最新高考理科数学通用版专题检测:(14) 点、直线、平面之间的位置关系 Word版含解析

合集下载

空间点、直线、平面之间的位置关系测试题(含答案)

空间点、直线、平面之间的位置关系测试题(含答案)

空间点、直线、平面之间的位置关系测试题一、选择题(本大题共12题,每小题5分,共60分)1. 已知平面α内有无数条直线都与平面β平行,那么( )A .α∥βB .α与β相交C .α与β重合D .α∥β或α与β相交2. 两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( )A.a ∥αB.a 与α相交C.a 与α不相交D.a α⊂3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行.其中正确的个数有( )A. 1 个B. 2个C. 3个D. 4个4. 经过平面外两点与这个平面平行的平面 ( )A .只有一个B .至少有一个C .可能没有D .有无数个5.过三棱柱111ABC A B C -的任意两条棱的中点作直线,其中与平面11ABB A 平行的直线共有( )A. 3条B. 4条C. 5条D. 6条6. a ,b 是两条异面直线,下列结论正确的是( )A.过不在a ,b 上的任一点P ,可作一个平面与a ,b 平行B.过不在a ,b 上的任一点P ,可作一条直线与a ,b 相交C.过不在a ,b 上的任一点P ,可作一条直线与a ,b 都平行D.过a 可以并且只可以作一平面与b 平行7.n m ,是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖8.如图1,正四面体ABCD 的棱长均为a ,且AD ⊥平面α于A ,点B ,C ,D 均在平面α外, 且在平面α同一侧,则点B 到平面α的距离是( )A .2aB .3aC . 22aD 3a图1 图29.如图2,已知六棱锥P ABCDEF -的底面是正六边形,,2PA ABC PA AB ⊥=平面,则下列结论正确的是A.PB AD ⊥ B.平面PAB PBC ⊥平面C. 直线BC ∥平面PAE D.PD ABC ︒直线与平面所成的角为4510.点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度 数为 ( )A .30°B .45°C .60°D .90°11.已知二面角l αβ--的大小为50,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是025的直线的条数为( )A .2B .3C .4D .5α A B CD12.在正四棱柱1111ABCD A B C D -中,顶点1B 到对角线1BD 和到平面11A BCD 的距离分别为h 和d ,则下列命题中正确的是( )A .若侧棱的长小于底面的边长,则h d 的取值范围为(0,1)B .若侧棱的长小于底面的边长,则h d 的取值范围为223(,) C .若侧棱的长大于底面的边长,则h d的取值范围为23(,2) D .若侧棱的长大于底面的边长,则h d 的取值范围为23(,)3+∞ 二、填空题(本大题共4小题,每小题5分,共20分)13.如图3,△ABC 和△DBC 所在两平面互相垂直,且AB=BC=BD=a,∠CBA=∠CBD=120°,则AD 与平面BCD 所成的角为 .14.在正方体ABCD —A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与过点A ,E ,C 的平面的位置关系是 .15.若一个n 面体有m 个面是直角三角形,则称这个n 面体的直度为m n,则在长方体ABCD —1111A B C D 中,四面体1A ABC -的直度为 .16.βα,表示平面,l 表示既不在α内也不在β内的直线,存在以下三个事实:①l ⊥α; ②l ∥β;③α⊥β.若以其中两个为条件,另一个为结论,构成命题,其中正确命题的个数为 个.三、解答题(本大题共6小题,共70分) 17.如图4,在正三棱柱111C B A ABC -中,点D 是棱BC 的中点.求证:(1)D C AD 1⊥;(2)1//A B 平面1ADC .18. 如图5,已知三棱柱111ABC A B C -的侧棱与底面 垂直,90BAC ∠=,M ,N 分别是11A B ,BC的中点.(1)证明:1AB AC ⊥;(2)判断直线MN 和平面11ACC A 的位置关系,并加以证明.A B B 1 C C 1A 1 M N CB A A BC D19. 如图6,在正方体1111D C B A ABCD -中,E ,F 分别为棱AD ,AB 的中点.(1)求证:平面11C CAA ⊥平面11D CB ;(2)如果1=AB ,一个动点从点F 出发在正方体的表面上依次经过棱1BB ,11C B ,11D C ,D D 1,DA 上的点,最终又回到点F ,指出整个路线长度的最小值并说明理由.20. 如图7,四棱锥S —ABCD 的底面是边长为2a 的菱形,且 2SA SC a ==2SB SD a ==,点E 是SC 上的点,且(02).SE a λλ=<≤(1)求证:对任意的(0,2]λ∈,都有BD AE ⊥;(2)若SC ⊥平面BED ,求直线SA 与平面BED 所成角的大小.21.