等比数列和比差数列的前n项和
等差等比数列的前n项和公式
等差等比数列的前n项和公式
当涉及到等差数列和等比数列的前 n 项和时,可以使用以下公式计算:
1. 等差数列的前 n 项和公式:
对于等差数列 a,公差为 d,前 n 项和 Sn 可以通过以下公式计算:
Sn = (n/2) * (2a + (n-1)d)
其中,
Sn 表示前 n 项和
n 表示项数
a 表示首项
d 表示公差
2. 等比数列的前 n 项和公式:
对于等比数列 a,公比为 r,且 r ≠ 1,前 n 项和 Sn 可以通过以下公式计算:
Sn = (a * (1 - r^n)) / (1 - r)
其中,
Sn 表示前 n 项和
n 表示项数
a 表示首项
r 表示公比
需要注意的是,这些公式适用于从第一项开始计算的情况。
如果你从第零项开始计算,则需要对公式进行相应的调整。
等比数列前n项和的规律
等比数列前n项和的规律等比数列,听起来挺高大上的对吧?其实它就像咱们生活中的一些规律,简单易懂。
想象一下,你去超市,看到一瓶饮料,第一次买一瓶,第二次买两瓶,第三次买四瓶……这就是一个等比数列!每次都翻倍,真是让人惊叹。
你可能会想,这样买下去,不就得破产了?哈哈,没错,经济危机就在眼前。
但是,等比数列的魔力就在于它的前n项和,咱们今天就来好好聊聊这个话题。
等比数列的前n项和可不是简单的加加减减。
它有个公式,咱们叫它“终极公式”。
听起来是不是很酷?这公式就是:( S_n = a times frac{1 r^n{1 r ),其中 ( S_n ) 是前n项和,( a ) 是第一项,( r ) 是公比。
哦,你没听错,公比就是每次相乘的那个数字。
举个简单的例子,如果第一项是1,公比是2,那前几项就是1、2、4、8、16……想想就觉得有点疯狂,是不是?那这个公式到底有什么用呢?咱们生活中总是需要算账,尤其是花钱的时候。
比如,你有个小目标,存钱买个新手机。
每个月存钱都翻倍,哇,那真是太爽了。
用这个公式,咱们能很快算出,存到第n个月,你的钱能变成多少。
就像搭积木一样,层层叠加,最后变得越来越高。
想想看,等比数列就像是咱们追梦路上的那条直线,越走越高,越走越远。
对了,咱们再深入一点,讲讲这个公式的背后。
它其实源自于一种巧妙的数学思维。
你知道吗?早在古代,聪明的数学家就发现了这条规律。
就像咱们生活中,很多事情都遵循着某种模式,等比数列也不例外。
它不仅仅是数字的堆砌,更是智慧的结晶。
你看,学习数学就像是解谜,越深入就越有意思。
每当发现新规律,心里那个小雀跃,简直无法形容!或许你会问,实际生活中用得着这个公式吗?当然了,举个简单的例子。
假设你打算买个零食,每次买的数量都在增加。
第一天你买1包,第二天买2包,第三天买4包……按这个规律下去,你想想,那可真是一场“买零食马拉松”。
如果不算清楚,最后钱包可就瘪了。
所以,掌握这个公式,真的是省钱利器。
等差、等比数列及前n项和
第01讲 等差数列及其前n 项和考纲考情本讲为高考命题热点,分值10-12分,题型多变,选择题,填空题,解答题都会出现选择填空题常考等差等比数列的性质,大题题型多变,但对于文科来讲常考察基本量的计算与数列求和,对于理科考点相对难度较大,比如新定义,奇偶列等,考察逻推理能力与运算求解能力。
考点梳理考点一 等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
数学语言表达式 : ()为常数d N n d a a n n ,1*+∈=-()为常数d N n d a a n n ,1*+∈=-。
(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且2ba A +=考点二 等差数列的通项公式与前n 项和公式(1)若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为()d n a a n 11-+=。
(2)前n 项和公式: ()()n d a n d a a n d n n na S n n ⎪⎭⎫⎝⎛-+=+=-+=222211211。
考点三 等差数列的性质(1)通项公式的推广:()()*∈-+=N m n d m n a a m n ,。
(2)若{}n a 为等差数列,且()*∈+=+N q p m n q p n m ,,,,则q p n m a a a a +=+。
(3)若{}n a 是等差数列,公差为d,则()*++∈N m k a a a m k m k k ,......,,2是公差为md 的等差数列。
(4)若n S 为等差数列{}n a 小的前n 项和,则数列,......,,232m m m m m S S S S S --也是等差数列。
(5)若n S 为等差数列{}n a 的前n 项和,则数列⎭⎬⎫⎩⎨⎧n S n 也为等差数列。
考点四 常用结论1.已知数列{}n a 的通项公式是()为常数其中q p q pn a n ,+=,则数列{}n a 一定是等差数列,且公差为p 。
等比数列的前n项和的公式
等比数列的前n项和的公式(原创版)目录1.等比数列的定义与性质2.等比数列前 n 项和的公式推导3.公式的应用与举例正文1.等比数列的定义与性质等比数列是指一个数列,其中每一项与它前面的项的比相等。
这个比称为公比,用 r 表示。
等比数列的通项公式为 an=a1*r^(n-1),其中 a1 是首项,an 是第 n 项。
2.等比数列前 n 项和的公式推导我们先来看一个等比数列的前几项和:S1 = a1S2 = a1 + a2 = a1 + a1*rS3 = a1 + a2 + a3 = a1 + a1*r + a1*r^2S4 = a1 + a2 + a3 + a4 = a1 + a1*r + a1*r^2 + a1*r^3观察上述等式,我们可以发现:S2 = a1*(1 + r)S3 = a1*(1 + r + r^2)S4 = a1*(1 + r + r^2 + r^3)我们可以猜测等比数列前 n 项和的公式为:Sn = a1*(1 + r + r^2 +...+ r^(n-1))为了证明这个公式,我们可以利用数学归纳法。
当 n=1 时,S1 = a1 = a1*(1 + r + r^2 +...+ r^(n-1)),等式成立。
假设当 n=k 时,等式成立,即:Sk = a1*(1 + r + r^2 +...+ r^(k-1))当 n=k+1 时,有:Sk+1 = Sk + ak+1 = a1*(1 + r + r^2 +...+ r^(k-1)) + a1*r^k = a1*(1 + r + r^2 +...+ r^(k-1) + r^k)由等比数列的性质,我们知道:r^k = r^(k-1) * r将其代入上式,得:Sk+1 = a1*(1 + r + r^2 +...+ r^(k-1) + r^(k-1) * r)= a1*(1 + r + r^2 +...+ r^k)所以,当 n=k+1 时,等式也成立。
数列的求和方法和应用类型
数列的求和方法和应用类型
数列的求和方法有以下几种:
1. 公式法:对于某些特定的数列,可以通过公式来快速求出前n 项的和,如等差数列、等比数列、斐波那契数列等。
2. 通项公式法:对于某些数列,可以求出通项公式,然后利用
通项公式求和。
例如,斐波那契数列的通项公式为:Fn = (1/√5) {[(1+√5)/2]^n - [(1-√5)/2]^n},其中n为正整数。
3. 递归公式法:对于一些数列,可以通过递归公式来求和。
例如,斐波那契数列可以通过递归公式F(n) = F(n-1) + F(n-2)来求和。
4. 分段求和法:对于复杂的数列,可以将其分为多个子数列,
然后分别求和,最后将子数列的和相加。
例如,把1,2,3,2,1,2,3,4,3,2,1,2看成三个数列1,2,3;2,1,2,3;4,3,2,1,2,再分别求和,最后相加得到数列的总和。
5. 数学归纳法:对于一些数列,可以通过数学归纳法来证明其
求和公式。
例如,对于等差数列,利用数学归纳法可以证明其求和公
式为:S(n) = n(a1+an)/2,其中a1为首项,an为末项,n为项数。
数列的应用类型有以下几种:
1. 统计应用:数列可用于数据的统计分析,如平均数、中位数、众数等。
2. 财务应用:数列可用于计算财务问题,如年金、现值、未来
值等。
3. 优化应用:数列可用于优化问题,如最小化损失、最大化利
润等。
4. 排列和组合应用:数列可用于计算排列和组合,如阶乘、组
合数等。
5. 数学和物理应用:数列可用于解决各种数学和物理问题,如
红利问题、运动问题等。
等差等比数列前N项和练习答案
