第九章 回归分析

合集下载

第九章 复习-方差分析及回归分析

第九章  复习-方差分析及回归分析


s
n j X . j nቤተ መጻሕፍቲ ባይዱ X ij nX 0
j 1 i 1
因此得知SA的自由度是 s -1.
由(1.3),(1.6)及Xij的独立性得知
X ~ N ( , / n)
2
s j 1
(1.14)
E ( S A ) E[ n j X .2j nX 2 ]
j 1
s
(1.13) 可以计算 E( S E ) (n s) 2. SA的统计特性. 它是s个变量 n j ( X . j X )
2
的平方和,且仅有一个线性约束条件:

j 1 s j 1
s
nj

nj ( X. j X ) nj ( X. j X )
j 1 s nj
i 1

( X ij X . j ) 2 / 2 ~ 2 (n j 1)
i 1
nj
(1.11)中各项独立,根据 分布的可加性,得 s
2
S E / 2 ~ 2 ( ( n j 1))
j 1
即S E / 2 ~ 2 ( n s ),
n n j (1.12)
j
Xij - μj可以看成是随机误差. 记为Xij - μj =εij ,
则Xij 可以写为
Xij = μj +εij
εij ~N(0, ζ2),各ε
ij独立
(1.1)
i=1,2,…,nj , j=1,2,…,s
(1.1)称为单因素方差分析的数学模型.
方差分析的任务
X i1 ~ N (1 , 2 ), X i 2 ~ N (2 , 2 ),..., X is ~ N ( s , 2 ) I. 检验s个总体

第九章:回归分析-30页文档

第九章:回归分析-30页文档
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High

第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析时间序列数据是指按照时间顺序排列的一系列数据观测值。

在实际应用中,时间序列数据广泛存在于经济学、金融学、气象学等领域,对于了解数据的趋势、季节性等特征具有重要意义。

时间序列数据的基本回归分析是通过建立回归模型,来研究时间序列数据中因变量与自变量之间的关系。

时间序列数据的回归分析可以分为简单回归和多元回归。

其中,简单回归是指只含有一个自变量的回归模型,多元回归是指含有多个自变量的回归模型。

下面将分别介绍这两种回归模型及其应用。

简单回归模型简单回归模型是时间序列数据回归分析中最基础的模型,其形式为:Y_t=α+βX_t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_t表示时间为t时的自变量观测值,α和β分别是回归方程的截距项和斜率项,ε_t是误差项。

简单回归模型常用于分析两个变量之间的关系,并通过计算斜率项β的值来判断两个变量之间的线性相关程度。

如果β的值为正,则表示两个变量之间呈正相关关系;如果β为负,则表示两个变量之间呈负相关关系。

同时,可以通过计算误差项ε_t的方差来评估模型的拟合优度。

多元回归模型当考虑到多个自变量对因变量的影响时,可以使用多元回归模型。

其形式为:Y_t=α+β_1X_1,t+β_2X_2,t+...+β_kX_k,t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_1,t,X_2,t,...,X_k,t表示时间为t时的自变量观测值,α和β_1,β_2,...,β_k分别是回归方程的截距项和各自变量的斜率项,ε_t是误差项。

多元回归模型相较于简单回归模型更能够适用于分析多个自变量与因变量之间的复杂关系。

在建模过程中,可以通过检验回归系数的显著性水平,来判断自变量对因变量的影响是否显著。

此外,还可以通过判断方程残差的波动性来评估模型的拟合优度。

时间序列数据的回归分析在实际应用中具有重要意义。

例如,经济学中常使用时间序列数据回归分析来研究GDP与通货膨胀率之间的关系;金融学中,可以利用时间序列数据回归分析来研究股票收益率与市场因素之间的关系。

第9章-方差分析与线性回归

第9章-方差分析与线性回归
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.

