电路原理双语课件

合集下载

电路原理ppt课件

电路原理ppt课件
在参考方向选定后,电流(或电压) 值才有正负之分。 对任何电路分析时都应先指定各处的 i , u 的参考方向。 例:
I
a
R
b
若 I = 5A ,则实际方向与参考方向一致, 若 I =-5A ,则实际方向与参考方向相反。
16
R
5、关联参考方向: i
+

u
-
当电压的参考方向指定后,指定电流从标以电压参考 方向的“+”极性端流入,并从标“—”端流出,即电流
i +
R
i – +
R
u
u = Ri
u
u = –Ri

19
1.3电功率和能量
1. 电功率
单位时间内电场力所做的功。
dw p dt
dw u dq
dq i dt
dw dw dq p ui dt dq dt
w

t
t0
u ( )i ( )d
(Watt,瓦特) (Joule,焦耳)
20
的参考方向与电压的参考方向一致,也称电流和电压
为关联参考方向。反之为非关联参考方向。
17

i

A U B
电压电流参考方向如图中所标, 问:对A、两部分电路电压电流参考方向 关联否? 答: A 电压、电流参考方向非关联;
B 电压、电流参考方向关联。

18
小结:
(1) 分析电路前必须选定电压和电流的参考方向。 (2) 参考方向一经选定,必须在图中相应位置标注 (包括方 向和符号),在计算过程中不得任意改变。 (3) 参考方向不同时,其表达式符号也不同,但实际方向不变。

P4吸 U 4 I 2 (4) 1 4W(实际发出)

电路原理【PPT课件】

电路原理【PPT课件】
第叠4加章定电理路定理
5
复习
+
导课
10V
I 5
2A
新课

例题
又加
练习
一个
一个
电源
电源
仿真
总结
I 10 1A I ?
作业
55
1
叠加定理
叠加定理内容
复习
当线性电路中有几个电源共同作用时,各支路的电
导课
流(或电压)等于各个电源分别单独作用时在该支路产生
新课
的电流(或电压)的代数和(叠加)。
例题
电源
练习–总结1 Nhomakorabea作业
i 5 2 1A
11
55
5
5
2A
(3)共同作用: i i i 1 1 2 A
练习 计算图示电路的电压 u 。
3A
u'
u' (6/3 /1)39V
i'' (612)/(63)2A u'' 6i'' 6218V
uu ' u '' 9 8 1 7 V
u ''
i ''
叠加定理
复习 导课 新课 例题 练习 仿真 总结 作业
仿真 总结 作业
单独工作
不工作的电源
电压源短路
电流源开路
I I I I I I I
线性电路
参考方向
叠加定理
例1. 求图中电流 i。 5
复习
(1) 10V电压源单独作用
+
10V
时,2A电流源开路

导课
5
2A
新解课: i 10 1A

电路(英文版)第一章ppt课件

电路(英文版)第一章ppt课件

② If use Non-Passive sign convention, the relation will be minus;
③Indicate the resistor have no memory,and symmetrical at two terminal。 i R
Ohm’s law
u
+
Practise Calculate the power of every part.
Solve
i iS 2A
+
5V u
u 5V
P A iS u 2 5 10 W 2
P V uS i 5 (2) 10 W 5
-
release release
P(发)=P(吸)
2. Fuel Cell(燃料电池)
电池电动势1.23V。以氢、氧作为燃料。约40-45%的化学能 转变为电能。实验阶段加燃料可继续工作。
氢氧燃料电池示意图
3. Solar Cell (太阳能电池)
一块太阳能电池电动势0.6V。太阳光照射到P-N结上, 形成一个从N区流向P区的电流。约 11%的光能转变为电 能,故常用太阳能电池板。 一个50cm2太阳能电池的电动势0.6V,电流0.1A
u
iS
0 i

Direct Current
+
u
iS
R
u RiS
u0
( R 0)
Resitor
u ( R )
Current source can’t be opend!
返 回
上 页
下 页
Actual Current soruce: 可由稳流电子设备产生,如晶体管的集电极 电流与负载无关;光电池在一定光线照射下光电 子被激发产生一定值的电流等。

电路原理课件讲义英文版 Chapter_4

电路原理课件讲义英文版 Chapter_4

2. 3.
Assignment
1. Solve the problems 4.7, 4.19, 4.34 in pages 155-158
2.
Steps to Apply Superposition Principle:
1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis. Repeat step 1 for each of the other independent sources. Find the total contribution by adding algebraically all the contributions due to the independent sources.
4.3 Superposition (迭加)
Superposition is based on linearity
The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone
电路原理课件讲义英文版chapter4
Chapter 4 Circuit Theorems

《电路原理》PPT课件

《电路原理》PPT课件

a
+ E
I2

R2
IS
R1
I1
在左图电路中只含有两个节 点,若设 b 为参考节点,则电路 I3 中只有一个未知的节点电压。
R3
b
(1) 选定参考节点,标明其余n-1
iS2
个独立节点的电压
(2) 列KCL方程:
i1+i2=iS1+iS2
-i2+i4+i3=0 -i3+i5=-iS2
1 i2 R2
i3 R3
i3 3A,
当电路中含理想电流源支路时
例:试求各支路电流。
a
c
支路中含有恒流源。
+ 42V –
12
6 I1
I2 7A
I3 3
(1) 只让一个b 回路电流经d过恒流源支路,该回路电流值为恒流源值。
(2) 把电流源的电压作为变量,增补电流源电流与回路电流之间的约束方程。
(3) 电流源的转移法。
例:用回路法试求各支路电流。
i3 6 - 18 - 6i3 18- 1 1)i3 25 - 6
2
整理为:
-52i1i1-+21i21i-2
i3 -
-12 6i3 6
- i1 - 6i2 + 10i3 19
解得:
i1 -1A, i2 2A, i4 i3 - i1 4A i5 i1 - i2 -3A i6 i3 - i2 1A
+
U1
_
2. 3 节点电压法(node-voltage
节点电压的概念:
method)
任选电路中某一节点为零电位参考点,其他各节点对参考点的电压,称为节点电 压。 节点电压的参考方向从节点指向参考节点。

电路原理课件讲义英文版 Chapter_2汇总

电路原理课件讲义英文版 Chapter_2汇总
Alternative form of KCL:
The sum of the currents entering a node is equal to the sum of the currents leaving the node.
Case 2 (closed boundary)
Generalized: a node may be regarded as a closed surface shrunk to a point. Two dimension: a closed boundary is the same as a closed path.
In general
Potentiometer
Linear resistor: obey Ohm’s Law.
Slope R
Nonlinear resistor: does not obey Ohm’s Law.
Slope R
Conductance is the ability of an element to conduct
2.1 Introduction
To actually determine the values of these variables in a given circuit requires that we understand some fundamental laws that govern electric circuits. Basic Laws: Ohm’s Law Kirchhoff’s Law
KCL:
KCL states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