等差数列前N 项和(第一课时) 一、选择题1.设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6 B .-4 C .-2 D .2[答案] A[解析] 本题考查数列的基础知识和运算能力.⎩⎪⎨⎪⎧ S 3=4a 3a 7=-2⇒⎩⎪⎨⎪⎧ 3a 1+3d =4a 1+8d a 1+6d =-2⇒⎩⎪⎨⎪⎧a 1=10d =-2. ∴a 9=a 1+8d =-6.2.四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0[答案] A [解析] ∵a 2a 3=13,∴a 1+da 1+2d =13,∴d =-2a 1.又S 4=4a 1+4×32d =-8a 1=32,∴a 1=-4,∴d =8.3.等差数列{a n }中,a 3+a 7-a 10=8,a 11-a 4=14.记S n =a 1+a 2+a 3+…+a n ,则S 13=( )A .168B .156C .152D .286[答案] D[解析] ∵⎩⎪⎨⎪⎧ a 3+a 7-a 10=8a 11-a 4=14,∴⎩⎪⎨⎪⎧a 1-d =87d =14,∴⎩⎪⎨⎪⎧d =2a 1=10,∴S 13=13a 1+13×122d =286.4.在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4475C .8950D .10 000[答案] C[解析] 设c n =a n +b n ,则c 1=a 1+b 1=40,c 100=a 100+b 100=139,{c n }是等差数列,∴前100项和S 100=100(c 1+c 100)2=100×(40+139)2=8950.5.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2[答案] C[解析] 设等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 3+a 5+a 7+a 9=15a 2+a 4+a 6+a 8+a 10=30, ∴5d =15,∴d =3.6.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9=( ) A .1 B .-1 C .2 D .12[答案] A [解析]S 13S 9=13a 79a 5=139×913=1,故选A . 二、填空题7.已知数列{a n }的通项公式a n =-5n +2,则其前n 项和S n =________. [答案] -5n 2+n2[解析] ∵a n =-5n +2, ∴a n -1=-5n +7(n ≥2),∴a n -a n -1=-5n +2-(-5n +7)=-5(n ≥2). ∴数列{a n }是首项为-3,公差为-5的等差数列. ∴S n =n (a 1+a n )2=n (-5n -1)2=-5n 2+n 2.8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________. [答案] 24[解析] ∵S 9=9·(a 1+a 9)2=72,∴a 1+a 9=16,即a 1+a 1+8d =16, ∴a 1+4d =8,又a 2+a 4+a 9=a 1+d +a 1+3d +a 1+8d =3(a 1+4d )=3×8=24. 三、解答题9.已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d . [解析] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n (n -1)2·d =-5,解得n =15,n =-4(舍).(2)由已知,得S 8=8(a 1+a 8)2=8(4+a 8)2,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列前N 项和(第二课时) 一、选择题1.记等差数列{a n }的前n 项和为S n .若d =3,S 4=20,则S 6=( ) A .16 B .24 C .36 D .48[答案] D[解析] 由S 4=20,4a 1+6d =20,解得a 1=12⇒S 6=6a 1+6×52×3=48.2.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18[答案] B[解析] 由题设求得:a 3=35,a 4=33,∴d =-2,a 1=39,∴a n =41-2n ,a 20=1,a 21=-1,所以当n =20时S n 最大.故选B .3.13×5+15×7+17×9+…+113×15=( ) A .415B .215C .1415D .715[答案] B[解析] 原式=12(13-15)+12(15-17)+…+12(113-115)=12(13-115)=215,故选B .4.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15 ∴5(a 1+5)2=15,∴a 1=1.∴d =a 5-a 15-1=1,∴a n =n .∴1a n a n +1=1n (n +1)=1n -1n +1. 则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 故选A .5.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为( )A .5B .6C .7D .8[答案] B[解析] 解法一:∵a 1>0,S 4=S 8,∴d <0,且a 1=112d ,∴a n =-112d +(n -1)d =nd -132d ,由⎩⎨⎧a n ≥0a n +1<0,得⎩⎨⎧nd -132d ≥0(n +1)d -132d <0,∴512<n ≤612,∴n =6,解法二:∵a 1>0,S 4=S 8, ∴d <0且a 5+a 6+a 7+a 8=0, ∴a 6+a 7=0,∴a 6>0,a 7<0, ∴前六项之和S 6取最大值.6.设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值[答案] C[解析] 由S 5<S 6知a 6>0,由S 6=S 7知a 7=0,由S 7>S 8知a 8<0,C 选项S 9>S 5即a 6+a 7+a 8+a 9>0,∴a 7+a 8>0,显然错误. 二、填空题7.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________. [答案] 25[解析] 由⎩⎪⎨⎪⎧ a 1=1a 4=7得⎩⎪⎨⎪⎧a 1=1d =2,∴S 5=5a 1+5×42×d =25.8.(2014·北京理,12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.[答案] 8[解析] 本题考查了等差数列的性质与前n 项和.由等差数列的性质,a 7+a 8+a 9=3a 8,a 7+a 10=a 8+a 9,于是有a 8>0,a 8+a 9<0,故a 9<0,故S 8>S 7,S 9<S 8,S 8为{a n }的前n 项和S n 中的最大值,等差数列{a n }中首项a 1>0公差d <0,{a n }是一个递减的等差数列,前n 项和有最大值,a 1<0,公差d >0,{a n }是一个递增的等差数列,前n 项和有最小值.三、解答题9.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 取最大值的n 的值.[解析] (1)设公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5a 1+9d =-9,解得⎩⎪⎨⎪⎧a 1=9d =-2.∴a n =a 1+(n -1)d =-2n +11.(2)由(1)知S n =na 1+n (n -1)2d =10n -n 2=-(n -5)2+25,∴当n =5时,S n 取得最大值.等比数列前N 项和综合练习1.(2013·新课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1(1-q n )1-q =a 1-a n q 1-q =1-23a n1-23=3-2a n ,故选D 项. 2.等比数列{a n }各项都是正数,若a 1=81,a 5=16,则它的前5项和是( )A .179B .211C .248D .275答案 B解析 ∵a 5=a 1q 4,∴16=81q 4.∴q =±23.又数列{a n }的各项都是正数,∴q =23. ∴S 5=a 1(1-q 5)1-q =81[1-(23)5]1-23=211. 3.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( )A .3B .-3C .-1D .1答案 A解析 思路一:列方程求出首项和公比,过程略; 思路二:两等式相减得a 4-a 3=2a 3,从而求得a 4a 3=3=q .4.