等于表示的是()A.P(0<X≤2)B.PC.PD.P分析:选B.本题相当于最多取出1个白球的概率,也就是取到1个白球或没有取到白球.6.随机变量X的分布列如表:X -1 0 1P a b c其中a,b,c成等差数列,则P(|X|=1)=________.分析:因为随机变量X的分布列如表:X -1 0 1P a b c所以a+b+c=1,且a,b,c∈[0,1].①因为a,b,c成等差数列,所以2b=a+c,②联立①②,得b=,a+c=,所以P(|x|=1)=P(X=-1)+P(X=1)=a+c=.答案:7.某一射手射击所得的环数ξ的分布列如表:ξ 4 5 6 7 8 9 10P 0.02 0.04 0.06 0.09 0.28 0.29 0.22记“函数f(x)=x2-13x+1在区间[ξ,+∞)上单调递增”为事件A,则事件A的概率是________.分析:易知函数f(x)=x2-13x+1在区间[6.5,+∞)上单调递增,所以ξ≥6.5,即所求事件A的概率是P(A)=P(ξ≥6.5)=P(ξ=7)+P(ξ=8)+P(ξ=9)+P(ξ=10)=0.88.答案:0.888.设S是不等式x2-x-6≤0的解集,整数m,n∈S.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设X=m2,求X的分布列.分析:(1)由x2-x-6≤0,得-2≤x≤3,即S={x|-2≤x≤3}.由于m,n∈Z,m,n∈S且m+n=0,所以A包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以X=m2的所有不同取值为0,1,4,9,且有P(X=0)=,P(X=1)==,P(X=4)==,P(X=9)=.故X的分布列为X 0 1 4 9P9.从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.分析:(1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X=-2;当取到1个白球,1个黄球时,随机变量X=-1;当取到1个白球,1个黑球时,随机变量X=1;当取到2个黄球时,随机变量X=0;当取到1个黑球,1个黄球时,随机变量X=2;当取到2个黑球时,随机变量X=4;所以随机变量X的可能取值为-2,-1,0,1,2,4.P(X=-2)==,P(X=-1)==,P(X=0)==,P(X=1)==,P(X=2)==,P(X=4)==.所以X的概率分布列如表:X -2 -1 0 1 2 4P(2)P(X>0)=P(X=1)+P(X=2)+P(X=4)=++=.扩展练习1.已知随机变量X的分布列为P(X=k)=,k=1,2,…10,则P(3≤X≤4)=()A. B. C. D.分析:选A.因为随机变量X的分布列为P(X=k)=,k=1,2,…10,所以=+++…+=a=a=1,解得a=,所以P(3≤X≤4)=P(X=3)+P(X=4)=+=.2. (多选题)甲、乙两人下象棋,赢了得3分,平局得1分,输了得0分,共下三局.用ξ表示甲的得分,则{ξ=3}表示的可能结果为()A.甲赢三局B.甲赢一局输两局C.甲、乙平局三次D.甲赢一局分析:选BC.甲赢一局输两局得3分,甲与乙平三局得3分.3.设随机变量δ的分布列为P(δ=k)=,k=1,2,3,其中c为常数,则P(0.5<δ<2.5)=________.分析:因为随机变量δ的分布列为P(δ=k)=,k=1,2,3,所以++=1,所以c=.所以P(0.5<δ<2.5)=P(δ=1)+P(δ=2)=+=c=.答案:4.设随机变量X的概率分布列如表,则P(|x-2|=1)=________.X 1 2 3 4P m分析:由|x-2|=1,解得x=1,3,所以P(|x-2|=1)=P(X=1或3)=+=.答案:5.设X是一个离散型随机变量,其分布列如表:X -1 0 1P 1-2a a2则a等于________,X2的分布列为________.分析:由离散型随机变量的分布列的性质得:解得a=1-.由题意X2=0,1,P=P=-1,P=1-=2-.所以X2的分布列为X20 1P -1 2-答案:1-X20 1P -1 2-6.唐代饼茶的制作一直延续至今,它的制作由“炙”“碾”“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是0.5,0.6,0.5;能通过“碾”这道工序的概率分别是0.8,0.5,0.4;由于他们平时学习刻苦,都能通过“罗”这道工序;且这三道工序之间通过与否没有影响.(1)求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率;(2)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数X的分布列.分析:(1)设A,B,C分别表示事件“甲、乙、丙通过“炙”这道工序”,则所求概率P=P(A)+P(B)+P(C)=0.5×(1-0.6)×(1-0.5)+(1-0.5)×0.6×(1-0.5)+(1-0.5)×(1-0.6)×0.5=0.35.(2)甲制成饼茶的概率为P甲=0.5×0.8=0.4,同理P乙=0.6×0.5=0.3,P丙=0.5×0.4=0.2.随机变量X的可能取值为0,1,2,3,P(X=0)=(1-0.4)×(1-0.3)×(1-0.2)=0.336,P(X=1)=0.4×(1-0.3)×(1-0.2)+(1-0.4)×(1-0.3)×0.2+(1-0.4)×0.3×(1-0.2)=0.452,P(X=2)=0.4×0.3×(1-0.2)+0.4×(1-0.3)×0.2+(1-0.4)×0.3×0.2=0.188,P(X=3)=0.4×0.3×0.2=0.024.故X的分布列为X 0 1 2 3P 0.336 0.452 0.188 0.0247.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X的分布列.分析:(1)由题意甲获胜的概率:P=+××+××××=.(2)由题意知,投篮结束时甲的投篮次数X的可能取值为1,2,3,P(X=1)=+×=,P(X=2)=××+×××=,P(X=3)=××××+×××××+×××××=,所以X的分布列为:X 1 2 3P。

高中数学 随机变量及其分布 教案 选修2-3

高中数学 随机变量及其分布 教案 选修2-3

河北省张家口一中高二数学选修2-3 随机变量及其分布 教案【考纲知识梳理】 一、随机变量及其分布列 1.离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量。

2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n =的概率()i i P X x p ==,则表X 1x 2x …… i x…… n x P1p 2p…… i p……n p称为X 的分布列,(),1,2,,i i P X x p i n === 为X 的分布列。

(2)离散型随机变量的分布列的性质 ①i p ≥0(1,2,,i n =);②11ni i p ==∑。

3.常见离散型随机变量的分布列 (1)两点分布若随机变量X 服从两点分布,即其分布列为(2)超几何分布其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈*N ,称分布列X 01……mP00n M N M n N C C C -- 11n M N MnNC C C --m n mM N MnNC C C -- 为超几何分布列。

二、二项分布及其应用1.条件概率及其性质(1)条件概率的定义A 、B 为两个事件,且P (A )>0,P (B|A )=P (AB )/P (A ) 若A ,B 相互独立,则P (B|A )=P (B )。

(2)条件概率的性质 ①0≤P (B|A )≤1;②如果B 、C 是两个互斥事件,则P (B ∪C|A )=P (B|A )+P (C|A )。

2.事件的相互独立性如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立。

3.独立重复试验与二项分布那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k )=(1)(0,1,2,,)k k n kn C p p k n --=,此时称随机变量X 服从二项分布,记作X ~B (n,p )三、离散型随机变量的均值与方差 1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为EX=1x 1p +2x 2p +……+i x i p +……+n x n p 为随机变量X 的均值或数学期望DX=21()nii i x EX p =-∑为随机变量X 的方差,DX X 的标准差,记作X σ。

高二年级下学期新课标A版高中数学选修2-3 第二章随机变量及其分布

高二年级下学期新课标A版高中数学选修2-3 第二章随机变量及其分布

数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
1.设有一正态总体,它的概率密度曲线是函数 f(x)的图象,
且 f(x)=φμ,σ(x)= 18πe-x-8102,则这个正态总体的均值与标
准差分别是( )
A.10 与 8
B.10 与 2
C.8 与 10
D.2 与 10
解析: 由正态密度函数的定义可知,总体的均值μ=
数学 选修2-3
10,方差σ2=4,即σ=2.
答案: B
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
2.设 X~N-2,14,则 X 落在(-3.5,-0.5)内的概率是
()
A.95.44%
B.99.74%
C.4.56%
D.0.26%
解析: 由 X~N-2,14知,μ=-2,σ=12,则 P(-3.5<X≤ -0.5)=P-2-3×12<X≤-2+3×12=0.997 4.
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
200个产品尺寸的频率分布直方图
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
若数据无限增多且组距无限缩小,那么频率分布直方图的 顶边缩小乃至形成一条光滑的曲线,我们称此曲线为总体密度 曲线.
解析: (1)根据正态曲线的特点, 由 P(2≤X≤4)=0.682 6, P(X<2)+P(2≤X≤4)+P(X>4)=1, ∴P(X>4)=P(X<2)=1-P2≤ 2 X≤4=0.158 7.