UPS电路原理简介ppt课件

UPS电路原理简介ppt课件

重绿色环保和可持续发展,推动清洁能源的广泛应用。
THANKS
感谢观看
问题诊断
通过观察电池外观、测量电池电压和内阻等方法 ,可以判断电池是否老化或充电不足。
维修注意事项及操作规范
维修前准备
在进行UPS维修前,应断开输 入、输出开关,并确保负载已
安全卸载。
维修工具与材料
准备必要的维修工具和材料, 如万用表、螺丝刀、导线等。
维修步骤与规范
按照维修手册或厂家提供的指 导进行维修,遵循安全操作规 程,确保维修过程的安全和有 效性。
绝缘与接地
UPS的输入输出端应具备良好的绝 缘性能,接地措施应符合安全规范 ,以确保人身安全和设备安全。
04
常见故障诊断与排除方法
BIG DATA EMPOWERS TO CREATE A NEW
ERA
过载、短路等故障现象及原因
过载故障
当负载超过UPS的额定功 率时,UPS会进入过载保 护状态,可能导致输出电 压降低或输出中断。
稳压电路作用
当输入电压或负载发生变化时,能够 自动调节输出电压,保持输出电压稳 定不变。
滤波电路类型
电容滤波、电感滤波、LC滤波等,其 中LC滤波具有滤波效果好、输出电压 稳定等优点,被广泛应用于UPS电路 中。
稳压电路类型
线性稳压、开关稳压等,其中开关稳 压具有效率高、体积小等优点,被广 泛应用于UPS电路中。
学员心得体会分享
知识体系建立
通过本次课程,学员们对UPS电路的原理和设计有了系统性的认 识,建立了完整的知识体系。
实践能力提升
课程中结合实例进行讲解,使学员们能够将理论知识与实践相结合 ,提高了分析和解决问题的能力。
团队协作意识增强

电路原理绪论PPT课件

电路原理绪论PPT课件

国内习惯的归类与统称
各学科领域
国外习惯的归类与统 称
电气工程
电力工程
控制工程
通信工程
电气工程
信息科学与技术
电子工程
(或电子信息科学与技术)
……
计算机科学与技术
计算机科学 计算机工程
统称:电气工程与信息科学 统称:电气工程与计算机科学
(或电气电子信息科学)
(简称EECS、ECE)
四、电路都有哪些作用?
• 处理能量
– 电能的产生、传输、分配……
• 处理信号
– 电信号的获得、变换、放大……
五、电路原理的后续课程
电路原理
信号与系统
模拟电子线路
电力电子技术
(关注大功率)
通信电路
(关注高频段)
数字电子线路
微电子技术
(集成芯片设计)
公共 基础
专门 技术
电力系统
控制系统
通信系统
信号处理系统* 计算机系统
(能量传输与处理)(信号反馈与处理) (信号传输与处理)
x 1
T
x(t) dt
T0
返回目录
1.5 电路用于能量处理
一、 功率(power) 单位时间内电场力所做的功。
p dw , u dw , i dq
dt
dq
dt
p dw dw dq ui dt dq dt
功率的单位名称:瓦[特] 符号:W (Watt, 瓦特; 1736 –1819 , British) 能量的单位名称: 焦[耳] 符号:J (Joule,焦耳; 1818 – 1889, British)

I 10V
A I1
10
B I2
电路中电流 I 的大小为1A, 其方向为从A流向B。 (此为电流的实际方向)

电路原理PPT

电路原理PPT

Uab= a–b Ubc= b–c
a = b +Uab = 1.5 V c = b –Ubc = –1.5 V
Uac= a–c = 1.5 –(–1.5) = 3 V
结论:电路中电位参考点可任意选择;当选择不同
的电位参考时,电路中各点电位均不同,但任 意两点间电压保持不变。
思考:
1、为什么在分析电路时,必须规定电流和电压的参考方向?
(b) 实际电路中有些电流是交变的,无法标出实际方 向。标出参考方向,再加上与之配合的表达式, 才能表示出电流的大小和实际方向。
任意假定其中一个方向作为电流的方向,这个 方向就叫电流的参考方向。
参考方向 i
A
B
电流的参考方向与 实际方向的关系:
i
参考方向
i>0
A
B
实际方向
i
参考方向
A
B
i<0
实际方向
(1) 用箭头表示: 箭头指向为电压(降)的参考方向
U U
(2) 用正负极性表示:
由正极指向负极的方向为电压 (降低)的参考方向
(3) 用双下标表示:
如 UAB , 由A指向B的方向为电压 (降)的 参考方向
UAB
A
B
四、电位:
电路中为分析的方便,常在电路中选某一点为参考 点,把任一点到参考点的电压称为该点的电位。
2、参考方向与实际方向有什么关系?
例:
i Im sint
2 T
i
Im T 2
t
T
i 5A
i 5A
i
参考方向
A
B
0~T i0 2
T ~T i0 2
i0
t
小结:

《电路原理》双语教学大纲(英文版)

《电路原理》双语教学大纲(英文版)

Teaching ProgramCourse Code: 101C0040Course Name: Electric Circuits (Ⅰ)Weekly Hours: 4.0-0 Credits: 4.0Teaching Goal and Basic Requirements:This course introduces the principles of circuits and their role in electrical engineering, then introduces and demonstrates the power of the fundamental circuit laws and analysis methods. This is followed by an introduction to the principle of operational amplifier properties and operational amplifier circuits. The properties and applications of reactive circuit elements are introduced along with first and second order circuits. The basics of AC circuit analysis follow, the course will show how the sinusoidal steady state problem can be solved using phasor analysis. Students are prepared to analyze circuit properties with these tools and methods for each circuit type using both manual methods and PSpice tools.Content of Courses & Hours Allocation:Autumn QuarterWeek 1: Introduction; Chapter 1-- Basic concepts;Week 2: Chapter 2-- Basic laws; Chapter 3--Nodal analysis;Week 3: Chapter 3--Mesh analysis; Chapter 4--Linearity property, superposition, source transformation;Week 4: National Holiday;Week 5: Chapter 4--Thevenin’s theorem, Norton’s theorem, Maximum power transfer;Week 6: Chapter 5--Operational amplifiers; Quiz 1;Week 7: Chapter 6--Capacitors and inductors; Chapter 7--First-order circuits: Source-free circuit;Week 8: Chapter 7--Step response; Chapter 8--Second-order circuits;Week 9: Chapter 9--Sinusoids and phasors;Winter QuarterWeek 1: Chapter 10--Sinusoidal steady-state analysis; Quiz 2;Week 2: Circuit analysis with Pspice; Lab exercise--Circuit analysis with Pspice;Week 3: Chapter 11--AC power analysis: Effective or RMS value, Power factor;Week 4: Chapter 12--Three-phase circuits; Power in a system;Week 5: Chapter 13--Magnetically coupled circuits: Mutual inductance; Linear transformers, Ideal autotransformers;Week 6: Chapter 14--Frequency response: Transfer function, Resonance; Quiz 3;Week 7: New Year Holiday; Chapter 14--Passive filters; Circuit applications;Week 8: Chapter 16--The Fourier series: Average and RMS value; Review;Week 9: Review;Teaching Plan:The course grade is calculated based on:Homework 10%, Quiz 30% (two top scores from 3 quiz, 15% each), PSpice Assignment 5%, Final Exam: 55%Homework will be given full credit if the work is completed and the solutions understandable.Recommended Textbooks and Other References: (books, editors, publishing company,publishing time)1.Fundamentals of Electric Circuits,Charles K. Alexander, Matthew N.O. Sadiku,McGraw-Hill Companies Inc,2000.122.PSpice and MATLAB for Electric Circuit Analysis,Tong Mei,Machine Industry Press,2005.73.Principles of Electric Circuits,Fan Chengzhi,Sun Dun,Tong Mei,Machine Industry Press,2005.74.Electric Circuits (Four Edition),Qiu Guanyuan,High Education Press,1999.65.Electric Circuits (Six Edition),James W. Nilsson, Susan A. Riedel, Publishing House of Electronics Industry,2002.6Teaching ProgramCourse Code: 101C0050Course Name: Electric Circuits (II)Weekly Hours: 4.0-0 Credits: 2.0Teaching Goal and Basic Requirements:Transient response analysis, network functions, poles and zeros; solution of network equations using Laplace transforms, inverse transforms, convolution integral, two-port networks. Matrix formulation of circuit equations, nodal Analysis and mesh analysis. Introduction of distributed circuits, distributed circuits of finite length, traveling wave, lossless transmission line of finite length. Analysis of nonlinear circuits, linearized circuit models, small signal analysis. Circuit analysis with MATLAB.Content of Courses & Hours Allocation:Spring QuarterWeek 1: Chapter 15--Definition of Laplace transform; Properties of the Laplace transform; The inverse Laplace transform; Application to circuits; Transfer function;Week 2: The convolution integral; Network function and step response;Week 3: State variables and state equations; Circuit analysis with MATLAB;Week 4: Chapter 18--Two-port networks; Supplement 1: Matrix equations for network--Nodal Analysis;Week 5: Supplement 1: Matrix equations for network--Mesh Analysis;Week 6: Supplement 2: Distributed Circuits--Introduction, distributed circuits of finite length;Week 7: Supplement 2: Traveling wave; Lossless transmission line of finite length; Circuit analysis with MATLAB; Midterm exam;Week 8: Supplement 3: Simple nonlinear circuits--Introduction, Nonlinear resistor circuits, Small signal analysis; Review;Week 9: Review;Teaching Plan:The course grade is calculated based on:Homework 10%, Quiz 5%, Midterm 15%, MATLAB Assignment 10%, Final Exam 60%Homework will be given full credit if the work is completed and the solutions understandable.Recommended Textbooks and Other References: (books, editors, publishing company,publishing time)1.Fundamentals of Electric Circuits,Charles K. Alexander, Matthew N.O. Sadiku,McGraw-Hill Companies Inc,2000.122.Principles of Electric Circuits,Fan Chengzhi, Sun Dun, Tong Mei,Machine Industry Press,2004.73.PSpice and MATLAB for Electric Circuit Analysis,Tong Mei,Machine Industry Press,2005.74.Electric Circuits (Four Edition),Qiu Guanyuan,High Education Press,1999.65.Electric Circuits (Six Edition),James W. Nilsson, Susan A. Riedel, Publishing House of Electronics Industry,2002.6。

