中考数学总复习精品训练:课时3.整式及其运算
中考数学模拟题《整式及其运算》专项测试卷(附答案)
中考数学模拟题《整式及其运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a = D .623a a a ÷= 9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( )A .52αB .56aC .58aD .68a10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定12.(2023·江苏徐州·统考中考真题)下列运算正确的是( )A .236a a a ⋅=B .422a a a ÷=C .()235a a =D .224235a a a +=13.(2023·辽宁·统考中考真题)下列运算正确的是( )A .2323a a a +=B .743a a a ÷=C .()2224a a -=-D .()2236b b = 14.(2023·湖北鄂州·统考中考真题)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .235a a a ÷=D .()325a a = 15.(2023·山东·统考中考真题)下列运算正确的是( )A .2242a a a +=B .()32639a a -=-C .23544a a a ⋅=D .623a a a ÷=16.(2023·湖北十堰·统考中考真题)下列计算正确的是( )A =B .33(2)8a a -=-C .842a a a ÷=D .22(1)1a a -=-17.(2023·山东日照·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()32628m m -=-C .222()x y x y +=+D .232235ab a b a b +=18.(2023·江苏无锡·统考中考真题)下列运算正确的是( )A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是( )A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a aC .824a a a ÷=D .()32639a a -=- 21.(2023·山东东营·统考中考真题)下列运算结果正确的是( )A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x +-=- 22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》 书中记载的图表给出了()n a b +展开式的系数规律.1 0()1a b +=1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b当代数式432125410881x x x x -+-+的值为1时,则x 的值为( )A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为( )A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位 一光年是指光在一年内走过的路程 约等于129.4610km ⨯.下列正确的是( )A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数25.(2023·湖北宜昌·统考中考真题)在日历上 某些数满足一定的规律.如图是某年8月份的日历 任意选择其中所示的含4个数字的方框部分 设右上角的数字为a ,则下列叙述中正确的是( ).A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加 结果是4的倍数26.(2023·湖北恩施·统考中考真题)下列运算正确的是( )A .()2211m m -=-B .()3326m m =C .734m m m ÷=D .257m m m += 27.(2023·黑龙江牡丹江·统考中考真题)下列计算正确的是( )A .248a a a ⋅=B .3332a a a -=C .()3236ab a b =D .()222a b a b +=+ 28.(2023·黑龙江牡丹江·统考中考真题)观察下面两行数:15111929⋯,,,,,1361015⋯,,,,,取每行数的第7个数 计算这两个数的和是( )A .92B .87C .83D .78二 填空题29.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .30.(2023·四川德阳·统考中考真题)在初中数学文化节游园活动中 被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛 活动规则是:在九宫格中 除了已经填写的三个数之外的每一个方格中 填入一个数 使每一横行 每一竖列以及两条对角线上的3个数之和分别相等 且均为m .王小明抽取到的题目如图所示 他运用初中所学的数学知识 很快就完成了这个游戏,则m = .167 4 31.(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a b 、 x y a b a b=+※.若()221-=※,则()33-※的值是 . 32.(2023·四川凉山·统考中考真题)已知2210x x --=,则3231052027x x x -++的值等于 .三 解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲 乙 丙三种矩形卡片各若干张 卡片的边长如图1所示(1)a .某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙) 如图2和图3 其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S 当2a =时 求12S S +的值(2)比较1S 与2S 的大小 并说明理由.35.(2023·浙江金华·统考中考真题)已知13x = 求()()()212134x x x x +-+-的值.36.(2023·湖南·统考中考真题)先化简 再求值:()()()222233a a a a a -+-++ 其中13a =-.37.(2023·浙江嘉兴·统考中考真题)观察下面的等式:222222223181,5382,7583,9784,-=⨯-=⨯-=⨯-=⨯(1)写出221917-的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示 n 为正整数)(3)请运用有关知识 推理说明这个结论是正确的.参考答案一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 【答案】D【分析】根据合并同类项 同底数幂的除法 完全平方公式 积的乘方 逐一计算判断即可.【详解】解:A 532a a a -= 故选项A 错误B 633a a a ÷= 故选项B 错误C ()2222a b a ab b -=-+ 故选项C 错误D ()3263a b a b = 故选项D 正确故选D .【点睛】本题考查整式的运算.熟练掌握合并同类项 同底数幂的除法 完全平方公式 积的乘方法则 是解题的关键.2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y 【答案】D【分析】利用同底数幂的乘法的逆运算可得1333x x +=⨯ 再代入计算即可.【详解】解:∵3x y =∵13333x x y +=⨯=故选D【点睛】本题考查的是同底数幂的乘法运算的逆运算 熟记“m n m n a a a +=”是解本题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n 【答案】C【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后得到整式串m n n m - m - n -第4次操作后得到整式串m n n m - m - n -n m -+ 第5次操作后得到整式串m n n m - m - n - n m -+ m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每四次一循环第四次操作后所有的整式之和为:0m n n m m n n m ++----+=∵202345053÷=⋅⋅⋅∵第2023次操作后得到的整式中各项之和与第3次操作后得到整式串之和相等∵这个和为m n n m m n n m ++---=-故选C【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-【答案】A【分析】把所求代数式2243m m +-变形为22(2)3m m +- 然后把条件整体代入求值即可.【详解】解:∵2210m m +-=∵221m m +=∵2243m m +-22(2)3m m =+- 213=⨯-1=-.故选:A .【点睛】此题主要考查了代数式求值以及“整体代入”思想 解题的关键是把代数式2243m m +-变形为22(2)3m m +-.5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=【答案】D【分析】根据整式的加减 幂的乘方 同底数幂的乘除法逐项判断即可.【详解】A 2a 与3b 不是同类项 不可合并 此项运算错误B ()23236a a a ⨯== 此项运算错误 C 24246a a a a +⋅== 此项运算错误D 31312a a a a -÷== 此项运算正确故选:D .【点睛】本题考查了整式的加减 幂的乘方 同底数幂的乘除法 熟记各运算法则是解题关键. 6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 【答案】A【分析】根据同底数幂的乘法与幂的乘方 完全平方公式 整式的乘法对每个式子一一判断即可.【详解】解:A 235x x x 本选项符合题意B ()339x x = 本选项不符合题意 C ()21x x x x +=+ 本选项不符合题意D ()2221441a a a -=-+ 本选项不符合题意故选:A .【点睛】此题主要考查了整式的混合运算 正确掌握相关运算法则是解题关键.7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-【答案】D【分析】A 不能合并 本选项错误 B 利用完全平方公式展开得到结果 即可作出判断 C 和D 利用积的乘方及幂的乘方运算法则计算得到结果 即可作出判断.【详解】解:2a 和3b 不是同类项 不能合并 故A 选项错误 不符合题意222()2a b a ab b -=-+ 故B 选项错误 不符合题意()3236ab a b = 故C 选项错误 不符合题意 ()3253412a a a ⋅-=- 故D 选项正确 符合题意故选:D .【点睛】此题考查了完全平方公式 合并同类项 同底数幂的除法 积的乘方与幂的乘方 熟练掌握完全平方公式是解本题的关键.8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a =D .623a a a ÷=【答案】B【分析】根据同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并 故该选项不正确 不符合题意B. 23a a a ⋅= 故该选项正确 符合题意C. ()326a a = 故该选项不正确 不符合题意D. 624a a a ÷= 故该选项不正确 不符合题意故选:B .【点睛】本题考查了同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 熟练掌握以上运算法则是解题的关键.9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( ) A .52αB .56aC .58aD .68a【答案】D 【分析】根据积的乘方与幂的乘方法则计算即可.【详解】解:()()332326228a a a == 故选:D .【点睛】本题考查积的乘方与幂的乘方 熟练掌握积的乘方与幂的乘方运算法则是解题的关键. 10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 【答案】D【分析】根据积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 进行计算即可求解.【详解】解:A. 333()pq p q =-- 故该选项不正确 不符合题意B. 43222x x x x x ⋅+⋅= 故该选项不正确 不符合题意C. 5= 故该选项不正确 不符合题意D. ()326a a = 故该选项正确 符合题意故选:D .【点睛】本题考查了积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 熟练掌握以上运算法则是解题的关键.11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定 【答案】C【分析】根据题意 由勾股定理可得222+=a b c 易得222c a b -= 然后用,,a b c 分别表示1S 和2S 即可获得答案.【详解】解:如下图∵,,a b c 为直角三角形的三边 且c a b >>。
(完整版)中考专项复习整式及其运算
