高考物理一轮复习讲义 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流 教科版
高考物理一轮复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流教案
第2讲 法拉第电磁感应定律 自感 涡流知识点一 法拉第电磁感应定律 1.感应电动势(1)概念:在 中产生的电动势.(2)产生条件:穿过回路的 发生改变,与电路是否闭合 . (3)方向判断:感应电动势的方向用 或 判断. 2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的 成正比. (2)公式:E =n ΔΦΔt,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵守闭合电路的 定律,即I = . 3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E = . (2)v ∥B 时,E =0.答案:1.(1)电磁感应现象 (2)磁通量 无关 (3)楞次定律 右手定则 2.(1)磁通量的变化率 (3)欧姆ER +r3.(1)Blv知识点二 自感、涡流 1.自感现象(1)概念:由于导体本身的 变化而产生的电磁感应现象称为自感. (2)自感电动势①定义:在自感现象中产生的感应电动势叫做 . ②表达式:E = . (3)自感系数L①相关因素:与线圈的 、形状、 以及是否有铁芯有关. ②单位:亨利(H),1 mH = H,1 μH = H. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生 ,这种电流像水的漩涡所以叫涡流.答案:1.(1)电流 (2)①自感电动势 ②L ΔIΔt (3)①大小 匝数②10-310-62.感应电流(1)磁通量变化越大,产生的感应电动势也越大.( ) (2)磁通量变化越快,产生的感应电动势就越大.( ) (3)磁通量的变化率描述的是磁通量变化的快慢.( ) (4)感应电动势的大小与线圈的匝数无关.( ) (5)线圈中的自感电动势越大,自感系数就越大.( )(6)磁场相对导体棒运动时,导体棒中也能产生感应电动势.( ) (7)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.( ) (8)自感电动势阻碍电流的变化,但不能阻止电流的变化.( ) 答案:(1) (2)√ (3)√ (4) (5) (6)√ (7)√ (8)√动生电动势和感生电动势当线圈匝数为1时,法拉第电磁感应定律的数学式是E =d Φd t ,E 表示电动势的大小.中学教材中写成E =ΔΦΔt ,既表示平均也表示瞬时.应用时常遇到两种情况,一是S 不变而B 随时间变化,则可用形式E =S ΔB Δt ;二是B 不变而S 变化,则可应用形式E =B ΔSΔt .至于导体棒切割磁感线产生的电动势E =Blv ,教材则是通过一典型模型利用E =B ΔSΔt推出的.我们知道,B 不随时间变化(恒定磁场)而闭合电路的整体或局部在运动,这样产生的感应电动势叫动生电动势,其非静电力是洛伦兹力.B 随时间变化而闭合电路的任一部分都不动,这样产生的感应电动势叫感生电动势,其非静电力是涡旋电场(非静电场)对电荷的作用力.上述两种电动势统称感应电动势,其联系何在?分析磁通量Φ的定义公式Φ=BS 可见Φ与BS 两个变量有关,既然E =d Φd t ,那么根据全导数公式有d Φd t =S ∂B ∂t +B ∂S ∂t ,其中S ∂B∂t 即感生电动势,体现了因B 随时间变化而产生的影响.B ∂S∂t 同样具有电动势的单位,其真面目是什么呢?我们采用和现行中学教材一样的方法,建立一物理模型分析.如图所示,MN 、PQ 是两水平放置的平行光滑金属导轨,其宽度为L ,ab 是导体棒,切割速度为v .设匀强磁场磁感应强度为B ,方向垂直纸面向里.在Δt 时间内,回路面积变化为ΔS =L Δx ,面积的平均变化率ΔS Δt =L Δx Δt .当Δt →0时,Δx Δt →v ,即d S d t =Lv ,d S d t 对应全导数公式中的∂S ∂t ,可见B ∂S ∂t =BLv ,这就是动生电动势,体现了因面积变化而产生的影响.推而广之,线圈在匀强磁场中做收缩、扩张、旋转等改变面积的运动而产生的电动势也是动生电动势.两种电动势可以同时出现.考点一 法拉第电磁感应定律的理解和应用1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)ΔΦΔt 为单匝线圈产生的感应电动势大小.2.法拉第电磁感应定律的两个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB ·S ,E =n ΔBΔt ·S .(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B ·ΔS ,E =nB ΔSΔt.[典例1] (2017·安徽安庆质检)如图甲所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图乙所示(规定图甲中B 的方向为正方向).图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求0~t 1时间内:甲 乙 (1)通过电阻R 1的电流大小和方向;(2)通过电阻R 1的电荷量q 及电阻R 1上产生的热量.[解题指导] (1)B t 图象为一条倾斜直线,表示磁场均匀变化,即变化率恒定. (2)本题应区分磁场的面积和线圈的面积.[解析] (1)根据楞次定律可知,通过R 1的电流方向为由b 到a .根据法拉第电磁感应定律得,线圈中的电动势E =n ΔB πr 22Δt =n ·B 0πr 22t 0根据闭合电路欧姆定律得,通过R 1的电流I =E 3R =nB 0πr 223Rt 0. (2)通过R 1的电荷量q =It 1=nB 0πr 22t 13Rt 0R 1上产生的热量Q =I 2R 1t 1=2n 2B 20π2r 42t 19Rt 2. [答案] (1)nB 0πr 223Rt 0方向由b 到a(2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 2[变式1] 如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A.Ba 22ΔtB.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt答案:B 解析:磁感应强度的变化率ΔB Δt=2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔBΔt S ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. [变式2](2016·北京卷)如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b .不考虑两圆环间的相互影响.下列说法正确的是( )A.E a ∶E b =4∶1,感应电流均沿逆时针方向B.E a ∶E b =4∶1,感应电流均沿顺时针方向C.E a ∶E b =2∶1,感应电流均沿逆时针方向D.E a ∶E b =2∶1,感应电流均沿顺时针方向答案:B 解析:由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt πr 2,ΔB Δt 为常数,E 与r 2成正比,故E a ∶E b =4∶1.磁感应强度B 随时间均匀增大,故穿过圆环的磁通量增大,由楞次定律知,感应电流产生的磁场方向与原磁场方向相反,垂直纸面向里,由安培定则可知,感应电流均沿顺时针方向,故B 项正确.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均感应电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR. 考点 导体切割磁感线产生感应电动势的计算1.平动切割(1)常用公式:若运动速度v 和磁感线方向垂直,则感应电动势E =BLv .注意:公式E =BLv 要求B ⊥L 、B ⊥v 、L ⊥v ,即B 、L 、v 三者两两垂直,式中的L 应该取与B 、v 均垂直的有效长度(即导体的有效切割长度).(2)有效长度:公式中的L 为有效切割长度,即导体在与v 垂直的方向上的投影长度. (3)相对性:E =BLv 中的速度v 是相对于磁场的速度,若磁场也运动时,应注意速度间的相对关系.2.转动切割在磁感应强度为B 的匀强磁场中,长为L 的导体棒绕一端为轴以角速度ω匀速转动时,此时产生的感应电动势E =BLv 中=12B ωL 2.若转动的是圆盘,则可以把圆盘看成由很多根半径相同的导体杆组合而成的.考向1 导体棒平动切割磁感线[典例2] (2015·安徽卷)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A.电路中感应电动势的大小为Blvsin θB.电路中感应电流的大小为Bv sin θrC.金属杆所受安培力的大小为B 2lv sin θrD.金属杆的热功率为B 2lv 2r sin θ[解题指导] 解答该题要明确以下几点:(1)金属杆切割磁感线的有效长度并不是它的实际长度,而是它的长度沿垂直速度方向的投影长度.(2)金属杆相当于电源,电路中的电流可利用欧姆定律求得. (3)金属杆的热功率可用公式P =I 2R 求得.[解析] 金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E =Blv (l为切割磁感线的有效长度),选项A 错误;电路中感应电流的大小为I =ER =Blv lsin θr=Bv sin θr ,选项B 正确;金属杆所受安培力的大小为F =BIl ′=B ·Bv sin θr ·l sin θ=B 2lvr ,选项C 错误;金属杆的热功率为P =I 2R =B 2v 2sin 2θr 2·lr sin θ=B 2lv 2sin θr,选项D 错误.[答案] B考向2 导体棒旋转切割磁感线[典例3] (多选)1831年,法拉第发明的圆盘发电机(图甲)是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触,使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,方向水平向右,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法正确的是( )甲 乙A.