电路原理课件讲义英文版 Chapter_2

电路原理课件讲义英文版 Chapter_2
Resistor: the circuit element used to model the current-resisting behavior of a material (Simplest passive element)
Ohm’s Law:
Ohm’s Law states that the voltage v across a resistor is directly proportional to the current i flowing through the resistor
2.4 Kirchhoff’s Laws
KCL: Kirchhoff’s Current Law (based on the law of
conservation of charge)
KVL: Kirchhoff’s Voltage Law (based on the principle of
conservation of energy)
i1 i2 (i3 ) (i4 ) (i5 ) 0 or i1 i2 i3 i4 i5
i1 i5
Closed Boundary
i4
i3 i2
Application of KCL
Series of current sources : a circuit cannot contain two different currents, I1 and I2, in series, unless I1= I2; otherwise, KCL will be violated Parallel of current sources: the combined current is the algebraic sum of the current supplied by the individual sources.

电路理论英文版课件Chapter 1

电路理论英文版课件Chapter 1

Preface•Place of Electrical Circuits in Modern Technology IntroductionThe design of the circuits has 2 main objectives:1)To gather,store,process,transport,and present information.2)To distribute and convert energy between various forms.The study of circuits provides a foundation for areas of electrical engineering such as:•Communication system •Computer system •Control system •Electronics •Electromagnetic •Power systems •Signal processing•Motivation for doing this course •About the courseCircuit TheoryCircuit AnalysisCircuit Synthesis Circuits(given)Excitation (given)Response(unknown)Circuit AnalysisWhat we emphasize on,Since it provides the foundation forunderstanding the interaction of signalsolution.Circuits(unknown)Excitation (given)Response(given)Circuit synthesis(design)In contrast to analysis,a design problem may have nosolution or several solutions,Resistance circuits analysisDynamic circuits analysisSinusoidal steady stateThe course includes3parts:•Reference Books1)Fundamentals of Electric Circuits Charles K Alexander,Matthew N O Sadiku清华大学出版社2)The Analysis and Design of Linear Circuits Roland E.Thomas,Albert J.Rosa—2nd ed3)Electrical Engineering Principles and Applications Allan R.Hambley---2nd ed4)电路分析基础李瀚荪第三版5)电路邱关源第四版6)Electric Circuits Joseph Edminister,Mahmood Nahvi-----3rd edChapter 1 Fundamental KnowledgeCircuit and circuit model•Actual electrical component:a battery or a lightbulbActual electrical componentIdeal circuitcomponentEmphasize the main characterNeglect the left character•Ideal circuit component: amathematical model of an actualelectric component.R1VsRsCircuit model:A commonly used mathematical model for electric system.Lumped elements Lumped circuiti2-V+i1i1=i2V is certain Actual scale of the circuit is much smaller than the wavelength relating to the running frequency of the circuit.Circuit Type:•Linear----Nonlinear•Time invariant----Time variant •Passive----Active•Lumped----DistributiveCircuit Variablesdtdq i n Electric current is the time rate of change of charge, measured in amperes (A).A direct current (DC)is a current thatremains constant with time. (I)An alternating current (AC)is a current that varies sinusoidally with time.SortReference directioni >0 means the real direction isisame to the reference directioni <0 means the real direction isopposite to the reference directionCircuit VariablesVoltage (or potential difference) is the energy required to move a unit charge through an element, measured in volts(V). dqdw v Reference direction or voltage polarity -V +V>0 means the real polarity is sameto the reference polarity V<0 means the real polarity isopposite to the reference polaritypassive sign convention -V +iPassive sign convention is satisfied when current enters through the positive polarity of the voltage.Unless otherwise stated, we will follow thepassive sign convention throughout this course.Circuit VariablesPower is the time rate of expending or absorbing energy. Measured in watts(W)dtdw p =vi dtdq v dt dw p vdq dw ===∴= P=VI in a DC circuitusing passive signconvention Power absorbed = -Power suppliedReference polarities for power using passive sign conventionP > 0 absorbing powerP < 0 releasing or supplyingpowerExamplesLaw of conservation of energy must be obeyed in any electric circuit.∑=0p Power absorbed = -Power suppliedEnergy is the capacity to do work, measured in joules(J) ⎰⎰==t t tt vidt pdt w 00The energy absorbed or supplied by an element from time t0 to time t isCircuit ElementsPassive elements:resistors,capacitors,and inductorsActive elements:source,operational amplifiersVoltage and Current SourcesThe most important active elements are voltage or current sources that generally deliver power to the circuit connected to them. There are two kinds of sources: independent and dependent sources.An ideal independent source is an active element that provides a specified voltage or current that is completely independent of other circuit variables.Symbols for independent voltage source Symbols for independent voltage sourceNote:▪ 2 or more voltage sources with different value are not permissible to be connected in parallel▪ 2 or more current sources with different value are not permissible to be connected in series▪V oltage sources connected in series is equivalent to one voltage source▪Current sources connected in parallel is equivalent to one current source▪ A voltage source connected to any branch in parallel is equivalent to itself▪ A current source connected to any branch in series is equivalent to itselfAn ideal dependent(or controlled)source is an active element in which the source quantity is controlled by another voltage or current.Symbols for a) dependent voltage sources b) dependent current sources There are a total of fourvariations, namely:1.A voltage –controlled voltagesource (VCVS)2. A current –controlled voltagesource (CCVS)3. A voltage –controlled currentsource (VCCS)4. A current –controlled currentsource (CCCS)V1V1μVCVSV1V1g VCCS I1I1αCCCS I1V1γI1CCVSWhat is the difference between independent and dependent sources?ResistorsThe circuit element used to model the current –resisting behavior of a material is the resistor.Resistance is the capacity of materials to impede the flow of current.The resistance R of an element denotes its ability to resist the flowof electric current;it is measured in ohms(Ω)Symbol: R11ki u i ut1t2ui i u i ut1t2uiLinear Time InvariantLinear Time variant Nonlinear Time Invariant Nonlinear Time Variant Open Circuit Short CircuitLinear Resistor:The resistance of the idea resistor is constant and its value doesnot vary over time.The relation between voltage and current.(V AR)vV=Ri(passive sign convention)i-------Ohm’s LawSince the value of R can range from zero to infinity,it is important that we consider the two extreme possible value of R:R=0-------is called a short circuit;V=0;R=∞------is called an open circuit,I=0;Conductance G is the reciprocal of the resistance, measured in siemens (s)Power : P=vi (passive sign convention) always absorbs power from the circuit Other methods of expressing :G i G v vi p Rv R i vi p 2222======RG 1=About nonlinear resistor。