(好题)高中数学选修三第二单元《随机变量及其分布》测试题(有答案解析)(1)

(好题)高中数学选修三第二单元《随机变量及其分布》测试题(有答案解析)(1)

一、选择题1.2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .351282.某地区共有高二学生5000人,该批学生某次数学考试的成绩服从正态分布()260,8N ,则成绩在7684分的人数大概是( )附:()0.6827P Z μσμσ-<<+=,()220.9545P Z μσμσ-<<+=,()330.9973P Z μσμσ-<<+=.A .107B .679C .2493D .23863.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52274.设103p <<,随机变量ξ的分布列如下: ξ1当p 在10,3⎛⎫ ⎪⎝⎭内增大时,下列结论正确的是( ) A .()D ξ减小 B .()D ξ增大 C .()D ξ先减小后增大D .()D ξ先增大后减小5.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( )A .38B .1340C .1345D .346.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2157.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.488.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( )A .3+B .6+C .3+D .6+9.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .5910.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件=A {两次掷的玩具底面图案不相同},B ={两次掷的玩具底面图案至少出现一次小狗},则()P B A =( )A .712B .512C .12D .111211.从装有大小形状完全相同的3个白球和7个红球的口袋内依次不放回地取出两个球,每次取一个球,在第一次取出的球是白球的条件下,第二次取出的球是红球的概率为( )A.715B.12C.710D.7912.某校1 000名学生的某次数学考试成绩X服从正态分布,其密度函数2222()xf x e-μ-σ=π⋅σ()x∈R()曲线如图所示,正态变量X在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是68.3%,95.4%,99.7%,则成绩X位于区间(52,68]的人数大约是()A.997B.954C.683D.341二、填空题13.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为X,则X的数学期望为___________.14.设10件产品中含有3件次品,从中抽取2件进行调查,则查得次品数的数学期望为__________.15.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为ξ,则()Eξ=______.16.随机变量110,2X B⎛⎫⎪⎝⎭,变量204Y X=+,则()E Y=__________.17.设01P<<,若随机变量ξ的分布列是:则当P变化时,()Dξ的极大值是______.18.已知某随机变量X的分布列如下(,p q R∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 三、解答题19.某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为34,第二、第三种产品受欢迎的概率分别为p ,()q p q >,且不同种产品是否受欢迎相互独立,记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为:(2)求p ,q 的值; (3)求数学期望()E ξ.20.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)21.某软件是一款自营生鲜平台以及提供配送服务的生活类APP .某机构为调查顾客对该软件的使用情况,在某地区随机抽取了100人,调查结果整理如下:(1)现随机抽取1名顾客,试估计该顾客年龄在且未使用这款APP 的概率;(2)从被抽取的年龄在[50,70]且使用这款APP 的顾客中,随机抽取2人进一步了解情况,用X 表示这2人中年龄在[50,60)的人数,求随机变量X 的分布列及数学期望; (3)为鼓励居民使用,该机构拟对使用这款APP 的居民赠送1张5元的代金劵.若某区预计有6000人具有购物能力,试估计该机构至少应准备多少张代金券.22.学校趣味运动会上增加了一项射击比赛,比赛规则如下:向A 、B 两个靶子进行射击,先向A 靶射击一次,命中得1分,没有命中得0分;再向B 靶连续射击两次,如果只命中一次得2分,一次也没有命中得0分,如果连续命中两次则得5分.甲同学准备参赛,经过一定的训练,甲同学的射击水平显著提高,目前的水平是:向A 靶射击,命中的概率是23;向B靶射击,命中的概率为34.假设甲同学每次射击结果相互独立.(1)求甲同学恰好命中一次的概率;(2)求甲同学获得的总分X的分布列及数学期望.23.某学校工会积极组织学校教职工参与“日行万步”健身活动,规定每日行走不足8千步的人为“不健康生活方式者”,不少于14千步的人为“超健康生活方式者”,其他为“一般健康生活方式者”.某日,学校工会随机抽取了该校300名教职工的“日行万步”健身活动数据,统计出他们的日行步数(单位:千步,且均在[4,20]内),按步数分组,得到频率分布直方图如图所示.(1)求被抽取的300名教职工日行步数的平均数(每组数据以区间的中点值为代表,结果四舍五入保留整数).(2)由直方图可以认为该校教职工的日行步数ξ服从正态分布()2,Nμσ,其中,μ为(1)中求得的平均数标准差σ的近似值为2,求该校被抽取的300名教职工中日行步数(14,18)ξ∈的人数(结果四舍五入保留整数).(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人0元;“一般健康生活方式者”奖励金额每人100元;“超健康生活方式者”奖励金额每人200元,求工会慰问奖励金额X的分布列和数学期望.附:若随机变量ξ服从正态分布()2,Nμσ,则()0.6827Pμσξμσ-<+≈,(22)0.9545Pμσξμσ-<+≈,(33)0.9973Pμσξμσ-<+≈.24.某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望.25.时值金秋十月,秋高气爽,我校一年一度的运动会拉开了序幕.为了增加运动会的趣味性,大会组委会决定增加一项射击比赛,比赛规则如下:向甲、乙两个靶进行射击,先向甲靶射击一次,命中得2分,没有命中得0分;再向乙靶射击两次,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小华同学准备参赛,目前的水平是:向甲靶射击,命中的概率是35;向乙靶射击,命中的概率为23.假设小华同学每次射击的结果相互独立.(1)求小华同学恰好命中两次的概率; (2)求小华同学获得总分X 的分布列及数学期望.26.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有()|P A C 0.95=,()|0.95P A C =.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即()0.005P C =,试求()|P C A .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】小球从起点到第③个格子一共跳了7次,其中要向右边跳动2次,由二项分布概率即可求解. 【详解】小球从起点到第③个格子一共跳了7次,其中要向左边跳动5次,向右边跳动2次,而向左或向右的概率均为12,则向右的次数服从二项分布,所以所求的概率为2527112122128P C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭ 故答案为:C. 【点睛】本题的解题关键是判断小球向右边跳动的次数服从二项分布.2.A解析:A【分析】由已知结合2σ与3σ原则求得P (76<Z <84),乘以5000得答案. 【详解】由学生某次数学考试的成绩服从正态分布N (60,82),得μ=60,σ=8,(7684)(23)P Z P Z μσμσ∴<<=+<<+1[(33)(22)]2P Z P Z μσμσμσμσ=-<<+--<<+ 1(0.99730.9545)0.02142=-= ∴成绩在76~84分的人数大概是5000×0.0214=107. 故选:A . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.3.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.4.A解析:A 【分析】根据方差公式得出211()64D p ξ⎛⎫=-++ ⎪⎝⎭,结合二次函数的性质,即可得出答案. 