Independent Sampling Genetic Algorithms
设备带有恶化特性的作业车间调度模型与算法
第41卷第3期自动化学报Vol.41,No.3 2015年3月ACTA AUTOMATICA SINICA March,2015设备带有恶化特性的作业车间调度模型与算法黄敏1,2付亚平1,2王洪峰1,2朱兵虎1,2王兴伟1,2摘要考虑到现实作业车间调度中设备具有恶化特性,针对作业的处理时间是开始时间的线性递增函数的作业车间调度问题,建立了以最小化最迟完成时间为目标的优化模型,进而设计了嵌套分割算法进行求解.该算法在抽样阶段嵌入单亲遗传算法以提高抽样的多样性和质量.实例结果表明,所提出的算法在解决该问题上可以获得较高质量的解,并且具有很好的鲁棒性.关键词嵌套分割算法,单亲遗传算法,作业车间,设备恶化,调度问题引用格式黄敏,付亚平,王洪峰,朱兵虎,王兴伟.设备带有恶化特性的作业车间调度模型与算法.自动化学报,2015,41(3): 551−558DOI10.16383/j.aas.2015.c131067Job-shop Scheduling Model and Algorithm with Machine Deterioration HUANG Min1,2FU Ya-Ping1,2WANG Hong-Feng1,2ZHU Bing-Hu1,2WANG Xing-Wei1,2Abstract For the job-shop scheduling problem,a job-shop scheduling model with machine deterioration is built in order to minimize makespan,considering that the processing time of jobs is a linearly increasing function of the start time.Then a nested partition method is designed for solving it.In the sampling process,the partheno-genetic algorithm is embedded into the nested partition method in order to ensure the diversity of sampling and quality.Simulation experiments show that the proposed algorithm for solving job-shop scheduling problem with machine deterioration can get higher quality solutions and have a better robustness.Key words Nested partition method,partheno-genetic algorithm,job shop,machine deterioration,scheduling problem Citation Huang Min,Fu Ya-Ping,Wang Hong-Feng,Zhu Bing-Hu,Wang Xing-Wei.Job-shop scheduling model and algorithm with machine deterioration.Acta Automatica Sinica,2015,41(3):551−558调度是影响制造型企业生产效率的关键因素,建立合理的调度模型及寻找有效的调度方法和优化技术是提高制造型企业生产效率、降低生产成本的重要途径.作业车间调度问题(Job-shop scheduling problem,JSSP)是众多制造型企业普遍存在的生产调度问题,其蕴含着复杂的生产制约关系,既要考虑收稿日期2013-11-19录用日期2014-10-27Manuscript received November19,2013;accepted October27, 2014国家杰出青年科学基金(71325002,61225012),国家自然科学基金(71071028,71001018),流程工业综合自动化国家重点实验室基础科研业务费(2013ZCX11),中央高校基本科研业务费专项基金(N1304040 17)资助Supported by National Science Foundation for Distinguished Young Scholars of China(71325002,61225012),National Natu-ral Science Foundation of China(71071028,71001018),Funda-mental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(2013ZCX11),and Funda-mental Research Funds for the Central Universities(N1304040 17)本文责任编委李乐飞Recommended by Associate Editor LI Le-Fei1.东北大学信息科学与工程学院沈阳1108192.流程工业综合自动化国家重点实验室(东北大学)沈阳1108191.College of Information Science and Engineering,Northeast-ern University,Shenyang1108192.State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang110819作业加工的先后次序关系,又要考虑加工进程的协调,是一类复杂的组合优化问题.众多学者对作业车间调度问题进行了深入而系统的研究[1].传统的作业车间调度的研究假设作业处理时间为可知的常数[2].而在实际加工过程中,处理时间受到诸多不确定因素的影响,如文献[3−4]考虑了作业处理时间服从三角模糊数的不确定作业车间调度问题,文献[5−6]分别研究了作业的处理时间服从均匀分布和正态分布的作业车间调度问题.上述研究考虑作业的处理时间预先确定、模糊或随机的作业车间调度问题,但均未考虑由于设备工作效率降低或工件物理特性变化而引起的处理时间延长的问题.20世纪90年代,Gupta等[7]考虑到工件特性、设备磨损及操作者疲惫程度的影响,假设工件的处理时间是其开始时间的线性递增函数,首先提出了工件具有恶化特点的调度模型.这种考虑恶化的调度模型弥补了传统调度中模型缺乏实用性的不足,且具有广泛的应用背景,如钢铁生产、清洁维护及服务业等.目前,考虑恶化情形的调度问题的研究多以单机[8−10]和流水线[11−12]为背景,而在作业车间背景下的研究较少[13].Mosheiov[14]首次对具有恶化时552自动化学报41卷间的作业车间调度问题进行了复杂性研究,指出在实际处理时间与其开始时间呈线性关系的情况下,最小化最迟完成时间的作业车间调度问题是NP-complete问题.文献[13,15]研究带有恶化情形下的批量作业车间调度问题,假设作业的处理时间与其开始时间呈指数关系.文献[16]考虑了作业的处理时间具有线性恶化情形的柔性作业车间调度问题.现有对恶化特性的作业车间调度问题的研究,均假设作业在所有设备上的恶化系数相同.而在有些实际生产环境中,如带有自动和手控设备的作业车间,作业的恶化系数往往受到设备磨损、操作者疲惫程度及工序的复杂程度的影响,因此,各作业的不同工序往往具有不同的恶化系数.考虑到带有恶化情形的作业车间调度问题具有广泛的应用背景,本文针对具有自动和手控设备的作业车间,结合手控设备操作者的工作效率随其工作时间增加而降低的特点,研究了设备带有恶化特性的作业车间调度问题(Job-shop scheduling prob-lem with machine deterioration,JSSP-MD).考虑作业的不同工序具有不同的恶化系数,并假设各工序的实际处理时间为其在相应设备上开始时间的线性函数,建立了以最小化最迟完成时间为目标的调度模型,以最大化设备利用率.Garey等[17]已证明JSSP问题属于NP-hard问题,JSSP-MD是JSSP问题的扩展,具有更高的复杂性,因此,JSSP-MD也属于NP-hard问题.为此,本文在嵌套分割算法(Nested partition method,NPM)的抽样阶段嵌入单亲遗传算法(Partheno-genetic algorithm,PGA)的混合算法(Nested partition method embeddedpartheno-genetic algorithm,NP-PGA)进行求解.通过求解实例,验证和分析了该算法在解决JSSP-MD问题的执行效果.1问题描述与模型资源的有效利用对企业的管理决策是至关重要的,如何提高设备利用率、最小化最迟完成时间是衡量现实生产调度优化效果的重要指标.考虑最小化最迟完成时间和恶化时间的作业车间调度问题可以描述如下:n个作业在m台设备上加工,设J为待加工的作业集合,M为设备集合.集合J中的每个作业j(j=1,2,···,n,n表示作业总数)须按照预先确定的工艺顺序加工,A j={O jm1,O jm2,···,O jmK j },其中A j表示作业j的工艺路线,O jmk表示作业j的第k个工序在设备m k上加工,k=1, 2,3,···,K j,K j为作业j的工序总数.S ji和C ji 表示作业j在设备i上的开始处理时间和完成时间. p ji为作业j在设备i上的正常处理时间,作业在处理过程中,作业的实际处理时间会由于设备磨损及操作人员逐渐疲惫而增加,即作业的处理时间出现恶化现象.设αji为设备i加工作业j的恶化系数,假设恶化时间与其对应工序的开始时间呈线性关系,则作业j在设备i上的实际处理时间pji如式(1)所示,其中M1和M2分别表示不具有恶化特性的设备集和具有恶化特性的设备集.调度目标是确定各台设备上作业的加工顺序,以最小化最迟完成时间,并且满足如下约束条件:同一时刻同一设备只能处理一个作业;作业的加工不允许中断;不同作业的工序之间没有先后约束;所有设备在0时刻均可用.pji=p ji,∀j∈J,∀i∈M1p ji+αji S ji,∀j∈J,∀i∈M2(1)根据上述问题描述和符号定义,对JSSP-MD问题建立模型如下:min max1≤i≤mmax1≤j≤nC ji(2)C ji=S ji+pji,∀j∈J,∀i∈M(3)C ji≤S li∨C li≤S ji,j,l∈J,i∈M(4)C ji≤S jk,∀(o ji,o jk),∀A j,j∈J,i,k∈M(5)S ji,C ji≥0,∀j∈J,∀i∈M(6)pji=p ji,∀j∈J,∀i∈M1p ji+αji S ji,∀j∈J,∀i∈M2(7)模型中,式(2)为目标函数,表示最小化最迟完成时间;式(3)表示作业的各工序的完成时间为开始时间与实际处理时间和;式(4)和式(5)表示由工艺约束条件决定的各作业的各工序的先后加工顺序,以及加工各个作业的设备的先后顺序;式(6)为变量的取值约束;式(7)为作业的实际处理时间和正常处理时间的函数关系式.2NP-PGA算法NP算法是一种能够解决复杂的确定型和随机型优化问题的优化方法,其已被证明能够以概率1收敛到全局最优解.Shi等已将NP算法用于求解TSP问题、供应链网络优化、产品设计、资源分配等领域[18−19],并取得了很好的效果.2.1NP算法的基本思想设X为优化问题P的可行域空间,通过分割策略得到的区域称为可行域,各个可行域互不相交,且并集为整个可行域X.对于离散问题,只含一个解的可行域称为单解域.如果可行域σ∈X是通过分割可行域η∈X得到的,则称σ为η的子域,η为3期黄敏等:设备带有恶化特性的作业车间调度模型与算法553σ的父域.由初始可行域到达一个可行域所分割的次数称为该可行域的深度,初始可行域的深度为0,单解域具有最大的深度,故又称为最大深度域.NP算法包括四个基本算子[18]:分割(Parti-tion)、抽样(Sampling)、选区(Selection)和回溯(Backtracking).其基本思想是:1)在算法的第k次迭代中,如果认为σ(k)∈X是包含x∗的最可能域(The most promising region),则利用分割算子将σ(k)分割为M个子域,并将可行域X\σ(k)称为裙域(Surrounding region),得到M+1个互不相交的可行域;2)对每个可行域σj(k),j=1,2,3,···,M+1,利用抽样算子随机抽取N j个点x j1,x j 2,x j3,···,x jN j,j=1,2,3,···,M+1.计算相应的目标函数值f(x j1),f(x j2),f(x j3),···,f(x jN j),并选择最好值作为该可行域的可能性指数(Promising index)I(σj);3)基于抽取的样本,利用选区算子确定第k+1次迭代的最可能域.依据此方法继续分割,直到获得不可分割的单解域;4)如果最可能域为裙域X\σ(k),则利用回溯算子回溯至上次迭代的最可能域,并重新执行1)∼3).2.2NP-PGA算法求解JSSP-MD问题回溯次数过多会影响到NP算法的执行效率,为减少回溯次数,必须提高抽样算子抽取的样本质量,以保证算法沿着正确的方向搜索.为此,本文提出了NP-PGA算法,以提高NP算法的搜索效率.图1为NP-PGA算法的流程图.为有效地求解JSSP-MD问题,NP-PGA算法的基本算子设计方法如下.分割:假设n个作业在m台设备上加工,已知各个作业工艺路线可确定各设备上加工的作业集合.一个完整解分成m段,如图2所示,πj表示第j台设备上各作业相应工序的排序.分割算子每次确定一个作业在一台设备上的位置,依次确定第1台至第m台设备上作业的排序.以2台设备3个作业为例,工艺路线分别为:A1={O11,O12},A2={O22, O21},A3={O31,O32},其执行方法如图3所示.图中“∗”表示待分配作业的位置,第1层表示两台设备均处于待分配;第2层中第1个和第3个节点分别表示将作业1和作业3的第1个工序分配到第1台设备的第1个位置,第2个节点表示将作业2的第2个工序分配到第1台设备的第1个位置;第3层的两个衍生节点分别表示将作业1和作业3的第2个工序分配给第1台设备的第2个位置,以此类推,完成两台设备上的作业分配.抽样:嵌入PGA的抽样方法描述如下.1)从可行域中随机抽取N个解作为PGA的初始种群;2)对每一个体随机选择若干台未确定作业顺序的设备,随机地选择基因换位、基因段移位和基因段逆转操作,改变相应设备的作业的排序;3)计算个体的目标函数值,并取其倒数作为个体的适应度值;4)采用精英保留和轮盘赌方法选择下一代种群;5)重复执行2)∼4),直到满足停止条件,输出最优个体,并将该个体的目标值作为该可行域的可能性指数.重复上述操作直至完成对所有可行域的抽样操作.采用该抽样方法能够获得代表各个可行域质量的较好解,从而保证算法沿着正确的方向搜索.图1NP-PGA算法的流程图Fig.1Graph of NP-PGAalgorithm图2解的表达方式Fig.2Representation ofsolution图3可行域的分割方法Fig.3Partition method of feasible region选区:如果当前迭代中具有最优的可能性指数的可行域为当前最可能域的子域,则选取该子域为下次迭代的最可能域.回溯:如果当前迭代中具有最优的可能性指数的可行域为裙域,则需要进行回溯操作.本文采取两种回溯策略,分别为:1)回溯到当前最可能域的父554自动化学报41卷域;2)回溯到截至目前找到的最好解所在可行域的父域.根据上述算法设计,NP-PGA算法执行的伪码如图4所示.在完成算法参数及最可能域的初始化后,算法进入如下迭代过程:首先将最可能域分割为一定数量的子域并构造当前裙域;然后采用PGA方法对各可行域抽样,并计算各可行域的可能性指数;选择具有最好可能性指数的可行域,并依据其与当前最可能域的包含关系确定是否采取回溯策略;最后确定最可能域,并进入下一次迭代.3实验分析为验证算法的求解效果,本文从某加工企业选取三个不同规模的实例进行实验,计算机配置为Core2Duo2.4GHz CPU,2G RAM.实例1中有6个作业、6台设备;实例2中有7个作业、7台设备;实例3中有8个作业、8台设备,实验数据分别如表1∼3所示.表中p ji和αji分别表示作业j在工艺路线A j下各工序在相应设备i上的正常处理时间和恶化系数.每一实例分别运行30次,并分别取其最好值(Best)、最差值(Worst)、平均值(Mean)、标准方差(S)及平均CPU时间(Time,单位s)为评价指标.实验中NP算法采取两个停止条件:1)获得单解域;2)最大分割次数,本文取mn2.实验首先以实例1为例,验证不同回溯策略、抽样个数及PGA迭代次数对算法性能的影响.实验的结果及分析如下.图4NP-PGA算法伪码图Fig.4Pseudo-code of NP-PGA algorithm表1实例1的实验数据Table1Experimental data of thefirst instanceJ A j p jiαji1{O11,O14,O12,O13,O16}{8,2,9,4,17}{0.4,0.6,0,0.1,0.4} 2{O23,O26,O25,O21,O22}{11,1,9,7,8}{0.1,0.4,0.2,0.4,0} 3{O33,O31,O32,O34,O35}{17,10,7,20,9}{0.1,0.4,0,0.6,0.2} 4{O44,O42,O45,O43,O41}{1,9,16,18,2}{0.6,0,0.2,0.1,0.4} 5{O51,O56,O52,O55,O54}{2,3,3,10,11}{0.4,0.4,0,0.2,0.6} 6{O62,O66,O65,O64,O63}{3,17,13,4,14}{0,0.4,0.2,0.6,0.1}表2实例2的实验数据Table2Experimental data of the second instanceJ A j p jiαji1{O15,O13,O14,O16,O17,O12,O11}{19,18,7,18,3,10,15}{0.2,0.1,0.6,0.4,0.3,0,0.4} 2{O21,O24,O23,O22,O27,O25,O26}{14,11,12,5,2,20,14}{0.4,0.1,0.6,0.4,0.3,0,0.4} 3{O35,O36,O37,O33,O34,O31,O32}{13,2,4,10,16,9,8}{0.2,0.4,0.3,0.1,0.6,0.4,0} 4{O41,O44,O47,O46,O45,O43,O42}{7,16,4,1,9,4,9}{0.4,0.6,0.3,0.4,0.2,0.1,0} 5{O52,O56,O54,O51,O53,O57,O55}{6,3,7,8,9,13,6}{0,0.4,0.6,0.4,0.2,0.3,0.2} 6{O66,O62,O65,O64,O61,O63,O67}{1,4,5,10,11,4,12}{0.4,0,0.2,0.6,0.4,0.1,0.3} 7{O74,O76,O77,O73,O72,O75,O71}{11,12,15,8,16,7,13}{0.6,0.4,0.3,0.1,0,0.2,0.4}3期黄敏等:设备带有恶化特性的作业车间调度模型与算法555表3实例3的实验数据Table3Experimental data of the third instanceJ A j p jiαji1{O18,O17,O16,O11,O13}{7,20,17,4,8}{0.3,0.3,0.4,0.4,0.1}2{O23,O27,O24,O26,O22,O28}{3,19,13,1,9,15}{0.1,0.3,0.6,0.4,0,0.4}3{O37,O33,O34,O35}{14,5,12,18}{0.3,0.1,0.6,0.2}4{O44,O45,O42,O46,O47,O43,O41,O48}{17,9,6,9,16,5,8,20}{0.6,0.2,0,0.4,0.3,0.1,0.4,0.3} 5{O51,O56,O55,O53,O58}{10,7,20,17,14}{0.4,0.4,0.2,0.1,0.3}6{O66,O63,O64,O67,O65,O62,O68,O61}{13,14,8,19,16,18,14,14}{0.4,0,0.6,0.3,0.2,0,0.3,0.4} 7{O73,O72,O71,O75,O74,O78,O77,O76}{10,18,10,7,9,7,9,7}{0.1,0,0.4,0.2,0.6,0.3,0.3,0.4} 8{O81,O85,O88,O86,O82}{13,1,15,9,4}{0.4,0.2,0.3,0.4,0}3.1回溯策略对NP算法的影响基于标准的NP算法,验证回溯策略1)和2)及抽样个数对算法的影响.从表4(SN表示抽样个数)可以看出,两种策略均能在可接受的时间内获得相同的最好解.从均值和标准方差上看,策略2)的搜索效果优于策略1),且其稳定性较好.另外,增加抽样个数可以提高算法的求解效果和稳定性,但其求解时间也会相应增加.为提高算法的稳定性,本文选取策略2)作为后续实验的回溯策略.3.2抽样个数对NP-PGA的影响为验证抽样个数对NP-PGA的影响,固定PGA的迭代次数为50,且采取回溯策略2).表5(NG为迭代次数)给出了实验结果.从表5可以看出,抽样个数对NP-PGA影响的趋势类似于第3.1节中的结论,五种抽样个数的设置均能获得相同的最好解,从均值和标准方差上看,当抽样个数取30时,算法的稳定性较好.因此,在本文的后续实验中将抽样个数设置为30.3.3PGA迭代次数的影响为验证PGA迭代次数对算法的影响,固定抽样个数为30,且采取回溯策略2).表6为验证PGA的迭代次数对NP-PGA性能影响的实验结果.从表6中可以看出,随着迭代次数增大,算法的求解效果得到改善,均值和标准方差均有所下降,但也增大了计算开销,导致算法的求解时间增大.另外,当迭代次数为30时,NP-PGA的稳定性较好.因此,在后续实验中将PGA的迭代次数设置为30.3.4算法对比为验证NP-PGA的有效性,分别采用枚举算法(EA)、遗传算法(GA)、NP算法及NP-PGA求解实例1∼3.其中,EA可以获得问题的最优解,用以验证NP-PGA获得最优解的能力;GA已被证明可以有效求解作业车间调度问题,并被众多研究作为对比算法[15−16,20],NP算法用于验证本文所提出的改进策略的有效性.GA的参数设置为:种群规模为100,交叉率为0.7,变异率为0.3,迭代次数为500.NP-PGA采取回溯策略2),抽样次数为30, PGA迭代次数为30.NP的参数设置同NP-PGA.表7给出了求解的实验结果.对于所采用的3个实例(“–”表示EA不能在有效的时间内获得问题最优解),将NP-PGA得到的结果与EA、GA和NP 得到的结果进行对比.对于EA算法,J6×M6问题计算最优解的时间为3237.8s,并且该方法的计算结果与使用GA、NP和NP-PGA计算得到的结果一致.对于J7×M7问题,EA不能在有效的时间内获得最优解,其他3种算法均能够得到近似解.但是,显而易见的是,NP-PGA的求解结果优于GA和NP的求解结果,但求解时间相对较大.对于J8×M8问题,NP-PGA的求解结果优势更加明显,从最好解、均值、标准方差及求解时间上看, NP-PGA均好于GA和NP.对于NP算法,由于其采用随机抽样的方法,不能保证获得的样本解为可行域的最好解,从而造成回溯,而多次回溯必将会影响到算法的执行效率.针对这一问题,在抽样阶段嵌入PGA方法对NP加以改进.从表7的数据可以看出,NP-PGA算法与NP算法相比,最好解、均值、标准方差及求解时间均得到改进,并且随着问题规模的增大,NP-PGA的优势更加明显.通过在NP算法中嵌入PGA,可以提高抽样的多样性及样本质量,尽可能获得能够代表可行域的最好解,从而减少了回溯次数,提高了算法的求解性能.为直观地展示所提出的NP-PGA算法的有效性,分别选取三种算法30次求解的最好结果绘制收敛曲线.