Jedec die shear要求
2 Pfg1169_082007
2 Pfg 1169/08.2007 Requirements for cables for use in photovoltaic-systemsContentsSeite Foreword (3)1Scope (3)2Normative references (3)3Terms and definitions (5)4Halogen-free PV-cable (6)4.1Code designation (6)4.2Characteristics (6)4.3Construction (6)4.4Test (8)4.5Guideline for use (informative) (8)4.6Current carrying capacity (8)Annex A (normative) Test of mutual influence (15)Annex B (normative) Test of absence of halogen (16)Annex C (normative) Determination of halogens – Elemental test (17)Annex D (normative) Test of long term resistance of insulation to D.C (19)Annex E (normative) Cold impact test (20)Annex F (normative) Dynamic penetration test (21)Annex G (normative) Notch propagation (23)Figure 1 – Arrangement of marking (8)Figure F.1 – Arrangement for penetration test (22)Table 1 – Current carrying capacity of PV-cables (9)Table 2 – Conversion factor for deviating temperatures (9)Table 3 – Tests for halogen free PV-cable (10)Table 4 – Requirements for halogen free insulation and sheath compounds (13)Table A.1 – Requirements (15)Table B.1 – Test method, measurement, requirements (16)Table B.2 – Test sequence (16)Table E.1 – Parameter for cold impact test (20)ForewordThis test specification contents the requirements listed in a manuscript of the working group AK 411.2.3 …Leitungen für PV-Systeme“ of the German committee for standardization (DKE). This manuscript is intended to be published as German pre-standard. Up to the date of publishing of the pre-standard this test-specification of TUV Rheinland will be used for test and assessment of cables for use in PV-systems (PV-cables).1 Scope2 PfG 1169/08.2007 applies to flexible single-core cables (cords) for use at the DC-side of photovoltaic-systems with a maximum permissible voltage of DC 1,8 kV (conductor/conductor, non earthed system).The cables are suitable for use in safety class II.It is permitted to connect these cables as multiple-construction.The cables are intended to operate at ambient temperature until 90°C2 Normative referencesThe following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.IEC 60364-5-52, Erection of low voltage installations –Part 5: Selection and erection of electrical equipment –Chapter 52: Wiring systemsEN 50267-2-1, Common test methods for cables under fire conditions – Tests on gases evolved during combustion of materials from cables – Part 2-1: Procedures – Determination of the amount of halogen acid gas;EN 50267-2-2, Common test methods for cables under fire conditions – Tests on gases evolved during combustion of materials from cables – Part 2-2: Procedures – Determination of degree of acidity of gases for materials by measuring pH and conductivity;EN 50305, Railway applications – Railway rolling stock cables having special fire performance – Test methodsEN 50395, Electrical test methods for low voltage energy cables;EN 50396, Electrical test methods for low voltage energy cables;EN 60068-2-78, Environmental testing - Part 2-78: Tests -Test Cab: Damp heat, steady state (IEC 60068-2-78)EN 60216-1, Electrical insulating materials - Properties of thermal endurance - Part 1: Ageing procedures and evaluation of test results (IEC 60216-1);EN 60216-2, Electrical insulating materials – Thermal endurance properties – Part 2: Determination of thermal endurance properties of electrical insulating materials – Choice of test criteria (IEC 60216-2);EN 60228, Conductor of insulated cables (IEC 60228)EN 60332-1-2, Tests on electric and optical fibre cables under fire conditions – Part 1-2: Test for vertical flame propagation for a single insulated wire or cable – Procedure for 1 kW pre-mixed flame; (IEC 60332-1-2)EN 60684-2, Flexible insulating sleeving – Part 2: Methods of test (IEC 60684-2)EN 60811-1-1, Insulating and sheathing materials of electric cables – Common test methods Part 1-1: General application – Measurement of thickness and overall dimensions – Test for determining the mechanical properties (IEC 60811-1-1)EN 60811-1-2, Insulating and sheathing materials of electric and optical cables – Common test methods. Part 1-2: General application. Thermal ageing methods (IEC 60811-1-2)EN 60811-1-3, Insulating and sheathing material of electric and optical cables – Common test methods – Part 1-3: General application – Methods for determining the density – Water absorption tests – Shrinkage test (IEC 60811-1-3)EN 60811-1-4, Insulating and sheathing materials of electric and optical cables – Common test methods. Part 1-4: General application. Tests at low temperature. (IEC 60811-1-4)EN 60811-2-1, Insulating and sheathing materials of electric and optical cables – Common test methods – Part 2-1: Methods specific to elastomeric compounds – Ozone resistance, hot set and mineral oil immersion tests (IEC 60811-2-1)EN 60811-3-1, Insulating and sheathing materials of electric cables – Common test methods Part 3-1: Methods specific to PVC compounds – Pressure test at high temperature, test for resistance to cracking (IEC 60811-3-1)HD 22.13, Rubber insulated cables of rated voltages up to and including 450/750 V Part 13: Single and multicore flexible cables, insulated and sheathed with crosslinked polymer and having low emission of smoke and corrosive gases;HD 605, Power cables – Part 605: Additional test methodsHD 60364-7-712Electrical installations of buildings – Part 7-712: Requirements for special installations or locations – Solar photovoltaic (PV) power supply systems (IEC 60364-7-712, modified)3 Terms and definitionsFor the purposes of this document, following definitions apply.3.1 Terms for test procedure3.1.1Type test (symbol T)Tests required to be made before supplying a type of cable covered by this standard on a general commercial basis, in order to demonstrate satisfactory performance characteristics to meet the intended application. These tests are of such a nature that, after they have been made, they need not be repeated, unless changes are made in the cable materials or design or manufacturing process which might change the performance characteristics.3.1.2sample tests (symbol S)Tests made on samples of completed cable or components taken from a completed cable, at a specified frequency, so as to verify that the finished product meets the specified requirements.3.1.3Routine tests (symbol R)Tests made by the manufacturer on each manufactured length of cable to check that each length meets the specified requirements3.2Rated voltageThe rated voltage of the cable determines the construction and the tests of the cable with regard to the electrical properties.The rated voltage is designated by two values of frequency voltage: U0/U in VoltU0 rated power frequency voltage between conductor and earth (metallic screen of cable or ambient medium);U rated power frequency voltage between two conductors of a multipole cable or of a system of single core cables.The rated voltage of the cable for a given application shall be suitable for the operating conditions in the system in which the cable is used.This requirement is applicable for both U o and UThe rated voltage between two conductors in a DC-system shall not exceed the 1,5 time value of rated voltage U of the cable, and the rated voltage between conductor and earth shall not exceed the 1,5 time value of rated voltage U o of the cable.NOTE The operating voltage of a system