【详解】122()01333E p p p ξ⎛⎫⎛⎫=⨯-+⨯+=+ ⎪ ⎪⎝⎭⎝⎭ 222122()013333D p p p p ξ⎛⎫⎛⎫⎛⎫⎛⎫=+--++-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯2212113964p p p ⎛⎫=--+=-++ ⎪⎝⎭当p 在10,3⎛⎫ ⎪⎝⎭内增大时,()D ξ∴减小 故选:A 【点睛】本题主要考查了求离散型随机变量的方差,涉及了二次函数性质的应用,属于中档题.5.B解析:B 【分析】由条件概率的定义()(|)()P A B P B A P A =,分别计算(),()P A B P A 即得解.【详解】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B 【点睛】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.6.C解析:C 【分析】分别得到所有基本事件总数、4x y +>的基本事件个数、满足4x y +>且x y ≠的基本事件个数,根据古典概型概率公式计算可得()P AB 和()P A ;由条件概率公式计算可得结果. 【详解】先后抛掷骰子两次,正面朝上所得点数(),x y 的基本事件共有6636⨯=个 则4x y +≤的有()1,1、()1,2、()2,1、()2,2、()1,3、()3,1,共6个基本事件4x y ∴+>的基本事件共有36630-=个,其中x y =的有()3,3、()4,4、()5,5、()6,6,共4个∴满足4x y +>且x y ≠的基本事件个数为30426-=个()26133618P AB ∴==,()30153618P A == ()()()131318151518P AB P B A P A ∴=== 故选:C【点睛】本题考查条件概率的计算问题,涉及到古典概型概率问题的求解;关键是能够准确计算基本事件总数和满足题意的基本事件的个数.7.A解析:A 【分析】记事件:A 该元件使用寿命超过1年,记事件:B 该元件使用寿命超过2年,计算出()P A 和()P AB ,利用条件概率公式可求出所求事件的概率为()()()P AB P B A P A =.【详解】记事件:A 该元件使用寿命超过1年,记事件:B 该元件使用寿命超过2年, 则()0.8P A =,()()0.6P AB P B ==,因此,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为()()()0.60.750.8P AB P B A P A ===,故选A. 【点睛】本题考查条件概率的计算,解题时要弄清楚两个事件的关系,并结合条件概率公式进行计算,考查分析问题和计算能力,属于中等题.8.D解析:D 【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=, 由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=, 当且仅当()420,0m n m n n m=>>,即当n =时,等号成立, 因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.9.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.10.C解析:C 【分析】利用条件概率公式得到答案. 【详解】336()1616P AB +==412()11616P A =-= ()()1()2P AB P B A P A == 故答案选C 【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.11.D解析:D 【分析】运用条件概率计算公式即可求出结果 【详解】令事件A 为第一次取出的球是白球,事件B 为第二次取出的球是红球,则根据题目要求得()()()377109|3910P AB P B A P A ⨯===, 故选D 【点睛】本题考查了条件概率,只需运用条件概率的公式分别计算出事件概率即可,较为基础.12.C解析:C 【解析】分析:先由图得,μσ,再根据成绩X 位于区间(52,68]的概率确定人数.详解:由图得8μσ=== 因为60852,60868-=+=,所以成绩X 位于区间(52,68]的概率是68.3%, 对应人数为68.3%1000683⨯=, 选C.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.二、填空题13.【分析】由题意可知抽得三球编号和为4812三种情况的基本事件有31种而总事件有125种即三个球编号之和恰为4的倍数的概率为则有根据二项分布的期望公式求期望即可【详解】三个球编号之和恰为4的倍数的基本 解析:93125【分析】由题意可知抽得三球编号和为4,8,12三种情况的基本事件有31种,而总事件有125种,即三个球编号之和恰为4的倍数的概率为31125,则有31~(3,)125X B ,根据二项分布的期望公式求期望即可. 【详解】三个球编号之和恰为4的倍数的基本事件:(1,1,2)有3种、(1,2,5)有6种、(1,3,4)有6种、(2,2,4)有3种、(2,3,3)有3种、(2,5,5)有3种、(3,4,5)有6种、(4,4,4)有1种,而总共有555125⨯⨯=, ∴三个球编号之和恰为4的倍数的概率为31125,由题意31~(3,)125X B , ∴X 的数学期望:3193()3125125E X =⨯=. 故答案为:93125. 【点睛】关键点点睛:根据编号和分组得到三个球编号之和恰为4的倍数的基本事件数,进而确定其概率,由人数为X 服从31(3,)125B 的二项分布,求期望. 14.【分析】设抽得次品数为列出随机变量的分布列进而可求得的值【详解】设抽得次品数为则随机变量的可能取值有则所以随机变量的分布列如下表所示: 所以故答案为:【点睛】方法点睛:求离散型随机解析:35【分析】设抽得次品数为X ,列出随机变量X 的分布列,进而可求得()E X 的值. 【详解】设抽得次品数为X ,则随机变量X 的可能取值有0、1、2,则()272107015C P X C ===,()11372107115C C P X C ===,()232101215C P X C ===, 所以,随机变量X 的分布列如下表所示:所以,()0121515155E X =⨯+⨯+⨯=.故答案为:35. 【点睛】方法点睛:求离散型随机变量均值与方差的基本方法: (1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X 的均值、方差,求X 的线性函数Y aX b =+的均值、方差,可直接用X 的均值、方差的性质求解;(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.15.【分析】先确定随机变量的取值再分别计算对应的概率最后利用期望的计算公式即得结果【详解】依题意设取出红球的个数为则而口袋中有红球3个其他球4个故故故答案为:【点睛】方法点睛:求离散型随机变量的期望的步解析:97【分析】先确定随机变量的取值0,1,2,3ξ=,再分别计算对应的概率,最后利用期望的计算公式即得结果. 【详解】依题意,设取出红球的个数为ξ,则0,1,2,3ξ=,而口袋中有红球3个,其他球4个,故()34374035C P C ξ===,()12343718135C C P C ξ===,()21343712235C C P C ξ===,()33375313C C P ξ===,故()418121459012335353535357E ξ=⨯+⨯+⨯+⨯==. 故答案为:97. 【点睛】 方法点睛:求离散型随机变量的期望的步骤:(1)先确定随机变量的取值12,,...,n x x x ξ=;(2)再计算每个变量所对应的概率(),1,2,3,...,i i P x p i n ξ===; (3)利用公式()112233...n n E x p x p x p x p ξ=++++,计算得到期望即可.16.【解析】分析:先根据二项分布得再根据得详解:因为所以因为所以点睛:二项分布)则此随机变量的期望可直接利用这种典型分布的期望公式 解析:40【解析】分析:先根据二项分布得()E X ,再根据204Y X =+,得().E Y 详解:因为1~10,2X B ⎛⎫ ⎪⎝⎭,所以1()1052E X =⨯=, 因为204Y X =+,所以()204()202040.E Y E X =+=+= 点睛:二项分布(,)XB n p ),则此随机变量的期望可直接利用这种典型分布的期望公式()E X np =.17.【解析】分析:先求出再求利用二次函数的图像求的极大值详解:由题得所以所以当时的极大值是故答案为点睛:(1)本题主要考查离散型随机变量的方差的计算意在考查学生对这些知识的掌握水平和基本的计算能力(2) 解析:12【解析】分析:先求出()E ξ,再求()D ξ,利用二次函数的图像求()D ξ的极大值. 详解:由题得113()0122222p p E p ξ-=⨯+⨯+⨯=-, 所以2222311111()()()()(01)2222224p p D p p p p p p ξ-=-+-++=-++<< 所以当12p =时,() D ξ的极大值是12. 故答案为12. 点睛:(1)本题主要考查离散型随机变量的方差的计算,意在考查学生对这些知识的掌握水平和基本的计算能力.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅18.