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( )A .21B .42C .135D .170 答案 D 解析5.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( )A.152B.314C.334D.172答案 B解析 显然公比q ≠1,由题意,得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧a 1=4,q =12,∴S 5=a 1(1-q 5)1-q =4(1-125)1-12=314. 6.在14与78之间插入n 个数组成等比数列,若各项总和为778,则此数列的项数( )A .4B .5C .6D .7答案 B解析 ∵q ≠1(14≠78),∴Sn =a 1-anq 1-q.∴778=14-78q 1-q ,解得q =-12,78=14×(-12)n +2-1.∴n =3,故该数列共5项.7.等比数列{an }的首项为1,公比为q ,前n 项和为S ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为( ) A.1S B .S C .Sq 1-n D .S -1q 1-n答案 C解析 q ≠1时,S =1-q n 1-q ,⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1(1-1q n )1-1q =q 1-n ·1-q n1-q =q 1-n ·S .当q =1时,q 1-n ·S =S .8.在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ) A .4 B .-4 C .-2 D .2答案 A 解析9.数列{a n }的前n 项和为S n =4n +b (b 是常数,n ∈N *),若这个数列是等比数列,则b 等于( )A .-1B .0C .1D .4答案 A 解析10.(2013·北京)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 由题意知q =a 3+a 5a 2+a 4=2.由a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20, ∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.11.(2012·新课标全国)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.答案 -2解析 由S 3=-2S 2,可得a 1+a 2+a 3=-3(a 1+a 2),即a 1(1+q +q 2)=-3a 1(1+q ),化简整理得q 2+4q +4=0,解得q =-2.12.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________.答案 1013.(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.答案 32解析 由已知S 4-S 2=3a 4-3a 2,即a 4+a 3=3a 4-3a 2,即2a 4-a 3-3a 2=0,两边同除以a 2,得2q 2-q -3=0,即q =32或q =-1(舍).答案 3n -1,或(-3)n -14解析答案24解析16.等比数列{a n}的公比q>0,已知a2=1,a n+2+a n+1=6a n,则{a n}的前4项和S4=________.答案 152解析 由条件a n +2+a n +1=a n q 2+a n q =6a n ,q >0,得q =2,又a 2=1,所以a 1=12,S 4=152.17.一个等比数列的首项为1,项数为偶数,其中奇数项的和为85,偶数项的和为170,求该数列的公比和项数.答案 该数列的公比为2,项数为8解析18.设等比数列{a n }的公比q <1,前n 项和为S n ,已知a 3=2,S 4=5S 2,求{a n }的通项公式.解析 由题设知a 1≠0,S n =a 1(1-q n )1-q,则⎩⎨⎧ a 1q 2=2,a 1(1-q 4)1-q =5×a 1(1-q 2)1-q , ①② 由②得1-q 4=5(1-q 2),(q 2-4)(q 2-1)=0. (q -2)(q +2)(q -1)(q +1)=0,因为q <1,解得q =-1或q =-2. 当q =-1时,代入①得a 1=2,a n =2×(-1)n -1;当q =-2时,代入①得a 1=12,a n =12×(-2)n -1.综上,当q =-1时,a n =2×(-1)n -1;当q =-2时,a n =12×(-2)n -1.。
等差、等比数列的前n项和知识梳理
等差、等比数列的前n 项和【考纲要求】1.熟练掌握等差数列的求和公式以及公式特点,并能熟练应用; 2.熟练掌握等比数列的求和公式以及公式特点,并能熟练应用; 3.掌握数列的通项a n 与前n 项和S n 之间的关系式。
【知识网络】【考点梳理】【高清课堂:数列的求和问题 388559 知识要点】知识点一:数列的前n 项和n S 的相关公式 1.等差数列的前n 项和n S 公式:211()(1)22n n n a a n n S na d An Bn +-==+=+(A B 、为常数) 当0d ≠时,S n 是关于n 的二次式且常数项为0; 当d=0时(a 1≠0),S n =na 1是关于n 的正比例式. 2.等比数列的前n 项和n S 公式:当1q =时,1n a a =,1231n n S a a a a na =++++=,当1≠q 时,11(1)11n n n a a qa q S q q--==--3.任意数列的第n 项n a 与前n 项和n S 之间的关系式:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩【典型例题】类型一:等差数列的前n 项和公式及其性质例1.等差数列{}n a 的前30项之和为50,前50项之和为30,求80S 。
【思路分析】根据等差数列前n 项公式1(1)2n n n S na d -=+,整体代入,或者应用公式2n S An Bn =+。
【解析】法一: ∵{}n a 为等差数列, ∴1(1)2n n n S na d -=+, 等差、等比数列的前n 项和等比数列的求和公式等差数列的求和公式∴ ⎪⎪⎩⎪⎪⎨⎧=-+==-+=)2......(302505050)1......(50230303021502130d a S d a S(2)-(1)有22150303050202022a d d --++=-, 即 27911da +=- ∴ 80)279(802)180(80801180-=+=-+=da d a S 。
2023年高考数学一轮复习讲义——数列求和
§6.5 数列求和 考试要求 1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法. 知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n 项和公式求和.(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.4.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)常见的裂项技巧①1n (n +1)=1n -1n +1. ②1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ③1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. ④1n +n +1=n +1-n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( √ ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( √ ) (3)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.( × )(4)求数列⎩⎨⎧⎭⎬⎫12n +2n +3的前n 项和可用分组转化法求和.( √ ) 教材改编题1.数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100答案 D解析 S 100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.2.