图5∼7分别给出了三种算法在求解J6×M6,J7×M7及J8×M8问题的收敛曲线图,图556自动化学报41卷表4回溯策略及抽样个数对算法影响Table4Experimental results on different backtracking strategies and sampling number策略SN Best Worst Mean S Time(s) 20178.83219.87192.4116.0319.2330178.83205.91185.859.4925.511)40178.83204.40185.0110.7829.2650178.83192.24183.8310.1239.3360178.83184.96181.778.9953.8020178.83221.46190.079.0614.3730178.83198.10185.319.8524.432)40178.83215.10184.739.3238.0050178.83195.34182.558.9657.4260178.83183.51180.228.3788.57表5抽样个数对算法影响Table5Experimental results on different sampling numberSN NG Best Worst Mean S Time(s) 1050178.83210.69186.5712.9417.74 2050178.83198.09186.0312.3236.50 3050178.83192.10181.69 5.4971.13 4050178.83192.10182.807.3185.09 5050178.83192.10181.43 5.7499.76表6PGA迭代次数对算法影响Table6Experimental results on different iteration times of PGASN NG Best Worst Mean S Time(s) 3010178.83210.69189.4313.2522.51 3020178.83210.69186.9910.1330.64 3030178.83188.84183.21 4.9745.19 3040178.83192.10183.83 5.8165.59 3050178.83198.09184.997.7182.45表7EA、GA、NP和NP-PGA算法对比结果Table7Comparison of experimental results obtained by EA,GA,NP and NP-PGAProblem Algorithm Best Mean S Time(s)J6×M6EA178.83178.8303237.8J6×M6GA178.83181.38 1.9233.39J6×M6NP178.83192.109.0638.03J6×M6NP-PGA178.83190.07 5.4945.19J7×M7EA−−−−J7×M7GA894.80917.0819.5051.68J7×M7NP901.51921.7511.8265.77J7×M7NP-PGA891.30910.0811.2074.52J8×M8EA−−−−J8×M8GA838.60842.7610.2295.88J8×M8NP833.43873.4217.26119.42J8×M8NP-PGA805.28820.8610.0488.933期黄敏等:设备带有恶化特性的作业车间调度模型与算法557中横坐标表示算法运行时间,纵坐标表示算法搜索到的最好解.从图中可以看出,NP-PGA 收敛的速度和效果均要优于GA 和NP,且在求解J 8×M 8问题上优势更加明显.图5三算法求解J 6×M 6收敛曲线Fig.5Convergence curve of three algorithms insolving J 6×M6图6三算法求解J 7×M 7收敛曲线Fig.6Convergence curve of three algorithms insolving J 7×M7图7三算法求解J 8×M 8收敛曲线Fig.7Convergence curve of three algorithms insolving J 8×M 84结论设备带有恶化特性的作业车间调度问题是制造型企业亟需解决的关键问题.本文针对设备带有恶化特性的作业车间调度问题进行了研究.首先,对作业车间环境下设备带有恶化特性的调度问题进行了描述,建立了以最小化最迟完成时间为目标的问题模型;进而针对问题特点设计了嵌入单亲遗传算法的混合嵌套分割算法进行问题求解;最后,通过与枚举算法、遗传算法及标准嵌套分割算法的对比分析,表明所提出的算法在求解质量、求解时间和稳定性方面均具有较好的性能,尤其在作业和设备数量增多时,所提出的算法具有更加明显的优势.该研究为设备带有恶化特性的作业车间调度问题提供了有效的建模和求解工具,在自动和手控设备并存的作业车间调度方面具有广泛的应用.未来研究可进一步分析设备恶化系数对算法性能的影响等.References1Brucker P.Scheduling Algorithms .Berlin:Springer-Verlag,2007.69−832Blazewicz J,Domschke W,Pesch E.The job shop scheduling problem:conventional and new solution techniques.Euro-pean Journal of Operational Research ,1996,93(1):1−333Wang L,Tang D B.An improved adaptive genetic algo-rithm based on hormone modulation mechanism for job-shop scheduling problem.Expert Systems with Applica-tions ,2011,38(6):7243−72504Qiao Wei,Wang Bing,Sun Jie.Uncertain job shop schedul-ing problems solved by genetic puter Inte-grated Manufacturing Systems ,2007,13(12):2452−2455(乔威,王冰,孙洁.用遗传算法求解一类不确定性作业车间调度问题.计算机集成制造系统,2007,13(12):2452−2455)5Li Fu-Ming,Zhu Yun-Long,Yin Chao-Wan,Song Xiao-Yu.Research on fuzzy job shop scheduling with alternative puter Integrated Manufacturing Systems ,2006,12(2):169−173(李富明,朱云龙,尹朝万,宋晓宇.可变机器约束的模糊作业车间调度问题研究.计算机集成制造系统,2006,12(2):169−173)6Yan Li-Jun,Li Zong-Bin,Wei Jun-Hu,Du Xuan.A new hy-brid optimization algorithm and its application in job shop scheduling.Acta Automatica Sinica ,2008,34(5):604−608(闫利军,李宗斌,卫军胡,杜轩.一种新的混合优化算法及其在车间调度中的应用.自动化学报,2008,34(5):604−608)7Gupta J N D,Gupta S K.Single facility scheduling with nonlinear processing puters and Industrial Engi-neering ,1988,14(4):387−3938Wu H P,Huang M.Improved estimation of distribution al-gorithm for the problem of single-machine scheduling with deteriorating jobs and different due putational and Applied Mathematics ,2014,33(3):557−5739Mosheiov G.Scheduling jobs under simple linear puters and Operations Research ,1994,21(6):653−65910Wu C C,Wu W H,Wu W H,Hsu P H,Yin Y Q,Xu J Y.A single-machine scheduling with a truncated linear deteri-oration and ready rmation Sciences ,2014,256:109−125558自动化学报41卷11Cheng M B,Tadikamalla P R,Shang J,Zhang S Q.Bi-criteria hierarchical optimization of two-machineflow shop scheduling problem with time-dependent deteriorating jobs.European Journal of Operational Research,2014,234(3): 650−65712Wang J B,Wang M Z.Solution algorithms for the total weighted completion time minimizationflow shop scheduling with decreasing linear deterioration.The International Jour-nal of Advanced Manufacturing Technology,2013,67(1−4): 243−25313Liu C H,Chen L S,Lin P S.Lot streaming multiple jobs with values exponentially deteriorating over time in a job-shop environment.International Journal of Production Re-search,2013,51(1):202−21414Mosheiov plexity analysis of job-shop scheduling with deteriorating jobs.Discrete Applied Mathematics, 2002,117(1−3):195−20915Liu C H.Scheduling jobs with values exponentially deterio-rating over time in a job shop environment.In:Proceedings of the2011International MultiConference of Engineers and Computer Scientists.Hong Kong,China:Newswood Lim-ited,2011.1113−111816Araghi M E T,Jolai F,Rabiee M.Incorporating learning effect and deterioration for solving a SDSTflexible job-shop scheduling problem with a hybrid meta-heuristic approach.International Journal of Computer Integrated Manufactur-ing,2013,27(8):733−74617Garey M R,Johnson D S,Sethi R.The complexity offlow shop and job shop scheduling.Mathematics of Operations Research,1976,1(2):117−12918Shi L,´Olafsson S.Nested Partitions Method,Theory and Applications.New York:Springer-Verlag,2008.131−22619Shi L,´Olafsson S.Nested partitions method for global op-timization.Operations Research,2000,48(3):390−40720Wang Y M,Yin H L,Qin K D.A novel genetic algorithm forflexible job shop scheduling problems with machine dis-ruptions.The International Journal of Advanced Manufac-turing Technology,2013,68(5−8):1317−1326黄敏东北大学信息科学与工程学院教授.主要研究方向为生产计划、调度与存储控制,物流与供应链管理,行为运筹,风险管理和软计算.E-mail:***************(HUANG Min Professor at theCollege of Information and Engineer-ing,Northeastern University.Her re-search interest covers production planning,scheduling and inventory control,behavioral operation,management of lo-gistics and supply chain,and risk management and soft computing.)付亚平东北大学信息科学与工程学院系统工程研究所博士研究生.主要研究方向为生产计划与调度,智能优化算法.本文通信作者.E-mail:********************(FU Ya-Ping Ph.D.candidate atthe College of Information and Engi-neering,Northeastern University.His research interest covers production planning and schedul-ing,optimization algorithm.Corresponding author of this paper.)王洪峰东北大学信息科学与工程学院副教授.主要研究方向为进化计算,生产计划与调度,物流与供应链管理.E-mail:***************(W ANG Hong-Feng Associateprofessor at the College of Informationand Engineering,Northeastern Univer-sity.His research interest covers evo-lutionary algorithm,production planning and scheduling, and management of logistics and supply chain.)朱兵虎东北大学信息科学与工程学院系统工程研究所硕士研究生.主要研究方向为生产计划与调度,智能优化算法.E-mail:*********************(ZHU Bing-Hu Master studentat the College of Information andEngineering,Northeastern University.His research interest covers production planning and scheduling,optimization algorithm.)王兴伟东北大学信息科学与工程学院教授.主要研究方向为下一代互联网,光互联网,移动互联网.E-mail:***************(W ANG Xing-Wei Professor atthe College of Information and Engi-neering,Northeastern University.Hisresearch interest covers next generation internet(NGI),optical internet,and mobile internet.)。
遗传算法
数学建模专题之遗传算法
(1)函数优化(经典应用) (2)组合优化(旅行商问题——已成为衡量算法优劣的标准、背包问 题、装箱问题等) (3)生产调度问题 (4)自动控制(如航空控制系统的优化设计、模糊控制器优化设计和 在线修改隶属度函数、人工神经网络结构优化设计和调整人工神 经网络的连接权等优化问题) (5)机器人智能控制(如移动机器人路径规划、关节机器人运动轨迹 规划、机器人逆运动学求解等) (6)图像处理和模式识别(如图像恢复、图像边缘特征提取、几何形 Hotspot 状识别等) (7)机器学习(将GA用于知识获取,构建基于GA的机器学习系统) 此外,遗传算法在人工生命、遗传程序设计、社会和经济领域等 方面的应用尽管不是很成熟,但还是取得了一定的成功。在日后,必 定有更深入的发展。
内容 应用Walsh函数分析模式 研究遗传算法中的选择和支配问题 遗传算法应用于非稳定问题的粗略研究 用遗传算法解决旅行商问题(TSP) 基本遗传算法中用启发知识维持遗传多样性
1985
1985 1985 1985 1985
Baker
Booker Goldberg, Lingle Grefenstette, Fitzpattrick Schaffer
试验基于排序的选择方法
建议采用部分分配计分、分享操作和交配限制法 TSP问题中采用部分匹配交叉 对含噪声的函数进行测试 多种群遗传算法解决多目标优化问题
1 遗传算法概述
续表1.1
年份 1986 贡献者 Goldberg 最优种群大小估计
数学建模专题之遗传算法
内容
1986
1987 1987 1987 1987
2 标准遗传算法
2.4 遗传算法的应用步骤
利用多通道、低速率采样信号重构完整宽带信号的稳健方法
利用多通道、低速率采样信号重构完整宽带信号的稳健方法马仑;赵祥模;茹锋【摘要】对宽带信号直接采样要求模数转换器具有高采样速率,这将导致采样精度降低并且难以实现.采用将宽带模拟信号进行多通道、低速率采样的思路,提出一种利用自适应波束形成技术恢复信号完整带宽的新方法.该方法可以同时实现低采样速率与高精度,而且对通道延迟及其他误差稳健.仿真数据的处理结果验证了该方法的有效性.%Sampling broadband signal directly requires a high sampling rate of A/D converter, which leads to a reduction of the sampling accuracy and is difficult to be realized. An idea that performing a multi-channel and low rate sampling with broadband analog signal is introduced, a new method of utilizing adaptive beamforming technique to recover complete bandwidth of the broadband signal is proposed. Application of this method can implement both low rate sampling and high accuracy) in addition, it is robust to channel delay and other errors. The processing result of the simulated data verifies the effectiveness of this method.【期刊名称】《现代电子技术》【年(卷),期】2011(034)019【总页数】4页(P65-68)【关键词】多通道采样;自适应波束形成;模数转换器;通道延迟【作者】马仑;赵祥模;茹锋【作者单位】长安大学信息工程学院,陕西西安710064;长安大学信息工程学院,陕西西安710064;长安大学电子与控制工程学院,陕西西安 710064【正文语种】中文【中图分类】TN957-340 引言现代雷达、通信等信号处理系统通常要求先对天线接收信号进行数字化后再利用数字器件进行处理。
遗传算法(GeneticAlgorithm)..
2018/10/7
选择(Selection)
选择(复制)操作把当前种群的染色体按与适应值成正比例 的概率复制到新的种群中 主要思想: 适应值较高的染色体体有较大的选择(复制)机 会 实现1:”轮盘赌”选择(Roulette wheel selection) 将种群中所有染色体的适应值相加求总和,染色体适应 值按其比例转化为选择概率Ps 产生一个在0与总和之间的的随机数m 从种群中编号为1的染色体开始,将其适应值与后续染色 体的适应值相加,直到累加和等于或大于m
2018/10/7
选择(Selection)
染色体的适应值和所占的比例
轮盘赌选择
2018/10/7
选择(Selection)
染色体被选的概率
染色体编号
1
2
3
4
5
6
染色体
适应度 被选概率 适应度累计
01110
8
0.16 8
11000
15
0.3 23
00100
2
0.04 25
10010
5
0.1 30
适者生存(Survival of the Fittest)
GA主要采用的进化规则是“适者生存” 较好的解保留,较差的解淘汰
2018/10/7
生物进化与遗传算法对应关系
生物进化
环境
适者生存 个体 染色体 基因 群体 种群 交叉 变异
2018/10/7
遗传算法
适应函数
适应函数值最大的解被保留的概率最大 问题的一个解 解的编码 编码的元素 被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
遗传算法(GeneticAlgorithm)..
被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
➢选择(selection):
根据各个个体的适应值,按照一定的规则或方法,从 第t代群体P(t)中选择出一些优良的个体遗传到下一代 群体P(t+1)中。
等到达一定程度时,值0会从整个群体中那个位上消失,然而全局最 优解可能在染色体中那个位上为0。如果搜索范围缩小到实际包含全局 最优解的那部分搜索空间,在那个位上的值0就可能正好是到达全局最 优解所需要的。
2023/10/31
适应函数(Fitness Function)
➢ GA在搜索中不依靠外部信息,仅以适应函数为依据,利 用群体中每个染色体(个体)的适应值来进行搜索。以染 色体适应值的大小来确定该染色体被遗传到下一代群体 中的概率。染色体适应值越大,该染色体被遗传到下一 代的概率也越大;反之,染色体的适应值越小,该染色 体被遗传到下一代的概率也越小。因此适应函数的选取 至关重要,直接影响到GA的收敛速度以及能否找到最优 解。
2023/10/31
如何设计遗传算法
➢如何进行编码? ➢如何产生初始种群? ➢如何定义适应函数? ➢如何进行遗传操作(复制、交叉、变异)? ➢如何产生下一代种群? ➢如何定义停止准则?
2023/10/31
编码(Coding)
表现型空间
基因型空间 = {0,1}L
编码(Coding)
10010001
父代
111111111111
000000000000
交叉点位置
子代
2023/10/31
111100000000 000011111111
TSP问题的遗传算法求解
TSP问题的遗传算法求解一、问题描述假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短。
二、算法描述(一)算法简介遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
(摘自百度百科)。
(二)遗传算子遗传算法中有选择算子、交叉算子和变异算子。
选择算子用于在父代种群中选择进入下一代的个体。