概率论--线性回归

概率论--线性回归
2
i =1
=(6050.6-0.632×14047)/9=60.37 2. 一元线性回归的假设检验(相关系数法) 问题:变量Y与X间是否存在线性相关关系? 相关系数法:是基于试验数据检验变量间线性相关关系 是否显著的一种方法。
Chapter 9 回归分析
12
Mathematical Statistics

R =
l xz l xx l zz
=-0.996
︱R︱=0.996>0.765=R0.01(8), 可以认为X与Y存在显著的指数相关关系。
Chapter 9 回归分析
21
Mathematical Statistics
2 2 i i
∑xy
− 10 x y = − 24.554
19
Mathematical Statistics
Chapter 9 回归分析
ˆ ˆ a ′ = z − bx = 6.527 + 0.2976 × 5.5 = 8.1642
从而
ˆ z = 8 .1642 − 0 .2976 x
ˆ a′ ˆ bx
Chapter 9 回归分析
5
Mathematical Statistics
记 Y i 为 Y i 的估计值 , 则
Y
Y
i
i
= a + b xi + ε i = Y i + ε i
这可写成 :
ε = Y −Y = Y − ( a + b x ) 这表明 ε 是 Y的实际观测值与
i i i i i
估计值之差,即拟合误 差。
5.42 5.32
18
Mathematical Statistics

第九章 相关与回归分析

第九章  相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。

本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。

【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。

【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。

第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。

这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

例如,商品销售额与流通费用率之间的关系就是一种相关关系。

(二)相关关系的特点1、相关关系表现为数量相互依存关系。

2、相关关系在数量上表现为非确定性的相互依存关系。

二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。

其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。

相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。

第九章 回归分析(一元线性回归)(1)

第九章 回归分析(一元线性回归)(1)
我们先看一个实例 为研究温度对某个化学过程的生产量的影响, 收集到如下数据(规范化形式):
将表中各对数据描在坐标平面上得图
数 据 和 拟 合 直 线
这样的图称为观测数据的散点图。 从图上可以看出,随着温度x的升高, 某化学过程的生产量y的平均值也在增加, 它们大致成一直线关系,但各点不完全在一 条直线上,这是由于y还受到其它一些随机 因素的影响。
温度 xi

为了研究某一化学反应过程中温度 x 对产
品得率 Y 的影响. 测得数据如下:
C 100 110 120 130 140 150 160 170 180 190
45 51 54 61 66 70 74 78 85 89
得率 yi %
为了研究这些数据所蕴藏的规律性, 将温度 x i 作 为横坐标,得率 y i 作为纵坐标, 在 xoy 坐标系中作 散点图 从图易见, 虽然这些点是散乱的, 但大体上散布在 某条直线附近, 即该化学反应过程中温度与产品
回归分析正是研究预报变量之变动对响 应变量之变动的影响程度,其目的在于根据 已知预报变量的变化来估计或预测响应变量 的变化情况。
“回归(regression)”名称的由
来:
回归名称的由来要归功于英国统计学F.高尔顿 (F.Galton:1822~1911),他把这种统计分析方法 应用于研究生物学的遗传问题,指出生物后代有回 复或回归到其上代原有特性的倾向。高尔顿和他的 学生、现代统计学的奠基者之一K.皮尔逊 (K.Pearson:1856~1936)在研究父母身高与其 子女身高的遗传问题时,在观察了1078对夫妇后, 以每对夫妇的平均身高作为x,取他们的一个成年儿 子的身高为y,将结果绘成散点图后发现成一条直线。 计算出回归方程为