等差数列{a n }中,已知公差d =12,且a 1+a 3+…+a 99=50,则a 2+a 4+…+a 100等于( ) A .50B .75C .100D .125 答案 B解析 a 2+a 4+…+a 100=(a 1+d )+(a 3+d )+…+(a 99+d )=(a 1+a 3+…+a 99)+50d=50+25=75.3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0222 023,则项数n =________. 答案 2 022解析 a n =1n (n +1)=1n -1n +1, ∴S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0222 023, ∴n =2 022.题型一 分组求和与并项求和例1 (2022·衡水质检)已知各项都不相等的等差数列{a n },a 6=6,又a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式;(2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和T 2n .解 (1)∵{a n }为各项都不相等的等差数列,a 6=6,且a 1,a 2,a 4成等比数列.∴⎩⎪⎨⎪⎧ a 6=a 1+5d =6,(a 1+d )2=a 1(a 1+3d ),d ≠0,解得a 1=1,d =1,∴数列{a n }的通项公式a n =1+(n -1)×1=n .(2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.延伸探究 在本例(2)中,如何求数列{b n }的前n 项和T n ?解 由本例(2)知b n =2n +(-1)n n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. 所以T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.教师备选(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列,设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧ a 1=32,q =12(舍)或⎩⎪⎨⎪⎧a 1=2,q =2, 所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128,所以b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1;b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7],则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31],则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63],则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100],则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.思维升华 (1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.(2)若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1 (2022·重庆质检)已知等差数列{a n }的前n 项和为S n ,a 5=9,S 5=25.(1)求数列{a n }的通项公式及S n ;(2)设b n =(-1)n S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由S 5=5a 3=25得a 3=a 1+2d =5,又a 5=9=a 1+4d ,所以d =2,a 1=1,所以a n =2n -1,S n =n (1+2n -1)2=n 2. (2)结合(1)知b n =(-1)n n 2,当n 为偶数时,T n =(b 1+b 2)+(b 3+b 4)+(b 5+b 6)+…+(b n -1+b n )=(-12+22)+(-32+42)+(-52+62)+…+[-(n -1)2+n 2]=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)+…+[n -(n -1)][n +(n -1)]=1+2+3+…+n =n (n +1)2. 当n 为奇数时,n -1为偶数,T n =T n -1+(-1)n ·n 2=(n -1)n 2-n 2=-n (n +1)2. 综上可知,T n =(-1)n n (n +1)2. 题型二 错位相减法求和例2 (10分)(2021·全国乙卷)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n 3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式; [切入点:设基本量q ](2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. [关键点:b n =n ·⎝⎛⎭⎫13n ]教师备选(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项.(1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2.(2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n =1-(1+3n )(-2)n 3, ∴S n =1-(1+3n )(-2)n 9,n ∈N *. 思维升华 (1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.跟踪训练2 (2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围.解 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9, 解得a 2=-2716, 所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列, 所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)×⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)×⎝⎛⎭⎫34n ,① 且34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)×⎝⎛⎭⎫34n +(n -4)×⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)×⎝⎛⎭⎫34n +1 =-94+916⎣⎡⎦⎤1-⎝⎛⎭⎫34n -11-34-(n -4)×⎝⎛⎭⎫34n +1 =-n ×⎝⎛⎭⎫34n +1,所以T n =-4n ×⎝⎛⎭⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ×⎝⎛⎭⎫34n +1≤λ⎣⎡⎦⎤(n -4)×⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立,当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.所以-3≤λ≤1.题型三 裂项相消法求和例3 (2022·咸宁模拟)设{a n }是各项都为正数的单调递增数列,已知a 1=4,且a n 满足关系式:a n +1+a n =4+2a n +1a n ,n ∈N *. (1)求数列{a n }的通项公式; (2)若b n =1a n -1,求数列{b n }的前n 项和S n . 解 (1)因为a n +1+a n =4+2a n +1a n ,n ∈N *, 所以a n +1+a n -2a n +1a n =4, 即(a n +1-a n )2=4,又{a n }是各项为正数的单调递增数列,所以a n +1-a n =2,又a 1=2,所以{a n }是首项为2,公差为2的等差数列,所以a n =2+2(n -1)=2n ,所以a n =4n 2.(2)b n =1a n -1=14n 2-1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以S n =b 1+b 2+…+b n =12⎝⎛⎭⎫1-13+ 12⎝⎛⎭⎫13-15+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 教师备选设数列{a n }的前n 项和为S n ,且2S n =3a n -1.