交叉算子用于对种群中的个体两两进行交叉,有Partial-MappedCrossover、OrderCrossover、Position-basedCrossover等交叉算子。
变异算子用于对种群中的个体进行突变。
(三)算法步骤描述遗传算法的基本运算过程如下:1.初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P2.个体评价:计算种群P中各个个体的适应度3.选择运算:将选择算子作用于群体。
以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代4.交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉5.变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整6.经过选择、交叉、变异运算之后得到下一代群体P1。
进化算法中的种群选择策略
进化算法中的种群选择策略进化算法(Evolutionary Algorithm,EA)是一种群体智能算法,其模拟生物进化中的遗传和变异过程,通过不断地选择适应性更强的个体,逐步进化出更优的解。
EA常被应用于优化问题的求解,如函数优化、组合优化、机器学习等领域。
EA的核心是种群选择策略。
选择策略是指从种群中选择一部分个体,作为下一代群体的基础。
种群选择的质量直接影响到EA的求解效率和结果。
因此,选择策略的设计是优化EA的重要环节。
本文将介绍进化算法中的种群选择策略的基本原理、常见方法和优化思路。
1. 种群选择的基本原理在EA中,一个种群由多个个体组成。
每个个体都由一组参数表示,称为基因。
基因描述了问题的解空间,即可能的解集合。
个体的适应值(Fitness value)用来评价个体解的质量。
适应值高的个体被认为是更优的解。
在每一代进化中,EA通过选择、交叉和变异等操作产生新的个体,并更新种群。
选择操作是核心环节,其作用是选择适应值高的个体,保留进化过程中的优秀基因,遗传到下一代种群。
选择的过程中,适应值高的个体被选择的概率较大,低的个体被淘汰的概率较大。
因此,种群选择的核心问题是如何确定个体的选择概率。
2. 常见的种群选择方法2.1 轮盘赌选择轮盘赌选择(Roulette-wheel selection)是简单而常见的选择方法。
此方法根据个体的适应值与总体适应值之比,将总体适应值看做一条线段,将0到1之间的随机数落在这条线段上的位置转化为个体的选择概率。
具体来说,假设某个个体的适应值为Fi,种群总适应值为Fsum,则该个体被选择的概率为:P_i = F_i / F_{sum}该方法的局限性在于,当适应值差距较大时,较优的个体被选中的概率非常高,而其他个体几乎没有机会被选择。
此时,算法可能会出现早熟或局部最优解等问题。
2.2 锦标赛选择锦标赛选择(Tournament selection)是一种多人竞赛的选择方法。
人工智能术语中英文对照
boundary mutation 边界变异
building block hypothesis 基因块假设,积木块假设
cell 细胞
character genes 符号编码基因
chromosome 染色体
classifier system,CS 分类器系统
reproduction 复制
ribonucleic acid,RNA 核糖核酸
robustness 稳健性
roulette wheel selection 赌盘选择
scaling with sigma truncation O~截断尺度变换
schema 模式
schema defining length 模式定义长度
function optimization 函数最优化
GA deceptive problem 遗传算法欺骗问题
Gaussian mutation 高斯变异
gene 基因
generation gap 代沟
genetic algorithms,GAs 遗传算法
genetic operators 遗传算子
population size 群体大小
power law scaling 乘幂尺度变换
premature convergence 早熟现象,早期收敛
preselection 预选择
probabilistic algorithms 概率算法
probabilistic operator 概率算子
random walks 随机游走
rank-based model 排序选择模型
APS算法分析之五基因算法
APS算法分析之五基因算法基因算法 GA (Genetic Algorithm)是基于自然系统的进化过程,算法创立一初始化方案的人种,基于初始化方案, 算法再产生新的一个人种,通过许多代的连续过程,方案的质量被改善,算法结束于当达到一特别的中断规则 (如. 当加工时间已经达到),它实际上是随机搜寻算法。
它已经用于许多优化问题,如销售员旅行问题,货柜包装问题,排程问题,顺序问题,设施布局问题等。
和本地搜索策略不同的是,GA和 Tabu 搜索 (TS) 在搜索中比较一最较差的目标函数值,接受临时的方案来克服本地优化,找到全局优化。
然而,因为,GA 和TS 是探索法,可能不是最佳的方案,但是,大部分情况下,至少可以找到一个非常好可行的方案。
GA是随机搜寻算法,因为用较差目标函数值的方案用特别的可能性是可以接受的。
因此,用一个一样的初始方案开始,和一样的参数设置,也可能导致不同的方案。
而用确定性搜索算法如TS就会导致同样的方案。
基本概念:人种保持在内存为进一步改善的一列数字集,新列数字使用特别的基因运作产生。
选择是根据它们的适应性来选择出“父代”基本基因运作:∙复制∙交叉∙变异一人种的数字串选择可以用一特别的数字串的进化函数产生后一代。
进化函数反映染色体的“适应”。
比如:在车间流水线排序问题∙N 任务必须在 M 机器排程∙每一任务包含 m 工序∙每一工序需要不同的机器∙所有任务在同样的加工订单上处理特别假设 :1,所有任务在零时间可以得到2,工序的准备时间包含在加工时间里 3,对所有机器所有工序的顺序已定义 4,目标: 最小化时间跨度适应函数:对一人种的目标函数值的所有成员,如计算跨度。
从这个较低的跨度被决定和得到最高的适应值fmax.,从不同的人种结果中的每一成员的适应值到它的前辈的索引清单中的适应值。
这个作法就保证了为一较低跨度的排程选择的可能性是高的。
缩减规模d影响到选择的可能性。
必须的条件是: fmin > 0.适应值 (用 fmax=20, d=5 => fmin=5):*f(13452) = 20*f(12345) = 15*f(24531) = 10*f(23541) = 5*整个人种的适应值: 50 (在人种里的所有个体的适应合计)复制 / 选择∙大部分公用的复制/选择概率是给定的。
基因算法 文献综述
文献综述1遗传算法的起源当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显著特点。
遗传算法的蓬勃发展正体现了科学发展的这一特点和趋势。
1967年,Holland的学生在博士论文中首次提出“遗传算法”(Genetic Algorithms)一词。
此后,Holland指导学生完成了多篇有关遗传算法研究的论文。
1971年,R.B.Hollstien在他的博士论文中首次把遗传算法用于函数优化。
1975年Holland出版了他的著名专著《自然系统和人工系统的自适应》(Adaptation in Natural and Artificial Systems),这是第一本系统论述遗传算法的专著,因此有人把1975年作为遗传算法的诞生年。
Holland在该书中系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极其重要的模式理论(schema theory)。
该理论首次确认了结构重组遗传操作对于获得并行性的重要性。
同年,K.A.De Jong完成了他的博士论文《一类遗传自适应系统的行为分析》(An Analysis of the Behavior of a Class of Genetic Adaptive System)。
该论文所做的研究工作,可看作是遗传算法发展进程中的一个里程碑,这是因为,他把Holland的模式理论与他的计算实验结合起来。
尽管De Jong和Hollstien 一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。
可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论,迄今仍具有普遍的指导意义。
进入八十年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。
遗传算法
第1章遗传算法简介遗传算法(Genetic Algorithm)起始于20世纪60年代,主要由美国Michigan大学的John Holland与其同事和学生研究形成了一个较完整的理论和方法。
从1985年在美国卡耐基梅隆大学召开的第5届目标遗传算法会议(Intertional Conference on Genetic Algorithms:ICGA’85)到1997年5月IEEE的Transaction on Evolutionary Computation创刊,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究逐渐成熟。
1.1遗传算法的产生与发展(略)1.2遗传算法概要1.2.1生物进化理论和遗传算法的知识遗传:变异:亲代和子代之间,子代和子代的不同个体之间总有些差异,这种现象称为变异,变异是随即发生的,变异的选择和积累是生命多样性的根源生存斗争和适者生存:下面给出生物学的几个基本概念知识,这对于理解遗传算法很重要。
染色体:是生物细胞中含有的一种微小的丝状化合物,是遗传物质的主要载体,由多个遗传因子—基因组成。
遗传因子(gene):DNA长链结构中占有一定位置的基本遗传单位,也称基因。
生物的基因根据物种的不同而多少不一。
个体(individual):指染色体带有特征的实体种群(population):染色体带有特征的个体的集合进化(evolution);生物在其延续生命的过程中,逐渐适应其生存环境使得其品质不断得到改良,这种生命现象称为进化。
生物的进化是以种群的形式进行的。
适应度(fitness):度量某个物种对于生存环境的适应程度选择(selection):指以一定的概率从种群中选择若干个体的操作复制(reproduction)交叉(crossorer)变异(musation):复制时很小的概率产生的某些复制差错编码(coding):DNA中遗传信息在一个长链上按一定的模式排列,也即进行了遗传编码。
科技英语翻译整理
U2PPT“Site” refers to the land and other places on, under or through which the Permanent Works or Temporary Works designed by the Engineer are to be executed.“现场”指工程师设计的永久工程或临时工程所需的土地和其他场所,包括地面、地下、工程围之或途经的部分。
If we close our eyes, we cannot see anything because our eyelids prevent the rays from entering our eyes.因为眼睑能阻止光线进入眼,所以我们闭上眼睛就什么也看不见了。
Traditionally, rural highway location practice has been field oriented, but the modern method is “office” oriented.传统上,乡村公路定线采用现场定线法,而现在的方法则是采用纸上定线或计算机定线。
In the earlier days of railways, the rules laid down that no train should be allowed to start, even if all signals were clear, until the station master had authorized the guard to give the driver the “right way”.铁路发展的早期阶段曾规定,即使所有的信号都已开通,列车也不能发车,一直要等到站长已授权站务员给司机发出离站信号。
Curved rails offer resistance to the movement of the train.弯曲的钢管有碍火车运行。
工商管理专业英语术语汇总
工商管理专业英语术语汇总专业简介: 工商管理主要研究管理学、经济学和现代企业管理等方面的基本知识和技能,包括企业的经营战略制定和内部行为管理等,运用现代管理的方法和手段进行有效的企业管理和经营决策,制定企业的战略性目标,以保证企业的生存和发展。
开设课程: 管理学原理、微观经济学、宏观经济学、技术经济学、管理信息系统、统计学、会计学、中级会计实务、财务管理、运筹学、市场营销、经济法、现代公司制概论、经营管理、公司金融、人力资源管理、企业战略管理等。
一、管理学原理术语术语术语术语术语管理 (Management)经营管理 (BusinessManagement)管理过程 (ManagementProcess)管理功能 (ManagementFunctions)管理层次 (ManagementLevels)管理者 (Manager)领导者 (Leader)领导风格 (LeadershipStyle)领导理论 (LeadershipTheory)领导技能 (LeadershipSkills)决策 (Decision Making)决策类型 (DecisionTypes)决策模型 (DecisionModels)决策方法 (DecisionMethods)决策过程 (DecisionProcess)规划 (Planning)规划类型 (PlanningTypes)规划原则 (PlanningPrinciples)规划工具 (PlanningTools)规划控制 (PlanningControl)组织 (Organization)组织结构(OrganizationalStructure)组织设计(Organizational Design)组织文化(OrganizationalCulture)组织变革(OrganizationalChange)激励 (Motivation)激励理论 (MotivationTheory)激励方法 (MotivationMethods)激励因素 (MotivationFactors)激励效果 (MotivationEffects)控制 (Control)控制类型 (ControlTypes)控制原则 (ControlPrinciples)控制方法 (ControlMethods)控制过程 (ControlProcess)沟通 (Communication)沟通模型(Communication Model)沟通方式(Communication Mode)沟通技巧(Communication Skills)沟通障碍(CommunicationBarriers)协调 (Coordination)协调机制 (CoordinationMechanism)协调原则 (CoordinationPrinciples)协调方法 (CoordinationMethods)协调效果(CoordinationEffects)管理环境(Management Environment)管理伦理(ManagementEthics)管理创新(ManagementInnovation)管理战略(ManagementStrategy)管理评价(ManagementEvaluation)二、微观经济学术语术语术语术语术语微观经济学(Microeconomics)市场(Market)需求(Demand)供给(Supply)市场均衡(MarketEquilibrium)弹性(Elasticity)消费者行为(ConsumerBehavior)效用(Utility)边际效用(MarginalUtility)预算约束(BudgetConstraint)消费者选择(ConsumerChoice)无差异曲线(IndifferenceCurve)边际替代率(Marginal Rateof Substitution)消费者剩余(Consumer Surplus)需求曲线(DemandCurve)生产者行为(ProducerBehavior)生产函数(ProductionFunction)边际产品(MarginalProduct)规模报酬(Returns toScale)成本(Cost)短期成本(Short-runCost)长期成本(Long-runCost)边际成本(Marginal Cost)平均成本(AverageCost)供给曲线(Supply Curve)市场结构(Market Structure)完全竞争(PerfectCompetition)垄断(Monopoly)寡头(Oligopoly)垄断竞争(MonopolisticCompetition)价格歧视(Price Discrimination)博弈论(Game Theory)纳什均衡(NashEquilibrium)策略(Strategy)支配策略(DominantStrategy)外部性(Externality)公共品(Public Good)信息不对称(AsymmetricInformation)逆向选择(AdverseSelection)道德风险(Moral Hazard)市场失灵(MarketFailure)政府干预(GovernmentIntervention)税收(Taxation)补贴(Subsidy)福利经济学(WelfareEconomics)三、宏观经济学术语术语术语术语术语宏观经济学(Macroeconomics)国民收入(NationalIncome)国内生产总值(GrossDomestic Product)国民生产总值(GrossNational Product)消费者物价指数(Consumer PriceIndex)通货膨胀(Inflation)失业(Unemployment)菲利普斯曲线(Phillips Curve)经济增长(EconomicGrowth)经济周期(EconomicCycle)经济波动(Economic Fluctuation)经济危机(EconomicCrisis)经济衰退(EconomicRecession)经济萧条(EconomicDepression)经济恢复(EconomicRecovery)总需求(Total Demand)总供给(Total Supply)总需求总供给模型(Aggregate Demand andAggregate Supply Model)短期均衡(Short-runEquilibrium)长期均衡(Long-runEquilibrium)消费(Consumption)投资(Investment)政府支出(GovernmentSpending)净出口(Net Exports)国民收入恒等式(National IncomeIdentity)消费函数(Consumption Function)边际消费倾向(MarginalPropensity to Consume)投资函数(InvestmentFunction)边际效率投资(MarginalEfficiency ofInvestment)多重效应(MultiplierEffect)货币(Money)货币供应量(MoneySupply)货币需求量(Money Demand)货币市场平衡(MoneyMarket Equilibrium)利率(Rate ofInterest)货币政策(MonetaryPolicy)中央银行(Central Bank)开放市场操作(Open MarketOperations)存款准备金率(ReserveRequirement Ratio)贴现率(DiscountRate)财政政策(FiscalPolicy)政府预算(GovernmentBudget)财政赤字(Fiscal Deficit)公共债务(Public Debt)自动稳定器(AutomaticStabilizer)国际贸易(InternationalTrade)国际收支(Balance ofPayments)汇率(Exchange Rate)贸易政策(Trade Policy)汇率制度(ExchangeRate Regime)四、技术经济学术语术语术语术语术语技术经济学(Technical Economics)技术(Technology)技术创新(TechnologicalInnovation)技术进步(TechnologicalProgress)技术水平(TechnologicalLevel)技术选择(Technological Choice)技术评价(TechnologicalEvaluation)技术效益(TechnologicalBenefit)技术风险(TechnologicalRisk)技术转让(TechnologicalTransfer)技术方案(TechnicalScheme)技术参数(TechnicalParameter)技术指标(TechnicalIndicator)技术标准(TechnicalStandard)技术规范(TechnicalSpecification)工程项目(EngineeringProject)工程设计(EngineeringDesign)工程造价(EngineeringCost)工程投资(EngineeringInvestment)工程回收期(EngineeringPayback Period)工程效益分析(Engineering BenefitAnalysis)工程经济效益(Engineering EconomicBenefit)工程社会效益(Engineering SocialBenefit)工程环境效益(EngineeringEnvironmental Benefit)工程综合效益(EngineeringComprehensive Benefit)资金(Fund)资金需求(FundDemand)资金来源(FundSource)资金成本(Fund Cost)资金利润率(Fund ProfitRate)现金流量(Cash Flow)现金流量表(Cash FlowStatement)现金流量分析(CashFlow Analysis)现金流量折现(Discounted Cash Flow)现值净值(Net PresentValue)内部收益率(Internal Rate of Return)敏感性分析(SensitivityAnalysis)变动成本(MarginalCost)变动收益(MarginalRevenue)边际分析(MarginalAnalysis)五、管理信息系统术语术语术语术语术语管理信息系统(Management Information System)信息系统(InformationSystem)信息技术(InformationTechnology)信息资源管理(InformationResource Management)信息系统规划(Information SystemPlanning)信息需求分析(Information Requirement Analysis)信息系统设计(Information SystemDesign)信息系统开发(Information SystemDevelopment)信息系统实施(InformationSystem Implementation)信息系统维护(Information SystemMaintenance)数据(Data)数据库(Database)数据库管理系统(DatabaseManagement System)数据模型(Data Model)数据字典(DataDictionary)数据仓库(Data Warehouse)数据挖掘(DataMining)数据分析(DataAnalysis)数据可视化(DataVisualization)数据安全(Data