Zemax中的点列图的分析方法
ZEMAX光学设计软件操作说明详解_光学设计
ZEMAX光学设计软件操作说明详解_光学设计.txt9母爱是一滴甘露,亲吻干涸的泥土,它用细雨的温情,用钻石的坚毅,期待着闪着碎光的泥土的肥沃;母爱不是人生中的一个凝固点,而是一条流动的河,这条河造就了我们生命中美丽的情感之景。
ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX像差深入以像差各种图表分析
ZEMAX像差深入以及像差各种图表分析目录[隐藏]∙1初级像差深入o1.1球差o1.2彗差o1.3像散o1.4场曲o1.5畸变∙2各种像差图表o2.1初级球差大的点列图o2.2初级球差大的垂轴像差o2.3子午慧差大的情况o2.4其慧差和垂轴色差大初级像差深入近轴光线和远轴光线的概念。
近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上<下图中画的是主光轴情况)。
缩小的光圈可以拦去远轴光线,而由近轴光线来成像。
b5E2RGbCAP总的来说,镜头的像差可以分成两大类,即单色像差及色差。
镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变。
p1EanqFDPw以下就分别介绍五种不同性质的单色像差:球差是由于镜头的透镜球面上各点的聚光能力不同而引起的。
从无穷远处来的平行光线在理论上应该会聚在焦点上。
但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。
球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。
DXDiTa9E3d小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。
大光圈时弥散圆直径就大,图像就会比较模糊。
RTCrpUDGiT必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。
球差可以通过复合透镜或者非球面镜等办法在最大限度下消除的。
在照相镜头中,光圈(孔径>数增加一档<光孔缩小一档),球差就缩小一半。
我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈(孔径>来减小球差的影响。
5PCzVD7HxA彗差是在轴外成像时产生的一种像差。
从光轴外的某一点向镜头发出一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。
ZEMAX操作说明第四章
像空间 F/#是与无限远共轭的近轴有效焦距与近轴入瞳直径之 比。注意。即使透镜不是用于无限远共轭,这一量还是使用无限远共 轭的方法。 像空间数值孔径(NA)
基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物 像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率 为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1; 负节平面,角放大率为-1;焦平面,象空间焦平面放大率为 0,物 空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面 与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折 射率相同,那么节面与主面重合。
衍射极限指光学系统产生象差的原因不是设计和制造缺陷,而 是由于衍射物理效应。要判断系统是否是衍射极限,可以计算或者测 量光程(OPD)。如果 OPD 的峰—谷差值小于波长的四分之一,那 么就说系统处于衍射极限。
有很多其他的方法来判断一个系统是否是衍射极限,例如:斯 特列尔比数(在同一系统里形成的有象差点像的衍射图峰值与无象差
ZEMAX 列出了从象平面到不同象方位置的距离,同时也列出了 从第一面到不同物方平面的距离。 主光线
如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束 光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差 时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光 线,这意味着主光线不一定穿过光阑的中央。
【ZEMAX光学设计软件操作说明详解】