某厂根据市场需求开发折叠式小凳,如图8所示. 凳面为三角形的尼龙布,凳脚为三根细钢管. 考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:① 凳子高度为30cm ,② 三根细钢管相交处的节点O 与凳面三角形ABC 重心的连线垂直于凳面和地面.(1)若凳面是边长为20cm 的正三角形,三只凳脚与地面所成的角均为45,确定节点O 分细钢管上下两段的比值(精确到0.01);(2)若凳面是顶角为120的等腰三角形,腰长为24cm ,节点O分细钢管上下两段之比为2:3. 确定三根细钢管的长度(精确到0.1cm )22.如图9所示,在边长为12的正方形AA'A 1'A 1中,点B ,C 在线段AA'上,且AB =3,BC =4,作BB 1//AA 1,分别交A 1A 1'、AA 1'于点B 1,P ,作CC 1//AA 1,分别交A 1A 1',AA 1'于点C 1,Q ,将该正方形沿BB 1,CC 1折叠,使得A'A 1'与AA 1重合,构成如图10所示的三棱柱ABC -A 1B 1C 1.(1)在三棱柱ABC -A 1B 1C 1中,求证:AB⊥平面BCC 1B 1;(2)求平面APQ 将三棱柱ABC -A 1B 1C 1分成上、下两部分几何体的体积之比.A B C O 图9 A B C A' A 1 B 1 C 1 A 1' P Q 图A B CA 1B 1C 1P Q A D A 1 B 1 C 1 D 1E空间点、直线、平面之间的位置关系测试题一、选择题 1~6 DC BC D D 7~12 DAD C BC提示:3.对于①平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间;②是对的,③是错的;④是对的5.取1111,,,AC BC B C AC 中点,,,E F M N ,直线分别为,,,,,EF MN EN EM FM FN 都与平面11ABB A 平行.6.如图所示,在直线a 上任取一点P ,过P 作b ′∥b ,则a ∩b ′=P.那么a与b ′确定一个平面α.因为b ∥b ′,b ′⊂α,b ⊄α,所以b ∥α.所以过a 可以作一个平面α与b 平行.假设还可作一平面β与b 平行,则α∩β=a ,b ∥α,b ∥β,所以a ∥b.这与a 、b 异面相矛盾,即假设不成立.所以只有一个平面α.综上所述,过a 有且只有一个平面与b 平行.故选D.7. ,m n 均为直线,其中,m n 平行α,,m n 可以相交也可以异面,故A 不正确; m ⊥α,n ⊥α则同垂直于一个平面的两条直线平行;选D8.取AD 的中点M ,易证AD ⊥平面BCM ,故平面BCM //平面α,平面BCM到平面α的距离为2a ,即为B 到平面α的距离. 9.因AD 与AB 不相互垂直,排除A ;作PB AG ⊥于G ,因平面⊥PAB 平面ABCDEF ,而AG 在平面ABCDEF 上的射影在AB 上,而AB 与BC 不相互垂直,故排除B ;由EF BC //,而EF 是平面PAE 的斜线,故排除C ,故选择D.10.将图形补成一个正方体如图,则PA 与BD 所成角等于BC′与BD所成角即∠DBC′.在等边三角形DBC′中,∠DBC′=60°,即PA 与BD所成角为60°.12.设底面边长为1,侧棱长为(0)λλ>,过1B 作1111,B H BD B G A B ⊥⊥.在11Rt BB D ∆中,21112,2B D B D λ==+,由三角形面积关系得11112122B D BB h B H B D λλ⋅===+ 设在正四棱柱中,由于1,BC AB BC BB ⊥⊥, 所以BC ⊥平面11AA B B ,于是1BC B G ⊥,所以1B G ⊥平面11A BCD ,故1B G 为点1B 到平面11A BCD 的距离,在11Rt A B B ∆中,又由三角形面积关系得1111211A B BB d B G A B λ⋅===+于是2222112122h d λλλ⋅+==⋅-++, 于是当1λ>,所以222123,1132λλ+><-<+,所以23(,2)3h d ∈ 二、填空题 13. 45° 14.BD 1∥平面AEC 15.1 16.2提示:13.作AO ⊥CB 的延长线,连接OD ,则OD 即为AD 在平面BCD 上的射影,因为AO =OD =23a ,所以∠ADO =45°. 14.连接AC ,BD 相交于一点O ,连接OE ,AE ,EC .因为四边形ABCD 为正方形,所以DO =BO .而DE =D 1E ,所以EO 为△DD 1B 的中位线, 所以EO ∥D 1B ,所以BD 1∥平面AEC . 15.本题主要考查空间的垂直关系,由图形得四面体ABC A -的每个面都是直角三角形,所以144==n m . 16.由①②⇒③、①③⇒②是正确命题,由②③不能得到①. 三、解答题17.证明:(1)因为三棱柱111C B A ABC -是正三棱柱,所以⊥C C 1平面ABC , 又⊂AD 平面ABC ,所以AD C C ⊥1.又点D 是棱BC 的中点,且ABC ∆为正三角形,所以AD BC ⊥.