Security)网络(Network)计算机网络(Computer Network)网络拓扑(NetworkTopology)网络协议(NetworkProtocol)网络架构(NetworkArchitecture)局域网(Local AreaNetwork)广域网(Wide AreaNetwork)因特网(Internet)互联网(Internet of Things)网络安全(NetworkSecurity)系统(System)计算机系统(Computer System)操作系统(OperationSystem)系统分析(SystemAnalysis)系统设计(SystemDesign)软件(Software)软件工程(SoftwareEngineering)软件生命周期(SoftwareLife Cycle)软件开发方法(SoftwareDevelopment Method)软件质量(SoftwareQuality)硬件(Hardware)计算机硬件(ComputerHardware)输入设备(Input Device)输出设备(Output Device)存储设备(StorageDevice)处理器(Processor)内存(Memory)总线(Bus)接口(Interface)外设(Peripheral)人工智能(Artificial Intelligence)机器学习(MachineLearning)深度学习(DeepLearning)神经网络(Neural Network)自然语言处理(NaturalLanguage Processing)专家系统(Expert System)智能代理(IntelligentAgent)模糊逻辑(Fuzzy Logic)遗传算法(GeneticAlgorithm)人工神经网络(ArtificialNeural Network)电子商务(E-commerce)电子商务模式(E-commerce Model)电子商务平台(E-commerce Platform)电子支付(ElectronicPayment)电子商务安全(E-commerce Security)电子政务(E-government)电子政务模式(E-government Model)电子政务平台(E-government Platform)电子政务服务(E-government Service)电子政务安全(E-government Security)知识管理(Knowledge Management)知识(Knowledge)知识类型(KnowledgeType)知识获取(KnowledgeAcquisition)知识表示(KnowledgeRepresentation)知识组织(Knowledge Organization)知识共享(KnowledgeSharing)知识创新(KnowledgeInnovation)知识库(Knowledge Base)知识系统(KnowledgeSystem)六、统计学术语术语术语术语术语统计学(Statistics)统计方法(StatisticalMethod)统计推断(StatisticalInference)统计分析(StatisticalAnalysis)统计软件(StatisticalSoftware)数据(Data)数据类型(Data Type)数据来源(Data Source)数据收集(DataCollection)数据清洗(Data Cleaning)数据描述(Data Description)数据展示(DataPresentation)数据摘要(DataSummary)数据分布(DataDistribution)数据变换(DataTransformation)变量(Variable)变量类型(Variable Type)自变量(IndependentVariable)因变量(DependentVariable)控制变量(Control Variable)单变量分析(UnivariateAnalysis)双变量分析(BivariateAnalysis)多变量分析(MultivariateAnalysis)相关分析(CorrelationAnalysis)回归分析(RegressionAnalysis)随机变量(RandomVariable)概率(Probability)概率分布(ProbabilityDistribution)期望值(ExpectedValue)方差(Variance)标准差(StandardDeviation)均值(Mean)中位数(Median)众数(Mode)四分位数(Quartile)极差(Range)变异系数(Coefficient ofVariation)偏度(Skewness)峰度(Kurtosis)正态分布(NormalDistribution)抽样(Sampling)抽样方法(SamplingMethod)抽样误差(SamplingError)抽样分布(SamplingDistribution)中心极限定理(Central LimitTheorem)点估计(Point Estimation)区间估计(IntervalEstimation)置信区间(ConfidenceInterval)置信水平(ConfidenceLevel)标准误差(Standard Error)假设检验(HypothesisTesting)原假设(Null Hypothesis)备择假设(AlternativeHypothesis)显著性水平(Significance Level)拒绝域(Rejection Region)检验统计量(Test Statistic)P值(P-value)类型一错误(Type IError)类型二错误(Type IIError)功效(Power)参数检验(ParametricTest)非参数检验(Nonparametric Test)单样本检验(One-sample Test)双样本检验(Two-sample Test)配对样本检验(Paired-sample Test)Z检验(Z-test)T检验(T-test)F检验(F-test)卡方检验(Chi-squareTest)方差分析(Analysis ofVariance)七、会计学术语术语术语术语术语会计学(Accounting)会计对象(AccountingObject)会计要素(AccountingElement)会计科目(Accounting Subject)会计方程(AccountingEquation)会计核算(Accounting Calculation)会计原则(AccountingPrinciple)会计假设(AccountingAssumption)会计政策(Accounting Policy)会计准则(AccountingStandard)会计期间(AccountingPeriod)会计年度(AccountingYear)会计报告期(AccountingReporting Period)会计循环(Accounting Cycle)会计业务(AccountingBusiness)记账(Bookkeeping)记账方法(BookkeepingMethod)记账凭证(BookkeepingVoucher)记账账簿(Bookkeeping Book)记账账户(BookkeepingAccount)记账分录(Bookkeeping Entry)借贷记账法(Double-entryBookkeeping Method)借方(Debit Side)贷方(Credit Side)借贷平衡(Balance of Debitand Credit)会计报表(Accounting Statement)资产负债表(BalanceSheet)利润表(IncomeStatement)现金流量表(CashFlow Statement)所有者权益变动表(Statementof Changes in Owner'sEquity)会计科学(AccountingScience)会计理论(AccountingTheory)会计方法(AccountingMethod)会计技术(AccountingTechnique)会计创新(AccountingInnovation)财务会计(Financial Accounting)管理会计(ManagementAccounting)成本会计(CostAccounting)审计会计(AuditingAccounting)税务会计(Tax Accounting)资产(Asset)负债(Liability)所有者权益(Owner'sEquity)收入(Income)费用(Expense)收益(Revenue)损失(Loss)利润(Profit)毛利(Gross Profit)净利(Net Profit)存货(Inventory)应收账款(AccountsReceivable)预付账款(PrepaidExpenses)固定资产(FixedAssets)无形资产(Intangible Assets)应付账款(AccountsPayable)预收账款(UnearnedRevenue)长期负债(Long-termLiabilities)资本(Capital)留存收益(Retained Earnings)折旧(Depreciation)摊销(Amortization)减值(Impairment)计提(Accrual)结转(Carryover)对冲(Hedging)杠杆(Leverage)财务比率(FinancialRatio)资本结构(CapitalStructure)资本预算(Capital Budgeting)八、中级会计实务术语术语术语术语术语会计 (Accounting)资产 (Asset)负债 (Liability)所有者权益 (Owner'sEquity)收入 (Revenue)费用 (Expense)损益 (Profit or Loss)现金流量 (Cash Flow)资产负债表 (BalanceSheet)利润表 (IncomeStatement)现金流量表 (Cash FlowStatement)所有者权益变动表(Statement of Changesin Owner's Equity)附注 (Notes)记账凭证 (Voucher)记账方法 (AccountingMethod)原始凭证 (Original Document)记账分录 (Journal Entry)总分类账 (GeneralLedger)明细分类账 (SubsidiaryLedger)总账科目 (GeneralAccount)明细科目 (SubsidiaryAccount)借方 (Debit)贷方 (Credit)借贷平衡原则 (Double-entry Principle)记账方向 (AccountingDirection)试算平衡表 (Trial Balance)调整分录 (AdjustingEntry)调整后试算平衡表(Adjusted TrialBalance)结转分录 (ClosingEntry)结转后试算平衡表(Post-closing TrialBalance)存货制度 (InventorySystem)存货核算方法 (InventoryAccounting Method)先进先出法 (FIFOMethod)后进先出法 (LIFOMethod)加权平均法 (WeightedAverage Method)科学成本法(Specific Identification Method)存货跌价准备(Allowance forInventory Decline)存货盘点(InventoryCounting)存货盈亏(InventoryProfit or Loss)固定资产(FixedAsset)折旧(Depreciation)折旧方法(DepreciationMethod)直线法(Straight-lineMethod)双倍余额递减法(Double-decliningBalance Method)年数总和法(Sum-of-the-years'-digitsMethod)残值(Residual Value)折旧年限(Useful Life)净残值率(SalvageRate)固定资产清理(Disposal of FixedAsset)无形资产(IntangibleAsset)商誉(Goodwill)知识产权(IntellectualProperty)专利权(Patent)商标权(Trademark)著作权(Copyright)长期股权投资(Long-term Equity Investment)成本法(Cost Method)权益法(EquityMethod)投资收益(InvestmentIncome)投资性房地产(InvestmentProperty)资产减值(Asset Impairment)减值损失(ImpairmentLoss)可回收金额(RecoverableAmount)可变现净值(NetRealizable Value)使用价值(Value inUse)金融资产(FinancialAsset)金融负债(FinancialLiability)公允价值(FairValue)利息收入(InterestIncome)利息支出(InterestExpense)汇兑收益(ExchangeGain)汇兑损失(ExchangeLoss)应收账款(AccountsReceivable)坏账损失(Bad DebtLoss)坏账准备(Allowancefor Bad Debt)应付账款(Accounts Payable)预收账款(UnearnedRevenue)预付账款(PrepaidExpense)应计收入(AccruedRevenue)应计费用(AccruedExpense)职工薪酬(Employee Compensation)工资与奖金(Wages andBonuses)社会保险费用(SocialInsurance Expense)住房公积金费用(Housing ProvidentFund Expense)职工福利费用(Employee WelfareExpense)借款费用 (BorrowingCost)资本化 (Capitalization)资本化利率(Capitalization Rate)资本化期间(Capitalization Period)资本化暂停(CapitalizationSuspension)现金等价物 (Cash Equivalent)现金流量表附表(Supplemental Scheduleof Cash Flow Statement)经营活动现金流量(Cash Flow fromOperating Activities)投资活动现金流量(Cash Flow fromInvesting Activities)筹资活动现金流量(Cash Flow fromFinancing Activities)直接法 (Direct Method)间接法 (Indirect Method)现金流量净额 (NetCash Flow)现金流量增减表(Statement of Changesin Cash Flow)现金流量比率 (CashFlow Ratio)利润表 (Income Statement)收入确认原则 (RevenueRecognition Principle)营业收入 (OperatingRevenue)营业成本 (OperatingCost)营业税金及附加(Business Tax andSurcharges)销售费用 (Selling Expense)管理费用 (AdministrativeExpense)财务费用 (FinancialExpense)营业利润 (OperatingProfit)营业外收入 (Non-operating Income)营业外支出 (Non-operating Expense)利润总额 (Total Profit)所得税费用 (IncomeTax Expense)净利润 (Net Profit)每股收益 (EarningsPer Share)所有者权益变动表(Statement of Changes in Owner's Equity)股本 (Capital Stock)资本公积 (CapitalReserve)盈余公积 (SurplusReserve)未分配利润 (RetainedEarnings)九、财务管理术语术语术语术语术语财务管理 (Financial Management)财务目标 (FinancialObjective)财务决策 (FinancialDecision)财务计划 (FinancialPlan)财务控制 (FinancialControl)资金 (Fund)资金需求 (FundDemand)资金供给 (FundSupply)资金流动 (Fund Flow)资金结构 (FundStructure)资本 (Capital)资本成本 (CapitalCost)资本结构 (CapitalStructure)资本预算 (CapitalBudget)资本收益率 (CapitalReturn Rate)投资 (Investment)投资项目 (InvestmentProject)投资评价 (InvestmentEvaluation)投资回收期 (PaybackPeriod)净现值 (Net PresentValue)内部收益率 (Internal Rate of Return)敏感性分析 (SensitivityAnalysis)风险分析 (RiskAnalysis)投资组合理论 (PortfolioTheory)资本资产定价模型(Capital Asset PricingModel)现金管理 (Cash Management)现金预测 (CashForecasting)现金流量预算表 (CashBudget)现金流量周期 (CashCycle)现金余额 (Cash Balance)应收账款管理 (AccountsReceivableManagement)应收账款周转率(Accounts ReceivableTurnover Ratio)坏账率 (Bad DebtRatio)应收账款账龄分析法(Aging Method ofAccounts Receivable)应收账款折现法(Discount Method ofAccounts Receivable)存货管理(Inventory Management)存货周转率(InventoryTurnover Ratio)经济订货量(Economic OrderQuantity)安全存量(SafetyStock)订货点(Reorder Point)短期融资(Short-term Financing)银行贷款(BankLoan)商业票据(CommercialPaper)应付账款融资(Accounts PayableFinancing)保兑仓融资(WarehouseReceipt Financing)长期融资(Long-term Financing)债券(Bond)债券价格(BondPrice)债券收益率(BondYield)债券评级(BondRating)股票(Stock)股票价格(StockPrice)股票收益率(StockReturn Rate)股息政策(DividendPolicy)股权融资(EquityFinancing)杠杆效应(LeverageEffect)操作杠杆系数(Operating LeverageCoefficient)财务杠杆系数(Financial LeverageCoefficient)综合杠杆系数(Combined LeverageCoefficient)杠杆调整原则(LeverageAdjustment Principle)十、运筹学术语术语术语术语术语运筹学 (Operations Research)决策 (Decision)决策变量 (DecisionVariable)目标函数 (ObjectiveFunction)约束条件 (Constraint)线性规划 (Linear Programming)图形法 (GraphicalMethod)单纯形法 (SimplexMethod)对偶理论 (DualityTheory)敏感性分析 (SensitivityAnalysis)整数规划 (Integer Programming)分支定界法 (Branch andBound Method)割平面法 (CuttingPlane Method)隐枚举法 (ImplicitEnumeration Method)0-1规划 (0-1Programming)非线性规划 (Nonlinear Programming)拉格朗日乘子法(Lagrange MultiplierMethod)KKT条件 (KKTCondition)梯度法 (GradientMethod)牛顿法 (Newton Method)动态规划 (Dynamic Programming)阶段 (Stage)状态 (State)决策 (Decision)最优值函数 (OptimalValue Function)贝尔曼方程 (BellmanEquation)网络优化 (NetworkOptimization)关键路径法 (CriticalPath Method)最短路问题 (ShortestPath Problem)最小生成树问题(Minimum Spanning TreeProblem)最大流问题 (Maximum Flow Problem)最小费用流问题(Minimum Cost FlowProblem)匹配问题 (MatchingProblem)背包问题 (KnapsackProblem)指派问题 (AssignmentProblem)非线性整数规划(Nonlinear Integer Programming)分数规划(FractionalProgramming)凸规划(ConvexProgramming)目标规划(GoalProgramming)多目标规划(Multi-objective Programming)随机规划(Stochastic Programming)鲁棒优化(RobustOptimization)参数规划(ParametricProgramming)可行方向法(FeasibleDirection Method)序列二次规划(Sequential QuadraticProgramming)队列论(QueueingTheory)到达过程(ArrivalProcess)服务过程(ServiceProcess)排队系统(QueueingSystem)排队模型(QueueingModel)M/M/1模型(M/M/1Model)M/M/c模型(M/M/cModel)M/G/1模型(M/G/1Model)G/M/1模型(G/M/1Model)排队长度(QueueLength)平均排队时间(Average Queueing Time)平均服务时间(AverageService Time)到达率(ArrivalRate)服务率(ServiceRate)利用率(UtilizationRate)十一、市场营销术语术语术语术语术语市场营销 (Marketing)市场营销管理(MarketingManagement)市场营销环境(MarketingEnvironment)市场营销计划(Marketing Plan)市场营销组合 (MarketingMix)市场 (Market)市场需求 (MarketDemand)市场细分 (MarketSegmentation)市场定位 (MarketPositioning)市场目标 (MarketTargeting)消费者行为 (ConsumerBehavior)消费者需求 (ConsumerNeed)消费者动机 (ConsumerMotivation)消费者态度(Consumer Attitude)消费者满意度 (ConsumerSatisfaction)产品 (Product)产品生命周期 (ProductLife Cycle)产品创新 (ProductInnovation)产品差异化 (ProductDifferentiation)产品定价 (Product Pricing)价格 (Price)价格策略 (PricingStrategy)价格弹性 (PriceElasticity)价格歧视 (PriceDiscrimination)价格竞争 (PriceCompetition)促销 (Promotion)促销策略 (PromotionStrategy)促销组合 (PromotionMix)广告 (Advertising)公关 (Public Relations)销售促进(Sales Promotion)个人销售(PersonalSelling)直接营销(DirectMarketing)网络营销(InternetMarketing)社会媒体营销(SocialMedia Marketing)分销(Distribution)分销渠道(DistributionChannel)分销策略(DistributionStrategy)物流(Logistics)运输(Transportation)库存管理(Inventory Management)订货量(OrderQuantity)经济批量(EconomicBatch Quantity)订货点(ReorderPoint)安全库存(Safety Stock)市场调研(Market Research)调研目的(ResearchObjective)调研方法(ResearchMethod)调研设计(ResearchDesign)调研样本(ResearchSample)数据收集(Data Collection)数据分析(DataAnalysis)数据呈现(DataPresentation)调研报告(ResearchReport)调研误差(ResearchError)十二、经济法术语术语术语术语术语经济法 (Economic Law)经济活动 (EconomicActivity)经济主体 (EconomicSubject)经济权利 (EconomicRight)经济责任 (EconomicResponsibility)经济法律关系 (Economic Legal Relationship)经济合同 (EconomicContract)经济纠纷 (EconomicDispute)经济诉讼 (EconomicLitigation)经济仲裁 (EconomicArbitration)民商事法律体系 (Civiland Commercial LegalSystem)民法典 (Civil Code)商法典 (CommercialCode)合同法 (Contract Law)物权法 (Property Law)侵权责任法 (Tort LiabilityLaw)民事诉讼法 (CivilProcedure Law)商事诉讼法(CommercialProcedure Law)仲裁法 (Arbitration Law)消费者权益保护法(Consumer Rights andInterests Protection Law)公司法(CompanyLaw)合伙企业法(PartnershipEnterprise Law)独资企业法(SoleProprietorshipEnterprise Law)外商投资企业法(Foreign InvestmentEnterprise Law)公司治理(CorporateGovernance)股东(Shareholder)董事会(Board ofDirectors)监事会(Board ofSupervisors)高级管理人员(SeniorManagement)股东大会(Shareholders'Meeting)股份(Share)股权(StockRight)股票(Stock)股本(Capital Stock)股利(Dividend)债券(Bond)债权(Debt Right)债务(Debt)债务人(Debtor)债权人(Creditor)破产(Bankruptcy)破产程序(BankruptcyProcedure)破产申请(BankruptcyApplication)破产管理人(BankruptcyAdministrator)破产债权人会议(Bankruptcy Creditors'Meeting)十三、现代公司制概论术语术语术语术语术语现代公司制 (Modern Corporation System)公司 (Company)公司法人 (CorporateLegal Person)公司治理 (CorporateGovernance)公司社会责任 (CorporateSocial Responsibility)股份有限公司 (Joint-stock Company)有限责任公司 (LimitedLiability Company)股东 (Shareholder)股份 (Share)股权 (Stock Right)董事会 (Board of Directors)监事会 (Board ofSupervisors)高级管理人员 (SeniorManagement)股东大会(Shareholders'Meeting)公司章程 (Articles ofAssociation)注册资本 (RegisteredCapital)实收资本 (Paid-inCapital)资本公积 (CapitalReserve)盈余公积 (SurplusReserve)未分配利润 (RetainedEarnings)股利 (Dividend)股息率 (DividendRate)现金分红 (CashDividend)股票分红 (StockDividend)分红政策 (Dividend Policy)上市公司(Listed Company)发行股票(IssueStock)募集资金(RaiseFunds)首次公开募股(InitialPublic Offering)再融资(Refinancing)股票市场(Stock Market)证券交易所(StockExchange)证券监管机构(SecuritiesRegulatory Authority)证券法(SecuritiesLaw)证券合同(SecuritiesContract)股票价格(StockPrice)股票指数(StockIndex)市盈率(Price-earningsRatio)市净率(Price-bookRatio)市场效率(MarketEfficiency)投资者保护(Investor Protection)信息披露(InformationDisclosure)内幕交易(InsiderTrading)操纵市场(MarketManipulation)证券欺诈(SecuritiesFraud)十四、经营管理术语术语术语术语术语经营管理 (Business Management)经营目标 (BusinessObjective)经营策略 (BusinessStrategy)经营模式 (BusinessModel)经营效率 (BusinessEfficiency)经营效果 (Business Effectiveness)经营创新 (BusinessInnovation)经营风险 (BusinessRisk)经营伦理 (BusinessEthics)经营文化 (BusinessCulture)组织 (Organization)组织结构(OrganizationalStructure)组织设计(OrganizationalDesign)组织变革 (OrganizationalChange)组织发展 (OrganizationalDevelopment)协调 (Coordination)协调机制 (CoordinationMechanism)协调原则(Coordination协调方法 (CoordinationMethod)协调技巧 (CoordinationSkill)Principle)控制 (Control)控制系统 (ControlSystem)控制过程 (ControlProcess)控制标准 (ControlStandard)控制反馈 (ControlFeedback)激励(Motivation)激励理论(MotivationTheory)激励因素(MotivationFactor)激励方法(MotivationMethod)激励机制(MotivationMechanism)资源(Resource)物质资源(MaterialResource)人力资源(HumanResource)财务资源(FinancialResource)信息资源(InformationResource)活动(Activity)生产活动(ProductionActivity)销售活动(SalesActivity)采购活动(PurchasingActivity)研发活动(Research andDevelopment Activity)目标(Objective)目标管理(ObjectiveManagement)目标设定(ObjectiveSetting)目标分解(ObjectiveDecomposition)目标评价(ObjectiveEvaluation)十五、公司金融术语术语术语术语术语公司金融 (CorporateFinance)投资决策 (InvestmentDecision)融资决策 (FinancingDecision)分红决策 (DividendDecision)资本结构 (CapitalStructure)资本成本 (CapitalCost)资本预算 (Capital Budget)现金流量 (Cash Flow)净现值 (Net PresentValue)内部收益率 (InternalRate of Return)敏感性分析(Sensitivity Analysis)风险分析 (Risk Analysis)投资组合理论 (PortfolioTheory)资本资产定价模型(Capital Asset PricingModel)证券市场线 (SecurityMarket Line)贝塔系数(Beta Coefficient)无风险利率(Risk-freeRate)市场风险溢价(MarketRisk Premium)资本市场线(CapitalMarket Line)有效边界(EfficientFrontier)杠杆效应(LeverageEffect)操作杠杆系数(OperatingLeverage Coefficient)财务杠杆系数(Financial LeverageCoefficient)综合杠杆系数(Combined LeverageCoefficient)杠杆调整原则(Leverage AdjustmentPrinciple)股权融资(Equity Financing)债务融资(DebtFinancing)权益融资(Quasi-equity Financing)混合融资(HybridFinancing)转换债券(ConvertibleBond)可赎回债券(Redeemable Bond)可交换债券(Exchangeable Bond)优先股(PreferredStock)可转换优先股(Convertible PreferredStock)权证(Warrant)十六、人力资源管理术语术语术语术语术语人力资源管理 (Human Resource Management)人力资源规划 (HumanResource Planning)人力资源分析 (HumanResource Analysis)人力资源需求 (HumanResource Demand)人力资源供给 (HumanResource Supply)招聘 (Recruitment)招聘渠道 (RecruitmentChannel)招聘广告 (RecruitmentAdvertisement)招聘成本 (RecruitmentCost)招聘效果 (RecruitmentEffectiveness)选拔 (Selection)选拔方法 (SelectionMethod)选拔标准 (SelectionCriterion)选拔工具 (SelectionTool)选拔过程 (SelectionProcess)培训 (Training)培训需求分析 (TrainingNeeds Analysis)培训目标 (TrainingObjective)培训内容 (TrainingContent)培训方法 (TrainingMethod)培训评估(Training Evaluation)培训效果(TrainingEffectiveness)培训反馈(TrainingFeedback)培训转移(TrainingTransfer)培训成本(TrainingCost)术语术语术语术语术语评估(Performance Appraisal)评估目的(PerformanceAppraisal Purpose)评估标准(PerformanceAppraisal Criterion)评估方法(PerformanceAppraisal Method)评估结果(PerformanceAppraisal Result)激励(Motivation)激励理论(MotivationTheory)激励因素(MotivationFactor)激励方法(MotivationMethod)激励机制(MotivationMechanism)薪酬(Compensation)薪酬结构(CompensationStructure)薪酬水平(CompensationLevel)薪酬调整(CompensationAdjustment)薪酬管理(CompensationManagement)十七、企业战略管理术语术语术语术语术语企业战略管理(Corporate Strategy Management)战略 (Strategy)战略管理过程(Strategy ManagementProcess)战略分析 (StrategyAnalysis)战略制定 (StrategyFormulation)战略实施 (Strategy Implementation)战略评估 (StrategyEvaluation)战略控制 (StrategyControl)战略调整 (StrategyAdjustment)战略创新 (StrategyInnovation)环境分析(Environmental Analysis)宏观环境分析 (Macro-environmentalAnalysis)行业环境分析 (IndustryEnvironmentalAnalysis)微观环境分析 (Micro-environmental Analysis)PEST分析法(PESTAnalysis Method)波特五力模型(Porter's Five Forces Model)SWOT分析法(SWOT AnalysisMethod)VRIO分析法(VRIOAnalysis Method)价值链分析法(ValueChain Analysis Method)核心竞争力分析法(Core CompetenceAnalysis Method)目标管理(Objective Management)SMART原则(SMART Principle)平衡计分卡(BalancedScorecard)关键绩效指标(KeyPerformance Indicator)目标层次结构(ObjectiveHierarchy)战略选择(StrategyChoice)战略类型(StrategyType)成本领先战略(CostLeadership Strategy)差异化战略(DifferentiationStrategy)聚焦战略(FocusStrategy)集团化战略(Diversification Strategy)垂直一体化战略(Vertical IntegrationStrategy)水平一体化战略(HorizontalIntegration Strategy)国际化战略(InternationalizationStrategy)蓝海战略(Blue OceanStrategy)。
详解Python结合Genetic
详解Python结合Genetic Algorithm算法破解⽹易易盾拼图验证⾸先看⼀下⽬标的验证形态是什么样⼦的是⼀种通过验证推理的验证⽅式,⽤来防⼈机破解的确是很有效果,但是,But,这⾥⾯已经会有⼀些破绽,⽐如:(以上是原图和⼆值化之后的结果)(这是正常图⽚)像划红线的这些地⽅,可以看到有明显的突变,并且⼆值化之后边缘趋于直线,但是正常图像是不会有这种这么明显的突变现象。
初识潘多拉后来,我去翻阅了机器视觉的相关⽂章和论⽂,发现了⼀个⽜逼的算法,这个算法就是——Genetic Algorithm遗传算法,最贴⼼的的是,作者利⽤这个算法实现了⼀个功能,“拼图⾃动还原”(不是像什么A*算法寻找最优路线解那种哈,就是单纯的拼图)项⽬仓库地址⾸先来介绍下如何使⽤跑起来这个项⽬吧,坑是真的很多,接下来感受⼀下pyCham的⼀路报错!这⾥我⽤的是python3.10的版本,⽬前是最新的版本⽂档中这⼀步执⾏是会报错的pip3 install -r requirements.txt解决⽅案:单独对requirements.txt⽂件下的每个包单独下载,然后根据当前下载的包的最新版本替换旧版本号。
我⽬前每个包最新使⽤的是这些版本号全部替换完了之后,再执⾏⼀次下⾯的代码,他就不会报错了pip3 install -r requirements.txt然后下⼀步,执⾏下⾯代码pip3 install -e .进⼊潘多拉然后我们按照官⽹的提⽰来执⾏,先创建⼀个拼图出来,命令是这样的(这⾥的⽂件名我改了)create_puzzle images/starry.jpg --size=60 --destination=puzzle.jpg会发现,好像不⾏,因为我们没有在正确的位置上执⾏,他的脚本位置是在bin⽂件夹下⾯,你可能会遇到如下问题成功之后的话,会在bin⽬录下⽣成⼀个拼图图⽚以上是介绍如何⽣成图⽚,接下来是重头戏,如何还原图⽚gaps --image=puzzle.jpg --generations=20 --population=600对于参数的解释官⽹是这样的:Option :--image Path to puzzle(需要被还原的图⽚)--size Puzzle piece size in pixels (拼图的⼤⼩)--generations Number of generations for genetic algorithm (遗传算法的代数)--population Number of individuals in population--verbose Show best solution after each generation (显⽰每⼀代后的最佳解决⽅案)--save Save puzzle solution as image (拼图结果另存为图像)先按照官⽅的⾛⼀遍很好,很舒服,继续报错,⽽且语法拼写上我们也没有拼写错,没关系!我已经帮你找到解决⽅案了。
人工智能的25种算法和应用场景
人工智能的25种算法和应用场景1.决策树算法(Decision Tree Algorithm):用于分类和预测问题,如预测客户购买偏好。
2.随机森林算法(Random Forest Algorithm):用于分类和预测问题,如预测信用卡欺诈。
3.支持向量机算法(Support Vector Machine Algorithm):用于分类和回归问题,如电影评分预测。
4.朴素贝叶斯算法(Naive Bayes Algorithm):用于分类问题,如邮件分类。
5.逻辑回归算法(Logistic Regression Algorithm):用于分类和回归问题,如贷款违约预测。
6.线性回归算法(Linear Regression Algorithm):用于回归问题,如房价预测。
7.分层聚类算法(Hierarchical Clustering Algorithm):用于聚类问题,如客户分群。
8.K均值算法(K-Means Algorithm):用于聚类问题,如产品分类。
9.深度学习算法(Deep Learning Algorithm):用于分类、回归和生成问题,如图像识别、语音识别。
10.协同过滤算法(Collaborative Filtering Algorithm):用于推荐系统,如商品推荐。
11.神经网络算法(Neural Network Algorithm):用于分类、回归和生成问题,如图像处理、语音合成。
12.遗传算法(Genetic Algorithm):用于优化问题,如工艺优化。
13.粒子群算法(Particle Swarm Optimization Algorithm):用于优化问题,如飞机航线优化。
14.模拟退火算法(Simulated Annealing Algorithm):用于最优化问题,如物流配送规划。
15.蚁群算法(Ant Colony Algorithm):用于优化问题,如城市路径规划。
生态学中的时空互代法
生态学中的时空互代法引言生态学是研究生物与环境相互作用的科学,其中一个重要的研究方法就是时空互代法。
时空互代法是一种将时间和空间综合考虑的分析方法,通过对不同时间点和不同空间尺度上生态系统的观测和实验,来揭示生物群落和生态过程的动态变化规律。
本文将详细介绍时空互代法的概念、原理、应用以及未来发展方向。
一、概念时空互代法(spatiotemporal substitution)是指在生态学研究中,通过对时间和空间进行综合观测和实验,来揭示生物群落和生态过程的动态变化规律。
它强调了时间和空间在生态系统中的相互作用关系,并且能够更好地理解生物多样性、种群动力学、物种分布等问题。
二、原理时空互代法基于以下原理:1.时间替代:通过观测或实验不同时间点上的生态系统,可以了解到随着时间推移,物种组成、丰富度、多样性等指标的变化情况。
这可以揭示生物群落的演替过程,以及环境变化对生态系统的影响。
2.空间替代:通过观测或实验不同空间尺度上的生态系统,可以了解到不同空间位置上物种组成、丰富度、多样性等指标的差异。
这可以揭示不同环境条件下生物群落的特点和变化规律。
3.时空互作:时间和空间在生态系统中相互交织、相互作用,通过观测或实验同时考虑时间和空间因素,可以更全面地理解生态系统的动态变化过程。
三、应用时空互代法在生态学研究中有广泛的应用。
以下是一些典型的应用案例:1.生物多样性研究:通过对不同时间点和不同空间尺度上的生物群落进行观测和实验,可以了解到物种组成、丰富度、多样性等指标的变化情况。
这有助于揭示物种多样性形成机制、保护策略等问题。
2.种群动力学研究:通过对不同时间点和不同空间尺度上种群数量、密度、分布等参数进行观测和实验,可以了解到种群的演替过程、扩散能力、适应性等特点。
这有助于揭示物种的生命周期、种群动态稳定性等问题。
3.生态系统功能研究:通过对不同时间点和不同空间尺度上生态系统功能(如养分循环、能量流动等)的观测和实验,可以了解到生态系统的稳定性、恢复能力等特点。
APS算法分析之五基因算法
APS算法分析之五基因算法基因算法 GA (Genetic Algorithm)是基于自然系统的进化过程,算法创立一初始化方案的人种,基于初始化方案, 算法再产生新的一个人种,通过许多代的连续过程,方案的质量被改善,算法结束于当达到一特别的中断规则 (如. 当加工时间已经达到),它实际上是随机搜寻算法。
它已经用于许多优化问题,如销售员旅行问题,货柜包装问题,排程问题,顺序问题,设施布局问题等。
和本地搜索策略不同的是,GA和 Tabu 搜索 (TS) 在搜索中比较一最较差的目标函数值,接受临时的方案来克服本地优化,找到全局优化。
然而,因为,GA 和TS 是探索法,可能不是最佳的方案,但是,大部分情况下,至少可以找到一个非常好可行的方案。
GA是随机搜寻算法,因为用较差目标函数值的方案用特别的可能性是可以接受的。
因此,用一个一样的初始方案开始,和一样的参数设置,也可能导致不同的方案。
而用确定性搜索算法如TS就会导致同样的方案。
基本概念:人种保持在内存为进一步改善的一列数字集,新列数字使用特别的基因运作产生。
选择是根据它们的适应性来选择出“父代”基本基因运作:∙复制∙交叉∙变异一人种的数字串选择可以用一特别的数字串的进化函数产生后一代。
进化函数反映染色体的“适应”。
比如:在车间流水线排序问题∙N 任务必须在 M 机器排程∙每一任务包含 m 工序∙每一工序需要不同的机器∙所有任务在同样的加工订单上处理特别假设 :1,所有任务在零时间可以得到2,工序的准备时间包含在加工时间里 3,对所有机器所有工序的顺序已定义 4,目标: 最小化时间跨度适应函数:对一人种的目标函数值的所有成员,如计算跨度。
从这个较低的跨度被决定和得到最高的适应值fmax.,从不同的人种结果中的每一成员的适应值到它的前辈的索引清单中的适应值。
这个作法就保证了为一较低跨度的排程选择的可能性是高的。
缩减规模d影响到选择的可能性。