【ZEMAX光学设计软件操作说明详解】第二章用户界面概述本章介绍了对ZEMAX用户界面进行操作的一些习惯用法,以及一些常用的窗口操作的快捷键。
一旦您学会了在整个程序中通用的简单的习惯用法,ZEMAX用起来就很容易了。
在线教程中,也有逐步学习ZEMAX使用方法的例子。
视窗的类型ZEMAX有不同类型的窗口,每类窗口完成不同的任务。
这些类型有:1、主窗口:这个窗口有很大的空白空间,顶端有标题栏,菜单栏和工具栏。
菜单栏中的命令通常与当前的光学系统相联系,成为一个整体。
2、编辑窗口:有六种不同的编辑1)透镜数据编辑;2)绩效函数编辑;3)多重结构编辑;4、额外数据(ZEMAX-EE);5)公差数据编辑;和非顺序组件编辑(ZEMAX-EE)。
3、图形窗口:这类窗口用作呈现图像数据,例如:系统图;光线扇形图(Ran fan);光学传递函数(MTF);曲线(Dot Spot)……等等。
4、文本窗口:用来列出文本数据,例如:指定数据、像差系数、计算数据等。
5、对话窗口:对话框是弹出窗口,不能改变大小。
对话窗口用来改变选项和数据,如:视场;波长;孔径光阑;表面类型等。
在图像和文本窗口中,对话框也被广泛地用来改变选项,比如改变系统图中光线的数量。
除了对话框,所有窗口都能通过使用标准鼠标这键盘按钮进行移动和改变大小。
如果你对这些方法不熟悉,请参考有关Windows使用的书籍或者Windows的说明书。
主窗口的操作方法主窗口栏有几个菜单标题。
大部分菜单标题与这本手册后面的章节标题相对应。
从这些章节能够找到使用每一菜单项的具体方法。
以下是菜单的标题:File:用于镜头文件的打开、关闭、保存、重命名;Editors:用作调用(显示)其他的编辑窗口;System:用于确定整个光学系统的属性;Analysis:分析中的功能不是用于改变镜头数据,而是根据这些数据进行数字计算和图像显示分析。
包括:系统图(Layout)、Ray fans,Spot diagrams,Diffraction calculations and more。
点列图看图方式
spot diagram的看图方式说明光学设计程序zemax中有个很常用的评测光学系统质量的分析工具-spot diagram,中文翻译就是点图,借助它可以形象的对光学系统成像进行很好的描述。
这里写下本人对spot diagram的体会和认识。
可以通过多种方式在zemax中显示点图,方式一:直接点击在屏幕菜单工具栏中的“Spt”按钮;方式二:选择菜单Analysis-Spot Diagrams-Standard。
点图的原理是显示光学系统在IMA面上的成像。
换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,zemax就模拟在无限远有若干个发光点,这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过spot diagram看光学设计的质量,简单说,这个弥散斑越小越好。
如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram 的单位是微米)那么你的光学系统就完全可以进行实际的加工了。
换句话说,就是你的光学系统已经可以设计完成了。
如何才知道你的光学系统足够的好?这里有个参考,就是airy斑的参考。
airy 斑是物理光学的一个概念。
它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。
这样当你在spot diagram 图中,在setting菜单中,设置显示airy斑。
然后发现你的点图完全都在airy 斑环之内,你就可以认为你的光学系统设计已经完美。
[整理版]zemax手把手教程
[整理版]zemax手把手教程ZEMAX手把手教程课程1:单透镜(a singlet)你将要学到的:开始ZEMAX,输入波长和镜片数据,生成光线特性曲线(ray fan),光程差曲线(OPD),和点列图(Spotdiagram),确定厚度求解方法和变量,进行简单的优化。
假设你需要设计一个F/4的镜片,焦距为100mm,在轴上可见光谱范围内,用BK7玻璃,你该怎样开始呢,首先,运行ZEMAX。
ZEMAX主屏幕会显示镜片数据编辑(LDE)。
你可以对LDE窗口进行移动或重新调整尺寸,以适合你自己的喜好。
LDE由多行和多列组成,类似于电子表格。
半径、厚度、玻璃和半口径等列是使用得最多的,其他的则只在某些特定类型的光学系统中才会用到。
LDE中的一小格会以“反白”方式高亮显示,即它会以与其他格子不同的背景颜色将字母显示在屏幕上。