(1)求{a n }的通项公式;(2)若b n =3n (a n +1)(a n +1+1),求{b n }的前n 项和T n ,证明:38≤T n <34. (1)解 因为2S n =3a n -1,所以2S 1=2a 1=3a 1-1,即a 1=1.当n ≥2时,2S n -1=3a n -1-1,则2S n -2S n -1=2a n =3a n -3a n -1,整理得a n a n -1=3, 则数列{a n }是以1为首项,3为公比的等比数列,故a n =1×3n -1=3n -1.(2)证明 由(1)得b n =3n(3n -1+1)(3n +1)=32×⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 所以T n =32×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫130+1-131+1+⎝ ⎛⎭⎪⎫131+1-132+1+⎝ ⎛⎭⎪⎫132+1-133+1+…+⎝ ⎛⎭⎪⎫13n -1+1-13n +1, 即T n =32×⎝ ⎛⎭⎪⎫12-13n +1=34-323n +1, 所以T n <34, 又因为T n 为递增数列,所以T n ≥T 1=34-38=38, 所以38≤T n <34. 思维升华 利用裂项相消法求和的注意事项(1)抵消后不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2)将通项裂项后,有时需要调整前面的系数,如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1, 1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. 跟踪训练3 (2022·河北衡水中学模拟)已知数列{a n }满足a 1=4,且当n ≥2时,(n -1)a n = n (a n -1+2n -2).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列;(2)记b n =2n +1a 2n ,求数列{b n }的前n 项和S n . (1)证明 当n ≥2时,(n -1)a n =n (a n -1+2n -2),将上式两边都除以n (n -1),得a n n =a n -1+2n -2n -1, 即a n n -a n -1n -1=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是以a 11=4为首项,2为公差的等差数列. (2)解 由(1)得a n n=4+2(n -1)=2n +2, 即a n =2n (n +1),所以b n =2n +1a 2n =14⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2, 所以S n =14⎩⎨⎧ ⎝⎛⎭⎫1-122+⎝⎛⎭⎫122-132+⎭⎪⎬⎪⎫…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2 =14⎣⎢⎡⎦⎥⎤1-1(n +1)2=n 2+2n 4(n +1)2. 课时精练1.已知在等差数列{a n }中,S n 为其前n 项和,且a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)若b n =2n a+a n ,数列{b n }的前n 项和为T n ,且T n ≥1 000,求n 的取值范围. 解 (1)由等差数列性质知,S 7=7a 4=49,则a 4=7,故公差d =a 4-a 3=7-5=2,故a n =a 3+(n -3)d =2n -1.(2)由(1)知b n =22n -1+2n -1,T n =21+1+23+3+…+22n -1+2n -1=21+23+…+22n -1+(1+3+…+2n -1)=21-22n +11-4+n (1+2n -1)2 =22n +13+n 2-23. 易知T n 单调递增,且T 5=707<1 000,T 6=2 766>1 000,故T n ≥1 000,解得n ≥6,n ∈N *.2.(2020·全国Ⅲ改编)设数列{a n }满足a 1=3,a n +1=3a n -4n .(1)计算a 2,a 3,猜想{a n }的通项公式;(2)求数列{2n a n }的前n 项和S n .解 (1)由题意可得a 2=3a 1-4=9-4=5,a 3=3a 2-8=15-8=7,由数列{a n }的前三项可猜想数列{a n }是以3为首项,2为公差的等差数列,即a n =2n +1.(2)由(1)可知,a n ·2n =(2n +1)·2n ,S n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n ,① 2S n =3×22+5×23+7×24+…+(2n -1)·2n +(2n +1)·2n +1,② 由①-②得,-S n =6+2×(22+23+…+2n )-(2n +1)·2n +1=6+2×22×(1-2n -1)1-2-(2n +1)·2n +1 =(1-2n )·2n +1-2,即S n =(2n -1)·2n +1+2.3.(2022·合肥模拟)已知数列{a n }满足:a 1=2,a n +1=a n +2n .(1)求{a n }的通项公式;(2)若b n =log 2a n ,T n =1b 1b 2+1b 2b 3+…+1b n b n +1,求T n .解 (1)由已知得a n +1-a n =2n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+2+22+…+2n -1=2+2(1-2n -1)1-2=2n . 又a 1=2,也满足上式,故a n =2n .(2)由(1)可知,b n =log 2a n =n ,1b n b n +1=1n (n +1)=1n -1n +1, T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1,故T n =n n +1.4.(2022·济宁模拟)已知数列{a n }是正项等比数列,满足a 3是2a 1,3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =(-1)n log 2a 2n +1,求数列{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q ,因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12, 因为数列{a n }是正项等比数列,所以q =2.所以a n =a 4·q n -4=2n .(2)方法一 (分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1),①若n 为偶数,T n =-3+5-7+9-…-(2n -1)+(2n +1)=(-3+5)+(-7+9)+…+[-(2n -1)+(2n +1)]=2×n 2=n ; ②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-(2n +1)=-n -2,当n =1时,T 1=-3适合上式,综上得T n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -2,n 为奇数 (或T n =(n +1)(-1)n -1,n ∈N *).方法二 (错位相减法)由(1)可知,a 2n +1=22n +1,所以b n =(-1)n ·log 2a 2n +1=(-1)n ·log 222n +1=(-1)n ·(2n +1), T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n ·(2n +1), 所以-T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n +1(2n +1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n ]-(-1)n +1(2n +1)=-3+2×1-(-1)n -12+(-1)n (2n +1) =-3+1-(-1)n -1+(-1)n (2n +1)=-2+(2n +2)(-1)n ,所以T n =(n +1)(-1)n -1,n ∈N *.5.