铜盘转动过程中,穿过铜盘的磁通量不变B.电阻R 中有正弦式交变电流通过C.若不给铜盘施加任何外力,铜盘最终会停下来D.通过R 的电流方向是从a 流向b[解析] 铜盘切割磁感线产生感应电动势,铜盘相当于电源,从而在电路中形成方向不变的电流,内部电流方向是从负极(D 点)到正极(C 点).由于铜盘在运动中受到安培力的阻碍作用,故最终会停下来.故选A 、C.[答案] AC [变式3](2015·新课标全国卷Ⅱ)如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A.U a >U c ,金属框中无电流B.U b >U c ,金属框中电流方向沿a →b →c →aC.U bc =-12Bl 2ω,金属框中无电流D.U ac =12Bl 2ω,金属框中电流方向沿a →c →b →a答案:C 解析:闭合金属框在匀强磁场中以角速度ω逆时针转动时,穿过金属框的磁通量始终为零,金属框中无电流.由右手定则可知U b =U a <U c ,A 、B 、D 选项错误;b 、c 两点的电势差U bc =-Blv 中=-12Bl 2ω,选项C 正确.公式E =Blv 与E =n ΔΦΔt的比较考点通电自感和断电自感1.对自感现象的理解(1)自感电动势总是阻碍导体中原电流的变化. (2)通过线圈中的电流不能发生突变,只能缓慢变化. (3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题考向1 通电自感[典例4] 如图所示,A 、B 是两个完全相同的灯泡,L 的自感系数较大的线圈,其直流电阻忽略不计.当开关S 闭合时,下列说法正确的是( )A.A 比B 先亮,然后A 熄灭B.B 比A 先亮,然后B 逐渐变暗,A 逐渐变亮C.A、B一起亮,然后A熄灭D.A、B一起亮,然后A逐渐变亮,B的亮度不变[解析] 开关闭合的瞬间,线圈由于自感阻碍电流通过,相当于断路,B灯先亮,之后线圈阻碍作用减弱,相当于电阻减小,则总电阻减小,总电流增大,路端电压减小,B灯所在支路电流减小,B灯变暗,A灯所在支路电流增大,A灯变亮.[答案] B考向2 断电自感[典例5] 如图所示电路中,L是一电阻可忽略不计的电感线圈,a、b为L的左、右两端点,A、B、C为完全相同的三个灯泡,原来开关S是闭合的,三个灯泡均在发光.某时刻将开关S断开,则下列说法正确的是( )A.a点电势高于b点,A灯闪亮后缓慢熄灭B.b点电势高于a点,B、C灯闪亮后缓慢熄灭C.a点电势高于b点,B、C灯闪亮后缓慢熄灭D.b点电势高于a点,B、C灯不会闪亮只是缓慢熄灭[解题指导] (1)断电自感现象中电流方向不改变.(2)L电阻不计,开关闭合时电流满足I A>I B=I C.[解析] 开关S闭合稳定时,电感线圈支路的总电阻较B、C灯支路电阻小,故流过A灯的电流I1大于流过B、C灯的电流I2,且电流方向由a到b,a点电势高于b点.当开关S断开,电感线圈会产生自感现象,相当于电源,b点电势高于a点,阻碍流过A灯电流的减小,瞬间流过B、C灯支路的电流比原来的大,故B、C灯闪亮后再缓慢熄灭,故B正确.[答案] B考向3 自感现象中的图象问题[典例6]在如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,选项中能定性描述电流I 随时间t 变化关系的是( )A B C D[解析] 当S 闭合时,D 1、D 2同时亮且通过的电流大小相等,但由于L 的自感作用,D 1被短路,I 1逐渐减小到零,I 2逐渐增大至稳定;当S 再断开时,D 2马上熄灭,D 1与L 组成回路,由于L 的自感作用,D 1慢慢熄灭,电流反向且减小;综上所述知A 正确.[答案] A分析自感现象时的两点注意(1)通电自感线圈中的电流不能发生突变,即通电过程中,电流是逐渐变大的;断电过程中,电流是逐渐变小的,此时线圈可等效为“电源”,该“电源”与其他元件形成回路.(2)断电自感中,灯泡是否闪亮问题的判断 ①通过灯泡的自感电流大于原电流时,灯泡闪亮; ②通过灯泡的自感电流小于等于原电流时,灯泡不会闪亮.1.[公式E =BLv 的应用]如图所示,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε′,则ε′ε等于( )A.12B.22C.1D. 2答案:B 解析:设弯折前金属棒切割磁感线的长度为L ,弯折后,金属棒切割磁感线的有效长度为l =22L ,故产生的感应电动势为ε′=Blv =22BLv =22ε,所以ε′ε=22,B 正确.2.⎣⎢⎡⎦⎥⎤公式E =n ΔΦΔt 的应用如图所示为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A.恒为nS (B 2-B 1)t 2-t 1B.从0均匀变化到nS (B 2-B 1)t 2-t 1 C.恒为-nS (B 2-B 1)t 2-t 1D.从0均匀变化到-nS (B 2-B 1)t 2-t 1答案:C 解析:由楞次定律判定,感应电流从a 流向b ,b 点电势高于a 点电势,故φa -φb =-nS B 2-B 1t 2-t 1,因为磁场均匀增加,所以φa -φb 为恒定的,可见C 正确. 3.⎣⎢⎡⎦⎥⎤公式E =12BL 2ω的应用如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A.由c 到d ,I =Br 2ωRB.由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2RD.由d 到c ,I =Br 2ω2R答案:D 解析:由右手定则判定通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动E =12Br 2ω,所以通过电阻R 的电流大小是I =Br 2ω2R,选项D 正确. 4.[通电自感与断电自感]在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为电阻可忽略不计的自感线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( )A.合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭B.合上开关,b 先亮,a 后亮;断开开关,a 先熄灭,b 后熄灭C.合上开关,b 先亮,a 后亮;断开开关,a 、b 同时熄灭D.合上开关,a 、b 同时亮;断开开关,b 先熄灭,a 后熄灭答案:C 解析:由于L 是自感线圈,当合上S 时,自感线圈L 将产生自感电动势,阻碍电流的增加,故有b 灯先亮,a 灯后亮;当S 断开时,L 、a 、b 组成回路,L 产生自感电动势阻碍电流的减弱,由此可知,a 、b 同时熄灭,C 正确.5.公式E =12BL 2ω和E =n ΔΦΔt的应用如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π答案:C 解析:当导线框匀速转动时,设半径为r ,导线框电阻为R ,在很小的Δt 时间内,转过圆心角Δθ=ωΔt ,由法拉第电磁感应定律及欧姆定律可得感应电流I 1=B 0ΔS R Δt =B 0·πr 2Δθ2πR Δt =B 0r 2ω2R ;当导线框不动,而磁感应强度发生变化时,同理可得感应电流I 2=ΔBS R Δt =ΔB ·πr 22R Δt ,令I 1=I 2,可得ΔB Δt =B 0ωπ,C 对.。
高考物理一轮复习 第9章 电磁感应 基础课时25 法拉第电磁感应定律 自感 涡流课件
解析 由法拉第电磁感应定律 E=nΔΔΦt 知,感应电动势的大小与 线圈匝数有关,A 错误;感应电动势正比于ΔΔΦt ,与磁通量的大小 无直接关系,B 错误,C 正确;根据楞次定律知,感应电流的磁 场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D 错误。 答案 C
2.(2014·江苏单科,1)如图1所示,一正方形线圈的匝数为n,边长 为a,线圈平面与匀强磁场垂直,且一半处在磁场中。在Δt时间 内,磁感应强度的方向不变,大小由B均匀地增大到2B。在此 过程中,线圈中产生的感应电动势为( )
基础课时25 法拉第电磁感应定律 自感 涡流
[知识梳理]
知识点一、法拉第电磁感应定律
1.感应电动势 (1)概念:在_电__磁__感__应__现__象__中产生的电动势。 (2)产生条件:穿过回路的__磁__通__量__发生改变,与电路是否闭合 _无__关___。 (3)方向判断:感应电动势的方向用_楞__次__定__律__或_右__手__定__则__判断。
2.法拉第电磁感应定律 (1)内容:感应电动势的大小跟穿过这一电路的磁__通__量__的__变__化__率__ 成正比。 (2)公式:E=nΔΔΦt ,其中 n 为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的___欧__姆定律, E
即I=__R_+__r__。
3.导体切割磁感线的情形 (1)若B、l、v相互垂直,则E=_B__lv_。 (2)v∥B时,E=0。
[思考] (1)穿过线圈的磁通量变化越大,产生的感应电动势是否也越大?
(2)利用E=Blv推导出导体棒以端点为轴,在匀强磁场中垂直于 磁感线方向匀速转动时产生感应电动势的表达式?
[诊断自测]
1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场 方向垂直,关于线圈中产生的感应电动势和感应电流,下列表 述正确的是( ) A.感应电动势的大小与线圈的匝数无关 B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大 D.感应电流产生的磁场方向与原磁场方向始终相同
2015届高考物理一轮复习 9-2法拉第电磁感应定律自感涡流课件
1.穿过闭合回路的磁通量 Φ 随时间 t 变化的图象分别如 图 9-2-1 甲~丁所示.下列关于回路中产生的感应电动势 的论述中正确的回路产生的感应电动势恒定不变 B.图乙中回路产生的感应电动势一直在变大 C.图丙中回路在 0~t1 时间内产生的感应电动势小于在 t1~t2 时间内产生的感应电动势 D.图丁中回路产生的感应电动势先变小后变大
解析:金属棒 MN 向右切割磁感线,产生感应电动势, 由右手定则可知,电阻中电流方向为 a→c.E1 = BLv , E2 = 2BLv,所以 E1∶E2=1∶2.综上所述,C 正确.