电路原理课件

电路原理课件

Electrical and Electronic Principles, WEI Yi
21
Thévenin to Norton conversion

To convert from the Thévenin equivalent circuit to the Norton equivalent circuit:
Circuits Analysis
Electrical and Electronic Principles, WEI Yi
7
Circuits Analysis: Preview
Current
I:
• Measured in amperes (A) • Analogous to volume flow rate (volume/unit time)
Electrical and Electronic Principles, WEI Yi 5
electronic devices
resistive touch screen
capacitive touch screen
6
Electrical and Electronic Principles, WEI Yi
Electrical and Electronic Principles, WEI Yi 8
A Simple DC Circuit
V V
Ohm’s law:
V IR
Electrical and Electronic Principles, WEI Yi 9
Voltage source
Ideal voltage source
Electrical and Electronic Principles, WEI Yi

电路原理中英文对照表

电路原理中英文对照表

一阶电路first-order circuit三要素法three-element method for analyzingfirst-order circuitss 平面s-plane二端元件two-terminal element二端网络two-terminal network无源网络passive-terminal network有源网络active-terminal networkT 形网络T-networkΓ形网络inverted L-network, Γ-network入射波incidence wave三相three-phase三相电路three-phase circuit三相制three-phase system三相四线制three-phase four-wire system三角形连接delta-connection, △-connection 三角形网络delta-network三端网络three-terminal network端口portπ形网络π- network已调信号modulated signal支路branch支路电流法branch current method支路阻抗矩阵branch impedance matrix支路导纳矩阵branch admittance matrix分压器voltage divider分压比voltage division ratio分贝decibel(dB)分离图separated graph开路open-circuit开路阻抗open-circuit impedance开路阻抗矩阵open-circuit impedance matrix反接inversed connection, connection inopposition反射阻抗reflected impedance反相opposite in phase反向串联inverted series connection反向传输矩阵inverted transmission matrix互感mutual inductance互感应现象mutual induction phenomenon互感耦合mutual-inductance coupling互感耦合电路mutual-inductance coupled circuit 互易性reciprocity 互易定理reciprocity theorem互易网络reciprocity network中线 (零线 )neutral wire中性点 (中点 )neutral point无功功率reactive power无功功率守恒theorem of conservation of reactive 定理power无功伏安reactive Volt-Ampere无功分量reactive component无功因数reactive factor双口网络two-port network, two-port对称双口网络symmetrical two-port network不对称双口网unsymmetrical two-port network 络X 形双口网络lattice network复合双口网络composite two-port networkT 形桥式双口bridge-T two-port network网络双 T 网络double-T network双 T 选频网络double-T frequency selectionnetwork匹配matching方阵square matrix韦伯 (韦)Weber(Wb)乏var辅助分析computer-aided analysis瓦特 (瓦)watt(W)分布电感distributed inductance内部法internal approach分段线性化法piece-wise linear approximation 分布参数电路distributed circuit反射系数reflection coefficient反射波reflected wave匹配match无损耗线lossless line无损耗线的输input impedance of lossless line 入阻抗无畸变distortionless无畸变条件distortionless condition无畸变线distortionless line电路circuit电源source理想电源ideal source1 /15实际电源physical source电位potential电位差potential difference电位升potential rise电位降potential drop电位参考点potential reference point电压voltage电压圆图voltage circle diagram电压源voltage source电压控制电压voltage-controlled voltage source 源电压控制电流voltage-controlled current source 源电压反馈系数voltage feed-back factor线电压line voltage相电压phase voltage电流current电流源current source电流控制电压current-controlled voltage source 源电流控制电流current-controlled current source 源电流放大系数current amplification factor线电流line current相电流phase current电动势electromotiveforce(e.m.f.),electromotance电激流excitation current电阻resistance内电阻internal resistance自电阻self-resistance共电阻 ( 互电mutual resistance阻)电导conductance内电导internal conductance自电导self-conductance共电导 ( 互电mutual conductance导)电感inductance电容capacitance电抗reactance电纳susceptance电信号electric signal 电场能量electric field energy电场强度electric field intensity电磁场electromagnetic field电力网power network电报方程telegraphic equation正弦波sinusoidal wave正弦信号sinusoidal signal正弦函数sinusoidal function正弦响应sinusoidal response正弦交流电路sinusoidal responsealternating current circuit正序positive sequence正相序positive phase sequence正负号函数signup矢量vector节点node节点方程node equation节点电流方程node current equation节点电压法node voltage method节点关联矩阵node incidence matrix节点电导矩阵node conductance matrix广义节点Super-node对称三相电路symmetrical three-phase circuit 对称均匀链形symmetrical uniform chain network 网络对偶原理principle of duality对偶网络dual network对偶元件dual element对应端corresponding terminal对象阻抗image impedance对象参数image parameter对象传输常数image propagation constant平面网络planar network非平面网络non-planar network功率power功率因数power factor功率因数角power factor angle功率三角形power triangle功率守恒定理theorem of conservation of power 平均功率average power有功功率active power无功功率reactive power视在功率apparent power2 /15右手螺旋定则right-handed screw rule外网孔outer mesh失谐状态detuned condition小失谐状态slightly detuned condition四端网络four-terminal network, quadripole 主元pivot element, pivot平衡工作点balanced operating point龙格 -库塔法Runge-Kutta method四阶 R-K 法forth-order R-K method四分之一波长quarter-wave line线史密斯阻抗图Smith Chart网络network网络分析network analysis网络分析法method of network analysis网络方程法network-equation method网络变换法network-transformation method网络拓扑network topology网络模型network-model有源网络active network无源网络passive network线性网络linear network非线性网络nonlinear network网孔mesh网孔电流法mesh-current method网孔矩阵mesh matrix网孔阻抗矩阵mesh-impedance matrix网孔对支路关mesh-to-branch incidence matrix 联矩阵自感 (自感系self-inductance数)并联parallel connection并联谐振parallel resonance有效值effective value有源二端网络equivalent source theorem of active 的等效电源定two-terminal network理有源二端网络equivalent voltage source theorem 的等效电压源of active two-terminal network定理 (戴维南定(Thevenin's theorem)理)有源二端网络equivalent current source theorem 的等效电流源of active two-terminal network定理 (诺顿定(Norton's theorem)理 )同名端dotted terminal同相in phase回路loop回路电阻矩阵loop-resistance matrix回路电流法loop-current method回转器gyrator导纳admittance导纳角admittance angle导纳圆图admittance circle diagram自导纳self-admittance共导纳 (互导mutual admittance纳 )共轭匹配conjugate matching共轭旋转相量conjugate rotating phasor负载load负序negative sequence负相序negative-phase sequence全磁通total magnetic flux全波整流full-wave rectification全通图completely-connected graph 次级线圈secondary coil行row行阵row matrix行子阵row submatrix行矢量row vector列column列阵column matrix列子阵column submatrix列矢量column vector关联incidence关联矩阵incidence