统计学第九章 相关与回归分析

统计学第九章  相关与回归分析

第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。

具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。

Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。

当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。

这种关系,称为具有不确定性的相关关系。

变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。

116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。

按相关的方向可分为正相关和负相关。

按相关的形式可分为线性相关和非线性相关。

按所研究的变量多少可分为单相关、复相关和偏相关。

三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。

回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。

通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。

只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。

四、相关图相关图又称散点图。

它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。

第九章SPSS回归分析

第九章SPSS回归分析

第3步:启动分析过程。点击【分析】【 回归】【线性】菜单命令,打开如图所示 的对话框。
第4步:设置分析变量。设置因变量:在左边变量 列表中选“成就动机分数”,选入到“因变量”框 中。设置自变量:在左边变量列表中选“智商分数 ”变量,选入“自变量”框中。如果是多元线性回 归,则可以选择多个自变量。
第八个表:残差统计
第九个:标准化残差的概率图
[分析]:由此图可知,所有的点都比较靠近对角线 ,结合前面第八个表中的标准化残差为0.892,小 于2,因此可以认为残差是正态的。
由于自我效能感、服从领导满意度、同事人际敏感 、工作技能水平、个人信心指数这几个变量的回归 系数所对应的sig值不显著,在回归分析中需要删 除这几个变量,然后再建立回归方程。因此在SPSS 中接着再次进行回归分析。
分析:此例属于一元线性回归,一般先做两个变量 之间的散点图进行简单地观测。若散点图的趋势大 概呈线性关系,可以建立线性方程;若不呈线性分 布,可建立其它方程模型,并比较R2来确定选择其 中一种最佳方程式。
一元线性回归方程的原假设为:所建立的回归方程 无效,回归方程中来自总体自变量的系数为0。
第9步:重复前面SPSS的操作步骤,从第2步至第6 步。在第3步将自我效能感、服从领导满意度、同 事人际敏感、工作技能水平、个人信心指数这几个 变量从自变量移出,由于SPSS软件中还保存了刚才 第4、5、6步的操作内容,此时只需要再点击【确 定】按钮,输出分析结果。其中模型摘要、回归方 程、回归系数表如下:
第4步:设置分析参数。单击【统计】按钮,打开“ 线性回归:统计”对话框,可以选择输出的统计量 如图所示。
在“回归系数”栏,选择“估算值”。
在对话框的右边,有五个复选框:
(1)“模型拟合”是系统默认项,输出复相关系数 R、R2及R2修正值,估计值的标准误,方差分析表。 (2)“R方变化量”:增加进入或剔除一个自变量时 , R2的变化。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

第九章_最小二乘法与回归分析

第九章_最小二乘法与回归分析

第九章_最小二乘法与回归分析最小二乘法与回归分析是统计学中一种重要的方法,可以用于分析变量之间的关系以及进行预测。

本文将详细介绍最小二乘法和回归分析的概念、原理以及应用。

最小二乘法是一种用于估计参数的方法,它通过最小化观测值与估计值之间的误差平方和来确定最优参数。

这种方法可以用来建立变量之间的线性关系模型,并通过拟合观测数据来估计模型的参数。

最小二乘法的核心思想是找到最接近观测值的模型,并使观测值与模型之间的误差最小化。

回归分析是一种使用最小二乘法的统计方法,用于研究变量之间的关系。

它基于一组特征变量(自变量)与一个或多个目标变量(因变量)之间的观测值,来预测目标变量的值。

回归分析可以用于探索和建立变量之间的线性关系,然后使用这个关系来预测未来的观测值。

在回归分析中,最常用的模型是线性回归模型。

线性回归模型假设自变量和因变量之间存在线性关系,即因变量的值可以通过自变量的线性组合来表示。

该模型的形式可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1,X2,...,Xn是自变量,β0,β1,β2,...,βn是各个自变量的系数,ε是随机误差。