答案:C
图 9-2-3 3.如图 9-2-3 中半径为 r 的金属圆盘在垂直于盘面的 匀强磁场 B 中,绕 O 轴以角速度 ω 沿逆时针方向匀速转动, 则通过电阻 R 的电流的大小和方向是 ( 金属圆盘的电阻不 计)( )
解析: 根据法拉第电磁感应定律: 感应电动势等于磁通量的变化 率,得到在图甲中的磁通量不变,所以不会产生感应电动势,选项 A 错误. 由数学知识得图乙中的磁通量变化率是恒定的, 所以产生的感 应电动势是恒定的,选项 B 错误.图丙中回路在 0~t1 时间内与 t1~ t2 时间内磁通量的变化率都是恒定的, 故产生恒定的电动势, 但是 0~ t1 时间内的磁通量的变化率大于 t1~t2 时间内磁通量的变化率,所以 前一段时间产生的感应电动势大于后一段时间内产生的感应电动势, 选项 C 错误.图丁中的磁通量的变化率是先变小后变大,产生的感 应电动势也是先变小后变大.所以本题的正确选项应该为 D.
安培力
19 ,安培力的方向总是□
阻碍
导体
(2)电磁驱动:如果磁场相对于导体运动,在导体中会产 20 感应电流 使导体受到安培力的作用,安培力使导体运 生□ 动起来. 21 交流感应电动机就是利用□
2017版高考物理一轮复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感和涡流
势。
K12课件
26
(3)有效性:公式中的 l 为导体切割磁感线的有效长度。 如图所示,棒的有效长度为 ab 间的距离。
(4)相对性:E=Blv 中的速度 v 是导体相对磁场的速度,若磁 场也在运动,应注意与速度间的相对关系。
K12课件
27
3.感应电动势两个公式的比较
公式
E=nΔΔΦt
E=Blv
导体
K12课件
2
②导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场
中垂直于磁感线方向匀速转动产生感应电动势 E=Blv=12Bl2ω
(平均速度等于中点位置的线速度12lω )。 2.自感、涡流
(1)自感现象 ①概念:由于导体本身的 电流 变化而产生的电磁感应现象
称为自感。
②自感电动势
a.定义:在自感现象中产生的 感应电动势 叫做自感电动势;
K12课件
11
[涡流的理解和应用] 5.[多选]如图所示为新一代炊具 ——电磁 炉,无烟、无明火、无污染、不产生有害气体、 无微波辐射、高效节能等是电磁炉的优势所 在。电磁炉是利用电流通过线圈产生磁场,当 磁场的磁感线通过含铁质锅底部时,即会产生 涡流,使锅体本身自行高速发热,然后再加热 锅内食物。下列相关说法中正确的是 ( )
K12课件
6
解析:选 D 据法拉第电磁感应定律 E=nΔΔΦt ,可得 E=nS·ΔΔt B,感应电动势与ΔΔBt 成正比,当磁感应强度 B 增大或减小时,并不能确定ΔΔBt 是增大或减小,所以感应电
动势的大小不能确定。再据欧姆定律可知,感应电流 I=RE的 大小也无法确定,A、B、C 错误,D 正确。
K12课件
4
巩固小练
1.判断正误 (1)线圈中磁通量越大,产生的感应电动势越大。(×) (2)线圈中磁通量变化越大,产生的感应电动势越大。(×) (3)线圈中磁通量变化越快,产生的感应电动势越大。(√) (4)线圈中的电流越大,自感系数也越大。(×) (5)磁场相对导体棒运动时,导体棒中也能产生感应电动势。(√) (6)对于同一线圈,电流变化越快,线圈中的自感电动势越大。(√)
高考物理一轮总复习 第九章 电磁感应 第2讲 法拉第电磁感应定律 自感和涡流课件(选修3-2)
知识点二 自感 涡流 1.自感现象:由于通过导体自身的 电流 发生变化而产 生的电磁感应现象. 2.自感电动势 (1)定义:在自感现象中产生的感应电动势. (2)表达式:E=__L_ΔΔ_It___.
(3)自感系数L ①相关因素:与线圈的大小、形状、 圈数 以及是否有 铁芯 等因素有关. ②单位:亨利(H),常用单位还有毫亨(mH)、微亨 (μH).1 mH= 10-3 H,1 μH= 10-6 H.
率.
2.应用法拉第电磁感应定律的三种情况 (1)磁通量的变化是由面积变化引起时,ΔΦ=B·ΔS,则 E=nBΔΔtS; (2)磁通量的变化是由磁场变化引起时,ΔΦ=ΔB·S,则 E=nΔΔBt·S; (3)磁通量的变化是由于面积和磁场变化共同引起的, 则根据定义求,ΔΦ=Φ末-Φ初,E=nB2S2-ΔtB1S1≠nΔBΔΔt S.
(2)通过R1的电荷量 q=It1=nB30Rπtr022t1
R1上产生的热量 Q=I2R1t1=2n2B9R20πt202r42t1
[答案] (1)n3BR0πt0r22 方向由b到a
(2)nB30Rπtr022t1
2n2B20π2r42t1 9Rt20
解答本题时容易出现的错误 (1)计算磁通量时,误用线圈面积S=πr21. (2)不会借助数学知识求得ΔΔBt =Bt00. (3)计算电量时不会用公式q=It求解.
第 2 讲 法拉第电磁感应定律 自感和涡流
基础
知识回顾
知识点一 法拉第电磁感应定律 1.感应电动势 (1)概念:在 电磁感应 现象中产生的电动势. (2)产生:只要穿过回路的 磁通量 发生变化,就能产生 感应电动势,与电路是否闭合无关. (3)方向:产生感应电动势的电路(导体或线圈)相当于电 源,电源的正、负极可由 右手定则 或 楞次定律 判断.
第9章 2 法拉第电磁感应定律 自感 涡流
第2课时法拉第电磁感应定律自感涡流读基础知识基础回顾:一、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=nΔΦΔt,其中n为线圈匝数.(3)感应电流与感应电动势的关系:遵循闭合电路的欧姆定律,即I=ER+r .3.导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时,感应电动势可用E=Bl v求出,式中l为导体切割磁感线的有效长度;(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E=Bl v=12Bl2ω(平均速度等于中点位置的线速度12lω).二、自感、涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=LΔIΔt .(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在磁场中运动时,金属块内产生的旋涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.自查自纠:(1)线圈中磁通量越大,产生的感应电动势越大。
(×)(2)线圈中磁通量变化越大,产生的感应电动势越大。
(×)(3)线圈中磁通量变化越快,产生的感应电动势越大。
(√)(4)线圈中的电流越大,自感系数也越大。
(×)(5)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大。
(√)研考纲考题要点1法拉第电磁感应定律的理解与应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系。
第九章 电磁感应 第2讲 法拉第电磁感应定律 自感 涡流
第九章电磁感应
第2讲法拉第电磁感应定律自感涡流
命制人:王善锋审核人:于孔彬定时:40分钟
一、学习目标
1、高考要求:自感、涡流Ⅰ;法拉第电磁感应定律Ⅱ
学习目标:
1)能理解和熟练应用法拉第电磁感应定律,用于电路分析
2)了解自感和涡流的产生原因和现象
二、自学填空大一轮P156
三、预习问题
1、法拉第电磁感应定律
1)产生感应电动势的部分为电源,其正负极如何判断?内部电流方向如何确定?
2)感生电动势是如何产生的?产生条件如何,与感应电流产生条件有何不同?大小由哪些因素决定?
3)导体平动和转动切割匀强磁场时,动生电动势是如何产生的?大小分别怎样?
4)如何计算回路中电流的大小?如何计算某一部分电路两端的电压?
2、自感
1)什么是自感和互感?自感电动势与哪些因素有关?
2)线圈在通电自感和断电自感中各起什么作用?线圈直流电阻不计和考虑有何区别?灯泡为何有时会闪亮后逐渐熄灭?
3、涡流
1)什么是涡流?有哪些应用?有哪些危害?如何防止涡流产生?
2)什么是电磁驱动和电磁阻尼?
四、典型例题
《大一轮》例1、例2、例3
五、提升训练
A组《大一轮》跟踪训练1-1、2-1、3-1,高考题组
B组《大一轮》基础自测
六、课后反思。
高考物理一轮 第九章 第2讲 法拉第电磁感应定律 自感 涡流课件 新人教版选修32
特别提示 (1)感应电动势是产生感应电流的原因,感应 电动势与感应电流及电路中电阻之间的关系遵循闭合电路的 欧姆定律,有感应电动势不一定有感应电流,有感应电流一 定有感应电动势.
(2)在E=Blv公式中l不一定是导体的实际长度而是有效 切割长度.
三、互感、自感和涡流 1.互感现象. 两个相互靠近的线圈,当一个线圈中的电流变化时,它 所产生的变化的磁场会引起另一线圈产生感应电动势的现 象.
2.自感现象. 由于线圈本身的电流发生变化而产生的电磁感应现象. (1)自感电动势大小表达式:E=LΔΔIt .(其中ΔΔIt 为电流变化 率,L为自感系数)
(2)自感系数. 影响因素:线圈匝数、横截面积、有无铁芯. 单位:亨利(H);1 H=103 mH=106 μH. 3.涡流. (1)概念:发生电磁感应时,导体中产生的像水的漩涡一 样的感应电流. (2)产生原理:变化的电流产生变化的磁场,激发出感应 电场,形成感应电流.