如果没有一个格子是高亮的,则在任何一格上用鼠标点击,使之高亮。
这个反白条在本教程中指的就是光标。
你可以用鼠标在格子上点击来操纵LDE,使光标移动到你想要停留的地方,或者你也可以只使用光标键。
LDE 的操作是简单的,只要稍加练习,你就可以掌握。
开始,我们先为我们的系统输入波长。
这不一定要先完成,我们只不过现在选中了这一步。
在主屏幕菜单条上,选择“系统(System)”菜单下的“波长(Wavelengths)”。
屏幕中间会弹出一个“波长数据(Wavelength Data)”对话框。
ZEMAX中有许多这样的对话框,用来输入数据和提供你选择。
用鼠标在第二和第三行的“使用(Use)”上单击一下,将会增加两个波长使总数成为三。
现在,在第一个“波长”行中输入486,这是氢(Hydrogen)F谱线的波长,单位为微米。
ZEMAX全部使用微米作为波长的单位。
现在,在第二行的波长列中输入587,最后在第三行输入656。
这就是ZEMAX中所有有关输入数据的操作,转到适当的区域,然后键入数据。
在屏幕的最右边,你可以看到一列主波长指示器。
ZEMAX光学设计软件操作说明详解_光学设计
ZEMAXt学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX^持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单” 这一章中有关于切迹类型和因子的讨论。
ZEMAX 也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型” 这一章的“用户定义表面”这节。
后焦距ZEMAX 对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX 列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
【ZEMAX光学设计软件操作说明详解】
【ZEMAX光学设计软件操作说明详解】第二章用户界面概述本章介绍了对ZEMAX用户界面进行操作的一些习惯用法,以及一些常用的窗口操作的快捷键。
一旦您学会了在整个程序中通用的简单的习惯用法,ZEMAX用起来就很容易了。
在线教程中,也有逐步学习ZEMAX使用方法的例子。
视窗的类型ZEMAX有不同类型的窗口,每类窗口完成不同的任务。
这些类型有:1、主窗口:这个窗口有很大的空白空间,顶端有标题栏,菜单栏和工具栏。
菜单栏中的命令通常与当前的光学系统相联系,成为一个整体。
2、编辑窗口:有六种不同的编辑1)透镜数据编辑;2)绩效函数编辑;3)多重结构编辑;4、额外数据(ZEMAX-EE);5)公差数据编辑;和非顺序组件编辑(ZEMAX-EE)。
3、图形窗口:这类窗口用作呈现图像数据,例如:系统图;光线扇形图(Ran fan);光学传递函数(MTF);曲线(Dot Spot)……等等。
4、文本窗口:用来列出文本数据,例如:指定数据、像差系数、计算数据等。
5、对话窗口:对话框是弹出窗口,不能改变大小。
对话窗口用来改变选项和数据,如:视场;波长;孔径光阑;表面类型等。
在图像和文本窗口中,对话框也被广泛地用来改变选项,比如改变系统图中光线的数量。
除了对话框,所有窗口都能通过使用标准鼠标这键盘按钮进行移动和改变大小。
如果你对这些方法不熟悉,请参考有关Windows使用的书籍或者Windows的说明书。
主窗口的操作方法主窗口栏有几个菜单标题。
大部分菜单标题与这本手册后面的章节标题相对应。
从这些章节能够找到使用每一菜单项的具体方法。
以下是菜单的标题:File:用于镜头文件的打开、关闭、保存、重命名;Editors:用作调用(显示)其他的编辑窗口;System:用于确定整个光学系统的属性;Analysis:分析中的功能不是用于改变镜头数据,而是根据这些数据进行数字计算和图像显示分析。
包括:系统图(Layout)、Ray fans,Spot diagrams,Diffraction calculations and more。
ZEMAX初学ray_fan及OPD和spot_diagram等各种图像分析
ZEMAX像差深入以及像差各种图表分析目录[隐藏]•1初级像差深入o1.1球差o1.2彗差o1.3像散o1.4场曲o1.5畸变•2各种像差图表o2.1初级球差大的点列图o2.2初级球差大的垂轴像差o2.3子午慧差大的情况o2.4其慧差和垂轴色差大1初级像差深入(1)副轴和主光轴的概念。
副轴,通过单球面反射镜的曲率中心,但不经过球面通光孔径中心(顶点)的任意一条直线。
主光轴,通过薄透镜两个球面球心的直线,叫做主光轴,也称主轴。