(2022·重庆调研)在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n ,在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2n a n a ⋅这三个条件中任选一个补充在第(2)问中,并对其求解.解 (1)由题意知⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36, 解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①.b n =42n ·2(n +1)=1n (n +1), 则S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=n n +1. 选条件②.∵a n =2n ,b n =(-1)n a n =(-1)n ·2n , ∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ] =n 2×2=n ; 当n 为奇数时,n -1为偶数, S n =n -1-2n =-n -1. ∴S n =⎩⎪⎨⎪⎧ n ,n 为偶数,-n -1,n 为奇数. 选条件③.∵a n =2n ,b n =2n a n a ⋅,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ·4n ,① 4S n =2×42+4×43+6×44+…+2(n -1)·4n +2n ·4n +1,② ①-②得 -3S n =2×41+2×42+2×43+…+2×4n -2n ·4n +1=4(1-4n )1-4×2-2n ·4n +1 =8(1-4n )-3-2n ·4n +1, ∴S n =89(1-4n )+2n 3·4n +1.。
等比数列的求和公式
等比数列的求和公式等比数列是指一个数列中的每一个项都等于前一项乘以相同的常数。
求和公式是指计算等比数列前n项和的表达式。
在等比数列中,每一项的公式可以表示为:$$a_n = a_1 \cdot r^{(n-1)}$$其中,$a_n$表示第n项,$a_1$表示第一项,r表示公比。
我们需要知道的是等比数列的前n项和。
假设等比数列的前n项和为S,我们可以通过一种简单的方法推导出等比数列的求和公式。
让我们从一开始推导以便更好地理解这个公式。
设等比数列的首项为$a_1$,公比为r。
那么前n项和可以表示为:$$S_n = a_1 + a_2 + \ldots + a_n$$将等比数列的通项公式代入上式,得到:$$S = a_1 + a_1 \cdot r + a_1 \cdot r^2 + \ldots + a_1 \cdot r^{(n-1)}$$将等比数列中的首项乘以公比的n-1次方,我们可以观察到以下现象:$$r \cdot S = a_1 \cdot r + a_1 \cdot r^2 + \ldots + a_1 \cdot r^{(n-1)} + a_1 \cdot r^n$$将等式两边相减:$$S - r \cdot S = a_1 - a_1 \cdot r^n$$整理后得到:$$S(1-r) = a_1(1-r^n)$$由此,我们可以解出前n项和的公式:$$S = \frac{{a_1(1-r^n)}}{{1-r}}$$这就是等比数列的求和公式。
通过这个公式,我们可以轻松地计算等比数列的前n项和,无论n 的大小如何。
需要注意的是,在使用等比数列的求和公式时,必须确保公比r不等于1。
当r等于1时,等比数列变为等差数列,此时前n项和的公式为$S_n = n \cdot a_1$。
因此,等差数列的求和公式和等比数列的求和公式是不同的。
总结:等比数列的求和公式为$S = \frac{{a_1(1-r^n)}}{{1-r}}$,其中$a_1$为首项,r为公比,n为项数。
等比数列通项公式和前n项和公式
等比数列通项公式和前n项和公式等比数列是指数列中相邻两项的比值都相等的数列。
设等比数列的首项为a,公比为r,则其通项公式为:an = a * r^(n-1),其中n 为项数。
在等比数列中,前n项和的公式为:Sn = a * (1 - r^n) / (1 - r)。
英文:Geometric progression is a sequence in which the ratio of any two consecutive terms is the same. Let the first term of the geometric sequence be a, and the common ratio be r, then its general term formula is: an = a * r^(n-1), where n is the number of terms. In a geometric sequence, the formula for the sum of the first n terms is: Sn = a * (1 - r^n) / (1 - r).等比数列通项公式an= a1 * q^(n-1),其中q为公比。
英文:The general term formula of a geometric sequence is an=a1 * q^(n-1), where q is the common ratio.在等比数列中,首项为a1,通项公式为:an= a1*q^(n-1)。
其中an表示第n项,q为公比。
英文:In a geometric sequence, the first term is a1 and the general term formula is: an= a1*q^(n-1). Where an represents the nth term, and q is the common ratio.当公比小于1时,等比数列是一个收敛的数列。
等比数列的前n项和知识点总结
等比数列的前n 项和知识点总结一.等比数列的前n项和公式1.注意:(1)公式的推导方法是错位相减法,即先求前n项和,然后把等式的两边同乘以等比数列的公比,最后等式的左边减左边,右边第一个等式的第一项轮空,第二项减去第二个等式的第一项,第一个等式的第三项减去第二个等式的第二项,依次减下去,第一个等式中的最后一项减去第二个等式的倒数第二项,第二个等式的最后一项变成原来的相反数(2)在求等比数列的前n项和时,一定要讨论公比q是否能为12.公式的变形3.等比数列的前n 项和的性质:(1)若项数为()*2n n ∈N ,则S q S =偶奇. (2)n n m n m S S q S +=+⋅.(3)n S ,2n n S S -,32n n S S -成等比数列(注:当q=-1时,n不能为偶数) 4.已知数列{}n a 的前n项和求通项公式n a 的方法二跟踪练习1. 在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为A.513 B.512 C.510 D.8225 2.已知数列的12++=n n S n ,则12111098a a a a a ++++=__________3.等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n -1,则 a 12+a 22+a 32+…+a n 2等于A .2)12(-nB .)12(31-nC .14-nD .)14(31-n 4.8.数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为A. 2n -n -1B. 2n +1-n -2C. 2nD. 2n +1-n5.已知数列{}n a 的通项公式为nn n a 2=,则该数列的前n 项的和为 A. 242n n +- B. 22n n + C. 222n n +- D. 1242n n ++- 6.已知等比数列{}n a 中,33139=,,22a S a q =求和 7.如果一个等比数列的前5项的和等于10,前10项的和等于50,求它的前15项的和等于多少?8.求和:21+2+3++x x …-1n nx9.已知}{n a 是等差数列,其前n 项和为S n ,已知,153,1193==S a(1)求数列}{n a 的通项公式;(2)设n n b a 2log =,证明}{n b 是等比数列,并求其前n 项和T n .。
求数列前n项和的几种方法
n≤6 . n≥7
如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和 法求和.
七、奇偶分析法求和 【例 8】 已知{an}是由非负整数组成的数列,满足 a1=0,a2=3,an+1· an=(an-1+2)(an -2+2), n=3,4,5… . (1)求 a3; (2)若 an=an-2+2,n=3,4,5,…,求{an}的通项公式及其前 n 项和 Sn.