2.法拉第电磁感应定律. (1)内容:电路中感应电动势的大小,跟穿过这一电路的 磁通量的变化率成正比. (2)公式:E=nΔΔΦt . (3)公式说明:①E由ΔΔΦt 决定,与ΔΦ和Δt的大小无关; ②当ΔΦ仅由B的变化引起时,E=nΔΔBt S; 当ΔΦ仅由S的变化引起时,E=nBΔΔSt ;
③公式中所求E一般为Δt时间内的平均值. 二、导体切割磁感线产生感应电动势 1.B、l、v相互垂直时,E=Blv. 2.B、l、v不垂直时,投影到相互垂直方向,E= Blvsinθ,其中θ为v和B的夹角. 3.特例:导体绕一端点在垂直于磁场的平面内以角速 度ω转动时,E=12Bωl2.
A.感应电动势的大小与线圈的匝数无关 B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大 D.感应电流产生的磁场方向与原磁场方向始终相同
2023年高考物理一轮复习讲义——法拉第电磁感应定律、自感和涡流
第2讲 法拉第电磁感应定律、自感和涡流目标要求 1.理解法拉第电磁感应定律,会应用E =n ΔΦΔt 进行有关计算.2.会计算导体切割磁感线产生的感应电动势.3.了解自感现象、涡流、电磁驱动和电磁阻尼.考点一 法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:I =ER +r.(4)说明:E 的大小与Φ、ΔΦ无关,决定于磁通量的变化率ΔΦΔt.1.Φ=0,ΔΦΔt不一定等于0.( √ )2.穿过线圈的磁通量变化越大,感应电动势也越大.( × ) 3.穿过线圈的磁通量变化越快,感应电动势越大.( √ )4.线圈匝数n 越多,磁通量越大,产生的感应电动势也越大.( × )1.若已知Φ-t 图像,则图线上某一点的切线斜率为ΔΦΔt.2.当ΔΦ仅由B 的变化引起时,E =n ΔB ·SΔt ,其中S 为线圈在磁场中的有效面积.若B =B 0+kt ,则ΔBΔt=k .3.当ΔΦ仅由S 的变化引起时,E =nB ΔSΔt.4.当B 、S 同时变化时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt .求瞬时值是分别求出动生电动势E 1和感生电动势E 2并进行叠加.考向1 判断感应电动势的方向及变化情况例1 (多选)(2018·全国卷Ⅲ·20)如图(a),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图(b)所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( )A .在t =T4时为零B .在t =T2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向 答案 AC解析 在t =T 4时,i -t 图线斜率为0,即磁场变化率为0,由E =ΔΦΔt =ΔBΔt S 知,E =0,A 项正确;在t =T 2和t =T 时,i -t 图线斜率的绝对值最大,在t =T2和t =T 时感应电动势最大.在T 4到T2之间,电流由Q 向P 减弱,导线在R 处产生垂直纸面向里的磁场,且磁场减弱,由楞次定律知,R 产生的感应电流的磁场方向也垂直纸面向里,即R 中感应电动势沿顺时针方向,同理可判断在T 2到3T 4之间,R 中电动势也为顺时针方向,在34T 到T 之间,R 中电动势为逆时针方向,C 项正确,B 、D 项错误. 考向2 感应电动势、感应电流的计算例2 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力方向水平向左;在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向仍为顺时针,圆环所受安培力方向水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,由R =ρl S 可得R =ρ2πr S ,根据闭合电路欧姆定律可得I =ER =B 0rS4t 0ρ,所以选项C 正确,D 错误. 考点二 导体切割磁感线产生的感应电动势1.导体平动切割磁感线 (1)有效长度公式E =Bl v 中的l 为导体两端点连线在垂直于速度方向上的投影长度.如图,导体的有效长度分别为:图甲:l =cd sin β.图乙:沿v 方向运动时,l =MN .图丙:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =R . (2)相对速度E =Bl v 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系. 2.导体转动切割磁感线如图,当长为l 的导体在垂直于匀强磁场(磁感应强度为B )的平面内,绕一端以角速度ω匀速转动,当导体运动Δt 时间后,转过的弧度θ=ωΔt ,扫过的面积ΔS =12l 2ωΔt ,则E =ΔΦΔt =B ΔS Δt =12Bl 2ω.1.公式E =Bl v 中的l 是导体棒的总长度.( × )2.磁场相对导体棒运动,导体棒中也可能产生感应电动势.( √ ) 考向1 有效长度问题例3 (多选)如图,光滑水平面上两虚线之间区域内存在垂直于纸面向里的范围足够大的匀强磁场,磁感应强度大小为B .边长为a 的正方形导线框PQMN 沿图示速度方向进入磁场,当对角线PM 刚进入磁场时线框的速度大小为v ,方向与磁场边界成45°角,若线框的总电阻为R ,则( )A .PM 刚进入磁场时线框中的感应电流大小为Ba v RB .PM 刚进入磁场时线框所受安培力大小为B 2a 2vRC .PM 刚进入磁场时两端的电压为Ba vRD .PM 进入磁场后线框中的感应电流逐渐变小 答案 AD解析 PM 刚进入磁场时有效的切割长度等于a ,产生的感应电动势为E =Ba v ,感应电流为I =E R =Ba vR ,方向沿逆时针,故A 正确;NM 边所受的安培力大小为F 1=BIa =B 2a 2v R ,方向垂直NM 斜向下,PN 边所受的安培力大小为F 2=BIa =B 2a 2v R,方向垂直PN 斜向下,线框所受安培力大小F =F 12+F 22=2B 2a 2v R ,故B 错误;PM 两端的电压为U =I ·R 2=Ba v2,故C 错误;PM 进入磁场后,有效切割长度逐渐减小,感应电动势逐渐减小,感应电流逐渐减小,故D 正确.考向2 平动切割磁感线例4 (多选)(2017·全国卷Ⅱ·20)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动的速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N 答案 BC解析 由题图(b)可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2 m/s =0.5 m/s ,选项B 正确;由题图(b)可知,cd 边切割磁感线产生的感应电动势E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5 T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005 A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.考向3 转动切割磁感线例5 如图所示,半径为r 的金属圆盘在垂直于盘面向里的磁感应强度为B 的匀强磁场中,绕O 轴以角速度ω沿逆时针方向匀速运动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计)( )A .由c 到d ,I =Br 2ωRB .由d 到c ,I =Br 2ωRC .由c 到d ,I =Br 2ω2RD .由d 到c ,I =Br 2ω2R答案 D解析 由右手定则,圆盘相当于电源,其电流方向为从边缘指向圆心,所以通过电阻R 的电流的方向是由d 到c ;而金属圆盘产生的感应电动势E =12Br 2ω,由I =ER 知通过电阻R 的电流大小是I =Br 2ω2R,D 正确.考点三 自感现象自感现象(1)概念:当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势.这种现象称为自感,由于自感而产生的感应电动势叫作自感电动势. (2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.1.线圈中电流越大,自感系数也越大.( × )2.对于同一个线圈,电流变化越快,线圈中的自感电动势也越大.( √ ) 3.自感电动势总是阻止原电流的变化.( × )1.通电自感和断电自感的比较电路图器材要求A1、A2同规格,R=R L,L较大L很大(有铁芯)通电时在S闭合瞬间,灯A2立即亮起来,灯A1逐渐变亮,最终一样亮灯A立即亮,然后逐渐变暗达到稳定断电时回路电流减小,灯泡逐渐变暗,A1电流方向不变,A2电流反向①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况下灯泡中电流方向均改变总结自感电动势总是阻碍原电流的变化2.分析自感问题的三个技巧例6(2017·北京卷·19)图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等答案 C解析断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过灯A1,灯A1突然闪亮,随后逐渐变暗,说明I L1>I A1,即R L1<R A1,故A错;题图甲中,闭合开关S1,电路稳定后,因为R L1<R A1,所以A1中电流小于L1中电流,故B错;题图乙中,闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同,说明变阻器R与L2的电阻值相同,故C对;闭合开关S2瞬间,通过L2的电流增大,由于电磁感应,线圈L2产生自感电动势,阻碍电流的增大,则L2中电流与变阻器R中电流不相等,故D错.考点四涡流电磁阻尼和电磁驱动1.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在非均匀磁场中运动时,金属块内产生的漩涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.2.电磁阻尼当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动.3.电磁驱动如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力而运动起来.1.电磁阻尼体现了能量守恒定律.(√)2.电磁阻尼阻碍相对运动,电磁驱动促进二者相对运动.(×)例7如图所示,关于涡流的下列说法中错误的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁炉锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流答案 B例8(2017·全国卷Ⅰ·18)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()答案 A解析感应电流产生的条件是闭合回路中的磁通量发生变化.在A图中,系统振动时,紫铜薄板随之上下及左右振动,在磁场中的部分有时多有时少,磁通量发生变化,产生感应电流,受到安培力,阻碍系统的振动;在B图中,只有紫铜薄板向左振动才产生感应电流,而上下振动和向右振动无感应电流产生;在C图中,无论紫铜薄板上下振动还是左右振动,都不会产生感应电流;在D图中,只有紫铜薄板左右振动才产生感应电流,而上下振动无感应电流产生,故选项A正确,B、C、D错误.