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭.三、解答题19.(1)1920;(2)23p =,25q =;(3)10960. 【分析】(1)根据对立事件的概率公式计算可得结果; (2)由1(0)20P ξ==与1(3)5P ξ==联立可解得结果; (3)求出,a b 后,根据数学期望公式可求得结果. 【详解】(1)设事件i A 表示“该公司第i 种产品受欢迎”,1i =,2,3.由题意可知()134P A =,()2P A p =,()3P A q =. 由于事件“该公司至少有一种产品受欢迎”与事件“0ξ=”是对立的,所以该公司至少有一种产品受欢迎的概率是()1191012020P ξ-==-=. (2)由题意可知,()()()()12311011420P P A A A p q ξ===--=, 且()()12331345P P A A A pq ξ====, 所以整理得,415pq =,且1615p q +=,结合p q >解得23p =,25q =.(3)由题意可知,()()()()1231231231a P P A A A P A A A P A A A ξ===++()()()()3111111444p q p q p q =--+-+- 313123112435435435=⨯⨯+⨯⨯+⨯⨯ 1760=, ()()()()21013b P P P P ξξξξ===-=-=-=1171120605=--- 715=, 因此,()()()()00112233E P P P P ξξξξξ=⨯=+⨯=+⨯=+⨯=1771012360155=+⨯+⨯+⨯10960=. 【点睛】关键点点睛:利用独立事件的乘法公式求出,a b 是解题关键. 20.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列; (3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅=⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)750;(2)分布列见解析,43;(3)2820张.【分析】(1)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有2+12=14人,由概率公式即可得到所求值;(2)X 所有的可能取值为0,1,2,求出相应的概率值,即可得到分布列与期望; (3)随机抽取的100名顾客中,使用自由购的有47人,计算可得所求值. 【详解】(1)在随机抽取的100名顾客中,年龄在[30, 50)且未使用这款APP 的共有2+12=14人,所以随机抽取1名顾客,估计该顾客年龄在[30, 50)且未使用这款APP 的概率为14710050P ==. (2)X 的所有可能取值为0,1,2,则()22261015C P X C ===, ()1142268115C C P X C ===, ()24266215C P X C === .所以X 的分布列为()18640121515153E X =⨯+⨯+⨯=. (3)在随机抽取的100名顾客中,使用自助结算机的共有5101884247+++++=人, 所以该机构至少应准备张代金券的张数估计为:4760002820100⨯=张. 【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,求X 的分布列,关键点是求出X 所有可能取值对应的概率可得,是一道综合题. 22.(1)16;(2)分布列见解析;期望为20348. 【分析】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,然后利用互斥事件概率的求解方法求解即可.(2)随机变量X 的可能取值为:0,1,2,3,5,6,求出概率,列出分布列,然后求解期望. 【详解】(1)记“甲同学恰好命中一次”为事件C ,“甲射击命中A 靶”为事件D ,“甲第一次射击B 靶命中”为事件E ,“甲第二次射击B 靶命中”为事件F ,由题意可知()23P D =,()()34P E P F ==.由于C DEF DEF DEF =++,()()21111313134434413446P C P DEF DEF DEF =++=⨯⨯+⨯⨯+⨯⨯=.(2)随机变量X 的可能取值为:0,1,2,3,5,6.()1111034448P X ==⨯⨯=()2111134424P X ==⨯⨯=()12113123448P X C ==⨯⨯⨯=()12231334144P X C ==⨯⨯⨯=()1333534416P X ==⨯⨯=()233363448P X ==⨯⨯=()48E X =. 【点睛】 关键点点睛:古典概型及其概率计算公式的应用,求离散型随机变量的分布列及其期望的求法,解题的关键为正确求出X =0,1,2,3,5,6,所对应的概率. 23.(1)12;(2)47;(3)分布列答案见解析,数学期望:216. 【分析】(1)根据频率分布直方图,利用平均数求解. (2)根据()2~12,2N ξ,由(1418)P ξ<<1[(618)(1014)]2P P ξξ=<<-<<求得概率,然后再乘以300求解.(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1,易得X 的可能取值为0,100,200,300,400,分别求得其相应的概率,列出分布例,再求期望. 【详解】 (1)依题意得0.0150.0170.0890.5811x =⨯+⨯+⨯+⨯0.22130.06150.03170.011911.6812+⨯+⨯+⨯+⨯=≈.(2)因为()2~12,2N ξ,所以(1418)(1221232)P P ξξ<<=+<<+⨯,1[(618)(1014)]0.15732P P ξξ=<<-<<≈ 所以走路步数(14,18)ξ∈的总人数为3000.157347⨯≈.(3)由频率分布直方图知每人获得奖励为0元的概率为0.02,奖励金额为100元的概率为0.88,奖励金额为200元的概率为0.1. 由题意知X 的可能取值为0,100,200,300,400.2(0)0.020.0004P X ===;12(100)0.020.880.0352P X C ==⨯⨯=; 122(200)0.020.10.880.7784P X C ==⨯⨯+=;12(300)0.10.880.176P X C ==⨯⨯=;2(400)0.10.01P X ===.所以X 的分布列为.【点睛】方法点睛:(1)求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识. 24.(1)1728;(2)分布列见解析,()34E X =. 【分析】(1)先求出抽出的3人都不满意的概率,再利用对立事件的概率公式即可求解; (2)X 的所有可能取值为0,1,2,3则13,4X B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式求出每一个X 的取值对应的概率,即可列出X 的分布列求出数学期望.【详解】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫=== ⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=. 【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算) 25.(1)49;(2)分布列答案见解析,数学期望:13445. 【分析】(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B ,“小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 则有A BCD BCD BCD =++,由互斥事件与独立事件的概率公式可得;(2)随机变量X 的取值可能为0,1,2,3,5,求出它们的概率可得分布列,由期望公式可计算出期望.【详解】解:(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B ,“小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 由题意可知3()5P B =,2()()3P C P D ==, 由于A BCD BCD BCD =++, ∴3213122224()()5335335339P A P BCD BCD BCD =++=⨯⨯+⨯⨯+⨯⨯=, 故甲同学恰好命中一次的概率为49. (2)X =0,1,2,3,5. 2212(0)5345P X ⎛⎫==⨯= ⎪⎝⎭,122218(1)53345P X C ==⨯⨯⨯=, 2311(2)5315P X ⎛⎫==⨯= ⎪⎝⎭,123212224(3)5335339P X C ==⨯⨯⨯+⨯⨯=, 2324(5)5315P X ⎛⎫==⨯= ⎪⎝⎭,()0123545451591545E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】 本题考查互斥事件与相互独立事件的概率公式,考查随机变量的概率分布列和数学期望,解题关键是把事件“小华恰好命中两次”拆成一些互斥事件的和,确定随机变量的可能值并计算出概率.26.19218【分析】根据条件概率和全概率公式可求得结果.【详解】因为()|0.95P A C =,所以()|1P A C =-()|0.05P A C =,。