使用最小二乘法进行回归分析的步骤如下:1.收集观测数据:收集自变量和因变量的观测数据,构建数据集。

2.建立回归模型:基于观测数据,选择合适的自变量,并建立回归模型。

3.估计参数:使用最小二乘法估计回归模型中的参数,使得观测值与估计值之间的误差最小化。

4.检验模型:通过检验回归模型的显著性和拟合优度等指标来评估模型的质量。

5.使用模型:基于建立的回归模型,进行因变量的预测和推断分析。

回归分析在实践中有着广泛的应用。

它可以用于预测销售额、房价、股票价格等经济指标,也可以用于分析医学数据、社会科学数据等领域的问题。

回归分析可以帮助研究者理解变量之间的关系,找出影响因变量的关键因素,并进行相关的决策和策略制定。

总之,最小二乘法与回归分析是一种重要的统计方法,可以用于研究变量之间的关系以及进行预测。

直线相关与回归分析

直线相关与回归分析

第九章:直线回归依变量y 的实际观测值总是带有随机误差,因而依变量y 的实际观测值yi 可用自变量x 的实际观测值xi 表示为:i i i x y εβα++= (i=1,2, …, n)x 为可以观测的一般变量(也可以是可以观测的随机变量); y 为可以观测的随机变量;i 为相互独立,且都服从N (0,σ2)的随机变量。

在x 、y 直角坐标平面上可以作出无数 条直线,我们把所有直线中最接近散点图中全部散点的直线用来表示x 与y 的直线关系,这条直线称为回归直线。

设回归直线的方程为: bx a y +=ˆ ( 其中,a 是α的估计值,b 是β的估计值。

)xxy SS SPx x y y x x n x x n y x xy b =---=--=∑∑∑∑∑∑∑222)())((/)(/))((x b y a -=式中的分子是自变量x 的离均差与依变量y 的离均差的乘积和))((∑--y y x x ,简称乘积和,记作xySP ,分母是自变量x 的离均差平方和∑-2)(x x ,记作SS X,a 叫做样本回归截距,是回归直线与y 轴交点的纵坐标,当x=0时,y ˆ=a ;b 叫做样本回归系数,表示x 改变一个单位,y 平均改变的数量;b 的符号反映了x 影响y 的性质,b 的绝对值大小反映了x 影响y 的程度; yˆ叫做回归估计值,是当x 在在其研究范围内取某一个值时,y 值平均数x βα+的估计值。

例题:在四川白鹅的生产性能研究中,得到如下一组关于雏鹅重(g )与70日龄重(g)的数据,试建立70日龄重(y)与雏鹅重(x)的直线回归方程。

表8-1 四川白鹅雏鹅重与70日龄重测定结果 (单位:g )1、作散点图 以雏鹅重(x )为横坐标,70日龄重(y )为纵坐标作散点图,见图8-3。

2、计算回归截距a ,回归系数b ,建立直线回归方程,首先根据实际观测值计算出下列数据:5.9812/1182/===∑n x x 8333.272012/32650/===∑n y y()()00.168512/1182118112/222=-=∑-=∑n x x SS x00.36585123265011823252610))((=⨯-=-=∑∑∑ny x xy SP xy()()67.83149112/3265089666700/222=-=∑-=∑n y y SS y 进而计算出b 、a : 7122.2100.168536585===xxy SS SP b1816.5825.987122.218333.2720=⨯-=-=x b y a得到四川白鹅的70日龄重y 对雏鹅重x 的直线回归方程为:x y7122.211816.582ˆ+= 二、直线回归的偏离度估计偏差平方和2)ˆ(∑-yy 的大小表示了实测点与回归直线偏离的程度,因而偏差平方和又称为离回归平方和。