may exceed is rated voltage permanent for 20%. A cable may be operated with a voltage which value is 20% higher than rated voltage under condition that the rated voltage is not less than the rated voltage of the system.3.3DC sidepart of a PV installation from a PV cell to the DC terminals of the PV inverter3.4open-circuit voltage under standard test conditions U OC STCvoltage under standard test conditions across an unloaded (open) PV module, PV string, PV array, PV generator or on the DC side of the PV inverter3.5short-circuit current under standard test conditions I SC TCshort-circuit current of a PV module, PV string, PV array or PV generator under standard test conditions4 Halogen free PV-cable4.1 Code designationPV1-F4.2 Characteristics4.2.1 Rated voltageAC U0/U 0,6/1 kVDC 1,8 kV (conductor-conductor, non earthed system, circuit not under load).If the cable is used in DC-systems the rated voltage between two conductors shall not exceed the 1,5 time value of rated voltage U of the cable. In with single-phase earthed DC-systems this value shall be multiplied with factor 0,5.4.2.2 Temperature rangeAmbient temperature: –40 °C to +90 °CMax. temperature at conductor: 120 °CThe cables are intended to operate at ambient temperature until 90°C. For this a temperature index of 120°C applies to the insulation and the sheath, based on EN 60216-1 (20.000h, 50% residual elongation).Note The expected period of use is 25 years.The permitted short-circuit-temperature refer to a period of 5s is 200°C.4.3 Construction4.3.1 ConductorNumber of conductors: 1The conductor shall be class 5, according to EN 60228.The single wires must be tinned.Preferred diameters: 2,5, 4, 6, 10, 16 mm24.3.2 Separation layerA separation layer of a suitable halogen free material may be applied around the conductor.4.3.3 InsulationThe insulation shall be a suitable halogen free material applied around the conductor.The insulation shall be extruded and shall consist of one or several adjacent adherent layers. It shall be solid and homogeneous, it must be possible to remove it without damage to the insulation itself, to the conductor and to the tin coating.The insulation shall be smooth, consistently applied and largely circular. Compliance shall be checked by inspection and by manual test.The wall thickness of insulation is specified by the manufacturer, but it must not fall short of the minimum value of 0,5mm.4.3.4 Separation layerA separation layer of a suitable halogen free material may be applied around the insulation.4.3.5 SheathThe core must be covered by a sheath.The sheath around the core must be of a suitable halogen free material.The sheath shall be extruded and shall consist of one or several adjacent adherent layers. The sheath shall be smooth and consistently applied.The wall thickness of sheath is specified by the manufacturer, but it must not fall short of the minimum value of 0,5mm.4.3.6 Outer diameterThe average value of the outer diameter shall be within the limits specified by the manufacturer.4.3.7 Multiple constructionEach single-core cable in a multiple construction shall pass the requirements of this document. Each additional component in a multiple construction shall pass the requirements of this document.4.3.8 Marking4.3.8.1 GeneralThe cable shall be marked as follows:a) Trademark;b) Code designation;c) Rated diameter.Marking may be by printing or by reproduction in relief on or in the sheath.4.3.8.2 TrademarkCables shall be provided with an indication of the manufacturer, which consist of a consecutively marking with company name or company sign or with (if trademarked) an identification number.4.3.8.3 Code designationCables shall be provided with an code designation according to 4.1 applied consecutively on sheath.4.3.8.4 Arrangement of markingEach marking is considered as consecutive if the spacing between the end of a marking and the begin of the following identical marking does not exceed following value:– 550mm, for marking on sheath or outer jacket.Following figure shows an example of marking on sheath.Figure 1 – Arrangement of marking4.3.8.5 DurabilityPrinted markings shall be durable. Compliance with this requirement shall be checked by the test given in 5.1 of EN 50396.4.3.8.6 LegibilityEach marking shall be legible.4.4 TestCompliance with the requirements of 4.3 shall be checked by visual inspection and tests according to table 3.4.5 Guideline for use (informative)Cables according to this standard are intended for use in PV-systems according to EN 60364-7-712.4.6 Current carrying capacityAmbient temperature: 60°CMax. temperature at conductor: 120 °CTable 1 – Current carrying capacity of PV-cablesKind of installationRated diameter Single cable free inair Single cable onsurfacesTo cables adjacent onsurfacesmm2 A A A 1,5 30 29 24 2,5 41 39 33 4 55 52 44 6 70 67 57 10 98 93 79 16 132 125 107 25 176 167 142 35 218 207 176Table 2 – Conversion factor for deviating temperaturesAmbient temperature Conversion factor°CUp to 60 1,0070 0,9180 0,8290 0,71100 0,58110 0,41Table 3 – Tests for halogen free PV-cable1 23 45Test method described in Ref. No. TestRequirementsCategoryof teststandardclause1 Electrical tests1.1 Resistance of conductorsT,S EN 50395 5 1.2 Voltage test on completed cable with AC or DC T,S EN 503956– AC-test-voltage kV– DC- test-voltage kV Length of sample m Duration of testmin Temperature of the water°C 6,5 15 20 5 20 ± 5 1.3 Absence of faults at complete cable – AC-test-voltage kV 10 R EN 50395 10 1.4Surface resistance of sheath – Minimum value Ω 109 TEN 50395111.5Insulation at complete cable Length of sample m Duration of testh Temperature of the water °C – Minimum value at 20 °C Ω ⋅ cm – Minimum value at 90 °CΩ ⋅ cm5 2 20± 5 1014 1011 T EN 50395 81.6 Long term resistance of insulation to d.c. T Annex D2 Constructional and dimensional tests2.1 Checking of compliance with constructional provisionsT,S Inspection and manual tests2.2 Measurement of thickness of insulation T,S EN 50396 4.1 2.3 Measurement of thickness of sheath T,S EN 503964.2 2.4 Measurement of overall dimensions 2.4.1 – Mean valueT,S EN 50396 4.4 2.4.2 –Ovality%≤ 15 T,S EN 50396 4.4 3 Pressure test at high temperature at complete cable T EN60811-3-13.1 Test conditions:– temperature°C 140 ± 3 – duration of heating under load min240 – Coefficient k 0,6 3.2 Results to be obtained:– depth of penetration, max.