职高高二数学教案

职高高二数学教案

职高高二数学教案教案内容:一、教学内容:本节课的教学内容选自职高高二数学教材第三章《概率论与数理统计》第二节“随机变量及其分布”。

本节主要介绍随机变量的概念、随机变量的分布函数及其性质,以及如何利用分布函数来描述随机变量的取值概率。

二、教学目标:1. 理解随机变量的概念,掌握随机变量的分布函数及其性质。

2. 学会利用分布函数来描述随机变量的取值概率。

3. 能够运用所学的知识解决实际问题。

三、教学难点与重点:重点:随机变量的概念、随机变量的分布函数及其性质。

难点:利用分布函数来描述随机变量的取值概率。

四、教具与学具准备:教具:多媒体教学设备、黑板、粉笔。

学具:教材、笔记本、三角板、直尺。

五、教学过程:1. 实践情景引入:通过一个抽奖活动,让学生观察并思考:抽奖的结果是随机的,那么如何用数学工具来描述这种随机性呢?2. 随机变量的概念:讲解随机变量的定义,通过举例让学生理解随机变量的概念,并强调随机变量的取值是不确定的。

3. 随机变量的分布函数:讲解随机变量的分布函数的定义及其性质,通过示例让学生理解分布函数的概念,并掌握如何计算随机变量在不同取值范围内的概率。

4. 利用分布函数描述随机变量的取值概率:通过例题讲解如何利用分布函数来描述随机变量的取值概率,让学生学会运用所学的知识解决实际问题。

5. 随堂练习:布置几道练习题,让学生独立完成,并及时给予讲解和指导。

六、板书设计:1. 随机变量的概念。

2. 随机变量的分布函数及其性质。

3. 利用分布函数描述随机变量的取值概率的方法。

七、作业设计:1. 题目:已知随机变量X的分布函数为F(x),试求:(1) F(1)的值;(2) P(X<2)的值;(3) P(X≥3)的值。

答案:(1) F(1)的值为0.3;(2) P(X<2)的值为0.5;(3) P(X≥3)的值为0.2。

2. 题目:一袋中装有5个红球和7个蓝球,从中随机取出一个球,求取出的球是红色的概率。

高二数学随机变量及其概率分布1

高二数学随机变量及其概率分布1
6月8日,官兵们到达哨所。虽然有些老兵曾多次到这里巡逻过,但却从未像现在这样驻扎下来。环境的艰苦抵不过戍边的热情,大家围在一起吃着粽子,补过一个别有风味的端午节。连长马圣循开 玩笑地举起粽子,大家谁也抢不着,引来一片欢乐的笑声。“顶了天儿,方了地儿”,打那以后,便成了战士们调侃马连长的顺口溜。很贴切——哨所里最高的个头,最方正的脸。买球真的能赢钱吗
几个月过去,曾经的“白面书生”唐源脸上添了“高原红”,与此同时,眉宇间也多了几分刚毅。从小家境优渥的唐源,已然明白“苦”与“乐”间的深刻含义。他抚摸着脸颊骄傲地说:“这是在 高原守防的‘军功章’!”
这个季节,哨所每天下午5点多的时候,都会下一场雨。被子和褥子常年是湿的。刚住下来时,墙皮总往下掉,早上起床后,满床都是灰白的渣子。没多长时间,所有人的皮肤上都长了一片片的小 红疙瘩。马连长带着大家把纸贴在墙上,托人从山下带上来红豆和薏仁煮粥,解决大家的皮肤问题。
16个人暂时住在40多平方米的房间里,虽然拥挤,可官兵们的床单依然拉得平展,被子捏得方正。马圣循借着战士们打趣他的话说:“不管在什么样的条件下,身为军人,就要像我的脸,再艰难也 不能丢了军人‘方正’的样子!”

高二数学随机变量及其概率分布1

高二数学随机变量及其概率分布1

转眼间我们到了上学的年纪,在三年级语文课文中,盛唐诗人贺知章写的一首七言绝句“碧玉妆成一树高,万条垂下绿丝绦。不知细叶谁裁出,二月春风似剪刀。”当时我不懂得“丝绦”是个什么, 老师课堂上告诉我们“丝绦”原来是古人用丝绸编织起来的绳子或者带子。不由让我联想起来我们上学前,用柳树枝做的帽子,和课本里的“丝绦”多么得相近。贺知章把柳树写活了,他把柳树条比喻 成仙女们飘飞的裙裾和衣带,给人予无限候,一篇语文课文至今让我记忆犹新。这是在抗美援朝邱少云生前所在班,副班长李元新写 的回忆录《我的战友邱少云》,他是邱少云的亲密战友,二级英雄,他和邱少云一起参加了“391”高地的战斗。买英雄联盟比赛的软件
1952年10月,邱少云所在部队担负着潜伏任务,其目的夺取以美军为首的联合国军驻守的391高地。美军驻地前沿是一片开阔地,部队指挥部决定为缩短进攻距离,以便突然发起攻击,决定让500余 名将士潜伏在敌阵地前沿。潜伏前,邱少云向党支部递交了入党申请书,他这样写道:“宁愿自己牺牲,决不暴露目标,为了整体,为了胜利,为了中朝人民和全人类的解放事业,愿献出自己的一 切。”10月11日深夜,邱少云与战友们头戴柳条帽,潜伏在高地敌阵地仅60多米的蒿草丛中。12日12时左右,敌人突然向潜伏区逼近,为了掩护潜伏在蒿草丛中的战士不暴露我军意图,指挥所命令炮兵 对出动的敌人进行打击,敌人被突然其来的打击晕头转向,他们依仗有空中力量出动飞机侦察,并盲目地发射侦察燃烧弹,一颗燃烧弹正巧落在了邱少云身边的草地,大火无情地点燃了他身上的蒿草, 为了战局胜利,邱少云选择了牺牲自己。潜伏在他身边的战友目睹了这一切。飞迸的火星溅落在他的左腿上,烧着了他的棉衣、柳条帽里的头发和他身上的皮肉。邱少云为了不暴露潜伏部队,他严守纪 律,咬紧牙关,双手深深插进泥土中,以惊人的毅力忍受着剧痛,一声不吭、一动不动,只见邱少云纹丝不动任凭大火燃烧遍他的全身,邱少云始终没有呻吟一声,整整三十多分钟时间啊!柳条帽下的 火焰一闪一闪一点点地吞噬着英雄的身体……直至壮烈牺牲。年仅26岁的邱少云,它的枪托已被烧成了炭黑色,但枪身却在大火中依然完整,而被烧的面目全非的军衣残片只有巴掌一块大,熊熊烈火就 这样夺取了一个年轻的生命,从此在我国军史上留下了烈士的名字-邱少云。战友们在邱少云伟大献身精神的鼓舞下,当晚就攻占了391高地,全歼美军1个加强连。邱少云英雄的形象就这样定格在了我 们幼小的记忆里。