因为1BC C C C =,所以⊥AD 平面11B BCC ,又因为1DC ⊂平面11B BCC ,所以D C AD 1⊥.(2)连接C A 1交1AC 于点E ,再连接DE .因为四边形11ACC A 为矩形,所以E 为C A 1的中点,又因为D 为BC 的中点,所以1//ED A B . 又1A B ⊄平面1ADC ,ED ⊂平面1ADC ,所以1//A B 平面1ADC .18.证明:(1)因为1CC ⊥平面ABC ,又AB ⊂平面ABC ,所以1CC ⊥AB .由条件90BAC ∠=,即AC ⊥AB ,且1ACCC C =,所以AB ⊥平面11ACC A . 又1AC ⊂平面11ACC A ,所以1AB AC ⊥.(2)MN ∥平面11ACC A ,证明如下:设AC 的中点为D ,连接DN ,1A D .因为D ,N 分别是AC ,BC 的中点,所以DN //=12AB . 又1A M =1211A B ,11A B //=AB ,所以1A M //=DN . 所以四边形1A DNM 是平行四边形.所以1A D ∥MN .因为1A D ⊂平面11ACC A ,MN ⊄平面11ACC A ,所以MN ∥平面11ACC A .C19.(1)证明:因为在正方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂平面A 1B 1C 1D 1,所以 AA 1⊥B 1D 1.又因为在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,所以 B 1D 1⊥平面CAA 1C 1.又因为 B 1D 1⊂平面CB 1D 1,所以平面CAA 1C 1⊥平面CB 1D 1.(2)最小值为 .如图,将正方体六个面展开成平面图形,从图中F 到F ,两点之间线段最短,而且依次经过棱BB 1,B 1C 1,C 1D 1,D 1D ,DA 上的中点,所求的最小值为 . 20解:(1)连结BD ,AC ,设BD 与AC 交于O. 由底面是菱形,得.BD AC ⊥ SB SD =,O 为BD 中点,.BD SO ∴⊥又AC SO O ⋂=,BD ∴⊥面SAC.又AE ⊂面SAC ,.BD AE ∴⊥(2)取SC 的中点F ,连结OF ,OE ,//.SA OF ∴OF ∴与平面EDB 所成的角就是SA 与平面EDB 所成的角.SC ⊥平面BED ,FE ∴⊥面BED ,E 为垂足,EOF ∴∠为所求角.在等腰CSB ∆中,2,SC BC a SB ===,得底边SB 上的高为.CH =SC BE SB CH ∴⋅=⋅,2BE ∴==.所以在1,,2Rt BES SE a ∆==中所以11.22EF a a a ∴=-=在Rt FEO ∆中,1,sin .2EFOF a EOF OF =∴∠==即直线SA 与平面BED 所成角为.6π21.解:(1)设△ABC 的重心为H ,连结OH . 由题意,得BH =设细钢管上下两段之比为λ.已知凳子高度为30. 则301OH λλ=+.因为节点O 与凳面三角形ABC 重心的连线与地面垂直,且凳面与地面平行.所以OBH ∠就是OB 与平面ABC 所成的角,亦即45OBH ∠=. 30,13BH OH λλ==+因为所以,解得0.63λ=≈.即节点O 分细钢管上下两段的比值约为0.63.(2)设120,24B AB BC ∠===所以,AC =FF设△ABC 的重心为H ,则8,BH AH ==由节点O 分细钢管上下两段之比为2:3,可知12OH =.设过点A B C ,,的细钢管分别为,,AA BB CC ''',则560.82AA CC OA ''====≈,536.12BB OB '===≈, 所以对应于A B C ,,三点的三根细钢管长度分别为60.8cm ,36.1cm 和60.8cm . 22.(1)证明:在正方形AA'A 1'A 1中,因为A'C =AA'-AB -BC =5,所以三棱柱ABC -A 1B 1C 1的底面三角形ABC 的边AC =5. 因为AB =3,BC =4,所以AB 2+BC 2=AC 2.所以AB⊥BC.因为四边形AA'A 1'A 1为正方形,BB 1//AA 1,所以AB⊥BB 1.而BC∩BB 1=B ,BC ⊂平面BCC 1B 1,BB 1⊂平面BCC 1B 1,所以AB⊥平面BCC 1B 1.(2)解:因为AB⊥平面BCC 1B 1,所以AB 为四棱锥A -BCQP 的高.因为四边形BCQP 为直角梯形,且BP =AB =3,CQ =AB +BC =7,所以梯形BCQP 的面积为S BCQP =12(BP +CQ)×BC=20.所以四棱锥A -BCQP 的体积V A -BCQP =13S BCQP ×AB=20.由(1),知BB 1⊥AB,BB 1⊥BC,且AB∩BC=B ,AB ⊂平面ABC ,BC ⊂平面ABC .所以BB 1⊥平面ABC .所以三棱柱ABC -A 1B 1C 1为直棱柱.所以三棱柱ABC -A 1B 1C 1的体积为V ABC -A 1B 1C 1=S △ABC ×BB 1=72.故平面APQ 将三棱柱ABC -A 1B 1C 1分成上、下两部分的体积之比为72-2020=135.。