%50 – Voltage test 10 min after exculpation andcoolingTable 4, 1.24 Damp heat test T EN 60068-2-784.1 Test conditions:– temperature °C 90 – duration h 1000 – relative humidity %85 4.2 Results to be obtained:– variation of tensile strength max. % – 30– variation of elongation at breakmax. %– 30No. of test standard clause 5 Resistance against acid and alkalineT EN 60811-2-1 10 solution5.1Chemical stressacid: N-Oxal-acidalkaline solution: N-sodium hydroxide solutiontemperature °C 23duration h 1685.2Tensile strength:variation, max. % ± 305.3Elongation at break, min. % 1006 Test of influence T Annex A7 Cold impact test at –40 °C T Annex E8 Cold bending testT EN 60811-1-4 8.2 Diameter of cable < 12,5 mm8.1 Test conditions:– temperature °C –40 ± 2– duration of conditioning h 16 EN 60811-1-4 8.2.3 8.2 Results to be obtained Absence ofcracks9 Cold elongation testTable 3 Diameter of cable ≥ 12,5 mm10 Ozone resistance at complete cable T10.1 Method B EN 50396 8.1.3– temperature °C 40 ± 2– relative humidity % 55 ± 5– duration h 72(200 ± 50) × 10–6– Ozone concentration %(by volume)10.2 Results to be obtained Absence ofcracks.11 Weathering/UV-resistance T HD 605/A1 2.4.20 11.1 Conditions:– duration h 720– temperature °C63(Black-Standard-temperature)– relative humidity % 6560 ± 2– min. power at W/m2wavelength 300 nm to 400 nm– duration spraying/drying min 18/102Results to be obtained Absence ofcracks.12 Dynamic penetration test T Annex F13 Notch propagation T Annex GNo. of test standard clause 14 Shrinkage test at complete cable T EN 60811-1-3 11((sheath)) 14.1 Conditions:– temperature °C 120– duration h 1– Distance L of sample mm 30014.2 Results to be obtained:– Maximum shrinkage. % 215 Test under fire conditionsT, S EN 60332-1-215.1 Test for vertical flame propagation at completecable15.2 Assessment of halogen T, S15.2.1 Absence of halogen Annex B 15.2.2 Determination of halogens – Annex CTable 4 – Requirements for halogen free insulation and sheath compounds1 2 3 4567Test method described in Type of compound Ref. No. TestUnitstandardclauseinsulationsheath1 Mechanical characteristics1.1Properties before ageingEN 60811-1-19.2 1.1.1 Values to be obtained for the tensile strength:– median, min.N/mm 2 6,5 8,0 1.1.2 Values to be obtained for the elongation atbreak: – median, min.%125 125 1.2Properties after ageing in ovenEN 60811-1-28.1 1.2.1 Ageing conditions: – temperature °C 150 ± 2 150 ± 2– duration of treatmenth 7 × 24 7 × 24 1.2.2 Values to be obtained for the tensile strength:c – median, min. N/mm 2 – –– variation, max.% –30a –30a 1.2.3 Values to be obtained for the elongation atbreak:c – median, min. % – – – variation, max. %– 30a – 30a 1.3 Hot set test dEN 60811-2-19 1.3.1 Conditions– Temperature °C 200± 3 200± 3 – Time under load min 15 15– mechanical stressN/cm 2 20 20 1.3.2 Values to be obtained – elongation under load, max.% 100 100 – permanent elongation after cooling, max. % 25 25 1.4Thermal endurance propertiesEN 60216-21.4.1 ConditionsEither test of elongation at break or bending test shall be performed.– Temperature index 120 120 – elongation at break c % 50 50 – bending test EN 50305 7.2 2 D 2 D 1.5Cold elongation testEN 60811-1-48.4 1.5.1 Conditions: – temperature °C–40 ± 2–40 ± 2– durationh EN 60811-1-4 8.4.4 und 8.4.5bb1.5.2 Values to be obtained:– elongation at break, min.%30301 2 3 4 5 6 7Test method described in Type of compound Ref. No.TestUnitstandardclauseinsulationsheatha No positive value for variation fixed.b See test method in column 4 and 5.c This test shall be performed at test samples of insulation and sheath compound. d This test shall be performed only at cross-linked insulation and sheath compoundTest of mutual influenceA.1 ConditionsTest samples must be aged for 7 days at (135 ± 2) °C at conditions according to table 2A.2 RequirementsAfter ageing the insulation and the sheath shall pass the requirements of table A.1.Table A.1 – RequirementsTests units insulation sheath Tensile strength – median, min. N/mm2– –– variation a, max. % ± 30 –30 b Elongation at break – median, min. % – –– variation a, max. % ± 30 ± 30a Variation: difference between the median value obtained after ageing and the median value obtained without ageing expressed as apercentage of the latter.b Positive tolerances are not limited.Test of absence of halogenB.1 Requirements of extruded materialsInsulation and sheath shall pass the requirements as follows: a) Type testThe material must be tested as described in table B.1.Table B.1 – Test method, measurement, requirementsTest methodMeasurementrequirements1 EN 50267-2-2 pH and conductivity pH ≥ 4,3 undconductivity ≤ 10 µS/mm a 2 EN 50267-2-1 Chlorine- and Bromine content, expressed in HCI ≤ 0,5 %3aAnnex CHalogen: FluorideIf negative the test should be finished. No further test is necessary.The material shall be accepted.If positive, test of 3b shall be performed 3bEN 60684-2Fluoride content≤ 0,1 %a If discrepancies regarding conductivity appear, e.g. the recommended value is exceeded even if there is compliance with therecommended ph-value, other test method may be applied after agreement with all participants.The material shall be tested according to test sequence of table B.2.Table B.2 – Test sequenceTest method MeasurementValue ResultIf negative the test should be finished. No further test is necessary.The material shall be accepted. Phase 0 HD 22.13,Annex CHalogen: Fluoride, Chloride and BromideIf positive continue with phase 1.< 4,3 The material shall be revised. pH ≥ 4,3Conductivity shall be tested. conductivity ≤ 2,5 µS/mmThe material shall be accepted. No further test is necessary.conductivity > 10 µS/mm The material shall be revised.Phase 1 EN 50267-2-2 conductivity (s)> 2,5 µS/mm but ≤ 10 µS/mm Test according to EN 50267-2-1 shall be performed > 0,5 % The material shall be revised.Phase 2 EN 50267-2-1Chlorine- and Bromine content, expressed in HCI≤ 0,5 % Test according to EN 60684-2 shall be performed. > 0,1 % The material shall be revised. Phase 3 EN 60684-2Fluoride content≤ 0,1 %The material shall be accepted.Determination of halogens – Elemental testWarningOwing to its potentially hazardous nature, the fusion operation should be carried out in a fume cupboard, using a safety screen.C.1 EquipmentBunsen burner3 small/medium soda glass test tubes (approximately 50 mm x 10 mm)Test tube holderEvaporating basin/mortarWire gauze;FunnelFilter paperC.2 MaterialsUnknown sampleSodium metalDilute nitric acid (5 %)Aqueous silver nitrate (5 %)Dilute ammonia (10 %)Freshly made up zirconium-alizarin red S reagentGlacial acetic acidAcid/pH indicator papersC.3 ProcedureC.3.1 Sodium fusionPlace 200 mg – 250 mg of the sample into the bottom of a small soda glass test tube. Add 10 ml of distilled/de-ionized water to the evaporating basin and place this in the fume cupboard behind the safety screen. Whilst holding the test tube firmly with the test tube holder at an angle of 45° - 60° to the vertical, introduce a piece of freshly cut, clean sodium (about the size of a small pea) (200 mg – 250 mg) into the mouth of the test tube without allowing it to come into contact with the sample. With the safety screen in place, heat the sodium gently until it melts and runs down on to the sample (there may be a vigorous reaction when the molten sodium reaches the sample if halogens are present). Heat the tube gently for about 1 min, then more strongly until the lower 20 mm of the tube glows red hot. Plunge the red hot tube into the water in the evaporating basin, immediately placing the gauze on top. (The gauze prevents any loss of material when the tube shatters on contact with the water.) Allow any non reacted sodium to react before grinding up the solution and glass. Filter, and separate the filtrate into two equal portions.C.3.2 Chlorine and bromineTo the first portion of the filtrate, add sufficient nitric acid to make the solution acidic. Boil this solution until its total volume has been reduced by half (this is to remove any HCN or H2S, if present, which would interfere with the test). Add 1 ml silver nitrate solution; a white or yellowish-white precipitate indicates the presence of halogen (Cl, Br) in the original sample. (If the liquor is decanted, and the precipitate is white and readily soluble in dilute ammonia, then chloride is present.)C.3.3 FluorineTo the second portion of the filtrate, acidify with glacial acetic acid. Boil this solution until its total volume has been reduced by half. Add 2 to 3 drops freshly prepared zirconium lake reagent (equal volumes of: a) Alizarin solution: 0,05 g Alizarin Red-S in 50 ml distilled water, b) Zirconium solution: 0,05 g zirconium nitrate in 10 ml concentrated HCl diluted with 50 ml distilled water). Heat at 40 °C for 1 h. The presence of fluoride is indicated by the red/pink colouration being bleached to yellow.Test of long term resistance of insulation to D.C.A test sample with a length of minimum 5m shall be immersed into water containing 3 % NaCl. Further on minimum 300mm of the sample shall stick out of the water. The water-bath shall be retained for (240 ± 2) h at a high temperature of (85 ± 2) °C and a D.C.