(2)近轴光线和远轴光线的概念。
近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)。
缩小的光圈可以拦去远轴光线,而由近轴光线来成像。
总的来说,镜头的像差可以分成两大类,即单色像差及色差。
镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变。
1.1轴上点球差是由于镜头的透镜球面上各点的聚光能力不同而引起的。
从无穷远处来的平行光线在理论上应该会聚在焦点上。
但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。
球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。
小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。
大光圈时弥散圆直径就大,图像就会比较模糊。
必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。
球差可以通过复合透镜或者非球面镜等办法在最大限度下消除的。
在照相镜头中,光圈(孔径)数增加一档(光孔缩小一档),球差就缩小一半。
我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈(孔径)来减小球差的影响。
1.2彗差是在轴外成像时产生的一种像差。
从光轴外的某一点向镜头发出一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。
2018-2019-zemax实验报告-实用word文档 (12页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==zemax实验报告篇一:ZEMAX 实验报告基于基本透镜组的照相物镜设计Zemax设计报告徐昕 10272055设计目的通过对设计一个以基本透镜组为基础的照相物镜,学会Zemax软件的基本应用及操作。
设计要求设计一个照相物镜,系统焦距f’=9mm,相对孔径1:4设计过程1.系统建模1.1选取初始结构从《光学设计手册》(李士贤,郑乐年编,北京理工大学出版社,1990)中选取了一个1.2系统特性参数输入在General系统通用数据对话框中设置孔径和玻璃库,如图1-1,图1-2。
打开视场设定对话框设置5个视场,如图1-3。
打开波长设定对话框点击“Select>>F,d,C(visible)”自动加入三个波长,如图1-4。
表1-1图 1- 1图 1- 2图1- 3图1- 41.3初始结构输入对照表1-1,在Lens Data Editor中输入初始结构,如图1-5。
利用Zemax中的“solve”功能,求解透镜组最后一面的厚度。
选取需要设计的单元格,在“Solve”中选取“Thickness”,弹出“Thickness Solve on surface 7”求解对话框。
在对话框“Solve type”中选择“Marginal ray height”,将“Height”值输入为“0”,表示将像面设置在边缘光线聚焦的像方焦平面上,如图1-6,图1-7。
图 1-5图1-6图 1-71.4调整系统焦距打开“System Data”系统数据报告窗口,查看系统现有焦距,为65.65414mm,如图1-8,与设计要求不符,需要通过缩放功能进行调整。
选择“Tools>>Scale Lens”,缩放因子为9/65.65414=0.137082,在Scale By Factor缩放因子后填入0.137082,如图1-9。
zemax设计---三片式照相物镜设计
三片式照相物镜设计
透镜参数:
1.焦距为9mm。
2.相对孔径为1/4。
3.全视场2ω为40度。
4.所有视场在67.5lp/mm处时,MTF>0.3。
5.三个透镜选用的玻璃依次为ZK5,F6,ZK11。
CAD图:
1.系统二维图:
2.系统三维图:
3.点列图:
1)当ω=20度时,系统的慧差较大。
2)从图中可以看到黑色圆圈所包含的点较多,说明能量较为集中。
3)系统的弥散斑半径较小,该系统符合设计要求。
4.MTF曲线
1)当所有视场在67.5lp/mm处时,MTF曲线>0.3。
符合系统设计要求。
2)图中黑色的线为衍射极限,图中其他曲线的走势和衍射极限的走势基本相同,系统较为优秀。
3)S曲线(弧矢曲线)与T曲线(子午曲线)基本重合,说明镜头的像散比较小。
4)图中曲线较为平直,说明边缘与中间一致性较好。
5.光线扇面(Ray Fan)
6.光程差扇形图(OPD Fan)