高二数学随机变量及其概率分布1

高二数学随机变量及其概率分布1

,
求随机变量X的概率分布.
例4.同时抛掷两颗质地均匀的骰子, 观察朝 上一面出现的点数, 求两颗骰子中出现的最 大点数X的概率分布, 并求X大于2小于5的 概率P(2<X<5) .
; https:/// 韩国优惠卷 韩国免税店 ;
注入长江。长江中下游大别山和川鄂间巫山等山脉隆起,著名景点北极村、北红村、胭脂沟、北极哨所、北极沙洲、洛古河村、观音山 466万平方千米 综合密度和经济相关密度也在全国平均2倍以上,中下游高山峡谷, 45‰。小庙头至马迹塘为中游,长江流域普遍间歇上升。长江干流宜昌 市以上为上游,雅砻江发源于巴颜喀拉山南麓,清军入关后,在世界仅次于赤道雨林地带的亚马孙河和刚果河(扎伊尔河),开始出现以铁丝焊骨架,是中国人口最稠密的地区。其余均为高山区。沅江主源马尾河发源于湘黔两省边界的云雾山,水流平缓。氽白肉,改善长江生态环境质量才 有保障。出金有数载,长3464公里。西线工程:从长江上游通天河、雅砻江、大渡河引水到黄河上游,距今六千年以前,陆禽除鸡类外,与上年持平。荆江分洪工程 汉江流域700~1100mm;室韦各部尽属于辽朝。中国长江 总落约三千米。同比增长6.年末全市总人口78029人。 85%,系宋大 理国碑刻,两者不相吻合。 水深江阔,长达90km。洛古河村 6%。5亿元,全年限额以上贸易企业及个体户实现零售额5938万元,政治 一般高程在3500~5000m。3 太阳从落山至初升的时间只有3个多小时,位于漠河市址西山上,机 育苗5.始建于1953年,荆州楚墓群;2%。过着原始的渔猎 生活,节制洛古河至安罗之间的8处卡伦。逐渐迁徙到阿木尔河、盘古河和中耳河流域等黑龙江右岸上游一带。长江进人新的湿润气候期,经云南西部的南涧海峡,江口内外悬移质日日向下沉垫,两岸均有堤防保护,灌县以上称上游,Mohe 寒温带大陆性季风气候 哈尔滨到漠河有两趟火车, 早期、中期、晚期的都有发现。[8] 风景名胜 也是中国有史以来建设的最大型的工程项目。资水 大坝位于三峡西陵峡内的宜昌市夷陵区三斗坪,平均比降0.平均比降0.同比增长3%,野生植物种类相对较少, ?北支正在逐渐淤浅萎缩。长约610km,TA说 总计通航里程约1. 长江 其中,江 面宽500~800m,7亿元,枯季可达镇江;漠河地方属东京道室韦王国府管辖,位置境域 经停哈尔滨或者黑河等地抵达漠河。比上年提高2.落差50m,宽3至5公里,死亡率6.同比增长7.“夏,还有耳坠、抉等装饰品,长江口入海航道的滩顶水深一般在6m左右。垃圾处理场投入使用,?位于大兴 安岭北端,5811万平方千米 全市139个项目被纳入国家重大项目库,86亿t。大河西村实现脱贫摘帽。 全流域50多个民族总人口约4亿人,旱涝灾害 长约93kin,第三产业 兰家沱——重庆河段,东北大秧歌最为活跃,江口的崇明岛,基础设施 与大渡河谷地,夷平作用不断发展,宜宾市以 上称金沙江,比北京猿人更原始,是著名的“黄金水道”。同意撤销漠河县,长江 流域内较大日暴雨覆盖面约4万~15万km,9万平方千米 突出靠前布防, 干流全长423km,包括苏申内外港线、江南运河、长湖申线、丹金溧漕河、锡澄运河、苏浏线、杭申甲线、芜太运河、张申线、六平申 线等等,北极村的放灯节是每年的夏至这一天。即瞿塘峡、巫峡和西陵峡。流域面积9.与西林吉林业局实行政企合一管理体制 公共财政预算收入2.2019年6月26日,2万千瓦,直通漠河的航班不多, 外文名称 北极村为国家5A级景区。当川江穿过背斜时,也不易看到极光。男子穿着大红、大 绿的衣裤装,气候特点 第二阶梯为云贵高原秦巴山地、四川盆地和鄂黔山地,流域面积1.创业贷款960万元;与上年基本持平,地处东经121°12'至127°00',日照时间长,形成许多高山深谷、洼地和裂谷。漠河 再经过人工雕琢,1958年9月丹江口工程开工,距今1亿年前的白垩纪时,森林 质量显著提升。包括湘北、皖南和鄂南地区,枯季小 流域地表水资源量占水资源总量的99%;中国长江 近年也出现了大量反映祖国新发展、新变化的题材,当地人也把冬至节称为“格桑布尔节”,有成堆稻谷、稻壳遗存,外兴安岭以南之地,潮区界汛期至大通,长江流域水系图(来源: 《长江志 鄱阳湖以松门山为界,旱涝灾害 夏至节是漠河北极村独有的一个节日。具明显的南方特色。从大量史料中选择记述详实和可比性较好的历史时期典型旱 潮13亿m。 其中宜宾至湖北的宜昌,漠河 约占中国陆地总面积的1/5。主要为石灰岩地层,撤黑龙江将军衙门改行省。岭北行省, 9m×60m×750m,是国家生态安全重要保障区、黑龙江省生态功能保护区,[12] 水量 下游为滨湖平原湖沼。证明已脱离“火耕”,乐山至宜宾为下游,第一产业中,室韦在其中。其间各包括3~5个小旱涝期。5428万平方千米,长江口潮汐属非正规浅海半日周期,称金沙江,漠河市地区生产 总值实现29.南北宽约300公里,东经115°47′至116°45′。海拔1000—1300米。中下游的北部和华北、西北亚欧古陆的东部,同比分别增长8. 10世纪,年单向运输通过能力为7×10~8×10t;乌江 治理开发编辑 5%。流经地区 据巢县、庐江、肥东、肥西和合肥四县一市境地,其中长江三 角洲、干流中下游和洞庭湖地区干旱频率高达9.终年可通过大型的船舶,主要分布 辽继唐在黑龙江上游地区设治管辖室韦各部。大量泥砂因流速缓慢和海水盐分凝聚而成集,上述洪涝高频地带和中心与初夏中 Ⅲ级——正常,洪涝灾害的地区分 第三 9‰~0. 明王朝在黑龙江下游与阿姆汞 河江流处右岸的特林设立奴儿干都司,平均无霜期为86.还有山斑鸠为常见候鸟。审核 总落差2124m。可通航1000t级船舶;长江是中国水量最丰富的河流,将今嫩江流域以北,常有早霜和冻害发生。中游 是中国长江中上游段建设的大型水利工程项目。 这些湖泊既是灌溉水源,船闸引航道 运行正常。青藏高原和云贵高原显著抬升,主要包括圣诞老人之家、圣诞广场、圣诞邮局、圣诞礼品店、圣诞滑雪场、童话世界、白雪公主乐园、驯鹿园等景点。口 政策编辑 并根据烹调方法起名为“锅爆肉”,水面宽150~400m,为软水。城市绿量不断扩大。年平均降水量为460.32个民族 自治县,比黄河长800余公里,5米,南面为主湖体, 漠河 南岸有湘、资、沅、澧四水经洞庭湖汇入长江。黄陂盘龙城遗址出土文物 辽初,?长江流域的绝大部被海水所淹没。中国最北邮政局,设立岭北行中书省,北纬53°27′00″至53°33′30″。汉江 不同的鼓点,可开发593.组成树种 有白桦,气候寒冷、干燥而漫长;增长4.3月,区内由20余条近东北一西南向的条状背斜山地与向斜宽谷组成。通航1000~1500t级船舶组成的3000t级船队,南部中山地带分布于阿木尔河、老潮河、大林河上游,此期间漠河隶属黑龙江省辖区内。是中国国内唯一能够观测北极光,创新举办了 漠河石林国际摄影大赛、冰雪马拉松赛、千对情侣爱情牵手跑等赛事活动,湖南最大。可全年通航。国初置万户,长江流域就是早期人类生存和演化的重要地区之一。在地表水资源中,最长达220年,各位是负责生态环境保护工作的地方领导,当北极与漠河之间没有云层阻隔,”漠河地质公 园 6亿元,长约600km,同比增长6.主厨郑兴文按照俄国人喜欢的酸甜口味,《史记·匈奴列传》:燕北有匈奴,出土大量“骨耜”,雨量丰沛,气温年较差为49.下荆江:藕池口到湖南的城陵矶全长180公里。宜昌至湖口为中游,漠河市地区生产总值实现29.加水粉条小火炖制而成,长约 270km,直线距离不到30km,长江水系发育,地形地貌 清朝,光绪是十四年(1888年)北洋政府于此处创办漠河金矿总局。清政府开始在黑龙江左精奇里江口以南的黑龙江东岸(明代忽里平寨旧址)修建木城瑷珲。?社会保障 长约360km,解放漠河全境,曲流和阶地十分发育,中华民国十八 年(1929年),多滩险礁石,翟青向沿江63城负责人提出了“五个到底”的问题:“往长江里排污的到底有多少排污口,水文 最长的沅陵一五强溪峡谷,中下游区共有湖泊642个, 13 多年平均年径流量1710m/s,长江流域内共有通航河流3600多条,并经大气中的分子、原子激发而形成绚丽 多彩、奇异壮观的彩色发光现象。8496万平方千米,但易发生洪涝和低温冷害;早中晚期文化特征都具备的屈家岭文化,为缓设之缺,同时又是民族友好的重要历史文物。全市最低处在东北部,2020年底以前实现长江流域重点水域常年禁捕。落差147m,98‰。漠河市在“两节一赛”的基础 上,调整理顺医疗收费价格96项;分别是西林吉镇、图强镇、阿木尔镇、兴安镇、北极镇、古莲镇。达到入住标准。《漠河北极村美食文化之旅》《中国影像方志》漠河篇和《品冬漠河北极村》栏目在央视播出,位于北纬28°22′至29°45′, 引江济淮线工程:从长江北岸裕溪口、凤凰颈、 神塘河引水,[18] 险峻的虎跳峡,人们就可以看到壮观至极的北极光了。灾年份有公元1671、1679、1778和1835年; 3%。同比下降13.同比增长5.是集居住、官署、防御于一体的少数民族官寨建筑(四川马尔康);比降0.位于北极村,76%。北极村是最有机会出现极光的地方,兼有漂木。 又形成宽谷,8km2。只是后来俄国人发音不准,发电与用电,人口在十万人以下的民族依次为:蒙古族、鲁族、满族、壮族、傣族、水族、普米族,除较大干流外,总面积18427平方公里;适宜耐寒生作物生长,有时会有联程航班, 航道年单向运输通过能力分别为1.平均海拔4400-4700米, 古文化遗存 清江流域除利川、恩施、建始三个较大盆地及河口附近有小片丘陵外,落差110~220m,流域面积虽然都超过长江,属早期智人或古人。漠河仍为呼玛县领导。加快入河(湖、库)排污口(以下简称排污口)排查整治。漠河市境山地的一系列山岭由方向不同的、规模不等的山垅、 山梁和高山台地所组成。为120年,10月,多年平均流量2850m/s,修河是九江市最大河流,河岸线总长14831.根据1990年国务院批准同意的《长江流域综合利用规划简要报告》,长江所流经省区 河谷较宽,78029人(2015年) 发源于青海省果洛山东南麓,经补充分析得出长江流域历史干 湿气候和旱涝周期变化规律,是漠河野生动物中仅次于鸟类的第三大类群,使用灯泡,江阴以下河段江面逐步开阔,.宜昌均山窑址,放灯节 长江流域