必须的条件是: fmin > 0.适应值 (用 fmax=20, d=5 => fmin=5):*f(13452) = 20*f(12345) = 15*f(24531) = 10*f(23541) = 5*整个人种的适应值: 50 (在人种里的所有个体的适应合计)复制 / 选择∙大部分公用的复制/选择概率是给定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Independent Sampling Genetic AlgorithmsChien-Feng HuangCenter for the Study of Complex Systems,4477Randall Lab.University of MichiganAnn Arbor,MI48109cfhuang@(734)763-3323AbstractPremature convergence is the loss of diversityin the population that has long been recog-nized as one crucial factor that hinders theefficacy of crossover.In this paper,a strategyfor independent sampling of building blocksis proposed in order to nicely implement im-plicit parallelism.Based on this methodol-ogy,we developed a modified version of GA:independent sampling genetic algorithms(IS-GAs).Simply stated,each individual inde-pendently samples candidate schemata andcreates population diversity in thefirst phase;subsequently we allow individuals to activelyselect their mates for reproduction.We willpresent experimental results on two bench-mark problems,“Royal Road”functions of64-bits and bounded deception of30-bits,toshow how the performance of GAs can be im-proved through the proposed approach.1INTRODUCTIONGenetic algorithms(GAs)have been successfully ap-plied to several difficult search and optimization prob-lems in science and engineering.One major source of the power of GAs is derived from so-called implicit parallelism(Holland,1975),i.e.,the simultaneous al-location of search effort to many regions of the search space.A perfect implementation of implicit paral-lelism implies that a large number of different short, low-order schemata of highfitness are sampled in par-allel,thus conferring enough diversity of fundamen-tal building blocks for crossover operators to combine them to form more highly-fit,complicated building blocks.However,traditional GAs suffer from prema-ture convergence(Goldberg,1989)where considerable fixation occurs at certain schemata of suboptimal re-gions before attaining more advancement.Among ex-amples of premature convergence,hitchhiking(Das,& Whitley,1991;Mitchell,1996)has been identified as a major hindrance,which limits implicit parallelism by reducing the sampling frequency of various ben-eficial building blocks.In short,non-relevant alleles hitchhiking on certain schemata could propagate to the next generation and drown out other potentially favorable building blocks,thus preventing independent sampling of building blocks.Consequently,the efficacy of crossover in combining building blocks is restricted by the resulting loss of desired population diversity. Mitchell,Holland and Forrest(1994)considered a so-called“idealized genetic algorithm”(IGA)that allows each individual to evolve completely independently; thus new samples are given independently to each schema region and hitchhiking is suppressed.Then under the assumption that the IGA has the knowl-edge of the desired schemata in advance,they derived a lower bound for the number of function evaluations that the IGA will need tofind the optimum of Royal Road function R1(Mitchell,Forrest,&Holland,1992). However,the IGA is impractical because it requires the exact knowledge of desired schemata ahead of time. Partially motivated by the idea of the IGA,we pro-pose a more robust GA that proceeds in two phases: the“independent sampling phase”and the“breeding phase”.In the independent sampling phase,we design a core scheme,named the“Building Block Detecting Strategy”(BBDS),to extract relevant building block information of afitness landscape.In this way,an in-dividual is able to sequentially construct more highly-fit partial solutions.For Royal Road R1,the global optimum can be attained easily.For other more com-plicatedfitness landscapes,we allow a number of indi-viduals to adopt the BBDS and independently evolve in parallel so that each schema region can be given samples independently.During this phase,the popu-lation is expected to be seeded with promising genetic material.Then follows the breeding phase,in which individuals are paired for breeding based on two mate selection schemes(Huang,2001):individuals being as-signed mates by natural selection only and individuals being allowed to actively choose their mates.In the latter case,individuals are able to distinguish candi-date mates that have the samefitness yet have differ-ent string structures,which may lead to quite differ-ent performance after crossover.This is not achiev-able by natural selection alone since it assigns individ-uals of the samefitness the same probability for being mates,without explicitly taking into account string structures.In short,in the breeding phase individu-als manage to construct even more promising schemata through the recombination of highly-fit building blocks found in thefirst phase.Due to the characteristic of independent sampling of building blocks that distin-guishes the proposed GAs from conventional GAs,we name this type of GA independent sampling genetic algorithms(ISGAs).2LITERATURE REVIEWIn GA research,extensive attention has been paid to how to alleviate premature convergence.An example is the class of parallel GAs(PGAs)that are devel-oped to degrade centralized selection control used in simple GAs in order to accommodate more population diversity.Among these PGAs,the“fine-grained”type (Cant´u-Paz,1997)is an idealized model that allows only one individual to evolve in each deme and thereby implements the decentralization of selection scheme to the maximum degree.M¨u hlenbein(1991)used a lo-cal hillclimbing algorithm to refine the individuals in hisfine-grained PGAs along with a mating strategy based on population structure and the empirical re-sults showed that his PGA is an effective optimization tool.The independent sampling phase of ISGAs is similar to thefine-grained PGAs in(M¨u hlenbein,1991)in the sense that each individual evolves autonomously, although ISGAs do not adopt the population struc-ture.The second distinction is that M¨u hlenbein’s fine-grained PGAs process strings in a homogeneous fashion.An initial population is randomly generated. Then in every cycle each individual does local hill-climbing,and creates the next population by mating with a partner in its neighborhood and replacing par-ents if offspring are better.By contrast,ISGAs parti-tion the genetic processing into two phases:the inde-pendent sampling phase and the breeding phase as de-scribed in the preceding section.Third,the approach employed by each individual for improvement in IS-GAs is different from that of the PGAs.During the independent sampling phase of ISGAs,in each cycle, through the BBDS,each individual attempts to ex-tract relevant information of potential building blocks whenever itsfitness increases.Then,based on the schema information accumulated,individuals continue to construct more complicated building blocks.How-ever,the individuals of M¨u hlenbein’s PGAs adopt a local hillclimbing algorithm that does not manage to extract relevant information of potential schemata. The motivation of the two-phased ISGAs was partially from the“messy genetic algorithms(mGAs)”in(Gold-berg,Korb,&Deb,1989;Goldberg,Deb,Kargupta,& Harik,1993).The two stages employed in the mGAs are“primordial phase”and“juxtapositional phase”, in which the mGAsfirst emphasize candidate build-ing blocks based on the guess at the order k of small schemata,then juxtaposing them to build up global optima in the second phase by“cut”and“splice”op-erators.However,in thefirst phase,the mGAs still adopt centralized selection to emphasize some candi-date schemata;this in turn results in the loss of sam-ples of other potentially promising schemata.By con-trast,ISGAs manage to postpone the emphasis of can-didate building blocks to the latter stage,and highlight the feature of independent sampling of building blocks to suppress hitchhiking in thefirst phase.As a result, population is more diverse and implicit parallelism can be fulfilled to a larger degree.Thereafter,during the second phase,ISGAs implement population breeding through two mate selection schemes as discussed in the preceding section.In this way,we may examine if the results obtained for the ISGAs are consistent with what has been done for simple serial GAs in(Huang, 2001).In the following sections,we present the key compo-nents of ISGAs in detail and show the comparisons be-tween the experimental results of the ISGAs and those of several other GAs on two benchmark test functions. 3COMPONENTS OF ISGASISGAs are divided into two phases:the independent sampling phase and the breeding phase.We describe them as follows.3.1INDEPENDENT SAMPLING PHASE To implement independent sampling of various build-ing blocks,a number of strings are allowed to evolve in parallel and each individual searches for a possi-ble evolutionary path entirely independent of others.In this paper,we develop a new searching strategy, Building Block Detecting Strategy(BBDS),for each individual to evolve based on the accumulated knowl-edge for potentially useful building blocks.The idea is to allow each individual to probe valuable informa-tion concerning beneficial schemata through testing its fitness increase since each time afitness increase of a string could come from the presence of useful building blocks on it.In short,by systematically testing each bit to examine whether this bit is associated with the fitness increase during each cycle,a cluster of bits con-stituting potentially beneficial schemata will be uncov-ered.Iterating this process guarantees the formation of longer and longer candidate building blocks.The operation of BBDS on a string can be described as follows.1.Generate an empty set for collecting genes of can-didate schemata and create an initial string with uni-form probability for each bit until itsfitness exceeds 0.