-voltage 0,9kV shall be applied between conductor and water whereby the conductor shall be connected to the positive potential.The current of this circuit shall be measured with a period of not more than 24h. If possible a continuous measurement shall be preferred.The measured values shall be recorded in a time-current-curve which identifies a stable progress.NOTE A stable progress is e.g. an increase of less than 10% of leakage current on the average for a time of 24h (This is part of the inspection based on practical experiences)After storing the samples shall be taken out of the salt-water-solution and a voltage test according to Ref.-No. 1.2 of table 1 shall be performed. The test voltage shall be the rated voltage (U) of the cable.Cold impact testThe cold impact test shall be performed at –40°C according to clause 8.5 of EN 60811-1-4, but the mass of hammer, the mass of test probe and the height shall comply with table 2.Table E.1 – Parameter for cold impact testDiameter of cable (D) Mass of hammer Mass of test probe height mm g g mmD < 15 1 000 200 10015 < D≤ 25 1 500 200 150D > 25 2 000 200 200The inner and outer surface of sheath shall be inspected with normal or corrective visual faculty without magnification. Only the outer surface of the insulation shall be inspected. No cracks must be determinedAnnex F(normative)Dynamic penetration testA test apparatus for pull test (or a equivalent apparatus) shall be operated in pressure modus and shall be equipped with a measuring device which is able to record the force of penetration of the spring-steel-needle (see figure F.1b) through the insulation or sheath of a completed cable. A circuit with low voltage which finish the test at the moment when the needle penetrates the insulation or the sheath and makes contact with the conductor shall be added.The test shall be performed at room temperature. The force applying to the needle shall be increased continuously with 1 N/s until contact with the conductor has been made. 4 tests at each sample shall be performed and the force at the moment of contact shall be recorded. After each test the sample shall be moved forward and shall be turned clockwise for 90°.The mean value of the 4 test results must not be less than the minimum value F determined with following formulaF = 50 ⋅DD diameter of cable in mmDimensions in mma) detail X(edges not broken or rounded, without ridge)b) detail YCaption 1 N.A. 2 N.A. 3 Load 4 Clamp 5 Sample6Mounting surface7 Fixing screw 8 Blade9 Shoulder with sufficient depth for testing the insulation 10 Needle of spring steel 11SampleFigure F.1 – Arrangement for penetration testAnnex G(normative)Notch propagationThree samples of the cable shall be notched, to a depth of 0,05 mm of the insulation or sheathing, at four points equally spaced with respect to one another around the circumference and 25 mm apart along the length, and in a plane mutually perpendicular to the conductor.One of the samples shall be conditioned at -15 °C, one at ambient temperature and one at 85 °C, in all cases for 3 h, after which time they shall be wound on to a mandrel, (3 ± 0,3) times the minimum specified diameter of the cable, whilst at the conditioning temperature. The notched sample shall be wrapped around the mandrel such that at least one notch is on the outside of the cable.The sample shall be allowed to return to ambient temperature and then subjected to the voltage test given in no. 1.2 of Table 1 but at half the rated voltage U0.。
jedec镀层标准
jedec镀层标准JEDEC镀层标准。
JEDEC是全球半导体行业的领导者,其制定的标准对半导体器件的生产和应用具有重要意义。
在半导体器件的生产过程中,镀层是一个非常关键的步骤,它直接影响着器件的性能和可靠性。
因此,JEDEC制定了一系列的镀层标准,以确保半导体器件的质量和稳定性。
首先,JEDEC对镀层的材料和厚度进行了详细的规定。
针对不同的半导体器件,JEDEC规定了不同的镀层材料,如金、银、镍、锡等,并对每种材料的厚度进行了精确的要求。
这些规定的制定是基于大量的实验数据和工程经验,旨在确保镀层能够满足器件在各种工作条件下的要求。
其次,JEDEC还对镀层的结构和成分进行了严格的控制。
镀层的结构包括底层、中间层和表层,每一层的成分和厚度都需要符合JEDEC的规定。
此外,JEDEC还规定了镀层的成分分布和晶粒结构等微观特征,以确保镀层具有良好的结合力和耐腐蚀性能。
除此之外,JEDEC还对镀层的加工工艺和设备进行了详细的规定。
镀层的加工工艺包括清洗、预处理、镀液配制、镀层形成和后处理等多个环节,每个环节都有严格的要求。
同时,JEDEC还规定了镀层设备的性能和精度,以确保镀层的均匀性和稳定性。
总的来说,JEDEC的镀层标准是半导体行业的重要参考依据,它不仅规定了镀层的材料、结构、成分和加工工艺,还规定了镀层的检测方法和标识要求。
遵循JEDEC的镀层标准,可以确保半导体器件具有稳定的质量和可靠的性能,从而满足各种应用场合的要求。
总之,JEDEC的镀层标准对半导体器件的生产和应用具有重要意义,它为半导体行业提供了统一的技术规范和质量保障,有利于推动行业的健康发展和技术创新。
希望半导体器件生产厂家和应用厂家都能够严格遵循JEDEC的镀层标准,共同推动半导体行业的发展和进步。
JEDEC EIAJ考试答案
1. EIA元件组不包括()。
(2 分)A.元件部分面板委员会B.纪律委员会C.开关和切换装置测试方法和程序等委员会D.政府联络委员会2. IPC/JEDEC J-STD-020D.1 ()。
(2 分)A.Wire Bond Shear Test Method焊线邦定的剪切试验方法B.Solderability Test Method可焊性试验方法C.?Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mo unt Devices 针对非密封表贴半导体器件的湿度/回流焊敏感度分类和级别D.BGA Ball Shear BGA焊球的剪切试验3. JC-15 委员会:?()。
(2 分)A.接口技术B.数字逻辑C.半导体封装的热特征描述技术D.机械(封装外形) 标准化4. EIA电子显示标准委员会不包括技术组织()。
(2 分)A.颜色的显示、电子管的安全B.显示装置的光学特性等C.平面显示、液晶显示D.颜色的种类5. MSL3 产品厚度<=4.5mm,>2.0mm,烘烤温度为150°C时JEDEC 033标准推荐的烘烤时间为:()。
(2 分)A.23hoursB.43hoursC.48hoursD.24hours6. MSL3 产品厚度<=4.5mm,>2.0mm,烘烤温度为125°C时JEDEC 033标准推荐的烘烤时间为:()。
(2 分)A.23hoursB.43hoursC.48hoursD.24hours7. JEP113-B()。
(2 分)A.Wire Bond Shear Test Method焊线邦定的剪切试验方法B.Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices 湿度/回流焊敏感标贴器件的处理、包装、运输和使用的标准C.?Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices 针对非密封表贴半导体器件的湿度/回流焊敏感度分类和级别D.?Symbol and Labels for Moisture-Sensitive Devices湿度敏感器件的符号和标识8. JESD471是()。
3D DRAM封装技术的应用
3D DRAM封装技术的应用作者:Biao Cai、Vipinchandra Patel、Edmund D. Blackshear,IBM服务器系统的需求推动了3D DRAM技术的进展。
新一代技术提供了形状因子(即几何尺寸和形状)、电气和功率性能方面的优势。
同时也带来了更为复杂的设计、新的装配技术和失效机理。
最佳的3D DRAM技术是由这种优势、成本、入市时间和可靠性的综合权衡决定的。
本文详尽分析了用于DDR2、DDR3和未来服务器存储系统的最佳3D DRAM技术的特征。
TSV(硅通孔)DRAM阵列堆叠有望带来超级的功率性能,这可能是意义重大的市场推动力。
文中还论述了对这一未来技术的权衡和工艺发展趋势。
服务器系统的需求推动3D DRAM技术服务器系统存储量至少每代增长2X。
系统空间体积配置限制了存储器插座/模块的总数,因此要求增长存储器模块密度。
近几年来,“下一代芯片缩小”减缓和成本交叉点在模块密度增长要求和DRAM芯片密度增长之间产生了差距,并且正在扩大(图1),为3D DRAM技术创造了应用空间。
DDR2 3D封装技术DDR2存储器原来是用BGA单片封装。
有互为竞争的二种DDR2 3D技术:BGA堆叠(叠层封装)和引线键合芯片堆叠。
二者均是2005年左右在IBM服务器平台中引入的。
BGA堆叠(叠层封装)在IBM服务器平台中采用了几种BGA堆叠设计(图2)。
这些设计有一个共同点,即封装独立的DRAM芯片。
没有芯片级老化功能时,单一封装可实现堆叠工艺前的老化,这对维持堆叠封装良率非常重要。
当新一代DRAM芯片良率仍处于上升阶段时,缺乏KGD(已知好芯片)对堆叠封装良率来说是一个问题。
BGA堆叠提供了这一问题的解决途径。
到200 4年,一些封装分包公司已开发了BGA堆叠技术。
采用第三方BGA堆叠服务,存储器供应商获得了“入市时间”的优势。
良率和入市时间的优势是BGA堆叠技术的首要市场推动因素。
Low Profile是市场的重要推动因素对于高密度DDR2存储模块,常要热/冷却增强措施(图3)。
JEDEC STANDARD(英文版)(pdf 32页)
Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC at the address below, or call (703) 907-7559 or
Published by ©JEDEC Solid State Technology Association 2008
3103 North 10th Street Suite 240 South
Arlington, VA 22201-2107
This document may be downloaded free of charge; however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to
Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:
by the JEDEC legal counsel.
JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is tghts reserved
法国decree认证包装要求
法国decree认证包装要求
根据法国的法令规定,对于一些特定类型的包装材料,需要进行认证以确保其符合安全、卫生和环境要求。
以下是法国的一些主要包装认证要求:
1. BRC认证(British Retail Consortium认证):适用于食品和饮料包装,要求生产商的生产、卫生和质量管理系统符合标准要求。
2. FSC认证(Forest Stewardship Council认证):适用于木质包装材料,要求其来源于可持续管理的森林。
3. PEFC认证(Programme for the Endorsement of Forest Certification认证):适用于木质包装材料,要求其来源于符合可持续林业管理标准的森林。
4. ISO 9001认证:适用于各种类型的包装材料,要求生产商的质量管理系统符合国际标准要求。
5. ISO 14001认证:适用于各种类型的包装材料,要求生产商的环境管理系统符合国际标准要求。
6. ISO 22000认证:适用于食品和饮料包装,要求生产商的食品安全管理系统符合国际标准要求。
以上是法国一些常见的包装认证要求,供参考。
具体要求可能
因包装材料的类型和用途而异。
建议您根据具体情况咨询相关行业机构或专业认证机构以获取准确的认证要求。
dieter rams十个准则
Dieter Rams是德国著名的工业设计师,他在设计理念和实践方面有着深远的影响。
在他的职业生涯中,Dieter Rams提出了十个设计准则,它们被誉为工业设计的圣经,不仅对设计师们具有重要的启发意义,也在全球范围内产生了深远的影响。
接下来,我们将逐一剖析这十个准则,探究其所蕴含的设计哲学和智慧。
一、好的设计是尽可能地简洁Dieter Rams认为,好的设计应当是尽可能地简洁清晰,不应该有任何多余的装饰或者复杂的元素。
简洁的设计可以让产品更容易被人们理解和使用,同时也更加耐久和可靠。
二、好的设计是关于功能的在Dieter Rams的观念中,设计的首要任务是解决问题和满足用户的需求。
功能性是好的设计的重要特征,设计师应当注重产品的实际使用价值,而不是仅仅追求外在的形式美。
三、好的设计是尽可能地独特Dieter Rams认为,设计应当是独特和个性化的,而不是从众和平庸的。
独特的设计可以吸引用户的注意,让产品在市场上脱颖而出,因此设计师应当追求创新和独特性。
四、好的设计是尽可能地诚实诚实是Dieter Rams心目中好设计的重要品质之一。
设计师应当尽可能地遵循实用性和诚实性的原则,以确保产品的功能和性能完全符合用户的期望,而不是高调宣传和夸大其词。
五、好的设计是尽可能地持久Dieter Rams非常重视产品的持久性和耐用性,他认为设计师应当追求的是长久使用价值而不是短期的流行趋势。
持久的设计可以减少资源的浪费,也更加环保和可持续。
六、好的设计是尽可能地细致细节决定成败,Dieter Rams强调了细节设的重要性。
好的设计应当关注每一个细节,从而创造出系统性和统一性的整体形象,这是设计的成功关键之一。
七、好的设计是尽可能地简洁Dieter Rams强调了设计的简洁性和清晰性,他认为简洁的设计可以让产品更加易于理解和使用,同时也更加美观和高效。
八、好的设计是尽可能地环保环保是现代设计的重要原则之一,Dieter Rams主张设计应当尽可能地环保和可持续,从材料的选择到生产过程的控制,都应该考虑到环保的因素。
汽车IC测试认证AEC-Q100解析
汽车IC测试认证AEC-Q100解析汽车电子的品质标准一直以来都比一般消费型电子产品要严格。
试想一下,一辆汽车要使用到一万多个零件,假如任何一个零件出现问题,对于消费者而言都有可能造成极大的困扰,甚至有可能危及到生命安全。
AEC-Q100是由美国汽车电子协会(automotive electronics council,AEC)所制定的规范,主要是针对车载应用的集成电路产品所设计出的一套应力测试标准,此规范对于提升产品信赖性品质保证相当重要。
AEC-Q100规范一辆汽车在使用过程中可能会面临严苛的使用环境,例如一辆汽车可能销售到沙漠气候的高温环境中使用,也可能卖给北欧冰天雪地的极地气候客户,严苛的高温、低温、高湿度环境将对汽车甚至汽车内部的集成电路组件造成冲击。
因此,有必要定义出一系列应力测试流程来评估汽车电子集成电路组件的寿命以及潜在的失误风险。
在AEC-Q100文件中,定义出以下几类不同任务的测试群组:Test Group A:Accelerated Environment Stress Tests;Test Group B:Accelerated Lifetime Simulation Tests;Test Group C:Package Assembly Integrity Tests;Test Group D:Die Fabrication Reliability Tests;Test Group E:Electrical Verification Tests;Test Group F:Defect Screening Tests;Test Group G:Cavity Package Integrity。
每一个测试群组会再细化定义出几项测试项目,并说明这些测试项目的测试理论参考何项半导体业界所使用的认证规范(例如:JEDEC、MIL-STD883、SAE或者AEC-Q100本身所定义并且于附件里所定义的规则);每一个测试项目也同时会定义测试样品单一批次数量、测试批次量以及判断合格标准,若有额外的规范也会定义在每一项测试规范当中。
JESD22标准
C:\Users\ ATC6100\ Desktop\ JEDEC标准\ JESD22-A100D.pdfC:\Users\ATC6100\ Desktop\JESD22-A101D.pdfC:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A102E.pdf C:\Users\ ATC6100\ Desktop\JESD22-1D标准解读.docxC:\Users\ATC6100\Desktop\JESD22-A103E.pdfC:\Users\ATC6100\Desktop\JESD22-A104E.pdfC:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A105C_0.pdfC:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A106B-01.pdfC:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A107C.pdfC:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A108D.pdfC:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A109B.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A110E.pdf C:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A111B.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\J-STD-020E.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A113H.pdf C:\Users\ATC6100\Desktop\C:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A117D.pdf C:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A118B.pdf C:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A119A.pdf C:\Users\ATC6100\Desktop\JESD22-A120B.pdfC:\Users\ATC6100\Desktop\JEDEC标准\JESD22-A121A_R.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A122A.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-B100B.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-B101C.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-A120B.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-B103B-01.pdf C:\Users\ATC6100\Desktop\JESD22-B110B.pdf C:\Users\ATC6100\Desktop\JESD22-B105E.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-B106E.pdf C:\Users\ATC6100\Desktop\JESD22\JEDEC标准\JESD22-B107D_R.pdf C:\Users\ATC6100\Desktop\JEDEC标准\JESD22-B108B.pdfC:\Users\ ATC6100\ Desktop\ JEDEC标准\JESD22-B109B.pdf C:\Users\ ATC6100\ Desktop\JESD22-B110B.pdfC:\Users\ ATC6100\ Desktop\ JEDEC标准\ JESD22-B111A.pdf C:\Users\ ATC6100\ Desktop\ JEDEC标准\JESD22-B112B.pdfC:\Users\ATC6100\Desktop\ JEDEC标准\JESD22-B113A.pdfC:\Users\ATC6100\Desktop\JEDEC标准\JESD22-B114A.pdfC:\Users\ATC6100\Desktop\C:\Users\ATC6100\Desktop\JESD22-B117B.pdfC:\Users\ ATC6100\ Desktop\C:\Users\ ATC6100\ Desktop\C:\Users\ ATC6100\ Desktop\。
jedec制造标准
jedec制造标准
JEDEC(固态技术协会)是一个国际标准组织,专注于制定和推广微电子和固态电子行业的标准。
在制造标准方面,JEDEC发布了一系列的标准,包括:
1. 内存板上容量、外形尺寸、物理连接和电气连接的标准,这些标准有助于电子行业的发展,促进电子元件的交换和兼容性。
2. 各种电子元件的性能标准,如存储器、存储单元、处理器、显示器等,这些标准确保所有产品的性能按照JEDEC标准进行统一评测,以确保产品质量。
3. 与电子元件有关的标准,比如电子元件的安装规范、元件排序规范、温度量测标准等,这些标准有助于电子元件制造商确保产品在质量、可靠性、可用性等方面的满足客户的需求。
此外,JEDEC还发布了可靠性试验标准,如循环湿热偏压寿命试验、稳定湿热偏压寿命试验、高速湿热寿命应力试验、高压水煮试验等,这些试验用于测试半导体器件的耐久性和可靠性。