matrix正向关联positive incidence负向关联negative incidence似功率quasi-power似功率守恒定theorem of conservation of理quasi-power传递函数transfer function传播常数propagation constant传输矩阵transmission matrix传输效率transmission efficiency米勒定理Miller's theorem3 /15级联cascade connection伏特 (伏 )Volt(V)伏秒Volt-second伏安特性volt-ampere characteristic安培 (安 )Ampere(A)西门子 ( 西)Siemens(S)过渡过程transient state过电压over voltage过电流over current自由分量free component自激振荡self-sustained oscillation自然功率natural power自然频率natural frequency网络的自然频natural frequency of a network率网络变量的自natural frequency of network然频率variables零输入响应的natural frequency of zero-input自然频率response阶跃响应step response冲量响应impulse response冲量响应矩阵impulse response matrix动态电阻dynamic resistance网孔运算阻抗mesh operational impedance matrix矩阵网络函数network function网络函数的极pole-zero diagram of network零点分布图function行波travelling wave正向行波direct wave反向行波returning wave行波功率travelling wave power行波系数travelling wave ratio串联series connection串联谐振series resonance连支link连通图connected graph连续频谱continuous spectrum不连续频谱discrete spectrum初相initial phase初相角initial phase angle初级线圈primary coil角频率angular frequency均方根值root-mean-square value均匀频谱uniform spectrum均匀链形电路uniform chain circuit时变电流time-varying current位移电流displacement current运算放大器operational amplifier两瓦特表法two-wattmeter method亨利 (亨)Henry(H)时域分析time-domain analysis时域位移定理real shifting(translation)theorem 时间常数time constant初始条件initial condition初始状态initial state初值定理initial value theorem张弛振荡relaxtion oscillation阻尼系数damping coefficient均匀传输线uniform transmission line均匀传输线的primary parameters of uniform 原始参数transmission line均匀传输线的differential equations of uniform 微分方程transmission line均匀传输线的propagation constant of uniform 传播常数transmission line均匀传输线的characteristic impedance of uniform 特性阻抗transmission line均匀传输线的attenuation constant of uniform 衰减常数transmission line均匀传输线相phase constant of uniform 移常数transmission line均匀传输线输input impedance of uniform 入阻抗transmission line均匀传输线的lumped equivalent circuit of 集中参数等效uniform transmission line 电路折射波reflected wave状态state状态变量state variable状态矢量state vector状态变量法state variable approach状态方程state equation状态空间state space状态空间法state space approach状态轨迹state trajectory4 /15状态转换矩阵state transition matrix状态变量计算superposition method for computer 机辅助分析的aided analysis of state variables叠加法状态变量计算topological method for computer机辅助分析的aided analysis of state variables拓扑法极限环limit cycle极点pole步长step length延时线time-delay line线性linearity线性电阻linear resistance线性电感linear inductance线性电容linear capacitance线性网络定理linear network theorem线状频谱line spectrum周期period周期信号period signal非周期信号non-periodic signal非线性元件nonperiodic element非正弦周期电non-sinusoidal periodic current流电路circuit单位阵unit matrix单位阶跃函数unit step function单位阶跃电压unit step voltage单位冲量函数unit impluse function单位冲量电流unit impluse current单脉冲信号single pulse signal单口网络one-port network, one-port拓扑图topological graph, graph有向拓扑图oriented graph拓扑结构topology, topological construction 转移transfer转移阻抗transfer impedance转移导纳transfer admittance转移电压比transfer voltage ratio转移电流比transfer current ratio转移函数transfer function转置阵transposed matrix转移函数transfer function转移函数矩阵transfer function matrix空载状态no-load condition 空心变压器air-core transformer参考方向reference direction参考相量reference phasor参考节点reference node受控源controlled source受控源关联矩controlled source incidence matrix 阵图graph子图Sub-graph奇谐波函数odd harmonic function变比transformation ratio环流circulating current直流direct current直流网络direct current network直流分量direct current component阻抗impedance阻抗角impedance angle阻抗逆变器impedance inverter阻抗频率特性impedance-frequency characteristic 自阻抗self-impedance共阻抗mutual impedance内阻抗internal impedance输入阻抗input impedance欧姆 (欧)Ohm's欧姆定律Ohm's law广义欧姆定律generalized Ohm's law欧拉法Euler's method法拉 (法)Farad(F)微法micro-Farad(F)皮法pico-Farad(F)法拉第电磁感Faraday's law of electromagnetic 应定律induction奈培neper(Np)经典法classical method非零状态响应non-zero-state response非强制网络unforced network非线性电路nonlinear circuit非线性电阻nonlinear resistance电流控非线性current-controlled nonlinear电阻resistance电压控非线性voltage-controlled nonlinear电阻resistance范式normal form范式状态方程normal form state equations5 /15放电过程discharge过阻尼放电过Over-damped discharge程欠阻尼放电过Under-damped discharge程非振荡放电过non-oscillatory discharge程振荡放电过程oscillatory discharge临界阻尼放电critically damped discharge过程拉普拉斯Laplace拉普拉斯正变Laplace transformation换拉普拉斯反变inverse Laplace transformation 换拉普拉斯积分Laplace integral拉普拉斯象函Laplace transform数线性组合定理linear combination theorem终值定理final value theorem波长wavelength波阻抗wave impedance波腹loop波节node驻波standing wave驻波系数standing wave ratio规则信号regular signal卷积convolution Integral卷积定理convolution Integral theorem 响应response响应信号response signal相位 (相 )phase相位角phase angle相位差phase difference相位频率特性phase-frequency characteristic 相矢量phasor相矢量分析法phasor analysis相序phasor sequence信号signal信号源signal source总电导total conductance树tree树支tree branch 树余cotree星形 (Y) 连接star-connection, Y-connection星形网络star-connection network复数complex number复数平面complex plane复数阻抗complex impedance复数导纳complex admittance复数功率complex power复数导纳矩阵complex admittance matrix顺接connection in aiding顺序positive sequence独立电源independent source品质因数quality factor逆序negative sequence选择性selectivity选频特性frequency-selection characteristic 恒定分量constant component脉冲pulse脉冲幅度pulse amplitude脉冲高度pulse altitude脉冲宽度pulse width脉冲持续时间pulse duration脉冲重复周期repeating period of pulse指数衰减因子exponential attenuation factor指数矩阵exponential matrix临界电阻critical resistance临界值critical value复频率complex frequency复频率平面complex frequency plane复频谱函数complex frequency spectrumfunction复频域complex frequency domain复频域位移定complex理shifting(translation)theorem复频域等效电complex shifting equivalent circuit 路复频域中广义generalized ohm's law in the欧姆定律complex frequency domain复频域传播常complex frequency domain数propagation constant复频域特性阻complex frequency domain抗characteristic impedance复频域反射系complex frequency domain6 /15数reflection coefficient电容的复频域complex frequency domain阻抗impedance of capacitor电感的复频域complex frequency domain阻抗impedance of inductorRLC 串联电路complex frequency