第一章数与式第二课时整式及其运算塔城市第四中学付玉芝复习目标:1. 了解代数式和整式的有关概念2. 掌握整式的相关运算法则,并正确进行计算.复习重点:整式的相关运算法则复习难点:运算法则进行正确计算.复习过程:(一)考点知识精讲:考点一:代数式和整式的有关概念1.单项式:由数或字母的____ 组成的代数式叫做单项式.单项式中的___________ 叫做这个单项式的系数;单项式中的所有字2母的_______ ,叫做这个单项式的次数.如:-7xy 的系数是__ ,次数是__ .2.多项式:几个单项式的__ 叫做多项式.在多项式中,每个单项式叫做多项式的___ ,其中次数最高的项的_____ 叫做这个多项式的次数,不含字母的项叫做_______ .如:多项式3x2-2x+5有项,它们分别是________________ ,其中_ 是常数项,这个多项式是___ 次 ___ 项3.整式:_____ 与________ 统称整式.4.同类项:在一个多项式中,所含 ____ 相同,并且相同字母的_____ 也分别相同的项叫做同类项.6.幂的运算性质有理数的乘方 : a ·a ·a ·⋯a ·= __ .( 1)性质:正数的任何次幂都是_________________________________负数的偶次幂是 _____奇次幂是 ___ ___;0的任何次幂 (0 次幂除外 ) 都是 ;任何数的 偶次幂为___mn(2) a a =__________ ___ (m ,n 为整数, a ≠ 0).mn(3) (a ) =______ (m ,n 为整数, a ≠0).n(4) (ab) =___ ___ (n 为整数, ab ≠ 0).mn(5) a ÷ a =_____ (m ,n 为整数, a ≠0). 7.整式的乘 (除):(1) 单项式相乘 (除),把它们的 、相同字母分别相乘 (除), 对于只在一个单项式 (被除式 ) 里含有的字母, 则连同它的 作为积 (商)的一个因式.如: 2x2y3·3xyz= ______ . 8x2y3 ÷2xy= ______ . (2) 多项式乘(除 ) 单项式: (a+b )m= _____________________(am+bm)÷m=(3) 多项式乘多项式: (a+b )(m+n )= __________________________8.乘法公式( 1)平方差公式: (a+b )(a-b )= _ .(2)完全平方公式: (a ± b )2= ____二)中考典例精讲:32例1】计算(-x y) 的结果是( )5 6 3 2 6 2 A.-x y B.x y C.-x y D.x y分析:根据积的乘方法则,可得3 2 3 2 2 6 2 (-x y) =(-x ) y =x y .答案:D点评:本题考查积的乘方,熟记计算法则是关键.【例2】已知a+b=- 2 , 求代数式( a-1 )2+b(2a+b)+2a 的值解:原式= a2-2a+1+2ab+b2+2a = (a+b)2+1.将a+b= - 2代入得,原式= (- 2 )2+1=3. 点评:本题考查了完全平方公式及单项式乘多项式等法则.三)课堂训练21.(- 4x) 的值为( )22A.-8x B.8x2C.-16x D.16x2. 下列运算正确的是( )2 3 5 2 2 2A.x +x =x B.(x+y) =x +y2 3 6 2 3 6C.x ·x =x D .(x ) =x3. 因式分解:ab- a= _______ .24. 化简:(a+b)(a-b)+2b .5. 先化简,再求值:2(1)(a+b)(a-b)+b(a+2b)-b ,其中a=1,b=- 2.2 2 2 2 2 2 解:(a+b)(a-b)+b(a+2b)-b = a -b +ab+2b -b = a +ab.当a=1,b=-2 时,2原式= 1 +1×(- 2) = 1-2 = -1.5 3 2 2(2)(2+a)(2-a)+a(a-5b)+3ab ÷(-a b),其中ab=- 2.22解:原式=4-a +a -5ab+3ab=4-2ab.当ab=- 2 时,原式=4-2×(-2)=4+4=8考点点拨:本考点是中考的高频考点,题型一般为选择题,难度较低.解答本考点的有关题目,关键在于掌握整式的相关运算法则,包括整式的加减乘除运算法则、合并同类项法则、去括号法则等,并正确进行计算.(四)课堂小结:谈谈你在这节课中,有什么收获?(五)当堂训练:整式及其运算1.计算(a4)2的结果是()A. a8B. a6C. 2a6D. 2a82.下列运算正确的是( )A. a3+a3=a6B. 2(a+1)=2a+ 1C. (ab)2=a2b2D. a6÷a3=a2 3.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,A. 7 C. 5 )B. 6 D. 44.若x2+6x+k是完全平方式,则k=()A. 9B. -9C. ±9D. ± 35.如图,图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A. (m+n)2-(m-n)2=4mnB. (m+n)2-(m2+n2)=2mnC. (m-n)2+2mn=m2+n2D. (m+n)(m-n)=m2-n2 6.化简:(a-b)2+a(2b-a)=.7.已知a,b满足a+b=3,ab=2,则a2+b2=.8.观察一列单项式:x,3x2,5x2,7x,9x2,11x2,13x,⋯,则第2016 个单项式是.9.先化简,再求值:(a+b)(a-b)+b(b-2),其中a=,b=1.10.已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.11.若a-b=1,则代数式a2-b2-2b的值为多少?.12.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=- 2.(六)当堂训练点评,有错题的小组互讲。
【最新】中考数学总复习学案:第3课时 整式与分解因式
第7题第3课时整式与分解因式一、选择题1.下列运算正确的是()A.a2·a=3aB.a6÷a2=a4C.a+a=a2D.(a2)3=a52.计算:()23ab=()A.22a b B.23a b C.26a b D.6ab3.下列计算正确的是()A.623a a a÷= B.()122--=C.()236326x x x-=-· D.()0π31-=4.下列因式分解错误的是( )A.22()()x y x y x y-=+- B.2269(3)x x x++=+C.2()x xy x x y+=+ D.222()x y x y+=+5.若的值为则2y-x2,54,32==yxA.53B. -2C.553D.566.下列命题是假.命题的是()A. 若x y<,则x+2008<y+2008 B. 单项式2347x y-的系数是-4C. 若21(3)0,x y-+-=则1,3x y== D. 平移不改变图形的形状和大小7.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么()A.a=1,b=5 B.a=5,b=1 C.a=11,b=5 D.a=5,b=118. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.2222)(bababa++=+B.2222)(bababa+-=-C.))((22bababa-+=-aD .222))(2(b ab a b a b a -+=-+二.填空题.9.分解因式:328m m -= .33416m n mn -=3214x x x +-= ____.33222ax y axy ax y +-= _______. =++22363b ab a . 2232ab a b a -+= ___.10.计算:31(2)(1)4a a -⋅- = . 11.计算: ⎪⎭⎫ ⎝⎛-⋅23913x x =________;()=÷523y y ________. 12.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形, 则第n 个图案中正三角形的个数为(用含n 的代数式表示).三.解答题:13.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.14.已知2514x x -=,求()()()212111x x x ---++的值15.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.第一个图案 第二个图案第三个图案… 第12题图(1) 用a ,b ,x 表示纸片剩余部分的面积;(2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.。
北师大版中考数学练习题第三章-整式及其加减含答案
2019备战中考数学基础必练(北师大版)-第三章-整式及其加减(含解析)一、单选题1.已知和-是同类项,则的值是( )A. -1B. -2C. -3D. -42.下列说法正确的是()。
A. 0是单项式B. 单项式的系数是C. 单项式的次数为D. 多项式是五次三项式3.若关于x,y的多项式x2y-7mxy+y3+6xy化简后不含二次项,则m=()A. B. C. - D. 04.﹣(a﹣b+c)变形后的结果是()A. ﹣a+b+cB. ﹣a+b﹣cC. ﹣a﹣b+cD. ﹣a﹣b﹣c5.对于代数式,下列说法不正确的是()A. 它按x降幂排列B. 它是单项式C. 它的常数项是D. 它是二次三项式6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A. 4m+7nB. 28mnC. 7m+4nD. 11mn7.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2012次交换位置后,小鼠所在的座号是().A. 1B. 2C. 3D. 48.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b的值为()A. 179B. 140C. 109D. 210二、填空题9.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是________.10.若与是同类项,则m+n=________.11.- πx2y的系数是________;12.鸡兔同笼,鸡m只,兔n只,则共有________个头,________只脚.13.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是________14.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是________平方米.15.观察下列等式12=1= ×1×2×(2+1)12+22= ×2×3×(4+1)12+22+32= ×3×4×(6+1)12+22+32+42= ×4×5×(8+1)…可以推测12+22+32+…+n2=________.16.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺板地面:依上推测,第n个图形中白色瓷砖的块数为________.17.若x2-2x=3.则代数式2x2-4x+3的值为________.三、计算题18.如果a、b互为相反数,c、d互为倒数,x的绝对值是2,求:的值。
(完整版)整式的加减乘除及因式分解中考总复习(知识点复习+中考真题题型分类练习),推荐文档
C. ﹣2(3x﹣1)=﹣6x﹣2
D. ﹣2(3x﹣1)=﹣6x+2
2.( 2015•济宁)化简 ﹣16( x﹣0.5)的结果是( )
A. ﹣16x﹣0.5
B. ﹣16x+0.5
C. 16x﹣8
3.(2016·佛山)化简 m n (m n) 的结果是( ).
D. ﹣16x+8
A. 0
B. 2m
整式加减乘除及因式分解真题练习
整式加减
考点 1、考查整式的有关概念
1.(2016•常德)若﹣x3ya 与 xby 是同类项,则 a+b 的值为( )
A.2
B.3
C.4
D.5
2.(2016•上海)下列单项式中,与 a2b 是同类项的是( )
A.2a2b
B.a2b2
C.ab2
3.(2015•崇左)下列各组中,不是同类项的是( )
(2)1+3+32+33+34+…+3n(其中 n 为正整数).
整式乘除及因式分解
考点 1:因式分解求解
1. (2014•安徽)下列四个多项式中,能因式分解的是( )
A. a2+1
B. a2﹣6a+9
C.x2+5y
2.(2014•毕节)下列因式分解正确的是(
)
A. 2x2﹣2=2(x+1)(x﹣1)
B. 2a3+3a2=5a5
C. 3a2b-3ba2=0
6.(2013•宁波)下列计算正确的是( )
A. a2 a2 a4
B. 2a a 2
C. ab2 a2 b2
D. 3 D. ﹣2
D. 3a2 D. 5a2-4a2=1
中考数学专题复习练习卷整式及其运算
知 1 月份鸡的价格为 24 元/千克,设 3 月份鸡的价格为 m 元/千克,则()
A. m 24(1 a% b%)
B. m 24(1 a%)b%
C. m 24 a% b%
D. m 24(1 a%)(1 b%)
【答案】D. 试题分析:今年 2 月份鸡的价格比 1 月份下降 a%,1 月份鸡的价格为 24 元/千克,可得 2 月份鸡的价格为 24(1﹣ a%),再由 3 月份比 2 月份下降 b%,即可得三月份鸡的价格为 24(1﹣a%)(1﹣b%),故选 D. 二、填空题
当 a=-3,b= 1 时, 2
原式= ab b2 7;
4
16.计算; (1) ﹣|﹣3|+(﹣4)×2﹣1; (2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1) 【答案】(1)-1;(2) x2 2 .