另外,JEDEC还有封装的标准,如JEDEC版本号为JESD22-A118和JESD22-A119A的低温储存试验(LTSL)标准,以及管脚疲劳度试验(JESD22-B105C)和易焊性试验(Solderability)等标准。
总之,JEDEC的制造标准涵盖了从电子元件性能到封装和可靠性测试等多个方面,这些标准有助于推动行业的规范化和标准化发展。
如需更多具体信息,建议访问JEDEC官网获取。
jedec 标准
jedec 标准
JEDEC(Joint Electron Device Engineering Council)是一个由美国电子工程师协会和国际电子工程师协会组成的行业协会,专注于发展电子设备标准和规范。
它是全球最大的半导体行业协会,致力于制定、发布和维护全球最新的电子设备标准和规范,以提高电子设备的效率和可靠性。
JEDEC的标准可以分为三大类:一是元件标准,专注于半导体器件,包括存储器、芯片组、数字、模拟、微控制器和晶体管;二是接口和封装标准,专注于封装和接口类型,包括电源接口、传感器接口、电磁兼容性、模拟信号接口、数据传输接口和电路板封装;第三是测试标准,主要关心半导体部件的测试和评估,包括测试程序、测试方法和测试设备。
JEDEC的标准在全球范围内获得了广泛的接受和应用,是全球半导体行业的核心标准,在推动半导体技术发展和改善电子设备的可靠性方面发挥着至关重要的作用。
JEDEC的标准不仅影响了半导体行业的发展,也影响了其他行业,例如计算机、消费电子产品和汽车电子设备等行业,其影响力已遍布全球各地。
此外,PC100是由JEDEC和英特尔共同制订的一个SDRAM内存条的标准,符合该标准的内存都称为PC100,其中的100代表该内存工作频率可达
100MHz。
如需更多关于“JEDEC标准”的信息,建议访问JEDEC官网或咨询专业技
术人员。
die shear标准
die shear标准关于"die shear标准"的1500-2000字文章。
第一步:引言Die shear标准是指在半导体封装过程中以及对半导体器件进行测试时,评估焊点强度和可靠性的一种重要测试指标。
焊点强度和可靠性对于半导体器件的性能和使用寿命具有重要的影响。
本文将详细介绍die shear标准的定义、测试方法、评估标准以及其在半导体行业中的重要性。
第二步:定义Die shear是指在半导体器件封装过程中,芯片与承载板之间的焊点强度。
焊点的强度决定了芯片与承载板之间的连接是否牢固,直接影响到半导体器件的性能和可靠性。
因此,确定合适的die shear标准是必要的。
第三步:测试方法进行die shear测试时,通常使用一台电子式力测量仪来测量并记录焊点的强度。
测试过程中,在特定的温度和湿度条件下,通过施加垂直和水平的力来测量焊点的强度。
根据焊点的材料和尺寸,测试过程中施加的力可能会有所不同。
测试操作应符合国际标准,例如JESD22-B116D和MIL-STD-883等。
第四步:评估标准在进行die shear测试后,需要根据焊点的强度进行评估。
通常,评估标准包括两个方面:首先是垂直力测试,即施加垂直方向的力量来测试焊点的强度;其次是水平力测试,即施加水平方向的力量来测试焊点的强度。
通过对两者的分析比较,可以得出焊点强度的评估结果。
第五步:die shear标准的重要性确定合适的die shear标准对于半导体行业至关重要。
首先,它可以帮助识别和解决焊点强度不足的问题,从而提高半导体器件的可靠性。
其次,die shear标准可以为半导体生产商提供一种质量控制的手段,确保生产的器件符合规格要求。
此外,die shear标准还可以作为一种评估半导体供应链中不同供应商的能力和质量的指标。
第六步:应用领域Die shear标准广泛应用于半导体行业中的各个环节,如芯片制造、封装、测试等。
JEDEC工业标准
J E D E C工业标准(共2页) -本页仅作为预览文档封面,使用时请删除本页-JEDEC工业标准环境应力试验[JDa1]JESD22-A100-B Cycled Temperature-Humidity-Bias Life Test 上电温湿度循环寿命试验, (Revision of JESD22-A100-A) April 2000 [Text-jd001][JDa2]JESD22-A101-B Steady State Temperature Humidity Bias Life Test 上电温湿度稳态寿命试验, (Revision of JESD22-A101-A) April 1997 [Text-jd002][JDa3]JESD22-A102-C Accelerated Moisture Resistance -Unbiased Autoclave高加速蒸煮试验, (Revision of JESD22-A102-B) December 2000 [Text-jd003][JDa4]JESD22-A103-A Test Method A103-A High Temperature Storage Life高温储存寿命试验, (Revision of Test Method A103 Previously Published in JESD22-B) July 1989[Text-jd004][JDa5]JESD22-A103-B High Temperature Storage Life高温储存寿命试验, (Revision of JESD22-A103-A) August 2001 [Text-jd005][JDa6]JESD22-A104-B Temperature Cycling温度循环, (Revision of JESD22-A104-A) July 2000 (参见更新版本A104C) [Text-jd006][JDa7]EIA/JESD22-A105-B Test Method A105-B Power and Temperature Cycling上电和温度循环, (Revision of Test Method A105-A) February 1996 [Text-jd007][JDa8]JESD22-A106-A Test Method A106-A Thermal Shock热冲击, (Revision of Test Method A106-Previously Published in JESD22-B) April 1995 [Text-jd008][JDa9]JESD22-A107-A Salt Atmosphere盐雾试验, (Revision of Test Method A107-Previously Published in JESD22-B) December 1989 [Text-jd009][JDa10]JESD22-A108-B Temperature, Bias, and Operating Life高温环境条件下的工作寿命试验, (Revision of JESD22-A108-A) December 2000[JDa11]JESD22-A110-B Test Method A110-B Highly-Accelerated Temperature and Humidity Stress Test (HAST)高加速寿命试验, (Revision of Test Method A110-A) February1999 [Text-jd010][JDa12]JESD22-A113-B Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing非密封表贴器件在可靠性试验以前的预处理, (Revision of TestMethod A113-A) March 1999 [Text-jd011][JDa13]JESD22-A118Accelerated Moisture Resistance - Unbiased HAST不上电的高加速湿气渗透试验, December 2000 [Text-jd012][JDa14]JESD22-B106-B Test Method B106-B Resistance to Soldering Temperature for Through-Hole Mounted Devices插接器件的抗焊接温度试验, (Revision of Test MethodB106-A) February 1999 [Text-jd013][JDa15]EIA/JESD47Stress-Test-Driven Qualification of Integrated Circuits集成电路施加应力的产品验收试验, July 1995 [Text-jd031][JDa1]JESD22-A104C Temperature Cycling, (Revision of JESD22-A104-B) May 2005 [Text-jd040]电应力和电测试试验[JDb1]JESD22-A114-B Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)人体模型条件下的静电放电敏感度试验, (Revision of JESD22-A114-A) June 2000 [Text-jd014][JDb2]EIA/JESD22-A115-A Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)机器模型条件下的静电放电敏感度试验, (Revision of EIA/JESD22-A115)October 1997 [Text-jd015][JDb3]JESD22-A117Electrically Erasable Programmable ROM (EEPROM) Program/Erase Endurance and Data Retention Test EEPROM的擦涂和数据保存试验, January 2000[Text-jd016][JDb4]EIA/JESD78IC Latch-Up Test集成电路器件闩锁试验, March 1997 [Text-jd017][JDb5]JESD22-C101-A Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components微电子器件在电荷感应模型条件下的抗静电放电试验, (Revision of JESD22-C101) June 2000 [Text-jd018]机械应力试验[JDc1]JESD-22-B103-A Test Method B103-A Vibration, Variable Frequency振动和扫频试验(Revision of Test Method B103 Previously Published in JESD22-B) July1989 [Text-jd019][JDc2]JESD22-B104-A Test Method B104-A Mechanical Shock机械冲击(Revision of Test Method B104, Previously Published in JEDEC Standard September 1990 [Text-jd020] [JDc3]EIA/JESD22-B116Wire Bond Shear Test Method焊线邦定的剪切试验方法, July 1998 [Text-jd021][JDc4]JESD22-B117BGA Ball Shear BGA焊球的剪切试验, July 2000 [Text-jd022][JDc5]JESD22B113Board Level Cyclic Bend Test Method for Interconnect Reliability Characterization of Components for Handheld Electronic Products, March 