课时精练1.(2022·陕西榆林市高三模拟)水平放置的玻璃板上方有一用细线悬挂的可自由旋转的小磁针,下方有一水平放置的铜圆盘.圆盘的轴线与小磁针悬线在同一直线上,初始时小磁针与圆盘均处于静止状态.当圆盘绕轴沿逆时针方向(俯视)匀速转动时,下列说法正确的是()A.小磁针不动B.小磁针沿逆时针方向(俯视)转动C.小磁针沿顺时针方向(俯视)转动D.由于穿过圆盘的磁通量没有变化,圆盘中没有感应电流答案 B解析铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流(涡流),此电流产生的磁场导致磁针沿逆时针方向(俯视)转动,构成电磁驱动.2.如图,线圈L的自感系数极大,直流电阻忽略不计;D1、D2是两个二极管,当电流从“+”流向“-”时能通过,反之不通过;R0是保护电阻,则()A.闭合S之后,B灯慢慢变亮B.闭合S之后,A灯亮且亮度不变C.断开S瞬时,A灯闪一下再慢慢熄灭D.断开S瞬时,B灯闪一下再慢慢熄灭答案 D解析闭合S瞬间,A灯支路二极管正向导通,因此A灯亮,B灯支路二极管不能导通,因此不亮,之后线圈自感阻碍逐渐减小,从自感线圈流过的电流逐渐增大,A灯逐渐熄灭,故A、B错误;断开S瞬间,线圈L产生与原电流方向相同的自感电流,可通过D2,故B灯闪一下再慢慢熄灭,电流不能通过D1,故A灯不亮,故C错误,D正确.3.如图所示,在某次阅兵盛典上,我国预警机“空警-2000”在通过天安门上空时机翼保持水平,以4.5×102 km/h的速度自东向西飞行.该机的翼展(两翼尖之间的距离)为50 m,北京地区地磁场向下的竖直分量大小为4.7×10-5 T,则()A.两翼尖之间的电势差为2.9 VB.两翼尖之间的电势差为1.1 VC.飞机左方翼尖的电势比右方翼尖的电势高D.飞机左方翼尖的电势比右方翼尖的电势低答案 C解析飞机的飞行速度为 4.5×102km/h=125 m/s,飞机两翼尖之间的电动势为E=Bl v=4.7×10-5×50×125 V≈0.29 V,A、B项错误;飞机从东向西飞行,磁场竖直分量向下,根据右手定则可知,飞机左方翼尖的电势高于右方翼尖的电势,C项正确,D项错误.4.(多选)如图甲,在虚线所示的区域有竖直向上的匀强磁场,面积为S的单匝金属线框放在磁场中,线框上开有一小口与磁场外阻值为R 的小灯泡相连.若金属框的总电阻也为R ,磁场随时间变化关系如图乙,则下列说法正确的是( )A .b 端电势较高B .线框cd 边受到的安培力方向向左C .ab 间电压大小为B 0S2t 0D .0~t 0时间内小灯泡的电功率为B 02S 24Rt 02答案 CD解析 由楞次定律可得感应电流的方向为逆时针,金属线框相当于电源,通过R 的电流方向为a →b ,即a 端电势高,故A 错误;根据左手定则可知,线框cd 边受到的安培力方向向右,故B 错误;穿过线框的感应电动势大小为E =n ΔΦΔt =2B 0-B 0t 0·S =B 0St 0,由闭合电路欧姆定律可得I =E R +R ,则电阻R 两端的电压为U =IR =B 0S2t 0,故C 正确;由电功率的计算表达式有P=I 2R =B 02S 24Rt 02,故D 正确.5.(2022·上海浦东华师大二附中高三模拟)如图所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差U ab 为( )A.2BR vB.22BR v C .-24BR v D .-324BR v答案 D解析 有效切割长度即a 、b 连线的长度,如图所示由几何关系知有效切割长度为2R,所以产生的电动势为E=BL v=B·2R v,电流的方向为a→b,所以U ab<0,由于在磁场部分的阻值为整个圆的14,所以U ab=-34B·2R v=-324BR v,故选D.6.磁电式仪表的基本组成部分是磁体和线圈.缠绕线圈的骨架常用铝框,铝框、指针固定在同一转轴上.线圈未通电时,指针竖直指在表盘中央;线圈通电时发生转动,指针随之偏转,由此就能确定电流的大小.如图所示,线圈通电时指针向右偏转,在此过程中,下列说法正确的是()A.俯视看线圈中通有逆时针方向的电流B.穿过铝框的磁通量减少C.俯视看铝框中产生顺时针方向的感应电流D.使用铝框做线圈骨架能够尽快使表针停在某一刻度处答案 D解析由左手定则可知,俯视看线圈中通有顺时针方向的电流,选项A错误;因为线圈在水平位置时磁通量为零,则线圈转动时,穿过铝框的磁通量增加,根据楞次定律可知,俯视看铝框中产生逆时针方向的感应电流,选项B、C错误;当铝框中产生感应电流时,铝框受到的安培力与运动方向相反,故起到了阻尼作用,则使用铝框做线圈骨架能够尽快使表针停在某一刻度处,故D正确.7.如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为φa、φb、φc.已知bc边的长度为l.下列判断正确的是()A .φa >φc ,金属框中无电流B .φb >φc ,金属框中电流方向沿a →b →c →aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a →c →b →a答案 C解析 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则知φb <φc ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得φa <φc ,A 项错误.8.(多选)如图所示,匀强磁场中有a 、b 两个闭合线圈,它们用同样的导线制成,匝数均为n ,线圈半径r a =2r b .磁场方向与两线圈所在平面垂直,磁感应强度B 随时间均匀增大.两线圈中产生的感应电动势分别为E a 和E b ,感应电流分别为I a 和I b .不考虑两线圈间的相互影响.下列说法中正确的是( )A .E a ∶E b =2∶1,感应电流均沿顺时针方向B .E a ∶E b =4∶1,感应电流均沿逆时针方向C .I a ∶I b =2∶1,感应电流均沿逆时针方向D .I a ∶I b =1∶2,感应电流均沿顺时针方向 答案 BC解析 磁场垂直于纸面向里,磁感应强度增大,穿过线圈的磁通量增加,由楞次定律可知,线圈中的感应电流沿逆时针方向;设导线的电阻率为ρ,横截面积为S ,由电阻定律可知,线圈电阻R =ρL S =ρn ·2πr S .由法拉第电磁感应定律可知,感应电动势E =n ΔΦΔt =nS ′ΔB Δt =n πr 2ΔBΔt ,则感应电动势之比E a E b =r a 2r b 2=(21)2=41,A 错误,B 正确;由闭合电路欧姆定律可知,感应电流I =E R =rS 2ρ·ΔB Δt ,电流之比I a I b =r a r b =21,C 正确,D 错误. 9.如图所示,在半径为R 的圆形区域内存在垂直于平面向里的匀强磁场,磁感应强度为B ,圆外无磁场.一根长为2R 的导体杆ab 水平放置,a 端处在圆形磁场的下边界,现使杆绕a 端以角速度ω逆时针匀速旋转180°,在旋转过程中( )A .b 端的电势始终高于a 端B .ab 杆的电动势最大值E =BR 2ωC .全过程中,ab 杆平均电动势E =BR 2ωD .当杆旋转θ=120°时,ab 间电势差U ab =12BR 2ω答案 C解析 根据右手定则,a 端相当于电源正极,b 端为负极,故A 错误;当导体杆ab 和直径重合时,切割磁感线的有效长度l =2R ,此时产生的感应电动势最大,ab 杆切割磁感线产生的感应电动势为E =12Bl 2ω=2BR 2ω,故B 错误;根据法拉第电磁感应定律可知,全过程中,ab杆平均电动势为E =ΔΦΔt =BR 2ω,故C 正确;当θ=120°时,ab 杆切割磁感线的有效长度l ′=3R ,ab 杆切割磁感线产生的感应电动势为E ′=12Bl ′2ω=32BR 2ω,故D 错误.10.如图所示,某小组利用电流传感器(接入电脑,图中未画出)记录灯泡A 和自感元件L 构成的并联电路某时刻在断电瞬间各支路电流随时间的变化情况,i 1表示小灯泡中的电流,i 2表示自感元件中的电流(已知开关S 闭合时i 2>i 1),则下列图像中正确的是( )答案 C解析 当开关S 断开后,自感元件与灯泡形成回路,自感元件阻碍自身电流变化,自感元件产生的感应电流仍沿着原来方向,大小从i 2开始不断减小,灯泡的电流反向,大小与自感元件电流相等,故C 正确,A 、B 、D 错误.11.如图所示,匀强磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合,磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0,使该线框从静止开始绕过圆心O 且垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置不变,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )A.ωB 0πB.2ωB 0πC.4ωB 0πD.ωB 02π答案 A解析 若要产生的电流相等,则产生的感应电动势应相等.设半圆半径为L ,从静止开始绕圆心O 以角速度ω匀速转动时,线框中产生的感应电动势大小为E 1=12B 0L 2ω;当磁感应强度大小随时间线性变化时,根据法拉第电磁感应定律得E 2=ΔΦΔt =ΔB ·S Δt =ΔB Δt ·12πL 2,由E 1=E 2可得ΔB Δt =ωB 0π,故B 、C 、D 错误,A 正确.12.(多选)如图甲所示,足够长的光滑金属导轨处在垂直于导轨平面向里的匀强磁场中,其磁感应强度B 随时间t 的变化图像如图乙所示.导轨左端接有一个电阻值恒为R 的灯泡.从0时刻开始,垂直于导轨的导体棒ab 在水平外力F 的作用下从导轨的左端沿导轨以速度v 水平向右匀速运动.导体棒ab 的长度为l ,导体棒运动过程中与导轨接触良好,导体棒与导轨的电阻均不计.在导体棒ab 向右运动的过程中,下列说法正确的是( )A .灯泡亮度不变B .灯泡逐渐变亮C .在t 0时刻,F =2B 02l 2v RD .在t 0时刻,F =B 02l 2vR答案 BC解析 由题图乙可知,在t 时刻磁感应强度的大小为B =B 0t 0t ,所以在t 时刻回路中由于导体棒运动产生的动生电动势为E 1=Bl v =B 0l v tt 0,在t 时刻回路中由于磁感应强度变化产生的感生电动势为E 2=S ΔB Δt =l v tB 0t 0,根据右手定则和楞次定律可知,这两个电动势是同方向的,所以回路中的总电动势为E =E 1+E 2=2B 0l v tt 0,因此回路中的总电动势随时间增大,所以灯泡逐渐变亮,故A 错误,B 正确;在t 0时刻,回路中的总电动势为E ′=2B 0l v t 0t 0=2B 0l v ,回路中的电流为I =E ′R =2B 0l v R ,ab 棒受到的安培力大小为F ′=B 0Il =2B 02l 2vR ,由于ab 棒匀速运动,所以ab 棒受力平衡,因此水平外力大小为F =F ′=2B 02l 2vR,故C 正确,D 错误.。
2015届高三物理大一轮复习:9-2 法拉第电磁感应定律 自感 涡流
4.(单选)有一个匀强磁场边界是EF,在EF右侧无磁场,左 侧是匀强磁场区域,如图 9-2- 2甲所示.现有一个闭合 的金属线框以恒定速度从 EF 右侧水平进入匀强磁场区 域.线框中的电流随时间变化的i-t图象如图乙所示,则 可能的线框是下列四个选项中的 ( ).