如有侵权请联系告知删除,感谢你们的配合!
精品
【答案】B.
精品
5.下列运算正确的有(
A. 5ab ab 4
)
B. a2 3 a6
.
C. a b2 a2 b2
D. 9 3
【答案】B.
6.在式子 1 ,2x+5y,0.9,﹣2a,﹣3x2y, x 1 中,单项式的个数是( )
x
3
A. 5 个 B. 4 个 C. 3 个 D. 2 个
精品
.
9.若关于 x 的二次三项式 x 2 ax 1 是完全平方式,则 a 的值是
.
4
【答案】±1
10.计算:2a﹒a2= .
【答案】2a3
【解析】
试题分析:2a﹒a2=2a3.
11.已知 a b 10, a b 8 ,则 a2 b2
2024年中考数学总复习第二部分考点精练第一单元数与式第3课时代数式、整式与因式分解
第3课时 代数式、整式与因式分解
17. (人教八上P112第4题改编)先化简,再求值:(a+b)2-(a- b)(a+b)+b(a-2b),其中a= 2-1,b= 2+1. 解:原式=a2+2ab+b2-(a2 -b2)+ab-2b2
=a2+2ab+b2-a2+b2+ab-2b2 =3ab, 当a= 2-1,b= 2+1时, 原式=3×( 2-1)×( 2+1)=3.
第3课时
代数式、整式与因式分解
第3课时 代数式、整式与因式分解
基础题 1. (2022湘潭)下列整式与ab2 为同类项的是( B ) A. a2b B. -2ab2 C. ab D. ab2c 2. (人教七下P125练习第2题改编)某校七年级举行航天知识竞赛, 规定答对一题得10分,答错一题扣5分,若七年级(1)班答对了a 道题,答错了b 道题,则七年级(1)班的分数为( C ) A. 5a-10b B. 5a+10b C. 10a-5b D. 10a+5b
创新题
5
21. (2023河北)根据下表中的数据,写出a的值为___2___,b的值
为___-__2___.
结果
x
2
n
代数式
解题关键点
3x+1
7
b
解决此题的关键是利用逆向思维,根据结果推出x的值,并且知道n就是x
2x 1
的一个取值.
x
a
1
第3课时 代数式、整式与因式分解
22. (2023丽水)如图,分别以a,b,m,n 为边长作正方形,已知
m>n 且满足am-bn=2,an+bm=4.
(1)若a=3,b=4,则图①阴影部分的面积是___2_5____;
2012年中考数学总复习学案(全课时109页)
第一章 实数课时1.实数的有关概念【课前热身】1.2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .3.的相反数是 .4. 3-的绝对值是( )A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位. (2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.【典例精析】 例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450 ”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个 例2 ⑴2--的倒数是( )A .2 B.12 C.12- D.-2 ⑵若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4⑶如图,数轴上点P 表示的数可能是( )B. C. 3.2-D.例3 下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1. -3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= .2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)3. 下列各数中:-3,,0.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5.若0)1(32=++-n m ,则m n +的值为 .6. 2.40万精确到__________位,有效数字有__________个.7. 51-的倒数是 ( )A .51-B .51C .5-D .58.点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( ) A .3 B .-1 C .5 D .-1或39.如果□+2=0,那么“□”内应填的实数是( )A .21B .21-C .21± D .210.下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11. 16的算术平方根是( )A.4B.-4C.±4D.1612.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2 14.如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数B. 和为负数C. 积为正数D. 积为负数课时2. 实数的运算与大小比较【课前热身】1.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C . 2.计算:=-13_______.3.比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6, 4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】A BO-31. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .2. =0a (其中a 0 且a 是 )=-p a (其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算里面的,同一级运算按照从 到 的顺序依次进行. 4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误.如5÷51×5.【典例精析】 例1 计算:⑴ 20080+|-1|-3cos30°+ (21)3; ⑵22(2)2sin 60--+.例2 计算:1301(20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1.根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .2. 比较大小:73_____1010--. 3. 计算(-2)2-(-2) 3的结果是( )A. -4B. 2C. 4D. 12 4. 下列各式运算正确的是( )A .2-1=-21B .23=6C .22·23=26D .(23)2=265. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .186. 计算:⑴ 4245tan 21)1(10+-︒+--;⑵ 201()2sin 3032--+︒+-;⑶01)2008(260cos π-++- .﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式 课时3.整式及其运算【课前热身】1. 31-x 2y 的系数是 ,次数是 . 2.计算:2(2)a a -÷= . 3.下列计算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷= 4.计算23()x x -所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = .6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ; (3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .【典例精析】例1若0a >且2x a =,3y a =,则x y a -的值为( )A .1-B .1C .23 D .32例2按下列程序计算,把答案写在表格内:例3 先化简,再求值:(1) x (x +2)-(x +1)(x -1),其中x =-21;(2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42. 下列运算中,结果正确的是( )A.633·x x x = B.422523x x x =+ C.532)(x x = D .222()x y x y +=+ ﹡3.已知代数式2346x x -+的值为9,则2463x x -+的值为( )A .18B .12C .9D .74. 若3223m n x y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解【课前热身】1.若x -y =3,则2x -2y = .2.分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,11 1 12 1 13 3 1 14 6 4 1 .......................................ⅠⅡ1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 . 6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.【典例精析】 例1 分解因式:⑴33222ax y axy ax y +-=__________________. ⑵3y 2-27=___________________. ⑶244x x ++=_________________. ⑷221218x x -+= .例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.分解因式2232ab a b a -+= .6.将3214x x x +-分解因式的结果是 .7. 分解因式am an bm bn +++=_____ _____; 8.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 29.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.b11.计算:(1)299;(2)2222211111(1)(1)(1)(1)(1)234910-----.﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程: 解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b a b a -=-+ ② 即222c b a =+ ③∴△ABC 为Rt △。
2019-2020年中考数学复习考点精练:第3课时 整式及因式分解