2006[Text-jd038][JDc6]JESD22-B111Board Level Drop Test Method of Components for Handheld Electronic Products, July 2003 [Text-jd039]综合试验与测试[JDd1]JEDEC Standard Test Method A109 Hermeticity密封性试验, July 1988 [Text-jd023] [JDd2]JESD22-A120Test Method for the Measurement of Moisture Diffusivity and Water Solubility in Organic Materials Used in Integrated Circuits集成电路器件中使用的有机材料水分扩散和水溶性测定试验方法, June 2001 [Text-jd024][JDd3]JESD22-B100-A Physical Dimensions物理尺寸的测量, (Revision of Test Method B100-Previously Published in JESD22-B) April 1990 [Text-jd025][JDd4]JESD22-B101Test Method B101 External Visual外观检查, (Previously published in JESD22-B) September 1987 [Text-jd026][JDd5]EIA/JESD22-B102-C Solderability Test Method可焊性试验方法, September 1998 [Text-jd027][JDd6]EIA/JESD22-B105-B Test Method B105-B Lead Integrity器件管脚的完整性试验, (Revision of Test Method B105-A) January 1999 [Text-jd028][JDd7]EIA/JESD22-B107-A Test Method B107-A Marking Permanency图标的耐久性试验, (Revision of Test Method B107-Previously Published in JESD22-B) September 1995 [Text-jd029][JDd8]JESD22-B108 Coplanarity Test for Surface-Mount Semiconductor Devices表贴半导体器件的共面性试验, November 1991 [Text-jd030]其它[JDe1]JEP113-B Symbol and Labels for Moisture-Sensitive Devices湿度敏感器件的符号和标识, (Revision of JEP113-A) May 1999 [Text-jd032][JDe2]EIA/JEP122Failure Mechanisms and Models for Silicon Semiconductors Devices硅半导体器件的失效机理和模型, February 1996 [Text-jd033][JDe3]IPC/JEDEC J-STD-020A Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices针对非密封表贴半导体器件的湿度/回流焊敏感度分类和级别, April 1999 [Text-jd034][JDe4]IPC/JEDEC J-STD-033Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices湿度/回流焊敏感标贴器件的处理、包装、运输和使用的标准, May 1999 [Text-jd035][JDe5]EIA/JEP103-A Suggested Product-Documentation Classifications and Disclaimers, (Revision of JEP103) July 1996 [Text-jd036][JDe6]IPC/JEDEC Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices针对非密封表贴半导体器件的湿度/回流焊敏感度分类和级别, Supersedes IPC/JEDEC J-STD-020D August 2007, March 2008 [Text-jd037]。
die shear标准 -回复
die shear标准-回复什么是"die shear"标准以及其在制造业中的重要性?"DIE SHEAR"标准是用于评估和确认电子封装产品的可靠性和质量的关键指标。
在制造业中,特别是电子行业中,此标准被广泛应用于对印刷电路板(PCB)、集成电路(IC)封装等产品的设计、生产和测试过程。
Die shear指的是芯片与胶水或者焊料之间的粘合强度。
这种强度是从印刷电路板或封装材料与芯片之间的结合是否牢固以及是否存在任何缺陷或潜在的问题来衡量的。
为了确保合适的Die Shear强度,制造商需要制定相关的标准和测试流程。
这些标准和流程通常由国际电工委员会(IEC)、国际半导体工业协会(SEMI)和国际质量标准化组织(ISO)等机构制定和维护。
制造商依据这些标准和流程进行各种测试,以确认产品在正常使用条件下的可靠性和品质。
以下是一些常见的Die shear测试:1. 剪切测试:此测试用于测量芯片与胶水或焊料之间的粘合强度。
一个定位机械装置将芯片与胶水/焊料背面的基材之间施加剪切力,以模拟实际工作条件下的力加载。
通过测量在芯片与胶水/焊料之间的断裂位置,可以评估粘合的质量和强度。
2. 温度循环测试:此测试用于模拟产品在正常工作条件下,温度的变化。
通过在加热和冷却周期中进行多次温度循环,制造商可以评估芯片和胶水/焊料之间粘合的稳定性和可靠性。
3. 湿度测试:此测试用于模拟产品在潮湿环境中的使用情况。
将产品置于高湿度环境中,并测量粘合强度的变化和胶水/焊料背面基材的膨胀或分解情况,来评估粘合的可靠性。
4. 机械冲击测试:此测试用于模拟产品在运输或正常使用过程中可能遭受的机械冲击。
通过施加冲击负荷来测量芯片与胶水/焊料之间的粘合强度,并评估胶水/焊料背面基材的断裂情况。
随着电子产品和封装技术的不断发展,Die shear标准也在不断演进,以满足新型产品的要求。
制造商需要根据他们的产品和需求,选择适合的Die shear标准来确保高质量和可靠性的产品。
jedec镀层标准
jedec镀层标准JEDEC镀层标准。
JEDEC是全球半导体行业的标准制定组织,其制定的标准在半导体行业具有广泛的影响力。
在半导体制造过程中,镀层是一个非常重要的工艺环节,它直接影响着芯片的性能和可靠性。
JEDEC针对镀层制定了一系列的标准,以保证半导体产品的质量和可靠性。
本文将介绍JEDEC镀层标准的相关内容,以便读者更好地了解和应用这些标准。
JEDEC镀层标准主要包括了材料、工艺和测试等方面的内容。
在材料方面,JEDEC规定了镀层所使用的材料的种类和质量要求。
例如,在镀金工艺中,JEDEC规定了金属纯度、镀层厚度和表面粗糙度等指标,以确保镀层的质量和稳定性。
在工艺方面,JEDEC规定了镀层的工艺参数和操作要求。
例如,在镀锡工艺中,JEDEC规定了镀锡温度、时间和搅拌速度等参数,以确保镀层的均匀性和附着力。
在测试方面,JEDEC规定了镀层的测试方法和标准。
例如,在镀镍工艺中,JEDEC规定了镀层的耐蚀性测试方法和标准,以确保镀层在恶劣环境下的稳定性和耐久性。
JEDEC镀层标准的制定是为了保证半导体产品的质量和可靠性。
在半导体制造过程中,镀层是一个非常关键的环节,它直接影响着芯片的性能和可靠性。
通过遵循JEDEC镀层标准,制造商可以更好地控制镀层工艺,确保产品的质量和可靠性。
同时,遵循JEDEC镀层标准也有利于降低生产成本,提高生产效率。
因此,JEDEC镀层标准对于半导体行业具有非常重要的意义。
总的来说,JEDEC镀层标准对于半导体行业具有非常重要的意义。
它规定了镀层的材料、工艺和测试等方面的要求,以保证半导体产品的质量和可靠性。
遵循JEDEC镀层标准可以帮助制造商更好地控制镀层工艺,确保产品的质量和可靠性,同时也有利于降低生产成本,提高生产效率。
因此,我们应该重视JEDEC镀层标准,遵循这些标准,以确保半导体产品的质量和可靠性。
JEDEC镀层标准的制定是为了保证半导体产品的质量和可靠性。
在半导体制造过程中,镀层是一个非常关键的环节,它直接影响着芯片的性能和可靠性。
3DDRAM封装技术的应用
3DDRAM封装技术的应用3D DRAM封装技术的应用作者:Biao Cai、Vipinchandra Patel、Edmund D. Blackshear,IBM服务器系统的需求推动了3D DRAM技术的进展。
新一代技术提供了形状因子(即几何尺寸和形状)、电气和功率性能方面的优势。
同时也带来了更为复杂的设计、新的装配技术和失效机理。
最佳的3D DRAM技术是由这种优势、成本、入市时间和可靠性的综合权衡决定的。
本文详尽分析了用于DDR2、DDR3和未来服务器存储系统的最佳3D DRAM技术的特征。
TSV(硅通孔)DRAM阵列堆叠有望带来超级的功率性能,这可能是意义重大的市场推动力。
文中还论述了对这一未来技术的权衡和工艺发展趋势。
服务器系统的需求推动3D DRAM技术服务器系统存储量至少每代增长2X。
系统空间体积配置限制了存储器插座/模块的总数,因此要求增长存储器模块密度。
近几年来,“下一代芯片缩小”减缓和成本交叉点在模块密度增长要求和DRAM 芯片密度增长之间产生了差距,并且正在扩大(图1),为3D DRAM 技术创造了应用空间。
DDR2 3D封装技术DDR2存储器原来是用BGA单片封装。
有互为竞争的二种DDR2 3D技术:BGA堆叠(叠层封装)和引线键合芯片堆叠。
二者均是2005年左右在IBM服务器平台中引入的。
BGA堆叠(叠层封装)在IBM服务器平台中采用了几种BGA堆叠设计(图2)。
这些设计有一个共同点,即封装独立的DRAM芯片。
没有芯片级老化功能时,单一封装可实现堆叠工艺前的老化,这对维持堆叠封装良率非常重要。
当新一代DRAM芯片良率仍处于上升阶段时,缺乏KGD(已知好芯片)对堆叠封装良率来说是一个问题。
BGA堆叠提供了这一问题的解决途径。
到2004年,一些封装分包公司已开发了BGA堆叠技术。
采用第三方BGA堆叠服务,存储器供应商获得了“入市时间”的优势。
良率和入市时间的优势是BGA堆叠技术的首要市场推动因素。
锡和锡合金表面处理锡晶须敏感性环境验收要求 JEDEC标准 NO.201
3
Terms and definitions
Surface Finish
Underplate (if applicable)
Base Metal
Figure 1 — Cross-sectional view of component surface finishes base metal: Metal alloy residing beneath all surface finish(es) and/or underplate.
similarity acceptance, surface finish: Acceptance of a change to a surface finish manufacturing process based upon similarity and data available from previous tin whisker Technology and Manufacturing Process Change Acceptance tests.