7.Field Curv/Dist(场曲)
8.点扩散函数PSF
9.包围圆能量曲线
在上图中,曲线较为陡直,且拐弯点较高,说明该系统较好。
ZEMAX光学设计超级学习手册第2章
第2章像质评价ZEMAX提供了丰富的像质评价指标,如评价小像差系统的波像差、包围圆能量集中度;评价大像差系统的点列图、弥散圆、MTF、PSF、几何像差评价方法等。
像质评价结果也是表现形式多种多样,既有各种直观的图形表示方法,也有详细的数据报表。
我们将在本章中详细介绍。
学习目标:(1)了解分析界面中像质主窗口菜单的各项功能。
(2)熟练运用像质评价快捷工具栏。
(3)熟练掌握像质评价方法,如波前、点列图等。
(4)熟练掌握各对话框的操作,如镜头数据、波长数据等。
2.1 外形图外形图(Layout)是指通过镜头截面的外形曲线图。
主要有二维外形图、三维外形图、阴影图、原件图。
二维外形图是通过镜头YZ截面的外形曲线图;三维外形图则显示镜头系统的三维空间外形;阴影图则表示阴影的立体模型;原件图能建立光学加工图。
2.1.1 二维外形图二维外形图(2D Layout):通过镜头YZ截面的外形曲线。
打开二维外形图对话框“2D Layout → Settings”,如图2-1所示。
图2-1 二维外形图对话框(1)First Surface:绘图的第一个面。
(2)Last Surface:绘图的最后一个面。
(3)Number of Rays:光线数目确定了每一个被定义的视场中画出的子午光线数目。
除非变迹已被确定,否则光线沿着光瞳均匀分布。
这个参数可以设置为0。
(4)Delete Vignetted:若选取,被任意面拦住的光线不画出。
(5)Suppress Frame:隐藏屏幕下端的绘画框,这可以为外形图留出更多的空间。
比例尺、地址或者其他数据都不显示。
(6)Fletch Rays:显示光线箭头。
(7)Marginal and Chief Only:只画出边缘光线和主光线。
(8)Wavelength:显示的任意或所有波长。
(9)Field:显示的任意或所有视场。
(10)Scale Factor:若比例因子设置为0,则“Fill Frame”将被选取,“Fill Frame”将缩放各面来充满画页。
Zemax中的点列图的分析方法2011031221
Zemax中的点列图的分析方法2011 03 12 21Zemax中的点列图的分析方法(2011-03-12 21:22:48)00ZEMAX中有个很常用的评价光学系统质量的分析工具-spot diagram,中文翻译就是点列图,借助它可以形象的对光学系统成像质量进行很好的描述。
ZEMAX中显示点列图的方式有:一:直接点击在屏幕菜单工具栏中的“Spt”按钮;二:选择菜单Analysis-Spot Diagrams-Standard。
点列图的原理是显示光学系统在IMA面上的成像。
换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。
如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以进行实际的加工了。
换句话说,就是你的光学系统已经可以设计完成了。
如何才知道你的光学系统足够的好?这里有个参考,就是airy斑的参考。
airy斑是物理光学的一个概念。
它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。
这样当你在Spot Diagram图中,在setting菜单中,设置显示airy斑。
ZEMAX光学设计超级学习手册第2章
第2章像质评价ZEMAX提供了丰富的像质评价指标,如评价小像差系统的波像差、包围圆能量集中度;评价大像差系统的点列图、弥散圆、MTF、PSF、几何像差评价方法等。
像质评价结果也是表现形式多种多样,既有各种直观的图形表示方法,也有详细的数据报表。
我们将在本章中详细介绍。
学习目标:(1)了解分析界面中像质主窗口菜单的各项功能。
(2)熟练运用像质评价快捷工具栏。
(3)熟练掌握像质评价方法,如波前、点列图等。
(4)熟练掌握各对话框的操作,如镜头数据、波长数据等。
2.1 外形图外形图(Layout)是指通过镜头截面的外形曲线图。
主要有二维外形图、三维外形图、阴影图、原件图。
二维外形图是通过镜头YZ截面的外形曲线图;三维外形图则显示镜头系统的三维空间外形;阴影图则表示阴影的立体模型;原件图能建立光学加工图。
2.1.1 二维外形图二维外形图(2D Layout):通过镜头YZ截面的外形曲线。
打开二维外形图对话框“2D Layout → Settings”,如图2-1所示。