2019-2020年中考数学复习考点精练:第3课时整式及因式分解命题点1 代数式及其求值(近3年39套卷,2015年考查6次,2014年考查11次,2013 年考查7次)代数式及其求值近3年共考查24次,题型以填空题为主,主要考查的形式有:①结合提公因式,完全平方公式求代数式的值;②与方程、函数图象结合求代数式的值;③列代数式和求代数式的最值.1. (2013苏州9题3分)已知x-1x=3,则4-12x2+32的值为 ( )A .1 B. 32C.52D.722. (2014盐城9题3分)“x的2倍与5的和”用代数式表示为 .3. (2013泰州11题3分)若m=2n+1,则m2-4mn+4n2的值是 .4. (2015连云港11题3分)已知m+n=mn,则(m-1)(n-1)= .5. (2014淮安14题3分)若m2-2m-1=0,则代数式2m2-4m+3值为 .6. (2015宿迁16题3分)当x=m或x=n(m≠n)时,代数式x2-2x+3的值相等,则x=m+n时,代数式x2-2x+3的值为 .7. (2014盐城16题3分)已知x(x+3)=1,则代数式2x2+6x-5的值为 .8. (2014泰州14题3分)已知a2+3ab+b2=0(a≠0,b≠0),则代数式b aa b的值等于 .9. (2013淮安18题3分)观察一列单项式:x,3x2,5x3,7x,9x2,11x3,…,则第2013个单项式是_________.10. (2014南通18题3分)已知实数m,n满足m-n2=1,则代数式m2+2n2+4m-1的最小值等于_________.11. (2013南通18题3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于 .命题点2 整式的运算(近3年39套卷,2015年考查12次,2014年考查14次,2013年考查17次)整式及其运算近3年共考查43次,选择题、填空题主要考查整式的运算,解答题主要考查整式化简及求值.考查的内容有:①下列运算正确的是;②计算XX的结果;化简XX或化简后再求值.1. (2015淮安2题3分)计算a×3a的结果是()A. a 2B. 3a2C. 3aD. 4a2. (2015南京2题2分)计算(-xy3)2的结果是()A. x2y6B. -x2y6C. x2y9D.-x2y93. (2013徐州2题3分)下列各式的运算结果为x6的是()A. x9÷x3B. (x3)3C. x2·x3D. x3+x34. (2014扬州2题3分)若□×3xy=3x2y,则□内应填的单项式是( )A. xyB. 3xyC. xD. 3x5. (2015镇江15题3分)计算-3(x-2y)+4(x-2y)的结果是()A. x-2yB. x+2yC. -x-2yD. -x+2y6. (2014连云港2题3分)下列运算正确的是()A. 2a+3b=5abB. 5a-2a=3aC. a2·a3=a6D. (a+b)2=a2+b27. (2013苏州11题3分)计算:a4÷a2= .8. (2014连云港10题3分)计算:(2x+1)(x-3)= .9. (2015南通13题3分)计算:(x-y)2-x(x-2y)= .10. (2013镇江11题3分)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏级地震释放的能量是3级地震释放能量的324倍.11. (2014无锡19(2)题4分)计算:(x+1)(x-1)-(x-2)2.12. (2014南通19(2)题5分)化简:[x(x2y2-xy)-y(x2-x3y)]÷x2y.13. (2014盐城20题8分)先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.命题点3 因式分解(近3年39套卷,2015年考查7次,2014年考查5次,2013年考查5次)1. (2015盐城11题3分)分解因式:a2-2a= .2. (2015苏州12题3分)因式分解:a2+2a+1=.3. (2014南通12题3分)因式分解:a3b-ab= .4. (2015南京10题3分)分解因式(a-b)(a-4b)+ab的结果是 .【答案】命题点1 代数式及其求值1. D【解析】∵x-1x=3,∴x2-1=3x,∴x2-3x=1,∴原式=4-12(x2-3x)=4-12=72.2. 2x+5【解析】根据题中表述可得该式应为2x+5.3. 1【解析】∵m=2n+1,∴m-2n=1,∴原式=(m-2n)2=1.4. 1【解析】∵(m-1)(n-1)=mn-m-n+1=mn-(m+n)+1,由已知mn=m+n,得原式=1.5. 5【解析】由m2-2m-1=0得m2-2m=1,所以2m2-4m+3=2(m2-2m)+3=2×1+3=5.6. 3【解析】由题意可知,二次函数y=x2-2x+3的对称轴是直线x=1,则m+n=2,把x=2代入x2-2x+3,得22-2×2+3=3.7. -3【解析】∵x(x+3)=1,∴2x2+6x-5=2x(x+3)-5=2×1-5=2-5=-3.8. -3【解析】∵a2+3ab+b2=0,∴a2+b2=-3ab,∴原式=2233.b a abab ab+-==-9. 4025x3【解析】系数依次为1,3,5,7,9,11,…,2n-1;x的指数依次是1,2,3,1,2,3,可见三个单项式一个循环,故可得第2013个单项式的系数为4025;∵20133=671,∴第2013个单项式指数为3,故可得第2013个单项式是4025x3.10. 4【解析】∵m-n2=1,即n2=m-1≥0,得m≥1,∴原式=m2+2m-2+4m-1=m2+6m+9-12=(m+3)2-12,则代数式m2+2n2+4m-1的最小值等于(1+3)2-12=4.11. 3【解析】∵x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,∴二次函数y=x2+4x+6的对称轴为直线x=2223+3222m n m n m n+++++=;又∵二次函数y=x2+4x+6的对称轴为直线x=-2,∴3322m n++=-2,∴3m+3n+2=-4,即m+n=-2.∴当x=3(m+n+1)=3(-2+1)=-3时,x2+4x+6=(-3)2+4×(-3)+6=3.命题点2整式的运算1. B【解析】本题主要考查单项式的乘法.单项式乘单项式:把系数和相同字母分别相乘,对于只在一个单项式出现的字母,则连同它的指数一起作为积的一个因式. a×3a=3a2.2. A【解析】根据积的乘方运算法则计算可得:(-xy3)2=(-x)2·(y3)2=x2y6.3. A【解析】A. x9÷x3=x9-3=x6,故本选项正确;B. (x3)3=33x⨯=x9,故本选项错误;C.x2·x3=x2+3=x5,故本选项错误;D. x3+x3=2x3,故本选项错误.4. C【解析】根据题意得:3x2y÷3xy=x.5. A【解析】-3(x-2y)+4(x-2y)=x-2y.6. B【解析】本题考查合并同类项、同底数幂的乘法和完全平方公式,通过上述考查点所涉及的运算法则和公式进行逐项分析.7. a2【解析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.原式=a4 -2=a2.8. 2x2-5x-3【解析】(2x+1)(x-3)=2x2-6x+x-3=2x2-5x-3.9. y2【解析】(x-y)2-x(x-2y)=x2-2xy+y2-x2+2xy=y2.10. 7【解析】设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n-1=323-1×324=326,得n-1=6,n=7.11. 解:原式=x2-1-x2+4x-4=4x-5…………………………………………………………(4分)12. 解:原式=[x2y(xy-1)-x2y(1-xy)]÷x2y…………………………………………(3分)=x2y(2xy-2)÷x2y=2xy-2.…………………………………………………………………………(5分)13. 解:原式=a2+4ab+4b2+b2-a2……………………………………………………………(3分)=4ab+5b2,………………………………………………………………………(5分)当a=-1,b=2时,原式=4×(-1)×2+5×22=12.……………………………………………(8分)命题点3因式分解1. a(a-2)【解析】提取公因式a,即求得a2-2a=a(a-2).2. (a+1)2【解析】a2+2a+1=(a+1)2.3. ab(a+1)(a-1)【解析】a3b-ab=ab(a2-1)=ab(a+1)(a-1).4. (a-2b)2【解析】化简(a-b)(a-4b)+ab=a2-5ab+4b2+ab=a2-4ab+4b2,再利用完全平方公式因式分解得:a2-4ab+4b2=(a-2b)2.2019-2020年中考数学复习考点精练:第4课时分式命题点1 分式及其性质(近3年39套卷,2015年考查3次,2014年考查3次,2013 年考查3次)1. (2014无锡3题3分)分式22x-可变形为()A.22x-B.22+x-C.22x-D.22x--2. (2014南通4题3在实数范围内有意义,则x的取值范围是 ( )A.x≥12B.x≥-12C.x>12D.x≠123. (2015连云港10题3分)代数式13x-在实数范围内有意义,则x的取值范围是________.4. (2015镇江5题2分)当x =_______时,分式12x x +-的值为0. 命题点2 分式的化简及求值(近3年39套卷,2015年考查10次,2014年考查9次,2013年考查11次)分式的化简及求值近3年共考查30次,题型以解答题为主,考查形式较为灵活,有涉及1个字母的,也有涉及2个字母的,字母的值有给定值的,也有与方程结合的.1. (2014南通6题3分)化简211x xx x+--的结果是 ( ) A .x +1 B .x -1 C .–x D .x2. (2015无锡12题2分)化简2269x x --得___________. 3. (2013常州18题4分)计算:2214+2x x x --.4. (2015南京19题7分)计算:(22222a b a ab---)÷+a a b .5. (2014徐州19(2)题5分)计算:(a +12a -)÷(1+12a -).6. (2014扬州19(2)题5分)化简:2222+6+311-21x x x x x x x -÷+++.7. (2013淮安19(2)题4分)计算:3a +(1+12a -)·221a a a --.8. (2015盐城20题8分)先化简,再求值:(1+211a -)÷3(1)a a +,其中a =4.9. (2013泰州17(2)题6分)先化简,再求值:32x x --÷(522x x +--),其中x10. (2015淮安20题6分)先化简(1+12x -)÷2144x x x --+,再从1,2,3三个数中选择一个合适..的数作为x 的值,代入求值.11. (2013连云港19题6分)先化简,再求值:(1m-1n)÷222m mn nmn-+,其中m=-3,n=5.12. (2013盐城20题8分)先化简,再求值:(x-1)÷(21x--1),其中x为方程x2+3x+2=0的根.【答案】命题点1 分式及其性质1. D【解析】2222(2)2 x x x==----.2. C【解析】由题知,2x-1>0,解得x>12.3. x≠3【解析】本题考查分式有意义的条件:分式的分母不为零.当代数式13x-有意义时,x-3≠0,故x≠3.4. -1【解析】本题考查了分式为零的条件,由题意得x+1=0,解得x=-1. 命题点2 分式的化简及求值1. D【解析】222(1)=111111x x x x x x x xxx x x x x x--+=-==------.2.23x -【解析】2262(3)2.9(3)(3)3x x x x x x ++==-+-- 3. 解:原式=22(2)(2)(2)(2)x x x x x x --+-+-………………………………………………(3分)2(2)(2)x x x +=+-12x =-.…………………………………………………………………………(4分)4. 解:原式=[21()()()a b a b a a b -+--]·a b a+……………………………………(2分)2()()()a a b a ba ab a b ag -++=+-()()a ba b a a b a b a g -+=+-………………………………………………………(5分)21a=.…………………………………………………………………………(7分)5. 解:原式(2)12122a a a a a -+-+=÷--………………………………………………………(3分)2(1)221a a a a g --=--=a -1.…………………………………………………………………………(5分)6. 解:原式=21xx +-22(3)(1)(1)(1)3x x x x x g +-+-+………………………………………………(2分)=22(1)11xx x x -++-=21x +.………………………………………………………………………………(5分)7. 解:原式=21(2)321a a a a a a g-+-+--……………………………………………………(2分) =3a +1=4a .……………………………………………………………………………(4分) 8. 【思路分析】先根据分式混合运算的法则把原式进行化简,再将a 的值代入进行计算即可.解:原式=2113(1)(1)(1)a a a a ag -+++- ……………………………………………………………(2分)=23(1)(1)(1)a a a a a g ++-=31a a -,………………………………………………………………………………(5分)当a =4时,原式=3441⨯-=4. ………………………………………………………………(8分)9. 解:原式=234522x x x x ---÷--=3(3)(3)22x x x x x --+÷--………………………………………………………(2分)=322(3)(3)x x x x x g ----+ =1+3x .………………………………………………………………………(4分)当x5==.…………………………………………(6分)10.【思路分析】本题主要考查分式的混合运算.解决这类问题,一般是将分式先化简,再代值计算.化简时,先算括号内的,再将除法变为乘法计算.有时还要先分解因式,约去分子、分母的公因式,变成最简分式.这里1,2都使运算式子中的分母为0,只有3适合代入求值. 解:原式=2211()22(2x x x x x --+÷---)………………………………………………………(2分)=21(2)21x x x x g ---- =x -2.………………………………………………………………………………(4分)因为x -2,x -1 都曾在分母上,因此x =1,2都使分式没有意义,只有3适合代入求值. 当x =3时,原式= 3-2=1.(6分) 11. 解:原式=2()n m n m mnmn--÷=2()n mmn mn n m g --=1n m-.………………………………………………………………………(4分)将m=-3,n=5代入原式得:原式=115(3)8=--.…………………………………………(6分)12. 解:原式=(x-1)÷211xx--+=(x-1)÷11xx-+…………………………………………………………………(3分)=(x-1)·11 xx+ -=-x-1.…………………………………………………………………………(5分)由x为方程x2+3x+2=0的根,解得x=-1或x=-2.当x=-1时,原分式无意义,所以x=-1舍去;当x=-2时,原式=-(-2)-1=2-1=1.……………………………………………………(8分)。