综上可知,T = n -11n+60 4
n 2
n11-n 4
n≤6 . n≥7
1 n 6-n 法二:bn=3+log4( )n=3- = . 2 2 2 当 n≤6 时,bn≥0,|bn|=bn, n11-n ∴Tn=b1+b2+…+bn= . 4 当 n≥7 时,bn<0,|bn|=-bn, ∴Tn=b1+b2+…+b6-b7-b8-…-bn =2(b1+b2+…+b6)-(b1+b2+…+bn) n2-11n+60 =2T6-Sn′= ,(其中 Sn′表示{bn}的前 n 项和) 4 n11-n 4 综上可知:T = n -11n+60 4
(2)当 n=2k(k∈N*)时, - S2k=1-3+5-7+9-11+…+(-1)2k 1(4k-1) =(1-3)+(5-7)+(9-11)+…+[(4k-3)-(4k-1)] =-2k; 当 n=2k-1(k∈N*)时, S2k-1=(1-3)+(5-7)+(9-11)+…+[(4k-7)-(4k-5)]+(4k-3) =(-2)+(-2)+…+(-2 - 个+4k-3
1 n 6-n (2)法一:bn=3+log4( )n=3- = . 2 2 2 当 n≤6 时,bn≥0,Tn=b1+b2+…+bn= n11-n ; 4
等差数列等比数列前n项和
(1) 等差数列的通项公式: 已知首项a1和公差d,则有: an=a1+ (n-1) d 已知第m项am 、第n项an和公差d, 则有: an-am= (n-m) d, (2) 等差数列的性质: 在等差数列﹛an﹜中,如果m+n=l+k (m,n,l,k∈N),那么: an+am=al+ak
(1)a3= -2,a8=12,求S10
(2)a1=14.5,d=0.7,an=32,求Sn
解:(1)a1+a10 = a3+a8 = 10
(a1 a10 ) 10 10 10 S10 50 2 2
(2)由等差数列的通项公式,得 14.5+(n1)0.7=32 n=26
)
1 y2
…… ( x n
1 yn
) ( x 0, x 1, y 1)
1 yn
解:当 x 0, x 1, y 1 时
(x ) (x
) …… ( x
n
1 y2
)
1 yn
( x x 2 …… + x n ) ( 1 y
1 1 (1 n ) n y x(1 x ) y 1 1 x 1 y
n(n 1) 10 n 4 54 2
n 2 6n 27 0
n19,n23 (舍去)
等差数列-10,-6,-2,2,…前9项的和是54。
3.一个项数为36的数列的前四项和是21,后四
项和是67,求这个数列的和。
21 67 解: a1 an 22 4
S 26 (14.5 32) 26 6 0 45 . 2
例3: 已知等差数列an中a2+a5+a12+a15=36. 求前16项的和? 分析:可以由等差数列性质,直接代入前n 项和公式
等比数列的前n项和
等比数列的前n项和等比数列的前n项和是指将等比数列的前n项相加的结果。
在计算等比数列的前n项和时,首先需要知道等比数列的首项a,以及公比r。
然后使用以下公式进行计算:S_n = a * (1 - r^n) / (1 - r)其中,S_n表示等比数列的前n项和。
下面将详细介绍如何计算等比数列的前n项和,并通过例子进行说明。
例1:计算等比数列1,3,9,27,81的前4项和。
首先确定等比数列的首项a为1,公比r为3。
根据前述公式,将a、r和n代入计算即可。
S_4 = 1 * (1 - 3^4) / (1 - 3)= 1 * (-80) / (-2)= 40因此,等比数列1,3,9,27,81的前4项和为40。
例2:计算等比数列2,-4,8,-16,32的前5项和。
首先确定等比数列的首项a为2,公比r为-2。
同样,根据前述公式计算即可。
S_5 = 2 * (1 - (-2)^5) / (1 - (-2))= 2 * (1 - 32) / 3= -60因此,等比数列2,-4,8,-16,32的前5项和为-60。
通过上述两个例子可以看出,计算等比数列的前n项和只需要知道首项a和公比r,并应用相应的公式即可。
这种方法适用于任意等比数列的前n项和的计算。
另外,有时候我们也可以通过简单的推导,直接得到等比数列的前n项和的公式。
下面就利用推导的方法给出一个更通用的等比数列前n 项和公式。
设等比数列的首项为a,公比为r,前n项和为S_n。
根据等比数列的性质,第n项可以表示为:a * r^(n-1)。
我们可以构造一个等比数列,它的首项为a,公比为r,共有n项。
用它减去首项之前的n-1项和,可以得到前n项和S_n:S_n = a + a * r + a * r^2 + ... + a * r^(n-2) + a * r^(n-1)r * S_n = a * r + a * r^2 + a * r^3 + ... + a * r^(n-1) + a * r^n两式相减,得到:S_n - r * S_n = a - a * r^n(1 - r) * S_n = a * (1 - r^n)S_n = a * (1 - r^n) / (1 - r)通过这个公式,我们可以快速计算等比数列的前n项和,而不需要逐项相加。
等比数列的前n项和知识点总结
等比数列的前n 项和知识点总结一.等比数列的前n项和公式1.()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩ 注意:(1)公式的推导方法是错位相减法,即先求前n项和,然后把等式的两边同乘以等比数列的公比,最后等式的左边减左边,右边第一个等式的第一项轮空,第二项减去第二个等式的第一项,第一个等式的第三项减去第二个等式的第二项,依次减下去,第一个等式中的最后一项减去第二个等式的倒数第二项,第二个等式的最后一项变成原来的相反数(2)在求等比数列的前n项和时,一定要讨论公比q是否能为12.公式的变形11=-(1)1-1-qn n a a S q q q ≠ 3.等比数列的前n 项和的性质:(1)若项数为()*2n n ∈N ,则S q S =偶奇. (2)n n m n m S S q S +=+⋅.(3)n S ,2n n S S -,32n n S S -成等比数列(注:当q=-1时,n不能为偶数) 4.已知数列{}n a 的前n项和求通项公式n a 的方法1-1(=1)=-(>1)n n n a n a S S n ⎧⎨⎩ 二跟踪练习1. 在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为A.513 B.512 C.510 D.8225 2.已知数列的12++=n n S n ,则12111098a a a a a ++++=__________3.等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n -1,则 a 12+a 22+a 32+…+a n 2等于A .2)12(-nB .)12(31-n C .14-n D . )14(31-n 4.8.数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为A. 2n -n -1B. 2n +1-n -2C. 2nD. 2n +1-n5.已知数列{}n a 的通项公式为nn n a 2=,则该数列的前n 项的和为 A. 242n n +- B. 22n n + C. 222n n +- D. 1242n n ++- 6.已知等比数列{}n a 中,33139=,,22a S a q =求和7.如果一个等比数列的前5项的和等于10,前10项的和等于50,求它的前15项的和等于多少?8.求和:21+2+3++x x …-1n nx9.已知}{n a 是等差数列,其前n 项和为S n ,已知,153,1193==S a(1)求数列}{n a 的通项公式;(2)设n n b a 2log =,证明}{n b 是等比数列,并求其前n 项和T n .。
等比数列前n项和公式推导
记数列{an}为等比数列,公比为q,其前n项和为Sn,则有:(1)公比q=1时,Sn=.