E 解析 由图乙可知,电流先是均匀增加,后均匀减小,又 i=R Blv = R ∝l,所以金属线框切割磁感线的有效长度应先是均匀增 加,后均匀减小,A 项符合;B、C 项线框中间部分进入磁场 后切割磁感线的有效长度不变;D 项切割磁感线的有效长度不 是均匀地增加和减小.
答案 A
5.(2013·黄冈中学月考)(多选)如图9-2-3所示,一个正方
形金属框放在表面是绝缘且光滑的斜面顶端,自静止开始
沿斜面下滑,下滑过程中穿过一段边界与斜面底边 BB′平 行的匀强磁场,已知金属框的边长 L小于磁场的宽度 d.则 关于金属框进入磁场过程中可能做的运动,下列说法正确 的是 ( ).
1 2 Bl ω (平均速度等于中点位置的线速度 1 lω). = _______ 2 2
判断正误,正确的划“√”,错误的划 “×”.
(1)线圈中磁通量越大,产生的感应电动势越大.(
(2)线圈中磁通量变化越大,产生的感应电动势越大. ( (3)线圈中磁通量变化越快,产生的感应电动势越大. ( 大. 答案 (1)× (2)× (3)√ (4)× (
2.决定感应电动势 E 大小的因素 ΔΦ E 的大小由 和线圈的匝数共同决定. Δt
特别提示
①E 的大小与Φ、ΔΦ的大小无必然联系.
ΔΦ ②Φ=0 时, 不一定为零. Δt
【典例1】
(2013·江苏卷,13)如图9-2-5所示,匀强磁场中有一矩 形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数 N=100,边长ab=1.0 m、bc=0.5 m,电阻r=2 Ω.磁感应 强度B在0~1 s内从零均匀变化到0.2 T.在1~5 s内从0.2
2019版高考物理一轮复习主题九电磁感应9_1_2法拉第电磁感应定律、自感和涡流课件
[答案] ×
核心要点突破 H
精研教材 重难突破
要点一 法拉第电磁感应定律的理解和应用 [要点深化]
1.磁通量 Φ、磁通量的变化量 ΔΦ、磁通量的变化率ΔΔΦt 的比 较
2.对法拉第电磁感应定律 E=nΔΔΦt 的进一步理解 (1)E=nΔΔΦt 的研究对象是一个回路,E=nΔΔΦt 求得的电动势 是整个回路的感应电动势. (2)E=nΔΔΦt 求的是 Δt 时间内的平均感应电动势,在磁通量均 匀变化时,瞬时值才等于平均值.
v 全进入磁场后,其有效长度最长,最大值为 2R,则感应电动势 的最大值为 Em=B·2Rv=2BRv,故 C 正确,D 错误.
[答案] ABC
对 Φ、ΔΦ 和ΔΔΦt 的几种常见错误理解 (1)不能通过公式正确地计算 Φ、ΔΦ 和ΔΔΦt 的大小,错误地认 为它们都与线圈的匝数 n 成正比. (2)认为公式中的面积 S 就是线圈的面积,而忽视了无效的部 分;不能通过 Φ-t(或 B-t)图象正确地求解ΔΔΦt .
A.1∶ 2 B.2∶π C.2∶1 D.π∶ 2
[解析] 设正方形线框的边长为 l,则第一次将线框以速度 v1 拉出磁场时,由法拉第电磁感应定律可知其产生的感应电动势 大小为 E1=B0lv1,第二次绕对称轴 MN 转动时,设其角速度大 小为 ω,则 v2=12ωl,在线框转过 90°的过程中,穿过线框的磁通 量的变化量 ΔΦ=12B0l2,所用时间 Δt=14·2ωπ=2πω,由法拉第电磁 感应定律 E2=ΔΔΦt 可得,其平均感应电动势大小为 E2=2Bπ0lv2,
(3)误认为 Φ=0(或 B=0)时,ΔΔΦt 一定等于 0. (4)不能正确地分析初、末状态穿过线圈的磁通量的方向关 系,从而不能正确利用公式 ΔΦ=Φ2-Φ1 求解 ΔΦ.
第九章 第2讲 法拉第电磁感应定律、自感现象—2021届(新课标版)高考物理一轮复习课件(共32张PPT)
方向始终沿顺时针方向。B 正确;根据法拉第电磁感应定律,感应电
动势 E=ΔΔBt ·S′=Bt00·π2r2=πB2t00r2,根据闭合电路欧姆定律知,电流
πB0r2
I=ER=
2t0 2πr ρS
=4Bt00rρS 。C
正确,D
错误。
【答案】BC
1.用公式 E=nSΔΔBt 求感应电动势时,S 为线圈在磁场范围内
量的变化率成正比。
ΔΦ
(2)公式:E=n Δt 。
3.导体切割磁感线时的感应电动势 (1)一般情况:运动速度 v 和磁感线方向夹角为 θ,则 E=Blvsin_θ。 (2)常用情况:运动速度 v 和磁感线方向垂直,则 E=Blv。 (3)导体棒在磁场中转动:导体棒以端点为轴,在匀强磁场中垂直于磁感
【解析】 根据法拉第电磁感应定律可得,E=ΔΔΦt =ΔΔBt ·S,
根据题意可得,SSab=41,故 Ea∶Eb=4∶1,感应电流产生的磁场要阻 碍原磁场的增大,即感应电流产生向里的感应磁场,根据楞次定律 可知,感应电流均沿顺时针方向。
【答案】 B
(2019·全国卷Ⅰ)(多选)空间存在一方向与纸面垂直、大小 随时间变化的匀强磁场,其边界如图(a)中虚线 MN 所示。一硬质细导线的电阻 率为 ρ、横截面积为 S,将该导线做成半径为 r 的圆环固定在纸面内,圆心 O 在 MN 上。t=0 时磁感应强度的方向如图(a)所示;磁感应强度 B 随时间 t 的变化关 系如图(b)所示。则在 t=0 到 t=t1 的时间间隔内( )
线方向匀速转动产生的感应电动势 E=Blv=12Bl2ω(平均速度等于中点位置
线速度12lω)。
◎ 考点二 自感和涡流 1.自感现象:当一个线圈中的电流变化时,它产生的变化的磁场不仅 在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势的 现象。
2020版高考物理总复习第九章电磁感应第2讲法拉第电磁感应定律自感涡流教案(-2)
第2讲法拉第电磁感应定律自感涡流知识排查法拉第电磁感应定律1。
感应电动势(1)概念:在电磁感应现象中产生的电动势。
(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。
2。
法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
(2)公式:E=n错误!,其中n为线圈匝数。
(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I=ER+r。
3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv. (2)v∥B时,E=0。
自感、涡流1。
自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。
(2)自感电动势①定义:在自感现象中产生的感应电动势叫做自感电动势。
②表达式:E =L 错误!。
(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。
②单位:亨利(H ),1 mH =10-3 H ,1 μH=10-6 H 。
2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡所以叫涡流。
小题速练1。
思考判断(1)Φ=0,错误!不一定等于0。
( )(2)感应电动势E 与线圈匝数n 有关,所以Φ、ΔΦ、ΔΦΔt的大小均与线圈匝数有关.( )(3)线圈中磁通量变化越快,产生的感应电动势越大。
( )(4)当导体在匀强磁场中垂直磁场方向运动时(运动方向和导体垂直),感应电动势为E=BLv。
( )(5)磁场相对于导体棒运动时,导体棒中也可能产生感应电动势。
( )(6)涡流就是自感.( )答案(1)√(2)×(3)√(4)√(5)√(6)×2。
[人教版选修3-2P21第4题改编]如图1所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN。
高考物理复习 金教程 第9章第2单元 法拉第电磁感应定律 自感和涡流课件
E=Blvsinθ. (2)常见情况:运动速度v和磁感线方向垂直,则E
=BBllvv.