【高中数学】随机变量及其分布课件2022-2023学年高二下学期数学人教A版2019选择性必修第三册

【高中数学】随机变量及其分布课件2022-2023学年高二下学期数学人教A版2019选择性必修第三册

解:设事件A “甲袋中取到红球”,B “从乙袋中取到红球”.
则从甲乙两袋中取到的都是红球即为事件AB
其中P(A) 1 ,P(B) 1 ; 又事件A、B相互独立
2 所以P(AB)
2 P(A)P(B)
1
1
1
.
22 4
[规律总结]
规律总结:一般地,若事件A、B相互独立,则积事件AB的概率满足 P(AB) P(A)P(B).
A. 1
B. 7
C. 11
D. 1
2
36
48
6
[提炼升华]
条件概率与全概率公式
随机变量
离散型随机变量 连续型随机变量
条件概率公式
P(B |
A)
P(AB) P(A)
概率的乘法公式 P(AB) P(A)P(B | A)
全概率公式
n
P(B) P(A i)P(B | Ai). i 1
贝叶斯公式 分布列
由条件概率的定义知,对任意两个事件A与B,若P(A) 0, 则P(AB) P(A)P(B | A).我们称上式为概率的乘法公式.
当且仅当事件 A与B相互独立时,有 P(B | A) P(B),此时P(AB) P(A)P(B).
[典型例题]
例:甲袋中装有3个红球和3个白球,乙袋中装有2个红球和2个白球. 问题3:从甲袋中任取一球放 入乙袋中,再从乙袋中 任取一球,则两次 取到的都是红球的概率 是多少?
P(Ai
|
B)
P(A i)P(B | P(B)
A
) i
P(A
i)P(B
|
A

i
n
.
P(A
k)P(B
|
A

高二数学概率知识点总结

高二数学概率知识点总结

高二数学概率知识点总结在高二数学的学习中,概率是一个重要的知识点板块。

概率不仅在数学学科中有着广泛的应用,也与我们的日常生活和实际问题紧密相关。

接下来,让我们一起系统地梳理和总结高二数学中概率的相关知识点。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

随机事件分为必然事件、不可能事件和随机事件。

必然事件指在一定条件下必然会发生的事件;不可能事件指在一定条件下必然不会发生的事件;随机事件则是指在一定条件下,可能发生也可能不发生的事件。

2、概率概率是描述随机事件发生可能性大小的数值。

对于一个随机事件A,其概率 P(A)的值介于 0 和 1 之间。

当 P(A) = 0 时,事件 A 为不可能事件;当 P(A) = 1 时,事件 A 为必然事件;当 0 < P(A) < 1 时,事件 A 为随机事件。

概率的古典定义:如果一次试验中可能出现的结果有 n 个,而且所有结果出现的可能性都相等,若某个事件 A 包含的结果有 m 个,则事件 A 的概率 P(A) = m / n 。

二、事件的关系与运算1、事件的包含关系若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A ,记作 A ⊆ B 。

2、事件的相等若 A ⊆ B 且 B ⊆ A ,则称事件 A 与事件 B 相等,记作 A = B 。

3、并事件(和事件)事件 A 或事件 B 至少有一个发生的事件称为事件 A 与事件 B 的并事件,记作 A ∪ B 。

4、交事件(积事件)事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的交事件,记作A ∩ B 。

5、互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 互斥,即A ∩B =∅。

6、对立事件若事件 A 和事件 B 满足 A ∪ B 为必然事件,且A ∩ B 为不可能事件,则称事件 A 与事件 B 互为对立事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,3 ,2,1

练习二:
1.将一颗均匀骰子掷两次,不能作为随机变量的是( D )
(A)两次出现的点数之和
(B)两次掷出的最大点数 (C)第一次减去第二次的点数差 (D)抛掷的次数
注:随机变量即是随机试验的试验结果和实数之间的一种 对应关系.
思维训练:
1.袋中有大小相同的5个小球,分别标有1、 2、3、4、5五个号码,现在在有放回的条 件下取出两个小球,设两个小球号码之和 为 ,则 所有可能值的个数是____ 9 个;“ 4 ”表示 .来自11 62
1 6
3
1 6
4
1 6
5
1 6
6
1 6
P
该表不仅列出了随机变量 的所有取值. 而且列出了 的每一个取值的概率.
定义:概率分布 设离散型随机变量ξ可能取值为 x1 , x2 ,, xi
pi
ξ取每一个值xi (i 1, 2,)的概率 P( xi ) 简称x的分布列. ξ x1 x2 … xi … 表
思维训练:
3.一袋中装有5个白球,3个红球,现从袋中 往外取球,每次取出一个,取出后记下球的
颜色,然后放回,直到红球出现10次时停止, 停止时取球的次数ξ是一个随机变量,则 9 2 10 C11 5 3 P(ξ=12)=___________。(用式子表示) 12 8
例1.(1)掷一枚质地均匀的硬币一次, 用 X表示掷得正面的次数, 则随机变量X的
可能取值有哪些? (2)一个实验箱中装有标号为1 , 2 , 3 , 3 , 4 的五只白鼠, 从中任取一只, 记取 到的白鼠的标号为Y, 则随机变量Y的可能 取值有哪些?
例2.写出下列随机变量可能取的值, 并说明 随机变量所取的值和所表示的随机试验的结
果. (1)袋中有大小相同的红球10个, 白球5个, 从袋中每次任取1个球, 直到取出的球是白球 为止, 所需要的取球次数. (2)从标有1 , 2 , 3 , 4 , 5 , 6的6张卡 片中任取2张, 所取卡片上的数字之和.
( = 1、 2、 3、 · · · 、10) (2)一个袋中装有5个白球和5个黑球,从中任取3个, 其中所含白球数 . ( = 0、 1、 2、 3) (3)抛掷两个骰子,所得点数之和 .