domain的复频域阻抗impedance of RLC series circuit 相移速度phase velocity柏德生法则Peterson's Rule容抗capacitive reactance容纳capacitive susceptance振幅amplitude振幅频谱amplitude spectrum振幅旋转相量amplitude rotating phasor效率efficiency矩阵matrix矩阵分析法matrix analysis特性characteristic特性方程characteristic equation特性阻抗characteristic impedance特性参数characteristic parameter特性损耗characteristic loss特性相移characteristic phase displacement 特勒根定理Tellegen's theorem离散性discreteness离散频谱discrete spectrum高次谐波higher harmonic高斯消去法Gauss elimination method高斯主元消去Gauss elimination with pivoting法T 形阻抗网络bridge-T impedance network浮地电感floating inductance积分电路integrating circuit积分定理integration theorem衰减attenuation衰减系数attenuation constant振荡oscillation阻尼振荡damped oscillation衰减振荡attenuated oscillation减幅振荡attenuated oscillation等幅振荡unattenuated oscillation无阻尼振荡自由振荡高阶电路特征方程特征根 (值 )特征多项式特征方程复频域形式部分分式展开法留数计算法逐步近似法预解矩阵载波调制信号被调制信号换路基本回路基本回路矩阵基本割集基本割集矩阵基本子阵基波基尔霍夫基尔霍夫方程基尔霍夫定律基尔霍夫电流定律基尔霍夫电压定律基尔霍夫电流定律的复频域形式基尔霍夫电压定律的复频域形式偶谐波函数理想元件理想激励源理想电压源理想电流源理想受控源7 /15undamped oscillationfree oscillationhigher order circuitscharacteristic equationcharacteristic root, eigenvaluecharacteristic polynomialcomplex frequency domaincharacteristic equationpartial-fraction expansionevaluation by the residuemethod step-by-stepapproximation resolvent matrixcarriermodulating signalmodulated signalswitchingfundamental loopfundamental loop matrixfundamental cut setfundamental cut set matrixfundamental submatrixfundamental harmonicKirchhoffKirchhoff's equationKirchhoff's lawKirchhoff's current lawKirchhoff's voltage lawKirchhoff's current law in thecomplex frequency domainKirchhoff's voltage law in thecomplex frequency domaineven harmonic functionideal elementideal excitation sourceideal voltage sourceideal current sourceideal controlled source理想变量器ideal transformer理想变压器ideal transformer旋转相矢量rotating phasor混合参数矩阵hybrid parameter matrix累接阻抗iterative impedance接地点ground point谐振resonance谐振状态resonance state谐振电路resonant circuit谐振阻抗resonant impedance谐振频率resonant frequency谐波harmonic谐波分量harmonic component离散化discretization常态树proper tree随机性信号random signal集中参数lumped parameter集中参数元件lumped element集中参数电路lumped circuit等效网络equivalent network等效阻抗equivalent impedance等效导纳equivalent admittance短路short-circuit短路导纳short-circuit admittance短路导纳矩阵short-circuit admittance matrix 超前lead滞后lag惠斯登电桥Wheatstone bridge割集cut set割集电导矩阵cut set conductance matrix 策动点driving point策动点阻抗driving point impedance策动点导纳driving point admittance策动点函数driving point function替代定理substitution theorem链形网络chain network晶体管电路transistor circuit插入功率比insertion power ratio插入衰减insertion loss傅里叶Fourier傅里叶级数Fourier's series 傅里叶积分Fourier's integral傅里叶积分变Fourier's integral transform 换傅里叶系数Fourier coefficient傅里叶正变换positive Fourier transform傅里叶反变换inverse Fourier transform暂态transient state暂态分量transient component强制分量forced component确定性信号regular signal输入input输入电路input circuit输入功率input power输入端口input port输出output输出电路output circuit输出阻抗output impedance输出端口output port感抗inductive reactance感纳inductive susceptance零电位点zero potential point零子阵zero submatrix数值解法numerical analysis数值积分法numerical integration愣次定律Lenz's law幅角argument频率frequency频率特性frequency characteristic频谱frequency spectrum频谱函数frequency spectrum function 频带frequency band频带宽度band width通频带pass-band频域frequency domain频域响应frequency domain response 简谐分量simple harmonic component 微分电路differentiating circuit微分定理differentiation theorem零状态zero state零状态响应zero state response零状态分量zero state component零输入响应zero-input response8 /15零输入分量zero-input component输出方程output equation输入 -输出法input-output approach数值解法numerical solution群速group velocity群时延group time-delay畸变distortion叠加定理superposition theorem磁通magnetic flux磁通链magnetic flux linkage磁耦合magnetic coupling磁场能量magnetic field energy端电压terminal voltage端线terminal wire端口port terminal模modulus缩减矩阵reduced matrix谱线spectrum line稳态steady state稳态响应steady state response赫兹Hertz(Hz)稳态分量steady state component稳定性stability静态电阻static resistance端部法terminal approach截断误差truncation error耦合系数coupling coefficient增广矩阵augmented matrix增广节点导纳augmented node admittance matrix 矩阵额定电压rated voltage额定电流rated current额定功率rated power激励excitation激励信号excitation signal激励源excitation source激励函数excitation function瞬时值instantaneous value瞬时电压instantaneous voltage瞬时电流instantaneous current瞬时功率instantaneous power电压串联电阻 A voltage in series with a resister 电源变换Source transformation 电流并联电阻 A current source in parallel with aresister双边的Bilateral叠加Superposition麻烦的Cumbersome同时发生的Simultaneous术语Terminology二维的Planar安培表Ammeter编造的Fictitious操纵(作)Manipulation相关的Pertinent运算放大器The operational amplifier二极管Diode晶体管Transistor喜好Penchant明智的Judicious求助于Invoke复制品Replica比较器Comparator运动中的电荷Charge in motion定量关系Quantitative relationship绝缘体Insulator电介质材料Dielectric material时变电场Time-varying electric field位移电流Displacement current传导电流Conduction current无源元件Passive element单位是Be measured in图形上Graphically线圈Coiled wire短路Short current跃变Change instantaneously电弧Arcing微分Differential代数的Algebraic功率是消耗能Power is the time rate of对时间的倒数expending energy字母 C Letter C金属板Conductive plate零输入响应Natural response阶跃响应;零Step response状态响应9 /15系数Coefficient一阶电路First-order circuit指数Exponent倒数Reciprocal瞬间响应Transient response稳态响应Steady-state response示波器Oscilloscope类比的Analogous初始电压的指Exponential decay of the initial 衰减voltage减率The rate of decay基本微积分Elementary calculus等幅震荡Oscillation衍生物Derivation特征根Characteristic roots谐振角频率Resonant radian frequency量纲Dimension复频率Complex frequency过阻尼Over damp欠阻尼Under damp临界阻尼Critically damp正弦的Sinusoidal提及的Allude to配线电路Distribution circuit详述Spell out领域Realm间隔时间Interval相互的Reciprocal波幅Amplitude相位角Phase angle平面三角学Trigonometry均方根Rms value直流电压Dc voltage暂态分量Transient component无穷小Infinitesimal丧失Forfeit向量Phasor括号Argument符号Notation向量变换Phasor transform时域Time domain复数域Complex-number domain 黑体字Boldface letter极坐标假设下脚标无意义的术语,命名法无源元件有源元件阻抗电抗瞬时功率有功功率;平功率无功功率视在功率通过A滞后 B120 ° A超前 B120 °相序圆柱体表面定子线圈发电机线电压相电压动态元件滤波器听得见的选频电路衰减图式均衡器低通高通带通带阻滤波器初步通带阻带频率响应曲线幅频特性曲线相频特性曲线截止频率Polar