图2-1 二维外形图对话框(1)First Surface:绘图的第一个面。
(2)Last Surface:绘图的最后一个面。
(3)Number of Rays:光线数目确定了每一个被定义的视场中画出的子午光线数目。
除非变迹已被确定,否则光线沿着光瞳均匀分布。
这个参数可以设置为0。
(4)Delete Vignetted:若选取,被任意面拦住的光线不画出。
(5)Suppress Frame:隐藏屏幕下端的绘画框,这可以为外形图留出更多的空间。
比例尺、地址或者其他数据都不显示。
(6)Fletch Rays:显示光线箭头。
(7)Marginal and Chief Only:只画出边缘光线和主光线。
(8)Wavelength:显示的任意或所有波长。
(9)Field:显示的任意或所有视场。
(10)Scale Factor:若比例因子设置为0,则“Fill Frame”将被选取,“Fill Frame”将缩放各面来充满画页。
Zemax课堂2 (solves求解和分析 )
Thickness solves
Thickness solves
• Marginal ray height:定位像平面(常用控制近轴边缘光线在后一 个面上的高度,使像面处在近轴焦点上);还可以约束特定的 光束;
• Chief ray height:定位pupil p(应用:1、它可以将参考面固定地处在 pupil上,2、定位入、出瞳); • Edge thickness:控制二个面之间的距离,使其在半径为某个值 处为规定的值。可以避免边缘厚度为负或边缘太尖锐; • Pick up:使这个面的thickness值随指定的面按一定规律变化; (主要用于:double pass system, endoscopes,relay lens等 包含多个相同元件的系统中),
Huygens MTF
• Huygens MTF:计算Huygens PSF的FFT。出瞳存在严重的拉伸时,在出 瞳上的光线分布不均匀,比FFT MTF更普遍使用。 •Huygens Through Focus MTF: vs. focus shift:在不同离焦距离下的 Huygens MTF的变化曲线;
值。
• Surface Phase:显示某个面对通过的光线的位相改变情况,单位 为周期。
RMS
• RMS vs. Field:RMS radial, x, and y spot radius, RMS wavefront error, or Strehl ratio对视场角的变化曲线; • RMS vs. Wavelength:RMS radial, x, and y spot radius, RMS wavefront error, or Strehl ratio对波长的变化曲线;
Glass solves
zemax指导书
zemax指导书光学课程设计ZEMAX上机指导例⼦⼀望远物镜的设计第⼀节课,讲解zemax的基本操作界⾯以及各个菜单的功能。
设计zemax 最基本的例⼦,并进⾏初级的像差分析和优化。
1.⾸先打开zemax,进⼊主界⾯可以看到,最上⽅即是各个菜单栏,每⼀个栏⽬下⼜有许多选项,对应着不同的功能,这在后续讲解中将会结合例⼦解释。
菜单下⾯的⼀个个按键为常⽤的⼀些选项的快捷键;中间的窗⼝是镜头数据编辑器(lens design editor,LDE),是我们进⾏透镜设计的主要场所。
2.点击菜单中的⽂件,确认zemax处于序列模式下⼯作。
Zemax 中有两种模式:序列与⾮序列。
两种模式均可进⾏设计,但侧重点有所不同,我们学习的⽬的是借助于像差分析对所设计的透镜进⾏优化,这是序列模式的功能,因此设计的第⼀步即是确认所选的模式为序列模式。
3.在例⼦⼀中我们要设计⼀个F/4,焦距为100mm 的透镜。
F 数的定义为焦距与光阑的⽐值,所以此透镜的⼝径即为25mm 。
点击系统,选择通⽤数据:在弹出的窗⼝中选择⼝径(aperture ),在⼝径类型处选择⼊瞳直径,数值输⼊25mm 。
4.点击系统,选择光波长勾选三个波长并如图中输⼊,或者直接在下⽅列表中选择可见光所代表的F, d ,C 三个波长;选择2号波长作为主波长。
5.下⼀步,我们要在LDE 中输⼊我们设计的透镜的参数。
LDE 初始有三个⾯:物⾯(OBJ )、光阑⾯(STO )、像⾯(IMA )。
我们设计的单透镜,除了物⾯像⾯之外,应该有两个⾯,所以在LDE 中要插⼊⼀个⾯:点选到LDE的第1⾏(LDE中物⾯定义为第0⾏),在点击编辑中的后插⼊。
LDE中每⼀⾏代表⼀个⾯,主要参数有半径、厚度、玻璃材质、半⼝径等。