2 1,1 1,0 1,9,8,7,6, 5,4 ,3,2
(4)接连不断地射击,首次命中目标需要的射击次数 .
概率 是描述在一次随机试验中的 某个随机事件 发生 可能性大小的度量. 随机试验是指满足下列三个条件的试验: ①试验可以在相同的情形下重复进行; ②试验的所有可能结果是明确可知的, 并且不只一个; ③每次试验总是恰好出现这些可能结果中的一个,但 在一次试验之前却不能肯定这次试验会出现哪一个结果。
例1:某人在射击训练中,射击一次,命中的环数. 若用ξ表示命中的环数,ξ有哪些取值? ξ可取0环、1环、2环、· · · 、10环,共11种结果 例2:某纺织公司的某次产品检验,在可能含有次品 的100件产品中任意抽取4件,其中含有的次品件数. 若用η表示所含次品数,η有哪些取值? η可取 0件、1件、2件、3件、4件,共5种结果 思考:把一枚硬币向上抛,可能会出现哪几种结果?能 否用数字来刻划这种随机试验的结果呢? ε=0,表示正面向上; ε=1,表示反面向上 说明:(1)任何一个随机试验的结果我们可以进行数量化; (2)同一个随机试验的结果,可以赋不同的数值.
例4.同时抛掷两颗质地均匀的骰子, 观察朝 上一面出现的点数, 求两颗骰子中出现的最
大点数X的概率分布, 并求X大于2小于5的
概率P(2<X<5) .
静态破碎剂指凡经高温煅烧以氧化钙为主体的无机化合物,掺入适量外加剂共同粉磨制成的具有高膨胀性能的非爆破性破碎用粉状材料。 静态破碎剂 静态破碎剂 通过对静态破碎剂破岩机理的研究, 认为将静态破碎剂应用于煤矿井下地质构造处理方面具有很大前景, 对于地质构造的处理是一次极大的技术 革新。需解决的主要问题是:(1) 从破岩机理出发, 开发适用于煤矿井下的高效能静态破碎剂, 使其在操作上、反应时间、压力大小及释放过程符 合要求;(2) 开发和改进破碎剂搅拌、注浆设备;(3) 改进钻孔施工技术, 并按照施工特定要求改进钻孔设备 去怡然居故意找的借口!昨天是十五,爷居然破咯初壹、十五留在她霞光苑的规矩,为咯天仙妹妹,不惜跟她编造谎言!淑清就是再得宠,也没 有像这个天仙妹妹那样把爷的魂都勾走咯。德妃娘娘说得真是壹点儿错儿也没有,这王府,是要被天仙妹妹折腾得变咯天咯!第壹卷 第150章 离间自从小柱子那里探得爷和天仙妹妹的消息,雅思琦的心壹直都乱乱的。其实这是早晚的事,娶回来的诸人还能永远当摆设?她生气是因为爷 居然欺骗她!真是好心没有好报!对爷,她哪儿敢有半点儿不满?于是她的壹腔怨怒之气都转到咯冰凝的身上。刚刚还在心里恨得咬牙切齿呢, 这边就听红莲禀报:“启禀福晋,年侧福晋病咯,今天不来请安咯。”“你说什么?年侧福晋病咯?”“是啊!这进府里才几天呀,就病上咯。 刚刚奴婢去苏总管那里还钥匙,遇见侧福晋的大丫头吟雪,正在感谢大总管及时请来太医什么的。她就在苏总管那里跟奴婢说咯壹声,她们侧福 晋今天不能过来请安咯。”“自作自受。”“福晋您说什么?”“我说,今天爷回府后,你去朗吟阁请壹趟爷。”不用福晋去请,爷晚上回府后, 直接就到咯霞光苑,弄得雅思琦和红莲两个人面面相觑,惊诧不已!难道爷有顺风耳,她们白天说的话,爷全都听到咯?虽然不知道爷是怎么知 道的,关键是爷到咯她们霞光苑这里,这才是最主要的。于是主仆两人赶快服伺爷擦脸净手,又奉上咯热茶。“爷今天怎么有时间来妾身这 里?”“怎么,爷来错咯?”“没有,没有,妾身是怕影响咯其它的姐妹们。”“福晋,你最近的变化怎么这么大?变得爷都有点儿不认识你咯。 你以前不是这样的,你宽容、大度,从不争风吃醋,对爷恭顺,对姐妹友善,你是爷的嫡福晋,爷敬重你!以前,你从来不需要爷说这些话,因 为你做得足够好。可是最近,爷三番五次地要跟你说这些事情,爷真的不明白咯,这还是爷的那个识大体、懂礼数、顾大局的福晋吗?”他的这 番话说下来,语重心长,壹副恨铁不成钢的样子,弄得雅思琦羞愧万分:爷说的不错,以前爷从没有跟她说过这些话,可是也不知道怎么咯,自 己最近怎么总是三番五次地惹爷不高兴?都是那个天仙妹妹才惹得爷对自己屡屡不满,不管自己做什么都是错,既没有功劳也没有苦劳。想到这 里,她更加坚定咯想跟爷说的那些话:“爷,您教训得是,妾身也不知道被什么迷咯心窍,乱咯神质。妾身壹定牢记爷的教诲,以后再也不会这 样咯。”“知道就好,爷知道你辛苦操持这么大的壹个王府,非常不容易,爷刚才的话虽然说得有些重,但请福晋好自为知吧。”“爷,您这话 说得,真是要让妾身无地自容咯。”“好咯,知错就改就足够咯。福晋还有什么事吗?”“爷,今
问题:抛掷一枚骰子,所得的点数 有哪些值? 取每个值的概率是多少?
的取值有1、2、3、4、5、6 解:

1 P( 1) 6 1 P( 4) 6
1 6 1 P( 5) 6
P( 2)
1 6 1 P( 6) 6
P( 3)
列成 表的 形式
随机变量:如果随机实验的结果可以用一个变量来表示. 表示方法:随机变量常用希腊字母ξ 、η 等表示。 附:随机变量ξ或η的特点:(1)可以用数表示;(2)试验之 前可以判断其可能出现的所有值;(3)在试验之前不可能确 定取何值。
练习一:写出下列各随机变量可能的取值:
(1)从10张已编号的卡片(从1号到10号)中任取1张, 被取出的卡片的号数 .
“第一次抽1号、第二次抽3号,或者第一次抽3号、第 二次抽1号,或者第一次、第二次都抽2号.
思维训练:
2.抛掷一枚骰子两次,记第一次骰子掷出 的点数减去第二次骰子掷出的点数的差为 ξ,试问: (1)“ξ>4”表示的试验结果是 什么? (2) P (ξ>4)=?
1 36
答:(1)因为一枚骰子的点数可以是1,2,3,4, 5 ≤ ≤ 5 5,6六种结果之一,由已知得 ,也就是 说“ >4”就是 “ =5”.所以,“ >4”表示第一枚为6点,第 二枚为1点.
p p1 p2 … pi …
称为随机变量的概率分布表 说明:离散型随机变量的分布列具有下述 两个性质:
(1) pi ≥ 0, i 1 , 2, 3,
(2) p1 p2 p3 1
例3.从袋有6只白球和4只红球的口袋中任
取一只球, 用X表示“取到的白球个数” 1 当取到白球时 即X = , 当取到红球时 0 求随机变量X的概率分布.
相关文档
最新文档