第九章 直线回归与相关分析

第九章 直线回归与相关分析

ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 2.1603 = 13.7782 ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 24.3508
第三节 直线相关
一、相关系数和决定系数 如果两个变量间呈线性关系,又不需要由x来估计 如果两个变量间呈线性关系,又不需要由 来估计 y,只需了 和y相关以及相关的性质,可通过计算 相关以及相关的性质, ,只需了x和 相关以及相关的性质 x和y相关程度和性质的统计数-相关系数来进行 相关程度和性质的统计数- 和 相关程度和性质的统计数 研究。 研究。 相关系数r为 相关系数 为: SP
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 0.8559 = 16.9701 ˆ ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 21.1589 ˆ
(四)单个y值的置信区间
单个y观测值的标准误为: 单个 观测值的标准误为: 观测值的标准误为
2
ˆ L1 = y − t a s y ˆ ˆ L2 = y + t a s y ˆ
根据例1,估计出黏虫孵化历期平均温度为 ℃ 根据例 ,估计出黏虫孵化历期平均温度为15℃时, 历期天数为多少( 置信区间)。 历期天数为多少(取95%置信区间)。 置信区间
x = 15 df = n − 2 = 8 − 2 = 6 ˆ y = a + bx = 57.04 + (−2.5317) × 15 = 19.0645 sy = sy / x ˆ 1 ( x − x )2 1 (15 − 16.8375) 2 + = 1.9835 × + = 0.8559 n SS x 8 55.1788

概率论与数理统计第九章方差分析与回归分析

概率论与数理统计第九章方差分析与回归分析

版权所有 BY 张学毅
10
方差分析的基本思想
7.若不同水平对试验指标值没有影响,则组间误差中只 包含随机误差,没有系统误差。这时,组间误差与 组内误差经过平均后的数值就应该很接近,它们的 比值就会接近1;
8.若不同水平对试验指标值有影响,则在组间误差中除 了包含随机误差外,还会包含有系统误差,这时组 间误差平均后的数值就会大于组内误差平均后的数 值,它们之间的比值就会大于1;
3)该平方和反映的是随机误差的大小。
计算公式为 :
nj s
2
SE
Xij X.j
i1 j1
三个离差平方和的关系
nj s
2s
2 kn
2
XijX nj X.jX XijX.j
i1j1
j1
i1j1
STSASE
总离差平方和=组间平方和+组内平方和
即 EMSE2
2) M S A 是否是总体方差 2 的无偏估计量,与原假设 成立与否有关 。当且仅当原假设成立时,M S A 才是 总体方差 2 的无偏估计量。
EMSA2s1 1js1njj2
2020/3/1
版权所有 BY 张学毅
17
八、方差分析表
通常将上述计算过程列成一张表格,称为方差分析表。
9.当这个比值大到某种程度时,就可以说不同水平之间 存在着显著差异,也就是自变量对因变量有影响。
2020/3/1
版权所有 BY 张学毅
11
六、离差平方和与自由度的分解
总离差平方和 S T ( sum of squares for total)
1)全部观察值 X
与总均值
ij
X
的离差平方和;

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法

第九章 时间序列数据的基本回归分析

第九章 时间序列数据的基本回归分析
y增大了0 + 1 + 2 ,是z的持久性增长引起的y的长期
变化,被称为长期倾向或长期乘数。
Q阶有限分布滞后模型
• = 0 + 0 + 1 −1 + ⋯ + − +
• 包括静态模型作为特例
• 即期倾向是当期z的系数0 ,长期影响是
0 + 1 + ⋯ + 。
• Z在不同时期的滞后之间经常有较大程度的
相关,因此上述方程存在多重共线性,很
难准确地估计出单独的 ,但不会影响我们
估计长期影响。
参数线性假定
• 假定TS.1(对参数是线性的)
随机过程遵循线性模型 = 0 + 1 1 +
⋯ + + 。
– 中,t表示时期,j表示 是个解释变量中
OLS的样本方差
• 定理:
在时间序列的高斯—马尔科夫假定TS.1~TS.5成立
时,OLS估计量的条件方差为
2
መ =
, j = 1, ⋯ ,
2
(1 − )
式中, �是 的总的平方和,2 是 对其
他自变量回归得到的拟合优度。
– 与横截面分析中OLS估计量的条件方差形式一样。
– 在假定TS.1~TS.5下,估计量ො 2 = Τ − − 1 是
2 的无偏估计量。
• 高斯—马尔科夫定理
在假定TS.1~TS.5下,给定的值,OLS估计量
是最优线性无偏估计。
• 假定TS.6(正态性)
误差 独立于,且与Normal(0, 2 )是独立同
分布的。
– 假定TS.6蕴含了TS.2,TS.4和TS.5,但它更强,