中考数学总复习3.代数式、整式
3.代数式、整式一、知识要点1. 代数式的概念:代数式有理式分式无理式2. 整式的有关概念(1) 与 的积叫做单项式,其中的数字因素叫做单项式的,单项式中所有字母的指数的和叫做这个单项式的 .(2) 几个单项式的 组成多项式. 在多项式中,每个单项式叫做多项式的 ,其中,不含字母的项叫做. 一个多项式含有几项,就叫几项式,多项式的每一项都包含它前面的符号. 多项式中的最高次项的次数,就是这个多项式的 .如多项式2a +1- 3a 2是 次项式.(3) 所含相同,并且相同字母的 也相同的项,叫做同类项.3. 整式的运算(1)整式的加减运算(实质是合并同类项):若有括号,先去括号,再合并同类项(只合并同类项的系数). (2) 去括号法则:括号前面是“+”,去括号后各项都符号;括号前面是“—”,去括号后各项都符号. 如:+(a-b )= a-b ;-(a-b )= -a+b .⑤⎛ a ⎫ = ÷xy =4mx y (3) 幂的运算性质(式中的 m 、n 都是正整数)①a m ⋅ a n = ; ②a m ÷ a n = (a ≠ 0); ③ (a m)n=; ④ (ab )m=;n( b ≠ 0 ); ⑥ a =(a ≠ 0); ⑦ a 0=(a ≠ 0) .⎪ ⎝ b ⎭(4) 单项式乘法法则:单项式乘以单项式,先将它们的系数、相同字母的幂分别相乘;对于只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式. 如:3ax 2y ·4xy 3=12ax 3y 4(5) 乘法公式: 一般多项式相乘(a + b )(c + d ) =;平方差公式 (a + b )(a - b ) = ;完全平方公式(a ± b )2 =.(6) 单项式除以单项式:把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式. 如: 2mx 3 y 4132 2(7) 多项式除以单项式:先把这个多项式的每一项分别除以这个单项式,再把所得的商相加. 如:(a + b + c ) ÷ d = (a + b + c ) ⋅ 1 = a + b + cd d d d二、例题分析 【例 1】列代数式:①某药品每盒按原价降低a 元后, 又下调了 20%,现每盒收费b 元,该药品的原价是每盒 元; ②某公司一季度盈利 a 万元,二季度比第一季度利润增加了 20%,则两.个.季.度.共盈利 万元.③某商品的进价为 x 元,售价为 120 元,则该商品的利润率可表示为 .【例 2】计算:①(a -b )2+b (2a +b );② (- 1y 2+ 2 xy ) - (x 2- 1 xy +1y 2 )5 3 5 10【例 3】先化简,再求值: a (a - 2b ) - 2(a + b )(b - a ) + (a + b )2,其中a = - 1,b = 1.23【例 4】(1) -[a -(b-c )]去括号正确的是()A . -a-b+cB. -a+b-cC . –a-b-cD . -a+b+c(2) 多项式5a 3 - 3ab + ab - 4a 3 + 21合并同类项的结果是( )A . a 3 - 4ab + 21B . a 3 + 2ab + 21C . a 3 - 2ab + 21D . a 3 + 4ab + 21(3) 若3x = 4,9y = 7 ,则3x-2y 的值为( ) A .4 B . 7 C . -3 D .2747(4) 下列计算正确的是()A . (a +b )2= a 2+b 2(5) 下列各式中不正确的是(B .(-a )2.(-a ) 4=(-a )6)C . a 8 ÷ a 2=a 4D . a 4+a 3=-a 7A . (x 2 y 3 )2 = x 4 y 6B . (-x 3 y 2 )3 = -x 9 y 6C . (-2x 2 )4 = -4x 4D . (2x n y 3 )3 = 8x 3n y 9【例 5】(1) 下列各式:①⎛ -1 ⎫-2 = 9 , ②(- 2)0=1, ③(a + b )2 = a 2 + b 2 , ④(- 3ab 3 )2= 9a 2b 6 ,⎪⎝ ⎭⑤ 3x 2 - 4x = -x ,⑥2x -2= 12x 2其中计算正确的是 . (只填序号)(2) 若- 2 x 3 y n与 2x m y 2 的和是单项式,则 m =,n =.5(3) 多项式 xy 3 - 8x 2 y - x 3 y 2 - y 4- 6 是 次 项式,最高次项是 ,常数项是 .(4) 若代数式 x 2- 6x + b 可化为(x - a )2-1,则b - a 的值是.(5) 已知3x 2 - 4x + 9 的值为 9,则 x 2- 4x + 6 值是3 (6) 已知ab = -1, a + b = 2 ,则式子 b + a= . a b(7) 若 m - n = 2 , m + n = 5 ,则 m 2- n 2的值为.(8) 已知2m= 3 , 2n = 4 则23m +2n 的值为← m →←n →a 2y -1 (9) 如果 2×8n ×16 n =222,则 n 的值为【例 6】已知 A = 2x ,B 是多项式,在计算 B + A 时,小马虎同学把 B + A 看成了 B ÷ A ,结果得 x 2 + 1x ,2则 B + A = .三、课后作业1. 下列运算结果正确的是()A -3(x -1) = -3x -1 C . -3(x -1) = -3x - 3B . -3(x -1) = -3x +1 D . -3(x -1) = -3x + 32. 下列运算正确的是( )-1D .1 3 12 6A . 3 ÷3=1B . = aC . 3.14 -π = 3.14 -π( a b ) = a b 2 43. 图①是一个边长为(m + n ) 的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ).A . (m + n )2- (m - n )2= 4mnB . (m - n )2+ 2mn = m 2+ n 2C . (m + n )2 - (m 2 + n 2 ) = 2mnD . (m + n )(m - n ) = m 2- n2图①图②4. 若x ,y 为实数,且 x +1 + = 0 ,则( x ) 2011的值是( )yA .0B .1C .-1D .-20115. 下列各式的计算中,错误的是 ( )A . a 5+ a 5= 2a 5B . (x - y )5 ⋅ ( y - x )2 = (x - y )7C . (-x 2 ) ⋅ (-x )2 ⋅ x = x 5D . (x 2 )3 + (x 3 )2 = 2x 66. 定义新运算“ ⊗ ”,规定:a ⊗ 1-4b , 则 12 ⊗ (-1)= . b = a 37. 下列各式: a 4 ⋅ a 2 , (a 3 ) 2, a 2 ⋅ a 3 , a 3 + a 3 , (a ⋅ a 2 )3 其中与a 6 相等的有 个.8.根据图中的程序,当输入 x =2 时,输出结果 y = .9. (2 +1)(22+1)(24+1)(28+1)(216+1) = .10. 将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是.m n mn11. 计算下列各式:(1) (-2ax )2⋅(- 2 x 4 y 3 z 3) ÷(- 1a 5 xy 2)52 (2) (a - 1) ⋅ (a 2+ 1 ) ⋅ (a + 1)2 4 212.先化简,再求值. (x +1)2+ x ( x - 2) ,其中 x = - 1. 213.(1)先化简,再求值: (a - 3)(a + 3) - a (a -6), 其中a =5+ 1 .(2)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.。
中考数学专题练习二整式及其运算
整式及其运算课标要求1.代数式①在现实情境中进一步理解用字母表示数的意义。
②能分析简单问题的数量关系,并用代数式表示。
③能解释一些简单代数式的实际背景或几何意义。
④会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
2.整式①了解整数指数幂的意义和基本性质。
②了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算。
③会推导乘法公式:()()22b a b a b a -=-+;()2222b ab a b a ++=+.④会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。
知识要点1.整式(1).代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.(2).代数式的值:用数代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.(3)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(4) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 .(5) 整式: 与 统称整式.2. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___.3.整式的运算:(1)整式的加减:实质上就是合并同类项。
(2)整式的乘法:①幂的运算法则:=∙n m a a ;=÷n m a a ;()=n m a ;()=nab 。
②乘法公式:平方差公式: ()()=-+b a b a ;完全平方公式:()=±2b a ;(3)整式的除法① 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.②多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 .4. 因式分解:(1)因式分解:把一个多项式化为几个整式的 的形式。
《中考大一轮数学复习》课件 课时3 整式及其运算
中考大一轮复习讲义◆ 数学
2
夯实基本
中考大一轮复习讲义◆ 数学 知识结构梳理
知已知彼
1 2
3
3
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
基础知识回顾 1. 代数式:用运算符号 ( 加、减、乘、除、乘方、开方 ) 把 ________ 或表示 ____________连接而成的式子叫做代数式. 2. 代数式的值:用__________代替代数式里的字母,按照代数式里的运算关 系,计算后所得的__________叫做代数式的值. 3. 整式 (1) 单项式:由数与字母的 ________ 组成的代数式叫做单项式 ( 单独一个数或 ________ 也是单项式 ) .单项式中的 __________ 叫做这个单项式的系数;单项式 中的所有字母的____________叫做这个单项式的次数. (2)多项式:几个单项式的________叫做多项式.在多项式中,每个单项式叫 做多项式的________,其中次数最高的项的________叫做这个多项式的次数.不 含字母的项叫做__________. (3)整式:________与__________统称整式.