(2)公比q≠1时,Sn==。
如下图所示。
等比数列的前n项和公式
一、等比数列定义
如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列(geometric progression)。
这个常数叫做等比数列的公比(common ratio)。
二、推导过程
因为当等比数列的公比等于1和公比不等于1的前n项和公式不同,所以,求一个等比数列的前n项时常常需要分“公比为1”和“公比不为1”两种情况分类讨论。
1、当“公比为1”时,前n项和公式的推导过程如下图所示。
公比为1的前n项和公式推导过程
2、当“公比不为1”时,前n项和公式的推导过程如下图所示。
公比不为1的前n项和公式推导过程
三、注意事项&知识点小结
因为等比数列求和公式中,公比等于1和公比不等于1的前n项和所适用的求和公式不同,所以求等比数列的前n项和时,往往需要对其公比是否等于1进行分类讨论。
等比数列的前n项和公式
等比数列的前n项和公式等比数列是指一个数列中每一项与前一项的比值相等,可以表示为$a_1,a_1q,a_1q^2,\\ldots,a_1q^{n-1}$。
其中,$a_1$为该数列的首项,$q$为该数列的公比。
等比数列的前$n$项和可以表示为$S_n=a_1\\frac{1-q^n}{1-q}$。
下面对等比数列的前$n$项和公式进行推导。
假设等比数列的首项为$a_1$,公比为$q$,前$n$项和为$S_n$。
根据等比数列的定义,有:$a_1,a_1q,a_1q^2,\\ldots,a_1q^{n-1}$将每一项乘以公比$q$,得:$a_1q,a_1q^2,a_1q^3,\\ldots,a_1q^{n}$将两个数列相减,有:$a_1(1-q),a_1q(1-q),a_1q^2(1-q),\\ldots,a_1q^{n-1}(1-q),a_1q^n$可以看出,第一个数$a_1(1-q)$是公比数列中的差,因此可以通过求和来得到:$a_1(1-q)+a_1q(1-q)+a_1q^2(1-q)+\\ldots+a_1q^{n-1}(1-q)+a_1q^n$ 整理得到:$a_1(1-q)+a_1q(1-q)+a_1q^2(1-q)+\\ldots+a_1q^{n-1}(1-q)+a_1q^n$ $=a_1(1-q+q-q^2+\\ldots+q^{n-1}-q^n)+a_1q^n$$=a_1\\frac{1-q^n}{1-q}+a_1q^n$$=a_1\\frac{1-q^n}{1-q}+a_1q\\frac{q^n-1}{q-1}$$=a_1\\frac{1-q^n}{1-q}+a_1\\frac{q^{n}-q}{q-1}$$=a_1\\frac{1-q^n+q^{n}-q}{1-q}$$=a_1\\frac{q^n-1}{q-1}$因此,等比数列的前$n$项和公式为$S_n=a_1\\frac{q^n-1}{q-1}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列和等比数列的前n 项和
1.12+与12-两数的等比中项是( )
A .1
B .1-
C .1±
D .
2
1 2.已知{}n a 是等比数列,4
1252==a a ,,则公比q = (A )21- (B )2- (C )2 (D )21 3.已知数列{}n a 的前n 项和1n n S a =-(a 是不为0的常数),那么数列{}n a ( ) A.一定是等差数列 B.一定是等比数列
C.或者是等差数列或者是等比数列 D.既不是等差数列也不是等比数列
4.在等比数列{}n a 中,201020078a a = ,则公比q 的值为( )
A. 2
B. 3
C. 4
D. 8
5.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则
52S S =( ) (A )11 (B )5 (C )8- (D )11-
6.设{}n a 是由正数组成的等比数列,公比2q =,且30123302a a a a ⋅⋅⋅⋅= ,那么36930a a a a ⋅⋅⋅⋅ 等于( )
A.102 B.202 C.162 D.152
7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a ++
+=( )
A .12
B .10
C .31log 5+
D .32log 5+
8.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )
A .4-
B .6-
C .8-
D .10-
9.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( )
(A )3 (B )4 (C )5 (D )6 10.已知一等比数列的前三项依次为33,22,++x x x ,那么2
113
-是此数列的第( )项 A .2 B .4 C .6 D .8 11.已知数列2
,(1),(1),a a a a a -- 是等比数列,则实数a 的取值范围是( )
A.1a ≠ B.0a ≠或1a ≠ C.0a ≠ D.0a ≠且1a ≠
12.若等比数列{}n a 的前n 项和3n n S a =+,则a 等于( )
A.-4 B.-2 C.0 D.-1
13.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )
A .81
B .120
C .168
D .192
14.已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =( )
(A) (B) 7 (C) 6
(D) 15.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }前7项的和为( )
A.63
B.64
C.127
D.128
16.设{a n }是由正数组成的等比数列,n S 为其前n 项和。
已知a 2a 4=1, 37S =,则5S =( )
(A )152 (B)314 (C)334
(D)172 17.在等比数列{}n a 中,92a =-,则此数列前17项之积等于( )
A.162 B.162- C.172 D.172-
18.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42
S a =( ) A. 2 B. 4 C. 152 D.
172 19.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513 B .512 C .510 D .
8225 20.已知{}n a 是等比数列,4
1252==a a ,,则13221++++n n a a a a a a = ( ) (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )3
32(n --21) 21.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是( )
(A)(]
,1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞(D)(][),13,-∞-+∞ 22.在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,
tan B 是以13
为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对
23.已知等比数列{}n a 中,3103,384a a ==,则该数列的通项______n a =.
24.在等比数列{}n a 中,已知7125a a =,则891011____a a a a =.
25.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.
26.在等比数列{}n a 中, 若101,a a 是方程06232
=--x x 的两根,则47a a ⋅=___________. 27.已知等比数列{}n a 中,3103,384a a ==,则此数列的通项______n a =.
28.等比数列{}n a 前n 项的和为21n -,则数列{}
2n a 前n 项的和为______________。
29.在等比数列{}n a 中,公比21222102,log log log 25q a a a =+++= ,则
1210
______a a a +++= . 30.一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,此数列的公比为_____,项数为_____。
31.在等比数列{}n a ,1231233,8a a a a a a ++=-=,⑴求通项公式;⑵求13579a a a a a ⋅⋅⋅⋅.
32.设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q
答案:
23. 24.25.26.27.28.29.30.31.32.。