自感 1.自感现象:由于线圈本身的电流发生变化而产生 的电磁感应现象. 2.自感电动势:在自感现象中产生的感应电动势. 3.自感系数:由线圈自身的性质决定,是表示线圈 本身特征的物理量.它跟线圈的大小、形状、圈圈数数以及有 无铁芯有关.自感系数单位:亨亨利利,符号为H.
涡流 1.定义:当线圈中的电流发生变化时,在它附近的 任何导体中都会产生感应电流,这种电流像水中的旋涡, 所以叫涡流. 2.电磁阻尼:当导体在磁场中运动时,感应电流会 使导体受到安培力,安培力的方向总是阻碍导体的相对运 动.
金版教程 11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。
随 堂 针 对
训
练
考
技
案
例
导 析
ห้องสมุดไป่ตู้
限 时
规
范
易 错
特 训
易
混
分
析
选修3-2
第九章 电磁感应
考技案例导析
Φ、ΔΦ、
ΔΦ Δt
三者分别描述了不同的物理意
义,它们的关系类似于运动学中的速度v、速度
的变化量Δv、速度的变化率ΔΔvt 三者间关系.
易错易混分析
随堂针对训练
①感应电动势的大小取决于穿过电路的磁通量 的变化率ΔΔΦt ,而与磁通量 Φ、磁通量的变化量 ΔΦ 的 大小没有必然联系.
②通过回路截面的电荷量 q 仅与 n、ΔΦ 和回路 电阻 R 有关,与时间长短无关,推导如下 q= I Δt= nΔΔt·ΦR ·Δt=nΔRΦ.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲法拉第电磁感应定律自感涡流一、法拉第电磁感应定律1.感应电动势(1)概念:在电磁感应现象中产生的电动势.①感生电动势:由于磁场的变化而激发出感生电场,由感生电场而产生的感应电动势.②动生电动势:由于导体在磁场中运动而产生的感应电动势.(2)条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就一定有感应电动势.(3)与感应电流的关系:遵守闭合电路欧姆定律,即I=ER+r.2.法拉第电磁感应定律(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=n ΔΦΔt.其中n为线圈的匝数.二、导体切割磁感线产生的感应电动势1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=L ΔI Δt.(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关.②单位:亨利(H,1 mH =10-3 H,1 μH =10-6H). 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡所以叫做涡流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体运动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.1.关于电路中感应电动势的大小,下列说法正确的是( ) A .穿过电路的磁通量越大,感应电动势就越大 B .电路中磁通量的改变量越大,感应电动势就越大 C .电路中磁通量改变越快,感应电动势就越大D .若电路中某时刻磁通量为零,则该时刻感应电流一定为零 答案: C2.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加 2 Wb ,则( ) A .线圈中感应电动势每秒增加2 V B .线圈中感应电动势每秒减少2 V C .线圈中感应电动势始终为2 VD .线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2 V解析: 由E =ΔΦΔt知:ΔΦ/Δt 恒定,所以E =2 V.答案: C3.如图所示,L 为一个自感系数很大的自感线圈,开关闭合后,小灯泡能正常发光,那么闭合开关和断开开关的瞬间,能观察到的现象分别是( )A .小灯泡逐渐变亮,小灯泡立即熄灭B .小灯泡立即亮,小灯泡立即熄灭C .小灯泡逐渐变亮,小灯泡比原来更亮一下再慢慢熄灭D .小灯泡立即亮,小灯泡比原来更亮一下再慢慢熄灭解析: 开关闭合瞬间,通过自感线圈的电流逐渐增大,自感线圈产生自感电动势阻碍原电流的增加,故小灯泡逐渐变亮;开关断开瞬间,回路处于断开状态,故小灯泡立即熄灭,选项A 正确.答案: A4.如图所示,正方形线圈abcd 位于纸面内,边长为L ,匝数为N ,线圈内接有电阻值为R 的电阻,过ab 中点和cd 中点的连线OO ′恰好位于垂直纸面向里的匀强磁场的右边界上,磁场的磁感应强度为B .当线圈转过90°时,通过电阻R 的电荷 量为( )A.BL 22RB.NBL 22RC.BL 2RD.NBL 2R解析: 初状态时,通过线圈的磁通量为Φ1=BL 22,当线圈转过90°时,通过线圈的磁通量为0,由q =N ΔΦR 可得通过电阻R 的电量为NBL 22R.答案: B5.如图所示,一段导线弯曲成半径为R 的半圆形闭合回路.虚线MN 、PQ 间有磁感应强度为B 的匀强磁场,磁场的宽度等于R ,方向垂直于回路所在的平面.现让回路以速度v 向右匀速穿过磁场,直径CD始终与MN垂直.关于此过程,下列结论正确的是( ) A.穿过的过程中回路中感应电流一直不为零B.感应电流的方向一直不变C.感应电动势先增大后减小再增大再减小D.感应电动势最大值E m=2BRv解析:当回路的圆心到磁场的中间时,回路中的感应电动势为零,电流为零,A项错误;磁通量先向里增大,后向里减小,根据楞次定律,感应电流的方向先沿逆时针方向后沿顺时针方向,B项错误;当回路的圆心到MN或PQ上时,切割磁感线的有效长度最长,感应电动势最大为BRv,D项错误;在穿过磁场的过程中,回路切割磁感线的有效长度先变大,后变小,再变大,再变小,因此感应电动势先增大后减小再增大再减小,C项正确.答案: C法拉第电磁感应定律的应用1.决定感应电动势大小的因素感应电动势E 的大小决定于穿过电路的磁通量的变化率ΔΦΔt和线圈的匝数n .而与磁通量的大小、磁通量变化量ΔΦ的大小无必然联系.2.磁通量变化通常有两种方式(1)磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E =nB ΔSΔt ;(2)垂直于磁场的回路面积不变,磁感应强度发生变化,此时E =n ΔB Δt S ,其中ΔBΔt是B-t 图象的斜率.(2012·新课标全国卷)如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π解析: 当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I 1=E R =ΔΦR Δt =B 0ΔSR Δt=12πr 2B 0R πω=B 0r 2ω2R .当线圈不动,磁感应强度变化时,I 2=E R =ΔΦR Δt =ΔBS R Δt =ΔB πr 2Δt 2R ,因I 1=I 2,可得ΔB Δt =ωB 0π,C 选项正确.答案:C (1)应用法拉第电磁感应定律解题的一般步骤①分析穿过闭合电路的磁场方向及磁通量的变化情况; ②利用楞次定律确定感应电流的方向;③灵活选择法拉第电磁感应定律的不同表达形式列方程求解. (2)应注意的问题通过回路的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与变化过程所用的时间长短无关,推导过程:q =I Δt =n ΔΦΔt R Δt =n ΔΦR.1-1:在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1 m 2,线圈电阻为1 Ω.规定线圈中感应电流I 的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B 随时间t 的变化规律如图乙所示.则下列说法正确的是( )A .在时间0~5 s 内,I 的最大值为0.1 AB .在第4 s 时刻,I 的方向为逆时针C .前2 s 内,通过线圈某截面的总电量为0.01 CD .第3 s 内,线圈的发热功率最大解析: 根据B -t 图象的斜率表示ΔB Δt ,由E =n ΔΦΔt=nSk ,因此刚开始时,图象的斜率为0.1,代入得电源的电动势为0.01 V .电流为0.01 A ,故A 项错误;在第4 s 时,根据楞次定律,电流为逆时针,故B 项正确;由q =ΔΦR,代入得C 项正确;第3 s 内,B 不变,故不产生感应电流,因此发热功率为零,D 项错误.答案:BC导体切割磁感线产生感应电动势的计算1.理解E =Blv 的“四性”(1)正交性:本公式是在一定条件下得出的,除磁场为匀强磁场外,还需B 、l 、v 三者互相垂直.(2)瞬时性:若v 为瞬时速度,则E 为相应的瞬时感应电动势. (3)有效性:公式中的l 为导体切割磁感线的有效长度.(4)相对性:E =Blv 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.2.公式E =Blv 与E =n ΔΦ的区别与联系(2012·四川理综)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2avπ+R 0D .θ=π3时,杆受的安培力大小为3B 2avπ+R 0解析: 当θ=0时,杆切割磁感线的有效长度l 1=2a ,所以杆产生的电动势E 1=Bl 1v=2Bav ,选项A 正确.此时杆上的电流I 1=E 1πa +2a R 0=2Bvπ+R 0,杆受的安培力大小F 1=BI 1l 1=4B 2avπ+R 0,选项C 错误.当θ=π3时,杆切割磁感线的有效长度l 2=2a cos π3=a ,杆产生的电动势E 2=Bl 2v =Bav ,选项B 错误.此时杆上的电流I 2=E 2πa -2πa 6+a R 0=3Bvπ+R 0,杆受的安培力大小F 2=BI 2l 2=3B 2avπ+R 0,选项D 正确.