1 2
10
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
热点三 整式的化简 热点搜索 在求整式的值时,应先将整式进行化简,即去括号、合并同类 项,然后再把整式中字母的值代入计算,可化繁为简,使运算简便.
典例分析 3 (2013·湖南娄底 )先化简,再求值: (x+y)(x-y)- (4x3y- 3 . 3
1 2
7
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
点对点训练 1. 某班共有x个学生,其中女生人数占45%,用代数式表示该班的男 0.55x . 生人数是________ 2. (2014·吉林)如图,矩形ABCD的面积为 ________(用含x的代数式 表示). (x+3)(x+2)(或写为x2+5x+6的形式)
2021年全国中考数学试题分类汇编专题03整式及运算
专题03 整式及运算一、单选题1.(2021年福建中考)下列运算正确的是( )A .22a a -=B .()2211a a -=-C .632a a a ÷=D .326(2)4a a = 【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.【详解】解:A :()221a a a a -=-=,故 A 错误;B :()22121a a a -=-+,故 B 错误;C :63633a a a a -÷==,故C 错误;D :()()2232332622?44a a a a ⨯===.故选:D【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键.2.(2021年广东中考)已知93,274m n ==,则233m n +=( )A .1B .6C .7D .12【答案】D【分析】利用同底数幂乘法逆用转换求解即可.【详解】解:∵93,274m n ==,∵232323333(3)(3)927=34=12m n m n m n m n +=⨯=⨯=⨯⨯,∵故选:D .【点睛】本题主要考查同底数幂乘法的逆用,熟练掌握其运算法则即表现形式是解题关键.3.(2021年浙江丽水中考)计算:()24a a -⋅的结果是( ) A .8aB .6aC .8aD .6a -【答案】B【分析】 根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【详解】解:原式24246a a a a +=⋅==.故选B .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.4.(2021年四川资阳中考)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a 【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【详解】解:A . 2222a a a +=,故此选项不符合题意;B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.5.(2021年四川自贡中考)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【详解】解:∵23120x x --=,∵23=12x x -,∵()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.6.(2021年四川乐山中考)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( ) A .8n m (元) B .8n m (元) C .8m n (元) D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【详解】∵m 千克的售价为n 元,∵1千克商品售价为n m, ∵8千克商品的售价为8n m (元); 故答案选A .【点睛】本题主要考查了列代数式,准确分析列式是解题的关键.7.(2021年四川泸州中考)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.8.(2021年四川泸州中考)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92【答案】C【分析】 根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【详解】解: ∵1020a =,10050b =,∵2310100102050100010a b a b +⋅==⨯==,∵23a b +=, ∵()()1311233332222a b a b ++=++=+=. 故选:C .【点睛】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.9.(2021年云南中考)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a +B .21n n a -C .1n n n a +D .()21n n a + 【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∵第n 个单项式为21n n a +,故选:A .【点睛】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.10.(2021年浙江金华中考)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25% 【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可.【详解】设原件为x 元,∵先打九五折,再打九五折,∵调价后的价格为0.95x ×0.95=0.9025x 元,∵先提价50%,再打六折,∵调价后的价格为1.5x ×0.6=0.90x 元,∵先提价30%,再降价30%,∵调价后的价格为1.3x ×0.7=0.91x 元,∵先提价25%,再降价25%,∵调价后的价格为1.25x ×0.75=0.9375x 元,∵0.90x <0.9025x <0.91x <0.9375x故选B【点睛】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.11.(2021年浙江温州中考)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元,∵应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【点睛】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.11.(2021年甘肃武威中考)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3 【答案】A【分析】先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【详解】解:∵(),m n 是“相随数对”, ∵2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【点睛】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.12.(2021年山东临沂中考)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【答案】C【分析】 根据物质所剩的质量与时间的规律,可得答案.【详解】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∵再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【点睛】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.13.(2021年山东泰安中考)下列运算正确的是( )A .235235x x x +=B .()3326x x -=- C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【点睛】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键. 14.(2021年安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x - 【答案】D【分析】利用同底数幂的乘法法则计算即可【详解】解:52233=-()x x x x +⋅-=-故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021年陕西中考)计算:()23a b -=( )A .621a bB .62a bC .521a bD .32a b -【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -=, 故选:A .本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键. 16.(2021年湖南衡阳中考)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021年浙江台州中考)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【详解】解:∵()222249a b a b ab +=++=,2225a b +=, ∵4925122ab -==,【点睛】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021年浙江台州中考)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( ) A .20% B .+100%2x y ⨯ C .+3100%20x y⨯ D .+3 100%10+10x yx y ⨯【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【详解】 解:混合之后糖的含量:10%30%3100%1010x y x yx y x y ++=⨯++,故选:D .【点睛】本题考查列代数式,理解题意是解题的关键.19.(2021年江苏苏州中考)已知两个不等于0的实数a 、b 满足0a b +=,则baa b +等于() A .2- B .1- C .1 D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab ++, ∵()2222==a b ab b a b a a b ab ab+-++,∵两个不等于0的实数a 、b 满足0a b +=, ∵()22-2===-2a b ab b a ab a b ab ab+-+,故选:A .本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021年上海中考)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab 【答案】B【分析】比较对应字母的指数,分别相等就是同类项【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致,∵32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致,∵232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∵2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致,∵3ab 不是23a b 的同类项,不符合题意;故选B【点睛】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021年四川广安中考)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【点睛】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021年四川眉山中考)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【详解】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【点睛】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021年湖南岳阳中考)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确; D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021年浙江台州中考)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【详解】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【点睛】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键. 25.(2021年四川成都中考)下列计算正确的是( )A .321mn mn -=B .()22346m n m n =C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】 利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【详解】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B. ()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【点睛】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021年山东临沂中考)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:6332510a a a =⋅,故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021年浙江宁波中考)计算()3a a ⋅-的结果是( )A .2aB .2a -C .4aD .4a -【答案】D【分析】 根据单项式乘以单项式和同底数幂的运算法则解答即可.【详解】解:原式4a =-.故选:D【点睛】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021年重庆中考)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a 【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【详解】解:63a a ÷=53a ,故选:D .【点睛】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键. 29.(2021年江苏连云港中考)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-= 【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意;故选:D .【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则. 30.