回归分析ch9

回归分析ch9

这一方法的实质是利用一阶台劳展开, 使非线性方程组近似化为线性方程组, 再用线性 回归的 LSE 先给出 δ > 0 (譬如 10-2,10-3 等) ,当下列式子(给定一个)满足时,取 θ
1) S (θ ( l ) ) − S (θ (l −1) ) < δ
(l )
,p
通常这是一组非线性方程组,解法之一为高斯-牛顿迭代法——通过线性化解线性方程组的
2
一种迭代方法。 迭代法一般有三步: 1)给出初值 θ
(0)

( l +1)
2)给出迭代公式 θ
= θ ( l ) + ∆θ ( l ) ,所以要求 ∆θ (l ) ;
(l )
3)给出收敛准则,即当 θ 义?这需要给出准则。 例: Ey i = xi ,i = 1,2,
桔子树干的周长 y 与生长天数 t 常常符合这一模型。 (2)假定 y 的相对生长速度与相对生长余量成正比:
dy α−y α y=k ⇒y= dt y 1 + β ⋅ e − kt
这就是 Logistic 模型,是经济中产品生命周期常用的模型。 (3)假定 y 的相对生长速度与对数余量成正比:
dy y = k (ln α − ln y ) ⇒ y = α ⋅ exp[− β ⋅ e − kt ] dt
(0)
= 0.30 ;为了给出 β ( 0) ,取数据点(x44,y44)=(42,0.39),将 0.39
0.39 = 0.30 + (0.49 − 0.30)e − β ( 42−8) ⇒ β ( 0) = 0.02
从而 θ 的初值为 θ
( 0)
α ( 0 ) 0.30 = 。 β (0) = 0.02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系数:
参数a、b的最小二乘估计
A good
line is one that minimizes the sum of squared differences between the points and the line.
根据推导,
a y bx
( x x )( y y ) b (x x)
Multiple Regression
R2adj - “adjusted R-square”
R2是一个受自变量个数与样本规模之比(k:n)影响的系数,一般是1:10 以上为好。当这个比值小于1:5时,R2倾向于高估实际的拟合的程度。 Takes into account the number of regressors in the model
X的变异
r2
Y的变异
Simple Regression
R2 - “Goodness of fit”
For simple regression, R2 is the square of the correlation coefficient
Reflects variance accounted for in data by the best-fit line
第九章 多元回归分析
浙江师范大学教育学院心理系
徐长江 xucj@
纲要
回归分析的基本原理
一元回归分析 多元回归分析
多元回归分析的方法 多元回归分析的实现
回归分析的目的
设法找出变量间的依存(数量)关系, 用函数 关系式表达出来
Example: Height vs Weight
Takes values between 0 (0%) and 1 (100%) Frequently expressed as percentage, rather than decimal
Simple Regression
Low values of R2
300 250 200 150 100 50 0 0 100 200 300
How well does a model explain the variation in the dependent variable?
Effectiveness vs Efficiency
Effectiveness: maximises R2
Drug A (dose in mg)
Drug B (dose in mg)
Good fit R2 high High variance explained
Moderate fit R2 lower Less variance explained
例子
数据t2_1.sav的数据是我国分地区家庭年 人均食品支出与人均年收入的数据。以 食品支出为因变量,人均年收入为自变 量,建立回归方程。
Calculated as:
R2adj = 1 - (1-R2)(n-1)/(n-k-1) where: n = number of data points k = number of regressors Note that R2adj will always be smaller than R2
假设
H0 : 1 0, H1 : 1 0,
如果 H 成立,则不能认为 y 与 0
x 有线性相关关系。
三种检验方法:F检验法、t-检验法、r检验法。
一元线性回归方程的方差分析
ˆ ( y y)
( y y)
ˆ ( y y)
ˆ y a bx
ˆ ˆ ( y y ) ( y y) ( y y )
ˆ ∑(y - y)2表示总平方和(总变异)中已被x与y的线性关系 所说明的那部分,可记为SSR
ˆ ∑(y- y )2即偏离回归线的平方和,用最小二乘法求回归方程时曾 使它极小,一般称这个平方和为误差平方和或剩余平方和,记为SSe
Testing for Significance: F Test 显著性F检验