答案: AD2-1:如图所示,水平放置的U 形框架上接一个阻值为R 0的电阻,放在垂直纸面向里的、场强大小为B 的匀强磁场中,一个半径为L 、质量为m 的半圆形硬导体AC 在水平向右的恒定拉力F 作用下,由静止开始运动距离d 后速度达到v ,半圆形硬导体AC 的电阻为r ,其余电阻不计.下列说法正确的是( )A .此时AC 两端电压为U AC =2BLvB .此时AC 两端电压为U AC =2BLvR 0R 0+rC .此过程中电路产生的电热为Q =Fd -12mv 2D .此过程中通过电阻R 0的电荷量为q =2BLdR 0+r解析: AC 的感应电动势为:E =2BLv ,两端电压为U AC =ER 0R 0+r =2BLvR 0R 0+r,A 错、B 对;由功能关系得Fd =12mv 2+Q +W μ,C 错;此过程中平均感应电流为I =2BLdR 0+r Δt,通过电阻R 0的电荷量为q =I Δt =2BLdR 0+r,D 对.答案: BD(2011·北京理综)某同学为了验证断电自感现象,自己找来带铁芯的线圈L 、小灯泡A 、开关S 和电池组E ,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S ,小灯泡发光;再断开开关S ,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是( )A .电源的内阻较大B .小灯泡电阻偏大C .线圈电阻偏大D .线圈的自感系数较大解析: 小灯泡没有出现闪亮现象是因为断电后电路中的小灯泡两端电压太小、因断电后电路与电源脱离关系,线圈与灯泡组成闭合回路,故电源内阻大小对自感无影响,A 错误;若小灯泡电阻偏大,则分得的电压就大,这有助于出现闪亮现象,B 错误;若线圈电阻偏大,在自感电动势一定的情况下,线圈内阻上的电压偏大,相应灯泡两端的电压就偏小,这不利于出现闪亮现象,C 正确;线圈自感系数越大,产生的自感电动势越大,这有利于闪亮现象的出现,故D 错误.答案: C 3-1:如图所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是( )A .合上开关K 接通电路时,A 2先亮,A 1后亮,最后一样亮B .合上开关K 接通电路时,A 1和A 2始终一样亮C .断开开关K 切断电路时,A 2立刻熄灭,A 1过一会儿才熄灭D .断开开关K 切断电路时,A 1和A 2都要过一会儿才熄灭解析: 由于自感现象,合上开关时,A 1中的电流缓慢增大到某一个值,故过一会儿才亮;断开开关时, A 1中的电流缓慢减小到0,A 1、A 2串联,电流始终相等,都是过一会儿才熄灭.故选A 、D .答案: AD高考常考“杆+导轨”模型的突破[模型特点]“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是高考的热点. “杆+导轨”模型问题的物理情境变化空间大,涉及的知识点多,如力学问题、电路问题、磁场问题及能量问题等,常用的规律有法拉第电磁感应定律、楞次定律、右手定则、左手定则、欧姆定律及力学中的运动规律、动能定理、功能关系、能的转化和守恒定律等.[求解思路][模型分类]电学特征(2012·天津理综)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5 m ,左端接有阻值R =0.3 Ω的电阻.一质量m =0.1 kg ,电阻r =0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4 T .棒在水平向右的外力作用下,由静止开始以a =2 m/s 2的加速度做匀加速运动,当棒的位移x =9 m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)棒在匀加速运动过程中,通过电阻R 的电荷量q ; (2)撤去外力后回路中产生的焦耳热Q 2; (3)外力做的功W F .解析: (1)设棒匀加速运动的时间为Δt ,回路的磁通量变化量为ΔΦ,回路中的平均感应电动势为E ,由法拉第电磁感应定律得E =ΔΦΔt① 其中ΔΦ=Blx ②设回路中的平均电流为I ,由闭合电路欧姆定律得I =E R +r③则通过电阻R 的电荷量为q =I Δt ④联立①②③④式,代入数据得q =4.5 C . ⑤(2)设撤去外力时棒的速度为v ,对棒的匀加速运动过程,由运动学公式得 v 2=2ax ⑥设棒在撤去外力后的运动过程中安培力所做的功为W ,由动能定理得W =0-12mv 2 ⑦撤去外力后回路中产生的焦耳热 Q 2=-W ⑧ 联立⑥⑦⑧式,代入数据得Q 2=1.8 J . ⑨(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1,可得Q 1=3.6 J⑩在棒运动的整个过程中,由功能关系可知W F =Q 1+Q 2 ⑪ 由⑨⑩⑪式得W F =5.4 J.答案: (1)4.5 C (2)1.8 J (3)5.4 J电学特征(2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( )A .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功解析: 导体棒由静止释放,速度达到v 时,回路中的电流为I ,则根据共点力的平衡条件,有mg sin θ=BIL .对导体棒施加一平行于导轨向下的拉力,以2v 的速度匀速运动时,则回路中的电流为2I ,则根据平衡条件,有F +mg sin θ=B ·2IL 所以拉力F =mg sin θ,拉力的功率P =F ×2v =2mgv sin θ,故选项A 正确.选项B 错误;当导体棒的速度达到v2时,回路中的电流为I 2,根据牛顿第二定律,得mg sin θ-B I 2L =ma ,解得a =g2sin θ,选项C正确;当导体棒以2v 的速度匀速运动时,根据能量守恒定律,重力和拉力所做的功之和等于R 上产生的焦耳热,故选项D 错误.答案: AC1.将闭合多匝线圈(匝数为n )置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势,下列表述正确的是( )A .穿过线圈的磁通量越大,感应电动势越大B .穿过线圈的磁通量变化越快,感应电动势越大C .若磁感应强度B 不变,Δt 时间内线圈面积变化ΔS ,则E =n ΔSΔtBD .若Δt 时间内磁感应强度变化ΔB ,线圈面积变化ΔS ,则E =n ΔB ·ΔSΔt解析: 由法拉第电磁感应定律表达式E =n ΔΦΔt可知,感应电动势E 的大小与线圈的匝数n 和磁通量的变化率ΔΦΔt有关,与磁通量无关,故A 错误,B 正确.当仅有磁感应强度变化时,磁通量的变化量ΔΦ=Φ2-Φ1=(B 2-B 1)S =ΔB ·S ,同理可得当仅有线圈面积变化时磁通量的变化量ΔΦ=B ·ΔS ,而当磁感应强度和线圈面积同时变化时磁通量的变化量ΔΦ=B 2S 2-B 1S 1≠ΔB ·ΔS ,故C 正确.D 错误.答案: BC2.如图所示是测定自感系数很大的线圈L 直流电阻的电路,L 两端并联一只电压表,用来测自感线圈的直流电压,在测量完毕后,将电路拆开时应先( )A .断开S 1B .断开S 2C .拆除电流表D .拆除电阻R解析: 将电路拆开时,如果先断开S 1,而电压表与线圈L 仍组成闭合回路,由于L 的自感系数很大,可能产生很大的自感电动势使电压表的指针被打弯,因此,应先断开S 2,B 项正确.答案: B3.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( )A.12B .1C .2D .4 解析: 根据法拉第电磁感应定律E =ΔΦΔt =ΔBSΔt,设初始时刻磁感应强度为B 0,线框面积为S 0,则第一种情况下的感应电动势为E 1=ΔBS Δt =B 0-B 0S 01=B 0S 0;则第二种情况下的感应电动势为E 2=ΔBS Δt =2B 0S 0-S 01=B 0S 0,所以两种情况下线框中的感应电动势相等,比值为1,故选项B 正确.答案: B4.2013广州亚运会上100 m 赛跑跑道两侧设有跟踪仪,水平面上两根足够长的金属导轨平行固定放置,间距为L =0.5 m ,一端通过导线与阻值为R =0.5 Ω的电阻连接;导轨上放一质量为m =0.5 kg 的金属杆(如图甲),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的拉力F 作用在金属杆上,使杆运动.当改变拉力的大小时,相对应的速度v 也会变化,从而使跟踪仪始终与运动员保持一致.已知v 和F 的关系如图乙.(取重力加速度g =10 m/s 2)则( )A .金属杆受到的拉力与速度成正比B .该磁场磁感应强度为1 TC .图线在横轴的截距表示金属杆与导轨间的阻力大小D .导轨与金属杆之间的动摩擦因数为μ=0.4解析: 由图象可知选项A 错误、C 正确;由F -BIL -μmg =0及I =BLv R 可得:F -B 2L 2v R-μmg =0,从图象上分别读出两组F 、v 数据代入上式即可求得B =1 T ,μ=0.4.所以选项B 、D 正确.答案: BCD5.如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( )A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v Rsin θ 解析: 对棒受力分析如图所示.F 安=BIL =B 2L 2v R,故D 错;F 安随棒的速度的增大而增大,故棒做的不是匀加速直线运动.因此运动的平均速度v ≠12v ,A 错;由q =n ΔφR 总可得:q =BLx R ,故棒下滑的位移x =qR BL,B 正确;求焦耳热应该用有效值,故C 错.答案: B。