(2021年广西玉林中考)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到: 11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∵944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.31.(2021年黑龙江绥化中考)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B【分析】根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∵x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.32.(2021年河南中考)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案.【详解】解:A 、22()a a -=,原计算错误,不符合题意;B 、2222a a a -=,原计算错误,不符合题意;C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意;【点睛】本题主要考查了幂的运算性质和完全平方公式,正确掌握相关运算法则是解题关键.33.(2021年湖北鄂州中考)下列运算正确的是( )A .23a a a ⋅=B .541a a -=C .632a a a ÷=D .()3326a a = 【答案】A【分析】直接利用同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方直接求解即可.【详解】A 、23a a a ⋅=,选项正确,符合题意;B 、54a a a -=,选项错误,不符合题意;C 、633a a a ÷=,选项错误,不符合题意;D 、()3328a a =,选项错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法、合并同类项、同底数幂的除法、幂的乘方,解题的关键是:掌握相关的运算法则.34.(2021年江苏无锡中考)下列运算正确的是( )A .23a a a +=B .352()a a =C .824a a a ÷=D .235a a a ⋅=【答案】D【分析】根据合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,逐一判断选项,即可.【详解】解:A. 2a a +,不是同类项,不能合并,故该选选错误,B. 236()a a =,故该选项错误,C. 826a a a ÷=,故该选项错误,D. 235a a a ⋅=,故该选项正确,【点睛】本题主要考查整式的运算,熟练掌握合并同类项法则,幂的乘方法则,同底数幂的乘除法法则,是解题的关键.35.(2021年内蒙古通辽中考)下列计算正确的是( )A .335x x x +=B .3321x x -=C .347x x x ⋅=D .()323626xy x y -=- 【答案】C【分析】根据合并同类项法则、同底数幂乘法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A.3332x x x +=,故该选项计算错误,不符合题意,B.3332x x x -=,故该选项计算错误,不符合题意,C.33744x x x x +⋅==,故该选项计算正确,符合题意,D.()323323362(2)8xy x y x y ⨯-=-=-,故该选项计算错误,不符合题意,故选:C .【点睛】本题考查合并同类项、同底数幂乘法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.36.(2021年湖南中考)已知0a ≠,下列运算正确的是( )A .321a a -=B .326a a a ⋅=C .32a a a ÷=D .()3326a a = 【答案】C【分析】根据合并同类项、整式的乘法、同底数幂的除法、积的乘方逐项判断即可得.【详解】A 、32a a a -=,此项错误,不符题意;B 、2326a a a ⋅=,此项错误,不符题意;C 、32a a a ÷=,此项正确,符合题意;D 、()3328a a =,此项错误,不符题意;故选:C .【点睛】本题考查了合并同类项、整式的乘法、同底数幂的除法、积的乘方,熟练掌握各运算法则是解题关键. 37.(2021年内蒙古呼和浩特中考)下列计算正确的是( )A .224347a a a +=B 11a= C .31812()42-+÷-= D .21111a a a a --=-- 【答案】D【分析】 根据有理数、整式、分式、二次根式的运算公式运算验证即可.【详解】222347a a a +=,故A 错;当a >011a =,当a <011a=-,故B 错; 31812()262-+÷-=-,故C 错; 21111a a a a --=--,D 正确; 故选:D .【点睛】本题主要考查了有理数、整式、分式、二次根式的运算,熟记运算定理和公式是解决问题的额关键. 38.(2021年四川宜宾中考)下列运算正确的是( )A .23a a a +=B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误;选项B :()32628a a =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误;选项D :33522a a a a +⋅==,故选项D 正确;故选:D .【点睛】本题考查幂的运算法则,属于基础题,熟练掌握运算法则是解决本类题的关键.39.(2021年黑龙江齐齐哈尔中考)下列计算正确的是( )A.4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -= 【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.40.(2021年湖北中考)下列运算正确的是( )A .23a a a ⋅=B .()325a a =C .33(2)6a a =D .1234a a a ÷=【答案】A【分析】根据同底数幂的乘除法、幂的乘方、积的乘方法则逐项判断即可得.【详解】A 、23a a a ⋅=,此项正确,符合题意;B 、()326a a =,此项错误,不符题意;C 、33(2)8a a =,此项错误,不符题意;D 、1239a a a ÷=,此项错误,不符题意;故选:A .【点睛】本题考查了同底数幂的乘除法、幂的乘方、积的乘方,熟练掌握各运算法则是解题关键.41.(2021年山东威海中考)下列运算正确的是( )A .236(3)9a a -=-B .235()a a a -⋅=C .222(2)4x y x y -=-D .22445a a a += 【答案】B【分析】分别根据积的乘方和幂的乘方运算法则、同底数幂的乘法、完全平方公式以及合并同类项的运算法则对各项进行计算后再判断即可.【详解】解:A . 236(3)27a a -=-,原选项计算错误,不符合题意;B . 235()a a a -⋅=原选项计算正确 ,符合题意;C. 222(2)44x y x xy y -=-+,原选项计算错误,不符合题意;D . 22245a a a +=,原选项计算错误,不符合题意;故选:B .【点睛】此题主要考查了积的乘方和幂的乘方、同底数幂的乘法、完全平方公式以及合并同类项,熟练掌握相关运算法则是解答此题的关键.42.(2021年山东济宁中考)下列各式中,正确的是( )A .223x x x +=B .()x y x y --=--C .()325x x =D .532x x x ÷=【答案】D【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A 、23x x x +=,此选项错误,不符合题意;B 、()+x y x y --=-,此选项错误,不符合题意;C 、()326x x =,此选项错误,不符合题意; D 、532x x x ÷=,此选项正确,符合题意;故选:D .【点睛】本题主要考查合并同类项法则,同底数幂除法,幂的乘方,熟练掌握运算性质是解题的关键.43.(2021年黑龙江鹤岗中考)下列运算中,计算正确的是( )A .2352m m m +=B .()32626a a -=- C .()222a b a b -=- D =【答案】D【分析】根据积的乘方、完全平方公式及二次根式的除法可直接进行排除选项.【详解】解:A 、2m 与3m 不是同类项,所以不能合并,错误,故不符合题意;B 、()32628a a -=-,错误,故不符合题意;C 、()2222a b a ab b -=-+,错误,故不符合题意;D =故选D .【点睛】本题主要考查积的乘方、完全平方公式及二次根式的除法,熟练掌握积的乘方、完全平方公式及二次根式的除法是解题的关键.44.(2021年内蒙古中考)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】 先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.45.(2021年山东济宁中考)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .12 【答案】D【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+ 当3n =时的分子为5,分母为23110+=∴这个数为51102= 故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.46.(2021年湖北十堰市)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .2019【答案】B【分析】 根据数字的变化关系发现规律第n 行,第n 列的数据为:2n (n -1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.【详解】解:观察数字的变化,发现规律:第n 行,第n 列的数据为:2n (n -1)+1,∵第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∵第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B .【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题. 47.(2021年广西来宾中考)下列运算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()325a a =D .2232a a a -= 【答案】A【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解.【详解】解:A. 235a a a ⋅=,原选项计算正确,符合题意;B. 624a a a ÷=,原选项计算错误,不合题意;C. ()326a a =,原选项计算错误,不合题意;D. 232a a -,不是同类项,无法相减,原选项计算错误,不合题意.故选:A【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公式和法则是解题关键.二、填空题48.(2021年天津中考)计算42a a a +-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【详解】()424215a a a a a +-=+-=故答案为:5a .【点睛】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.49.(2021年广东中考)若1136x x +=且01x <<,则221x x -=_____. 【答案】6536-【分析】 根据1136x x +=,利用完全平方公式可得2125()36x x -=,根据x 的取值范围可得1x x-的值,利用平方差公式即可得答案.【详解】 ∵1136x x +=, ∵2211125()()436x x x x x x -=+-⋅=, ∵01x <<, ∵1x x<, ∵1x x-=56-, ∵221x x -=11()()x x x x +-=135()66⨯-=6536-,故答案为:6536-【点睛】 本题考查了完全平方公式及平方差公式,准确运用公式是解题的关键.50.(2021年江苏扬州中考)计算:2220212020-=__________.【答案】4041【分析】利用平方差公式进行简便运算即可.【详解】解:2220212020-=()()2021202020212020+⨯-=40411⨯=4041故答案为:4041.【点睛】本题考查了平方差公式的应用,解题时注意运算顺序.51.(2021年浙江嘉兴中考)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________.【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可.【详解】解:∵22110=-,22321=-,22532=-,…∵第n 个等式为:()22211n n n -=-- 故答案是:()221n n --. 【点睛】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键. 52.(2021年四川遂宁中考)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时, ()12102n n +=,解得:20n =或21-(不合题意,舍去),∵第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .53.(2021年湖南岳阳中考)已知1x x +=,则代数式1x x +=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【详解】10x x+== 故答案为:0.【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.54.(2021年江苏苏州中考)若21m n +=,则2366m mn n ++的值为______.【答案】3【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可.【详解】∵ 21m n +=,∵2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3.故答案为:3.【点睛】本题考查了代数式的求值,解题的关键是利用已知代数式求值.55.(2021年江苏扬州中考)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.。
中考数学整式及其运算总复习课件试题全面版
整式的加减运算实例
整式的加减运算技巧
03
CHAPTER
整式的乘法运算
根据乘法交换律和结合律,将单项式中的字母部分分别相乘,系数相乘。
单项式乘单项式
将单项式与多项式中的每一项分别相乘,再将所得的积相加。
单项式乘多项式
将一个多项式的每一项与另一个多项式的每一项相乘,再将所得的积相加。
多项式乘多项式
在整式乘法运算中,应将所得的同类项合并,以便简化结果。
合并同类项
遵循先乘除后加减的原则,按照运算顺序进行计算。
运算顺序
在整式乘法运算后,应将结果化简到最简形式,以便更好地理解和应用。
代数式的化简
整式乘法运算在实际问题中有着广泛的应用,如计算面积、体积等。
解决实际问题
通过整式乘法运算,可以将代数式进行变形,从而更好地研究其性质和结构。
代数式的变形
04
CHAPTER
整式的除法运算
约分
在整式除法中,如果可以约分,应先约分再计算,以简化计算过程。
符号问题
在整式除法中,要注意符号问题,特别是当被除数和除数都是负数时,结果应为正数。
乘法逆元
在整式除法中,如果被除数是0,项式除以单项式的题型较为简单,主要考查学生对整式除法运算法则的掌握程度。
注意事项
在整式除法运算中,需要注意除数不能为零,以及正确处理商的符号。
01
整式的除法运算规则