formPostulateSubscriptNonsensical NomenclaturePassive elements Active elements ImpedanceReactance Instantaneous power Average powerReactive power Apparent powerViaA lagB by 120°A lead B by 120°Phase sequence PeripheryStatorWindingGeneratorLine-to-linevoltageLine-to-neutralvoltageReactivecomponentsFilterAudibleFrequency-selective circuitsAttenuateGraphicequalizerLow pass filtershigh pass filtersBand pass filtersBand rejectfiltersPreliminaryPassbandStopbandFrequencyresponse plotMagnitude plotPhase angle plotCutoff frequency 10/ 15Chapter 1 Elements and Laws of Eletrical Circuits电路electrical circuit电路模型circuitmodel电源source负载load导线line开关switch电荷electric charge电流current电压voltage电位potential电位升potential rise电位降potential drop电位差potential difference参考点referencepoint线性电阻linear resistance磁通链magnetic flux linkage功率power能量energy电阻器resistor电阻resistance电动势electromotive force ( e.m.f )伏安特性u-i characteristicvolt-ampere characteristic电导器conductor电导conductance电感器inductor电感inductance电容器capacitor电容capacitance欧姆定律Ohm’s Law广义欧姆定律generalized Ohm ’s Law参考方向reference direction电压极性voltage polarity正极positive polarity负极negative polarity开路open-circuit短路short-circuit理想独立电压源ideal independent voltage实际电压源physical sourcesource理想独立电流源ideal independent current理想受控源ideal dependent / controlledsource source压控电压源voltage controlled voltage压控电流源voltage controlled currentsource(VCVS )source( VCCS )流控电压源current controlled voltage流控电流源current controlled currentsource(CCVS )source( CCCS)节点node支路branch回路loop路径path网孔mesh网络network基尔霍夫电流定律Kirchhoff ’s current law(KCL )基尔霍夫电压定律Kirchhoff ’s voltage law(KVL )闭合面closed surface集总参数lumped parameter集总(参数)电路lumped circuit集总(参数)元件lumped element分布参数distributed parameter分布(参数)电路distributed circuit直流direct current (DC)交流alternating current( AC )有源元件active element无源元件passive elementChapter 2 Analysis methods to simple resistor circuits端钮terminal串联series connection分压voltage division并联parallel connection分流current division等效变换equivalent transformation等效电阻equivalent resistance入端电阻input resistance最大功率传输定理Maximum power transfer theorem Y- 变换Wye-Delta transformation11/ 15Chapter 3 methods of Analysis节点法node analysis / node voltage method支路电流法branch current method回路电流法loop analysis / loop current method外网孔outer mesh网孔电流法mesh analysis / mesh current method自导纳self admittance互导纳mutual admittance矩阵matrix行row列column参考节点reference node平面电路planar circuit方程equation消去法elimination technique克莱姆法则Cramer’s rule代入法substitution method运算放大器operational amplifier(op amp)同向输入端noninverting input反向输入端inverting input输出端output等效电路模型equivalent circuit model开环放大倍数open-loop gain闭环放大倍数closed-loop gain入端电阻input resistance输出电阻output resistance线性工作区linear region正向饱和区positive saturation反向饱和区negative saturation同向放大器noninverting amplifier反向放大器inverting amplifier加法器summing amplifier / summer积分器integrator微分器differentiator自激振荡self-excited oscillationChapter 4 Circuit Theorems叠加原理superposition theorem齐性原理homogeneity property输入 /激励input / excitation输出 /响应output / response线性电路linear circuit代数和algebraic sum替代定理substitution theorem戴维南定理Thevenin ’s theorem诺顿定理Norton ’s theorem二端网络two-terminal circuit开路电压open-circuit voltage短路电流short-circuit current特勒根定理Tellegen ’s theorem功率平衡定理power-balancing theorem互易定理reciprocal theorem对偶原理principle of duality对偶元件dual element对偶图dual graph对偶电路dual circuitChapter 5 Analysis of Op Amp Circuits非线性电路nonlinear circuit非线性元件nonlinear element压控电阻voltage-controlled resistor流控电阻current-controlled resistor工作点operating point静态电阻static resistance动态电阻dynamic resistance小信号分析small-signal analysis小信号模型small-signal mode分段线性化法piece-wise linear method数值解法numerical analysisChapter 6 First-order Circuit动态电路dynamic circuit一阶电路first-order circuit一阶微分方程first-order differential equation过渡过程transient process/ transient 线性非时变电路linear time-invaried circuit单位阶跃函数unit step function单位冲激函数unit impulse function单位斜坡函数unit ramp function起始条件initial condition起始值initial value换路定则switch law零输入响应zero-input response12/ 15零状态响应zero-state response稳态响应steady-state response 暂态响应transient response时间常数time constant指数函数exponential function冲激响应impulse response阶跃响应step response自由响应natural response自由分量natural component强迫响应forced response强制分量forced component全响应complete response稳态值final value卷积convolution时域延迟time delay换路switching跳变现象jump phenomenon脉冲持续时间pulse duration脉冲重复周期repeating period of pulseChapter 7 Second-order Circuit常系数微分方程constant coefficients differential齐次微分方程homogeneous differential equation equation二阶电路second-order circuit特征方程characteristic equation 特征根characteristic root特征值eigenvalue特征向量eigenvector特解particular solution通解general solution自然频率natural frequency衰减系数damping factor谐振频率resonant frequency过阻尼情况overdamped case欠阻尼情况underdamped case临界情况critically damped case固有频率natural frequency衰减振荡damped oscillation无损lossless正弦响应sinusoidal response波形waveform复数complex衰减attenuationChapter 8-9 Sinusoidal Steady-State Analysis复数complex幅值amplitude / magnitude相位phase相位差phase difference角频率angular frequency周期period频率frequency正弦的sinusoidal初相角initial phase angle瞬时值instantaneous value最大值maximum有效值effective value / root-mean-square value u 领先 i φu leads i byφu 落后 i φu lags i byφ同相in phase反相opposite in phase实部real part虚部imaginary part直角坐标形式rectangular form极坐标形式polar form指数形式exponential form相量phasor参考相量reference phasor旋转相量rotating phasor电压三角形voltage triangle瞬时功率instantaneous power平均功率average power阻抗impedance阻抗角impedance angle阻抗三角形impedance triangle导纳admittance电抗reactance电纳suspectance感性inductive感抗inductive reactance感纳inductive suspectance容性capacitive容抗capacitive reactance容纳capacitive suspectance正弦稳态响应sinusoidal steady-state response时域time-domain相量域phasor-domain瞬时概率instantaneous power视在 /表观功率apparent power功率因数power factor (pf)复功率complex power功率三角形power triangle复共轭complex conjugate有功分量active component有功功率active power无功分量reactive component功率守恒定理theorem of conservation of power无功功率reactive power阻抗匹配impedence