(Record the currentfitness as Fit.)2.Except the genes of candidate schemata collected, from left to right,successivelyflip all the other bits, one at a time,and evaluate the resulting string.If the resultingfitness is less than Fit,record this bit’s position and original value as a gene of candidate schemata.3.Except the genes recorded,randomly generate all the other bits of the string until the resulting string’s fitness exceeds Fit.Replace Fit by the newfitness.4.Go to steps2and3until some end criterion.The idea of this strategy is that the cooperation of cer-tain genes(bits)makes for goodfitness.Once these genes come in sight simultaneously,they contribute a fitness increase to the string containing them;thus any loss of one of these genes leads to thefitness decrease of the string.This is essentially what step2does and after this step we should be able to collect a set of genes of candidate schemata.Then at step3,we keep the collected genes of candidate schematafixed and randomly generate other bits,awaiting other building blocks to appear and bring forth anotherfitness in-crease.However,the step2in this strategy only emphasizes thefitness drop due to a bit-flip.It ignores the possi-bility that the same bit-flip leads to a newfitness rise because many loci could interact in an extremely non-linear fashion.To take this into account,the second version of BBDS is introduced through the change of step2as follows.Step2.Except the genes of candidate schemata col-lected,from left to right,successivelyflip all the other bits,one at a time,and evaluate the resulting string. If the resultingfitness is less than Fit,record this bit’s position and original value as a gene of candi-date schemata.If the resultingfitness exceeds Fit, substitute this bit’s“new”value for the old value,re-place Fit by this newfitness,record this bit’s position and“new”value as a gene of candidate schemata,and re-execute this step.Because this version of BBDS takes into considera-tion thefitness increase resulted from bit-flips,it is expected to take less time for detecting.Several em-pirical results so far support this reasoning(for exam-ple,the experimental results of these two versions on Royal Road functions shown in the next section). Other versions of BBDS are of course possible.For ex-ample,in step2,if a bit-flip results in afitness increase, it can be recorded as a gene of candidate schemata, and the procedure continues to test the residual bits yet without completely travelling back to thefirst bit to re-examine each bit.However,the empirical re-sults obtained thus far indicate that the performance of this alternative is quite similar to that of the second version.More experimental results are needed to dis-tinguish the difference between them.In this paper, we present the results obtained based on thefirst and second versions of BBDS.The overall implementation of the independent sam-pling phase of ISGAs is through the proposed BBDS to get autonomous evolution of each string until all individuals in the population have reached some end criterion.In section4,we will present an analysis of the BBDSs on two types of idealized test functions:“Royal Road”functions(non-deceptive)and problems of bounded deception(deceptive).3.2BREEDING PHASEAfter the independent sampling phase,individuals in-dependently build up their own evolutionary avenues by various building blocks.Hence the population is expected to contain diverse beneficial schemata and premature convergence is alleviated to some degree. However,factors such as deception and incompatible schemata(i.e.,two schemata have different bit values at common defining positions)still could lead indi-viduals to arrive at sub-optimal regions of afitness landscape.Since building blocks for some strings to leave sub-optimal regions may be embedded in other strings,the search for proper mating partners and then exploiting the building blocks on them are critical foroverwhelming the difficulty of strings being trapped in undesired regions.In(Huang,2001)the importance of mate selection has been investigated and the results showed that the GAs are able to improve their per-formance when the individuals are allowed to select mates to a larger degree.In this paper,we adopt two mate selection schemes analyzed in(Huang,2001)to breed the population: individuals being assigned mates by natural selection only and individuals being allowed to actively choose their mates.Since natural selection assigns strings of the samefitness the same probability for being parents, individuals of identicalfitness yet distinct string struc-tures are treated equally.This may result in significant loss of performance improvement after crossover.This issue is the major concern in(Huang,2001)and we continue this research line to ISGAs in this paper. We adopt the tournament selection scheme(Mitchell, 1996)as the role of natural selection and the mech-anism for choosing mates in the breeding phase is as follows:During each mating event,a binary tournament selection—with probability1.0thefitter of the two randomly sampled individuals is chosen—is run to pick out thefirst individual,then choosing the mate accord-ing to the following two different schemes:A.Run the binary tournament selection again tochoose the partner.B.Run another two times of the binary tournamentselection to choose two highly-fit candidate part-ners;then the one more dissimilar to thefirst in-dividual is selected for mating.The implementation of the breeding phase is through iterating each breeding cycle which consists of1) Two parents are obtained based on the mate selec-tion schemes above.2)Two-point crossover operator (crossover rate1.0)is applied to these parents.3)Both parents are replaced with both offspring if any of the two offspring is better than them.Then steps1,2,and 3are repeated until the population size is reached and this is a breeding cycle.(To give crossover its stiffest test,we turn offmutation for all the performance tests in this paper.)In(Huang,2001),the results showed that the mate selection scheme B outperforms scheme A in general, given the objective offinding the global optimum with minimum time.Since those results were obtained in simple GAs,we are concerned with whether this con-clusion can be extended to the ISGAs as well.Having described the components of ISGAs,we are now on the road to test their performance.4EXPERIMENTAL RESULTSTwo types of test functions are used for examining the performance of the ISGAs:“Royal Road”func-tions(non-deceptive)and problems of bounded decep-tion(deceptive).The performance of some other ap-proaches will be compared with that of the ISGAs as well.4.1PERFORMANCE ON ROYAL ROADFUNCTIONSThe Royal Road functions designed by Mitchell,For-rest,and Holland(1992)were to investigate in more detail the validity of the Building Block Hypothesis (Holland,1975;Goldberg,1989),which implies that the performance of GAs largely depends on the effi-cacy of crossover to combine small,highly-fit schemata to form more complex,highly-fit schemata.Thefit-ness landscape of Royal Road functions consists of two characteristics:the presence of short,low-order, highly-fit schemata and hierarchical structure which allows these small schemata to repeatedly construct more and more highly-fit schemata and eventually reach the global optimum.One example of this class is Royal Road R1whosefitness landscape is composed of eight consecutive building blocks of eight ones each. It is apparent that Royal Road R1is a non-deceptive function and it was expected that GAs perform quite well on such afitness landscape due to the Building Block Hypothesis.However,Mitchell’s experimental results indicated that the unsatisfactory GA perfor-mance on this function is primarily from hitchhiking phenomenon,one of possible causes of premature con-vergence.In(Mitchell,1995),the performance of the GA was further compared with those of three iter-ated hill-climbing searching algorithms:steepest-ascent hill-climbing(SAHC),next-ascent hill-climbing (NAHC)(M¨u hlenbein,1991),and random-mutation hill-climbing(RMHC)(Forrest,&Mitchell,1993). They performed500runs for the GA with population size128and200runs for each of the three hill-climbing algorithms,and reported that SAHC and NAHC never found the optimum within256,000function evalua-tions but the GA can attain the optimum in an aver-age of61,334function evaluations.Moreover,RMHC found the optimum only in an average of6179function evaluations,nearly ten times faster than the GA.We performed1000runs of the ISGA on Royal RoadR1and the end criterion is the moment for the global optimum being found.It turned out that for such a hi-erarchical,non-deceptive structure only an individual is needed,based on the building block detecting strat-egy discussed earlier,to serve for good performance.It actually found the optimum only in an average of975 function evaluations for thefirst version of BBDS and 901for the second version—more than six times faster than RMHC and sixty times faster than the GA. These experimental results can be summarized in Ta-ble1in which the standard deviation is shown for each case as well.Table1:Experimental Results on R1Function Evaluations to OptimumMean Standard Deviation GA6133432583SAHC>256,000–NAHC>256,000–RMHC61792630BBDS v.1975314BBDS v.2901309To see why the structures aggregated by the BBDS are indeed potentially promising schemata,let us turn to the motivation of the BBDS,i.e.,the IGA.On the idealized model Royal Road R1,Mitchell et al.(1994) discussed the expected time for the IGA to construct all the eight building blocks for reaching the opti-mum and obtained the theoretical result of696func-tion evaluations.In the process of BBDS version1, when thefirst building block emerges in the string, 64evaluations are required to detect it since we need toflip all the64bits,one at a time,and evaluate the resulting string.Similarly,as the second build-ing block comes in sight,another56evaluations is re-quired to detect it.By this reasoning,the total eval-uations required for detecting the building blocks are 64+56+48+40+32+24+16=280.(It is not necessary to detect thefinal single block because the appearance of thefinal building block is at the same moment of the optimum being attained.)If two or more build-ing blocks appear simultaneously,the evaluations for detecting will be less than280,but this occurs with a rather small probability.Therefore,the sum of696 function evaluations(the theoretic result obtained by Mitchell et al.)for constructing all the eight build-ing blocks and280function evaluations for detecting these building blocks is976.This is almost perfectly consistent with the result obtained for BBDS version1 shown in Table1.Thus,we can conclude that BBDS implements nearly the idealized GA on Royal Road R1in the sense that extra function evaluations are re-quired to detect the building blocks.As for the perfor-mance of the second version of BBDS,since it adopts a more greedy method to detect the building blocks, it takes less time to attain the optimum than thefirst version does.Another idealized model to test the power of BBDS is Royal Road R2(Forrest,&Mitchell,1993).This function was designed to verify if the presence of inter-mediate“stepping stones”(intermediate-order higher-fitness schemata that result from combinations of the lower-order schemata,and that in turn can combine to form even higher-fitness schemata)can speed up GAs’searching process.Forrest et al.