整式的除法运算基于倒数的原则,即对于任意非零整式A和B,有A/B=A*B^(-1)。
02
整式除法的步骤
首先找到除数B的倒数B^(-1),然后将被除数A与B^(-1)相乘,得到商。
2023年中考数学考点讲练专题4 整式及其运算
专题4 整式及其运算考点一:整式的相关概念1.(2022·四川攀枝花·中考真题)下列各式不是单项式的为( ) A .3B .aC .baD .212x y2.(2022·重庆大渡口·二模)下列各式中,不是..整式的是( ) A .1xB .x -yC .6xy D .4x3.(2022·江苏南京·模拟预测)下列说法正确的是( ) A . 3xy π的系数是3 B .3xy π的次数是3 C . 223xy -的系数是23-D .223xy -的次数是24.(2022·广西中考模拟预测)单项式﹣2x 2yz 3的系数、次数分别是( ) A .2,5B .﹣2,5C .2,6D .﹣2,65.(2022·湖南湘潭·中考真题)下列整式与2ab 为同类项的是( ) A .2a bB .22ab -C .abD .2ab c6.(2022·广东·中考真题)单项式3xy 的系数为___________.7.(2022·湖南·长沙市北雅中学模拟预测)若单项式+2-m n a b 与2523a b -合并后的结果仍为单项式,则n m 的值为_____.考点二:规律探索8.(2022·西藏·中考真题)按一定规律排列的一组数据:12,35,12,717-,926,1137-,….则按此规律排列的第10个数是( ) A .19101-B .21101C .1982-D .21829.(2022·内蒙古内蒙古·中考真题)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…根据其中的规律可得012022777+++的结果的个位数字是( )A .0B .1C .7D .810.(2022·山东济宁·中考真题)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A .297B .301C .303D .40011.(2022·内蒙古鄂尔多斯·中考真题)按一定规律排列的数据依次为12,45,710,1017……按此规律排列,则第30个数是 _____.12.(2022·湖北恩施·中考真题)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 13.(2022·江苏宿迁·中考真题)按规律排列的单项式:x ,3x -,5x ,7x -,9x ,…,则第20个单项式是_____.14.(2022·黑龙江大庆·中考真题)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.考点三:整式的运算15.(2022·山东淄博·中考真题)计算3262(2)3a b a b --的结果是( ) A .﹣7a 6b 2B .﹣5a 6b 2C .a 6b 2D .7a 6b 216.(2022·江苏镇江·中考真题)下列运算中,结果正确的是( ) A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =17.(2022·四川资阳·中考真题)下列计算正确的是( ) A .235a b ab +=B .222()a b a b +=+C .23a a a ⨯=D .()325a a =18.(2022·江苏泰州·中考真题)下列计算正确的是( ) A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=-19.(2022·青海·中考真题)下列运算正确的是( ) A .235347x x x +=B .()222x y x y +=+C .()()2232394x x x +-=-D .()224212xy xy xy y +=+20.(2022·江苏常州·中考真题)计算:42÷=m m _______.21.(2022·青海西宁·中考真题)()2332x xy ⋅-=_________22.(2022·内蒙古包头·中考真题)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.23.(2022·广西·中考真题)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.24.(2022·四川南充·中考真题)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.答案与解析考点一:整式的相关概念1.(2022·四川攀枝花·中考真题)下列各式不是单项式的为( ) A .3 B .aC .b aD .212x y2.(2022·重庆大渡口·二模)下列各式中,不是..整式的是() A .1xB .x -yC .6xy D .4x3.(2022·江苏南京·模拟预测)下列说法正确的是( ) A . 3xy π的系数是3B .3xy π的次数是3C . 223xy -的系数是23-D .223xy -的次数是24.(2022·广西·富川瑶族自治县教学研究室模拟预测)单项式﹣2x 2yz 3的系数、次数分别是( ) A .2,5 B .﹣2,5C .2,6D .﹣2,65.(2022·湖南湘潭·中考真题)下列整式与2ab 为同类项的是( ) A .2a b B .22ab -C .abD .2ab c【答案】B【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a 的指数是1,b 的指数是2. A 、a 的指数是2,b 的指数是1,与2ab 不是同类项,故选项不符合题意; B 、a 的指数是1,b 的指数是2,与2ab 是同类项,故选项符合题意; C 、a 的指数是1,b 的指数是1,与2ab 不是同类项,故选项不符合题意;D 、a 的指数是1,b 的指数是2,c 的指数是1,与2ab 不是同类项,故选项不符合题意. 故选:B .【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.(2022·广东·中考真题)单项式3xy 的系数为___________. 【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案. 【详解】3xy 的系数是3, 故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义.7.(2022·湖南·长沙市北雅中学模拟预测)若单项式+2-m n a b 与2523a b -合并后的结果仍为单项式,则n m 的值为_____.8.(2022·西藏·中考真题)按一定规律排列的一组数据:12,35,12,717-,926,1137-,….则按此规律排列的第10个数是( ) A .19101-B .21101C .1982-D .21829.(2022·内蒙古内蒙古·中考真题)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…根据其中的规律可得012022777+++的结果的个位数字是( )A .0B .1C .7D .8【答案】C【分析】观察等式,发现尾数分别为:1,7,9,3,1,7,9,3⋯每4个数一组进行循环,所以202345053÷=⋯,进而可得012022777++⋯+的结果的个位数字.【详解】解:观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,⋯,发现尾数分别为: 1,7,9,3,1,7,⋯,所以和的个位数字依次以1,8,7,0循环出现,(20221)45053+÷=⋯⋯,每4个数一组进行循环, 所以202345053÷=⋯⋯, 而179320+++=,5052017910117⨯+++=,所以012022777++⋯+的结果的个位数字是7. 故选:C .【点睛】本题考查了尾数特征、有理数的乘方,解题的关键是根据题意寻找规律.10.(2022·山东济宁·中考真题)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.40011.(2022·内蒙古鄂尔多斯·中考真题)按一定规律排列的数据依次为12,45,710,1017……按此规律排列,则第30个数是_____.12.(2022·湖北恩施·中考真题)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. ,13.(2022·江苏宿迁·中考真题)按规律排列的单项式:x ,3x -,5x ,7x -,9x ,…,则第20个单项式是_____. 【答案】39x【分析】观察一列单项式发现偶数个单项式的系数为:1,-奇数个单项式的系数为:1,而单项式的指数是奇数,从而可得答案.【详解】解:x ,3x -,5x ,7x -,9x ,…,由偶数个单项式的系数为:1,- 所以第20个单项式的系数为1,- 第1个指数为:211, 第2个指数为:221, 第3个指数为:231,······指数为220139,所以第20个单项式是:39.x故答案为:39x【点睛】本题考查的是单项式的系数与次数的含义,数字的规律探究,掌握“从具体到一般的探究方法”是解本题的关键.14.(2022·黑龙江大庆·中考真题)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.15.(2022·山东淄博·中考真题)计算3262--的结果是()a b a b(2)3A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b2【答案】C【分析】先根据积的乘方法则计算,再合并同类项.【详解】解:原式626262=-=,43a b a b a b故选:C .【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则.16.(2022·江苏镇江·中考真题)下列运算中,结果正确的是( )A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a = 【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.【详解】222325a a a +=,故A 计算错误,不符合题意; 3332a a a -=-,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点睛】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.17.(2022·四川资阳·中考真题)下列计算正确的是( )A .235a b ab +=B .222()a b a b +=+C .23a a a ⨯=D .()325a a =18.(2022·江苏泰州·中考真题)下列计算正确的是( )A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=- 【答案】A【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意;B 、222523y y y -=,故选项错误,不符合题意;C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.19.(2022·青海·中考真题)下列运算正确的是( )A .235347x x x +=B .()222x y x y +=+ C .()()2232394x x x +-=- D .()224212xy xy xy y +=+20.(2022·江苏常州·中考真题)计算:42÷=m m _______.【答案】2m【分析】根据同底数幂的除法运算法则即可求出.【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键.21.(2022·青海西宁·中考真题)()2332x xy ⋅-=_________ 【答案】336x y -【分析】根据积的乘方法则计算即可.【详解】解:()2332x xy ⋅-=336x y -, 故答案为:336x y -.【点睛】本题考查了积的乘方,解题的关键是掌握运算法则.22.(2022·内蒙古包头·中考真题)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.23.(2022·广西·中考真题)先化简,再求值22x y x y xy xy x +-+-÷,其中1,2x y ==.24.(2022·四川南充·中考真题)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学总复习精品训练:课时3.整式及其运算【课前热身】
1. x2y的系数是,次数是 .
2.计算:.
3.下列计算正确的是()
A. B. C. D.
4.计算所得的结果是()
A. B. C. D.
5. a,b两数的平方和用代数式表示为()
A. B. C. D.
6.某工厂一月份产值为万元,二月份比一月份增长5%,则二月份产值为()
A.·5%万元
B. 5%万元
C.(1+5%) 万元
D.(1+5%)
【考点链接】
1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把或
表示连接而成的式子叫做代数式.
2. 代数式的值:用代替代数式里的字母,按照代数式里的运算关系,
计算后所得的叫做代数式的值.
3. 整式
(1)单项式:由数与字母的组成的代数式叫做单项式(单独一个数
或也是单项式).单项式中的叫做这个单项式的系数;
单项式中的所有字母的叫做这个单项式的次数.
(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫
做多项式的 ,其中次数最高的项的叫做这个多项式的次数.
不含字母的项叫做 .
(3) 整式:与统称整式.
4. 同类项:在一个多项式中,所含相同并且相同字母的也分别
相等的项叫做同类项. 合并同类项的法则是___.
5. 幂的运算性质:a m·a n= ; (a m)n= ; a m÷a n=_____; (ab)n= .
6. 乘法公式:
(1) ;(2)(a+b)(a-b)=;
(3) (a+b)2=;(4)(a-b)2= .
7. 整式的除法
⑴单项式除以单项式的法则:把、分别相除后,作
为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商
的一个因式.
⑵多项式除以单项式的法则:先把这个多项式的每一项分别除
以,再把所得的商.
【典例精析】
例1若且,,则的值为()
A.B.1C.D.
例2按下列程序计算,把答案写在表格内:
⑴填写表格:
⑵请将题中计算程序用代数式表达出来,并给予化简.
例3 先化简,再求值:
(1) x (x+2)-(x+1)(x-1),其中x=-;
(2) 22
+++--,其中.
x x x x
(3)(2)(2)2
【中考演练】
1. 计算(-3a3)2÷a2的结果是( )
A. -9a4
B. 6a4
C. 9a2
D. 9a4
2. 下列运算中,结果正确的是()
A. B. C. D.
﹡3.已知代数式的值为9,则的值为()
A.18 B.12 C.9 D.7
4. 若是同类项,则m + n =____________.
5.观察下面的单项式:x,-2x,4x3,-8x4,…….根据你发现的规律,写出第7个式子是 .
6. 先化简,再求值:
⑴3
(2)(2)()
a b a b ab ab
-++÷-,其中,;
⑵,其中.
﹡7.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)
1
1 1
1 2 1
1
222 ()
()2
a b a b
a b a ab b +=+
+=++
根据前面各式规律,则.V29485 732D 猭;y32972 80CC 背27699 6C33 氳38692 9724 霤26275 66A3 暣24573 5FFD 忽_Ct\w21894 5586 喆。