matching共轭匹配conjugate matching串联谐振series resonance并联谐振parallel resonance谐振频率resonance frequency品质因数quality factor特性阻抗characteristic impedence频率响应frequency response选择性selectivity选频特性frequency-selection characteristicChapter 10 Magnetically Coupled Circuits耦合couple互感mutual inductance自感self-inductance磁通magnetic flux线圈coil铁心线圈iron core coil匝数turn耦合系数coupling coefficient变压器transformer空心变压器air-core transformer原边primary coils / windings副边secondary coils / windings引入阻抗reflected impendence理想变压器ideal transformer全耦合unity coupling coefficient全耦合变压器perfect coupling transformer变比turns ratio / transformation ratio自耦合变压器auto transformer多绕组变压器multiple-winding transformer激磁电感magnetizing inductance右螺旋定则right-hand screw rule漏感leakage inductance同名端dotted terminalterminals of same magnetic polarityChapter 11 Three-phase Circuits对称三相电路symmetrical three-phase circuit三相电源three-phase sources中线neutral line中性点neutral point三相四线制three-phase four-wire system相电压phase voltage线电压line voltage相序phase sequence正序positive / abc sequence负序negative / acb sequence相电流phase current线电流line currentChapter 12 Steady-State Response of Periodic Excitation信号signal周期函数periodic function周期性非正弦激励nonsinusoidal periodic excitation帕斯瓦尔定理Parseval ’s theorem 指数形式的付里叶级数exponential Fourier series付里叶系数Fourier coefficient基波fundamental harmonic基波频率fundamental frequency 谐波harmonic wave高次谐波higher harmonic频谱frequency spectrum谱线spectrum line线状频谱line spectrum奇次谐波oddharmonic偶次谐波even harmonic奇对称odd symmetry。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The transfer function can be written as
The transfer function H(ω) of a circuit is the frequency-dependent ratio of a phasor output Y(ω) (an element voltage or current) to a phasor input X(ω) (source voltage or current). Thus,
Vo 1/ jωC 1 H (ω ) = = = Vs R + 1/ jωC 1 + jω RC
The magnitude and phase of H(ω) are
Amplitude response 幅频特性
ω H= , φ = − tan 2 ω0 1 + (ω / ω 0 )
1
−1
where ω0 = 1/RC. At ω = 0, H = 1 and φ = 0. At ω = ∞, H = 0, and φ = − 90°. Also, at ω = ω0, H = 1/ 2 and φ = − 45°.
14.1 INTRODUCTION
In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a circuit with a constant frequency source. If we let the amplitude of the sinusoidal source remain constant and vary the frequency, we obtain the circuit’s frequency response. The frequency response of a circuit is the variation in its behavior with change in signal frequency. The sinusoidal steady-state frequency responses of circuits are of significance in many applications, especially in communications and control systems.
A zero, as a root of the numerator polynomial, is a value that results in a zero value of the function.
N(ω ) H (ω ) = D(ω )
Similarly, the roots of D(ω) = 0 are the poles (极点) of H(ω) and are represented as jω = p1, p2, ….
Vo (ω ) H (ω ) = Voltage gain 电压增益 = Vi (ω ) H (ω ) = Current gain 电流增益 = I o (ω ) I i (ω )
Vo (ω ) H (ω ) = Transfer Impedance 转移阻抗 = I i (ω ) I o (ω ) H (ω ) = Transfer Admittance 转移导纳 = Vi (ω )
CHAPTER 14 FREQUENCY RESPONSE
One machine can do the work of fifty ordinary men. No machine can do the work of one extraordinary man. – Elbert G. Hubbard Elbert G. Hubbard (1856-1915), American writer. The greatest mistake you can make in life is to be continually fearing you will make one. Never explain - your friends do not need it and your enemies will not believe you anyway. To avoid criticism, do nothing, say nothing, be nothing.
A specific application is in electric filters that block out or eliminate signals with unwanted frequencies and pass signals of the desired frequencies. We begin this chapter by considering the frequency response of simple circuits using their transfer functions. We then consider Bode plots, series and parallel resonant circuits, and different kinds of filters.
H (ω ) =
Y(ω ) X(ω )
assuming zero initial conditions. Some authors use H(jω) for transfer instead of H(ω), since ω and j are an inseparable pair.
Since the input and output can be either voltage or current at any place in the circuit, there are four possible transfer functions:
The transfer function H(ω) can be expressed in terms of its numerator 分子 polynomial N(ω) and denominator 分母 polynomial D(ω) as
H (ω ) =
N(ω ) D(ω )
where N(ω) and D(ω) are not necessarily the same expressions for the input and output functions, respectively. The roots of N(ω) = 0 are called the zeros (零点) of H(ω) and are usually represented as jω = z1, z2, … .
14.2 TRANSFER FUNCTION
The transfer function (传递函数) H(ω) (also called the network function 网络函数) is a useful analytical tool for finding the frequency response of a circuit. In fact, the frequency response of a circuit is the plot of the circuit’s transfer function H(ω) versus ω, with ω varying from ω = 0 to ω = ∞. A transfer function is the frequency-dependent ratio of a forced function to a forcing function (or of an output to an input). In general, a linear network can be represented by the block diagram.
EXAMPLE 14.1 For the RC circuit in Fig.(a), obtain the transfer function Vo/Vs and its frequency response. Let vs = Vmcosωt.
ቤተ መጻሕፍቲ ባይዱ
Solution: The frequency-domain equivalent of the circuit is in Fig.(b). The transfer function is given by
where subscripts i and o denote input and output values.
Being a complex quantity, H(ω) has a magnitude H(ω) and a phase
φ; that is , H(ω) = H(ω)∠φ.
To obtain the transfer function, we first obtain the frequencydomain equivalent of the circuit by replacing resistors, inductors, and capacitors with their impedances R, jωL, and 1/jωC. We then use any circuit technique(s) to obtain the response by plotting the magnitude and phase of the transfer function as the frequency varies.
A pole, as a root of the denominator polynomial, is a value for which the function is infinite.
To avoid complex algebra, it is expedient to replace jω temporarily with s when working with H(ω) and replace s with jω at the end.
相关文档
最新文档