JEDEC Standard No. 201 Page 2
3
Terms and definitions (cont’d)
tin and tin alloy surface finish: Tin-based outer suБайду номын сангаасface finish for external component terminations and other exposed metal.
JEDEC Standard No. 201 Page 1
ENVIRONMENTAL ACCEPTANCE REQUIREMENTS FOR TIN WHISKER SUSCEPTIBILITY OF TIN AND TIN ALLOY SURFACE FINISHES
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MIL-STD-883FMETHOD 2019.7DIE SHEAR STRENGTH1. PURPOSE. The purpose of this test is to determine the integrity of materials and procedures used to attach semiconductor die or surface mounted passive elements to package headers or other substrates. This determination is based on a measure of force applied to the die, the type of failure resulting from this application of force (if failure occurs) and the visual appearance of the residual die attach media and substrate/header metallization.2. APPARATUS. The test equipment shall consist of a load-applying instrument with an accuracy of 5 percent of full scale or 50 grams, whichever is the greater tolerance. A circular dynamometer with a lever arm or a linear motion force- applying instrument may be used to apply the force required for testing. The test equipment shall have the following capabilities:a. A die contact tool which applies a uniform distribution of the force to an edge of the die (see figure 2019-1). Acompliant (conforming) material (e.g., nail polish, tape, etc.) may be applied to th face of the contact tool to ensue uniform force distribution on the edge of the die.b. Provisions to assure that the die contact tool is perpendicular to the die mounting plane of the header or substrate.c. A rotational capability, relative to the header/substrate holding fixture and the die contact tool, to facilitate linecontact on the edge of the die; i.e., the tool applying the force to the die shall contact the die edge from end-to-end (see figure 2019-2).d. A binocular microscope with magnification capabilities of 10X minimum and lighting which facilitates visualobservation of the die and die contact tool interface during testing.3. PROCEDURE. The test shall be conducted, as defined herein, or to the test conditions specified in the applicable specific acquisition document consistent with the particular part construction. All die strength tests shall be counted and the specific sampling, acceptance, and added sample provisions shall be observed, as applicable.3.1 Shear strength. A force sufficient to shear the die from its mounting or equal to twice the minimum specified shear strength (figure 2019-4), whichever occurs first, shall be applied to the die using the apparatus of 2 above.NOTE: For passive elements only attached at the end terminations, the area used to determine the force applied shall be the total area of the mounting surface of the end terminations. An area between and terminations filled with non-adhering filler shall not be used to determine the force applied. However, any adhering material applied between the end terminations shall be used in the shear calculation, If the area between end terminations contains an adhering material, then the area of the adhering material shall be added to the area of the mounting surfaces of the end terminations and that total area shall be used to determine the force applied.a. When a linear motion force-applying instrument is used, the direction of the applied force shall be parallel with theplane of the header or substrate and perpendicular to the die being tested.b. When a circular dynamometer with a lever arm is employed to apply the force required for testing, it shall bepivoted about the lever arm axis and the motion shall be parallel with the plane of the header or substrate andperpendicular to the edge of the die being tested. The contact tooling attached to the lever arm shall be at a proper distance to assure an accurate value of applied force.c. The die contact tool shall apply a force gradually from zero to a specified value against an edge of the die whichmost closely approximates a 90 angle with the base of the header or substrate to which it is bonded (see figure2019-3). For rectangular die, the force shall be applied perpendicular to the longer side of the die. Whenconstrained by package configurations, any available side of the die may be tested if the above options are notavailable.d. After initial contact with the die edge and during the application of force, the relative position of the contact toolshall not move vertically such that contact is made with the header/substrate or die attach media. If the tool rides over the die, a new die may be substituted or the die may be repositioned, provided that the requirements of 3.1.c are met.METHOD 2019.707 March 20031MIL-STD-883F3.2 Failure criteria. A device which fails any of the following criteria shall constitute a failure.Note: (See examples for determining DIE AREA following figure 2019-4.)a. Fails die strength requirements (1.0X) of figure 2019-4.b. Separation with less than 1.25 times the minimum strength (1.0X) specified in figure 2019-4 and evidence of lessthan 50 percent adhesion of the die attach medium.c. Separation with less than 2.0 times the minimum strength (1.0X) specified in figure 2019-4 and evidence of lessthan 10 percent of adhesion of the die attach medium.NOTE: Residual silicon attached in discrete areas of the die attach medium shall be considered as evidence ofadhesion. For metal glass die attach, die attach material on the die and on the package base shall be considered as evidence of acceptable adhesion.3.2.1 Separation categories. When specified, the force required to achieve separation and the category of the separation shall be recorded.a. Shearing of die with residual silicon remaining.b. Separation of die from die attach medium.c. Separation of die and die attach medium from package.4. SUMMARY. The following details shall be specified in the applicable acquisition document.a. Minimum die attach strength if other than shown on figure 2019-4.b. Number of devices to be tested and the acceptance criteria.c. Requirement for data recording, when applicable (see 3.2.1).METHOD 2019.707 March 20032MIL-STD-883FFIGURE 2019-1. Compliant interface on contact tool distributesload to the irregular edge of the die.FIGURE 2019-2. Rotate the die contact tool or the devicefor parallel alignment.FIGURE 2019-3. The contact tool shall load against that edgeof the die which forms an angle 90 withthe header/substrate.METHOD 2019.707 March 20033MIL-STD-883FNOTES:1. All die area larger than 64 x 10-4 (IN)2 shall withstand a minimum force of2.5 kg or a multiplethereof (see 3.2).2. All die area larger than or equal to 5 x 10-4 (IN)2 but small than or equal to 64 x 10-4 (IN)2 shall withstand aminimum force as determined from the chart of Figure 2019.43. All die area smaller than 5 x 10-4 (IN)2 shall withstand a minimum force (1.0X) of 0.04 kg/10-4 (IN)2or a minimum force (2X) of 0.08 kg/10-4 (IN)2.FIGURE 2019-4. Die shear strength criteria (minimum force versus die attach area).METHOD 2019.707 March 20034MIL-STD-883FExamples of determining die strength requirements based on die area.Example 1:Die Area of device measuring .02 inches by .02 inches.Die Size = .02 X .02 = .0004 IN2 = 4 X 10-4 (IN2).Because die size is less than 5 X 10-4 (IN2) use Note 3 which states the value of minimum force required is 0.04 kg/10-4 (IN2) at (1X), 0.05 kg/10-4 (IN2) at (1.25X), or 0.08 kg/10-4 (IN2) at (2X). Thus the associatedminimum forces required are 0.16 kg, 0.20 kg and 0.32 kg, respectively.Example 2:Die Area of device measuring .04 inches by 0.04 inches.Die Size = .04 X .04 = .0016 IN2 = 16 X 10-4 (IN2 ).Because die size is between 5 X 10-4 (IN2) and 64 X 10-4 (IN2 ) use Note 2 which states the value of minimum force required is to be determined based on the chart. The values for die size 16 X 10-4 (IN2) are foundon the chart by reading 16 on the (10-4 IN2) scale, then finding the coordinating force value on the (F)scale. Doing so provides minimum forces required as .64 kg at (1X), .80 kg at (1.25X), and 1.28 kg at(2X).Example 3:Die Area of device measuring .09 inches by .09 inches.Die Size = .09 X .09 = .0081 IN2 = 81 X 10-4 (IN2 ).Because die size is larger than 64 X 10-4 (IN2) use Note 1 which states the value of minimum force required is 2.5 kg or a multiple thereof. Therefore, the minimum forces required are 2.5 kg at (1X), 3.125 kg at (1.25X),and 5.0 kg at (2X).METHOD 2019.707 March 20035MIL-STD-883FThis page intentionally left blank METHOD 2019.707 March 20036。