(1993)found that if some intermediate stepping stones are muchfitter than the primitive components,then hitchhiking problem becomes more severe and thus premature convergence slows down the discovery of some necessary schemata. We summarize the results from two versions of the BBDS and those reported in(Forrest,&Mitchell, 1993)in Table2.Table2:Experimental Results on R2Function Evaluations to OptimumMean Standard Deviation GA7356340115SAHC>256,000–NAHC>256,000–RMHC65512998BBDS v.1975314BBDS v.2901309This table shows that the GA indeed performed worse on R2than on R1.However,under the same random seed,the BBDS has the exact performance on R1and R2,indicating that stepping stones do not have any negative impact on the search power of the BBDS. This is because the BBDS essentially takes into ac-count onlyfitness increase or decrease,not the amount of relativefitness difference.Thus any extrafitness dif-ference contributed by the stepping stones of R2does not affect the performance of the BBDS.Since Royal Road functions are non-deceptive,such landscapes allow BBDS to exhibit the maximum ca-pability to extract information concerning the build-ing blocks whenever they come in sight on the string; thus the global optimum can be reached very quickly. Several empirical results obtained so far indeed show that BBDS significantly outperforms RMHC and tra-ditional GAs on such non-deceptivefitness landscapes. Although the ISGA needs to employ only a string to attain the optimum of Royal Road functions,this sin-gle individual can be fooled by any deceptive schemata. If this is the case,the ISGA with population size one is certainly not enough for attaining gratifying perfor-mance.In the next subsection,we present the exper-imental results of the ISGAs with larger population size on another benchmark test function which bears thisfitness landscape feature.4.2PERFORMANCE ON30-BITBOUNDED DECEPTION PROBLEM The problems of bounded deception designed by Gold-berg et al.(1989)were to investigate the performance of GAs on deceptive functions in which low-order, highly-fit schemata mislead GAs away from global op-tima and toward the complement of the global opti-mum.One example of this class is an order-3fully deceptive function as defined in Table3.Table3:A fully deceptive,order-3problembit value bit value1113010014101001022110000126011000028On this3-bit,deceptive problem,calculations of the averagefitness of schema show that GAs are likely to be led toward the complement of the global opti-mum,i.e.,000,instead of toward the global optimum, 111.To demonstrate the effect of this deception on the search power of GAs,Goldberg et al.(1989)designed a30-bit deceptive function,E10,which is composed of ten consecutive blocks of this3-bit deceptive function. In contrast to the non-deceptive feature of Royal Road functions,it is apparent that this30-bit deceptive function imposes enough difficulty for GAs to arrive at the global maximum(1,1,...,1).We performed50runs of the ISGAs with mate se-lection schemes A and B on E10,based on the sec-ond version of BBDS,for population size40and80. The end criterion of the BBDS in this case is the mo-ment that the length of candidate schemata reaches the length of the string.After all the strings reach the end criterion of the BBDS,the independent sampling phase stops and the breeding phase gets started.We then measure the number of function evaluations re-quired tofind the global optimum and the results are shown in Table4(the standard deviation is given in the parentheses).Notice that the ISGA with mate selection scheme B requires fewer function evaluations than that with scheme A.These results indicate that the ISGA withTable4:Experimental Results on E10Function Evaluations to OptimumPopulation size40Population size80 Scheme A11786(11034)16794(12175) Scheme B9582(7889)11122(5614) mate selection B indeed outperforms that with schemeA,which is consistent with the results obtained in (Huang,2001).To see how the BBDS version2searches thisfitness landscape,we show that after the independent sam-pling phase,only(111)or(000)will emerge at each block,and the probabilities are14,and34,respectively (please see Appendix).Thus for a population of40in-dividuals,the probability that the population contains no building block(111)at a building-block location isonly(34)40≈1.0×10−5;and for a population size 80,the probability is(34)80≈1.0×10−10.Therefore these two population sizes serve for enough underlying building blocks to construct the global optimum.To compare total function evaluations used by the two phases in the ISGAs,we show the results in Table5, where thefirst element corresponds to the evaluations spent in the independent sampling phase and the sec-ond corresponds to that in the breeding phase.In this table,it is clear that scheme B has higher efficiency of exploiting the building blocks found in the indepen-dent sampling phase to construct the global optimum.Table5:Total Function Evaluations in Two PhasesPopulation Size40Population Size80 Scheme A(1159,10627)(2322,14472) Scheme B(1160,8422)(2320,8802)To demonstrate the capability of the ISGAs,we com-pare their performance(based on population size 40)with that of several different types of GAs:a mGA(Goldberg,Korb,&Deb,1989),a modified mGA(Goldberg,Deb,Kargupta,&Harik,1993), a Breeder GA(BGA)(M¨u hlenbein&Schlierkamp-Voosen,1993),and two versions of PGA(2pc-wohc, two-point cyclic crossover without hill-climbing,and 2pc-nahc,two-point cyclic crossover with next ascent hill-climbing)(M¨u hlenbein,1991).We also ran a sim-ple serial GA over50runs(based on a binary tour-nament selection–with probability1.0thefitter of the two randomly sampled individuals is chosen,mutation rate0.005,two-point crossover rate0.7,population size80,and maximum function evaluations50000for each run).The experimental results of the ISGAs andother GAs reported can be summarized in Table6from which we can see that the ISGAs significantly outper-form other GAs.Table6:Performance of Several Types of GAs Mean Function Evaluations to OptimumISGA(Scheme A)11786ISGA(Scheme B)9582mGA40600Modified mGA26650BGA160002pc-wohc PGA213982pc-nahc PGA40500Serial GA0runs reached optimum5DISCUSSIONSOne issue that also concerns us is the effect of popu-lation size.In Table4,we see that the ISGA with larger population size has worse performance than with smaller population size.This can be more clearly seen in Table5.In this table,for the same population size,the function evaluations required in the indepen-dent sampling phase for two schemes are almost the same,yet in the breeding phase the difference between two schemes for population size80is larger than that for population size40.This is the opposite of what has been obtained for simple serial GAs in(Huang,2001),in which larger population size reduces the performance difference be-tween these two mate selection schemes.So far,the answer for this seeming paradox has not yet been ob-tained,but we can conjecture that since the ISGAs implement independent sampling of building blocks in thefirst phase to a maximum degree,they may gen-erate too diverse a population if the population size is large enough.This in turn slows down the evolution of the population in the breeding phase.How does population diversity affect the searching pro-cess for different goals,such asfinding a global op-timum or forming speciation?From the discussion above,it is clear that larger population size is not al-ways advantageous and we will manage to investigate the relationship between diversity andfinding a global optimum in the near future.6CONCLUSIONSIn this paper wefirst present an exploratory method (BBDS)to show how the searching speed of individu-als can be improved.Through explicitly acquiring rel-evant knowledge of candidate building blocks,BBDS outperformed several representative hill-climbing algo-rithms on non-deceptive Royal Road functions.Then a new class of GAs based on BBDS,i.e.,ISGAs,is proposed.In thefirst phase of ISGAs,implicit par-allelism is nicely realized by allowing each individual to accomplish independent building-block sampling to suppress hitchhiking;thus the population is expected to carry diverse promising schemata.Afterwards,with one mate selection scheme that allows individuals to actively choose their mating partners,the efficacy of crossover is enhanced and the ISGAs have been shown to outperform several different GAs on a benchmark test function that is full of deception.7FUTURE WORKMuch work remains to be done.The author is now testing the capability of ISGAs on more complicated fitness landscapes,such as the hyperplane defined functions(HDFs)designed by Holland(2000),which parameterizefitness landscapes to encompass features such as hierarchy,poor-linkage,potholes,hills,bad-lands,ridges,etc.Other research lines are to examine in more detail the impact of mutation and the differ-ence between two-phased and traditional(one-phased) GAs.Afterwards,our hope is to extend the single two-phased procedure to successive two-phased procedures over the course of evolution,i.e.,iterating the two phases during the whole run.In addition,other ver-sions of BBDS are worth investigating so that building-block detecting is more effectively implemented.More-over,a theoretical foundation is needed to explain the whys and wherefores of the excellent performance of ISGAs,andfinally our goal is to extend the applica-tion of ISGAs to real problems.AcknowledgmentsThe author would like to thank Rick Riolo,John Hol-land for their advice,and Bob Lindsay,Ted Belding, Leeann Fu,and Tom Bersano-Begey for their com-ments and suggestions.AppendixFor BBDS version2,let us start with an initial3-bit sub-string,for example,at(101)(fitness=0).Then thefirst bit isflipped to0,which causes thefitness to increase to26;thus this bit’s value must be replaced by0and its bit-position and new bit-value(i.e.,0) are recorded as thefirst gene of the candidate schema. After this function evaluation the candidate schema is。