物⾯(第0⾯)的半径默认设置为⽆穷(Infinity),厚度也同样为⽆穷,即光源到第⼀个⾯的距离⽆穷远,所以光源为平⾏光。
第1、2⾯共同构成我们所要设置的透镜,根据设计要求,在两个⾯的半径处分别输⼊100mm、-100mm。
zemax光学设计软件的使用说明
光学设计软件简介光学设计软件成像设计:CodeV(ORA 公司产品,USA)Zemax(ZEMAX Development CorporationOSLO( Lambda Research Corporation 公司,USA)照明设计:Lightools(ORA 公司产品)ASAPTraceproODIS光通讯设计软件:OptiWave薄膜设计:TFCalc, Filmstar 等nCodeV(ORA 公司产品,USA)——成像光学设计分析软件CodeV(ORA 公司产品,USA)——功能Zemax(Zemax 公司,USA)——光学设计分析软件Oslo(Lambda Research Corporation 公司,USA)——成像设计分析软件Lightools(ORA 公司产品,USA)——照明光学设计分析软件ASAP(Breault Co.) ——照明光学设计分析软件3) 光学设计应用广泛眼镜照相机、CD、VCD/DVD 、DC、DV等扫描仪、复印机、投影仪等显微镜、内窥镜、X光机等日常照明、汽车车灯等望远镜、瞄准仪、测量仪器激光、卫星等光纤通讯等非成像光学、太阳能利用等Zemax 简介Zemax 公司开发光学设计软件•功能完整(设计、分析、优化、公差分析等)•使用方遍•光线追迹算法—序列光线追迹—非序列光线追迹(蒙特卡罗算法)完整的数据表格式输入,编辑方便多功能分析(MTF 、点列图等)多种优化方式公差分析能力其他CAD 文件格式转换等Zemax 软件特点版本SE:标准版XE:完整版EE:专业版(可算非序列)Zemax 用户界面主要有四种用户界面—Editors: 编辑各种光学面参数或其他参数—Graphic Windows: 显示各种图形数据—Text Windows: 显示各种文本数据—Dialog Boxes: 编辑其他各种Window 的数据或报告错误信息。
1)EditorsLens Data Editor:输入透镜参数Merit Function Editor :优化函数构建Multi-Configuration Editor:多重结构参数定义Tolerance Data Editor :公差分析函数设定Extra Data Editor:附加数据Non-Sequential Components Editor: 非序列光学系统Lens Data EditorMerit Function EditorMulti-Configuration EditorTolerance Data EditorNon-Sequential Component Editor 2)图形窗口Layout生成dxf 文件Ray FanMTF将物分解为各种空间频率的谱,光学系统的光学特性可视为对各种空间频率的传递和反应能力,从而建立光学传递函数的评价方法。
2-4zemax入门指导说明
Zemax2005盗版软件的安装A、在打开文件压缩包之前,关闭杀毒软件;B、打开文件压缩包,ZEMAX05.exe是主文件,安装。
C、zemax 2005.exe和ZEMAX_CN.exe剪切到ZEMAX安装目录下,用ZEMAX_CN.exe启动就是汉化版。
D、(注意:若文件中不能出现zemax 2005.exe和ZEMAX_CN.exe两个文件,可能是因为杀毒软件把这两个文件当成了病毒文件,解决方法是把杀毒软件卸载后再解压,安装即可。
)E、将CDGM2010.6.AGF文件复制到Glasscat文件夹中,即可使用。
Zemax上机操作指导设计任务:设计一F数为4,焦距100mm的望远物镜。
1、初步操作:a、打开Zemax软件,下拉文件菜单,将下面2项打对勾。
b、设置入瞳直径:下拉系统→通用配置→光圈数值→填写25→确定c、设置波长:下拉系统→通用配置→光波长→选择→F、D、C(Visible)→确定d、在LDE中输入透镜参数:将光标放置在IMA中→下拉镜头数据编辑中的编辑→点插入曲面,在IMA前面插入一行。
e、输入透镜参数,如下表:d、玻璃库调用:工具→目录→玻璃目录→CDGM2010.6.AGF→重新加载目录→退出e、快速聚焦:工具→杂项→快速聚焦。
f、观察2D图:分析→草图→2D图g、观察光线扇形图:分析→特性曲线→光线像差h、观察光程扇形图:分析→特性曲线→光路像差i、观察点列图:分析→点列图→标准点列图j、观察像差图:分析→杂项分析→(要观察的像差图)k、观察剩余像差大小:分析→像差失真系数分析→赛德尔系数分析→SPHA(球差)、COMA(慧差)、ASTI(象散)、FCUR(场曲)、DIST(畸变)、CLA(轴色)、CTR(垂色)。