ˆ y a bx
Where: a = 截距(intercept) (constant) b = 斜率(slope of best-fit line)
200 180 160 140 120 100 80 60 40 20 0 0 50 100 150 200 250
回归系数(regression coefficient)
R2 = 0 (0% - randomly scattered points, no apparent relationship between X and Y) Implies that a best-fit line will be a very poor description of data
ˆ ( y y) ( y y)
2 2
即,相关系数的平方等于回归平方和在总平方和中所占的比率。 是两个变量共同变异部分的比率,叫做决定系数 (Coefficient of determination)( R square)。 表示使
用X去预测Y时的预测释力,即Y变量被自变量所解 释的比率。反映了由自变量与因变量所形成的线性 回归模式的契合度(goodness of fit) 此一数值是否具有统计上的意义,反映了此一回归 分析或预测力是否具有统计上的意义,必须通过F检 验来判断
回归
ˆ- SSR=∑( y y)2 dfR=1
MSR= SSR / dfR
误差
SSe=∑(y-y)2 dfe=N-2 MSe= SSe / dfe ˆ
Total(全体) SSt=∑(y-y)2 dft=N-1
Testing for Significance: t Test 显著性t检验
假设
H0: 1 = 0 H1: 1 0
Multiple Regression
R2 - “Goodness of fit”
For multiple regression, R2 will get larger every time another independent variable (regressor or predictor) is added to the model New regressor may only provide a tiny improvement in amount of variance in the data explained by the model Need to establish the value of each additional regressor in predicting the DV
S ymptom Index
120 100 80 60 40 20 0
100 80 60 40 20 0 0 50 100 150 200 250
Drug A (dose in mg)
Drug B (dose in mg)
Very good fit
Moderate fit
回归方程有效性的检验
对于任何一组数据 ( xi , yi ) (i 1,2,, n),都可按最 小二乘法确定一个线性函数,但变量 y 与 x 之间是否真 有近似于线性函数的相关关系呢?尚需进行假设检验。
Simple Regression
R2 - “Goodness of fit”
180 160 140
160 140 120
S ymptom Index
0 50 100 150 200 250
S ymptom Index
120 100 80 60 40 20 0
100 80 60 40 20 0 0 50 100 150 200 250
Strong positive correlation between height and weight Can see how the relationship works, but cannot predict one from the other
Graph One: Relationship between Height and Weight
Multiple Regression
Establish equation for the best-fit line: y = b1x1 + b2x2 + b3x3 + a
Where: b1 = regression coefficient for variable x1 b2 = regression coefficient for variable x2 b3 = regression coefficient for variable x3 a = constant
Simple Regression
High values of R2
300 250
200
150
100
50
0 0 50 100 150 200 250 300
250 200 150 100 50 0 0 50 100 150 200 250
R2 = 1 (100% - points lie directly on the line - perfect relationship between X and Y) Implies that a best-fit line will be a very good description of data
假设
H0: 1 = 0 H1: 1 0 F = MSR/MSE 拒绝规则 如果F > F ,拒绝 H0 其中 F 是分子自由度为1,分母自由度为n - 2 的 F分布. MSR=SSR/自变量个数, MSE=SSE/n-2
检验统计量
回归方程的方差分析表
相关文档
最新文档