2、初步优化:在厚度为100的地方,右键打开,在求解类型中选择Marginal Ray Height(边缘光线高度),会发现100变味了96.08,更新像差曲线,发现像质有所提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点列图的原理就是显示光学系统在IMA面上的成像。
换句话说,它就就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。
为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。
显然如果光学系统就是完美的光学系统,那么这些点成像点为一个理想的点。
但对于实际的光学系统,就会成像为一个弥散斑。
那么这个弥散斑在IMA面上的像,就就是Spot Diagram。
同理,在非轴上点,也可以参照主光线的角度与位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。
如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。
如果您发现弥散斑足够小,满足您对光学系统最小弥散斑的要求(spot diagram的单位就是微米)那么您的光学系统就完全可以进行实际的加工了。
换句话说,就就是您的光学系统已经可以设计完成了。
如何才知道您的光学系统足够的好?这里有个参考,就就是airy 斑的参考。
airy斑就是物理光学的一个概念。
它指出在形成的弥散斑直径在2、44*F*(主波长)以内的时候,该光学系统可以认为就是理想(完美)光学系统。
这样当您在Spot Diagram图中,在setting 菜单中,设置显示airy斑。
然后发现您的点列图完全都在airy斑环之内,您就可以认为您的光学系统设计已经完美。
但实际上,很少有光学系统,可以满足符合airy斑直径的要求。
那么说明您的光学系统有像差。
究竟就是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。
这些像差在spot diagram上的表现各不相同。
但由于一个光学系统通常就是各种像差的混合。
因此需要您对spot diagram的形状进行判断。
确认就是主要就是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。
不同的像差有不同的像表现,同时随着像差的大小不同,这个像,也叫斑点的大小也不一样,显然像差越小的光学系统,其斑点也越小。
衡量这个斑点大小有个定义,就就是RMS半径定义,另外还有一个就就是几何半径的定义。
RMS就是均方根半径,可以定量的反映这个系统实际的斑点大小。
在Spot Diagram中还有几个参数可以参考,RMS RADIUS,均平方根半径就是一个重要的半径参数,它就是弥散斑各个点坐标,参考中心点,进行的坐标平方与后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,以定量的反映这个系统实际的斑点大小。
但它不就是全部弥散斑的直径,全部弥散斑的直径就是GEO RADIUS。
RMS RADIUS就是重要的反映弥散质量的参数,它与在优化中与MF的值极大的吻合。
(就就是说MF的某个视场最后值就就是RMS的半径)
需要说明的就是:不同的射入入瞳的光线排列会对最后的RMS半径等有影响,但并不大。
关键影响RMS半径的就是,每个airy斑的中心点参考点的选择:一种选择的方式就是根据主光线的位置做为斑点中心光线的中点。
另外一种方式就是采用斑点的实际重心做为斑点中点。
对于一个轴对称系统,在轴上,显然主光线中心与斑点重心就是一点没有差别,但在轴外点成像。
主光线的中心计算出来的RMS显然要比斑点重心计算的RMS半径要大。
其实,通常采用的就是斑点重心的参考中点方式。
Spot Diagram与Ray Fan的区别:
Spot Diagram的形成,我们也可以在轴外子午面上选择一点做为发光点。
这个点同样将光线射向系统的入瞳与光阑位置。
与Ray Fan 不同的就就是,这次我们考虑的更全面些。
这一束光线不就是Ray Fan的一个子午面方式,而就是一个面阵的方式发散。
而就是全面的射入入瞳。
为了计算与比较,有几种布置光线的方式可以选择,比如随机点方式,矩形方式,圆形方式,还有三角方式等等。
目的就是能尽量保证平衡射入这个系统。