高中数学必修二检测题第二章点、直线、平面之间的位置关系2.1.1平面Word版含答案

高中数学必修二检测题第二章点、直线、平面之间的位置关系2.1.1平面Word版含答案

第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面基础巩固1.用符号表示“点A在直线l上,l在平面α外”,正确的表示是( B )(A)A∈l,l?α(B)A∈l,l?α(C)A?l,l?α(D)A?l,l?α解析:点A在直线l上,应表示为A∈l,而直线l与平面α的关系应用l?α.故选B.2.若点A在直线b上,b在平面β内,则A,b,β之间的关系可以记作( B )(A)A∈b,b∈β(B)A∈b,b?β(C)A?b,b?β(D)A?b,b∈β解析:点与直线是属于关系,直线与平面是包含关系,故选B.3.(2015唐山市高二(上)期中)下列图形中不一定是平面图形的是( D )(A)三角形(B)平行四边形(C)梯形 (D)四边相等的四边形解析:利用公理2可知:三角形、平行四边形、梯形一定是平面图形,而四边相等的四边形不一定是平面图形,故选D.4.(2015蚌埠高二(上)期中)经过空间任意三点作平面( D )(A)只有一个 (B)可作二个(C)可作无数多个(D)只有一个或有无数多个解析:当三点在一条直线上时,过这三点的平面能作无数个;当三点不在同一条直线上时,过这三点的平面有且只有一个,故选D.5.在三棱锥A BCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF∩HG=P,则点P( B )(A)一定在直线BD上(B)一定在直线AC上(C)在直线AC或BD上(D)不在直线AC上,也不在直线BD上解析:如图所示,因为EF?平面ABC,HG?平面ACD,EF∩HG=P,所以P∈平面ABC,P∈平面ACD.又因为平面ABC∩平面ACD=AC,所以P∈AC,故选B.6.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A?α,a?α.(2)α∩β=a,P?α且P?β.(3)a?α,a∩α=A .(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O .解析:考查识图能力及“图形语言与符号语言”相互转化能力,要注意点线面的表示.习惯上常用大写字母表示点,小写字母表示线,希腊字母表示平面.答案:(1)C (2)D (3)A (4)B7.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是.解析:空间中和一条直线都相交的两条直线不一定在同一平面内,故①错;若三条直线相交于一点时,不一定在同一平面内,如长方体一角的三条线,故②错;若两平面相交时,也可有三个不同的公共点,故③错;若三条直线两两平行且在同一平面内,则只有一个平面,故④错.答案:08.求证:两两相交且不共点的三条直线在同一平面内.已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.证明:法一因为l1∩l2=A,所以l1和l2确定一个平面α.因为l2∩l3=B,所以B∈l2.又因为l2?α,所以B∈α.同理可证C∈α.又因为B∈l3,C∈l3,所以l3?α.所以直线l1、l2、l3在同一平面内.法二因为l1∩l2=A,所以l1、l2确定一个平面α.因为l2∩l3=B,所以l2、l3确定一个平面β.因为A∈l2,l2?α,所以A∈α.因为A∈l2,l2?β,所以A∈β.同理可证B∈α,B∈β,C∈α,C∈β.所以不共线的三个点A、B、C既在平面α内,又在平面β内. 所以平面α和β重合,即直线l1、l2、l3在同一平面内.能力提升9.空间不共线的四点,可以确定平面的个数是( C )(A)0 (B)1 (C)1或4 (D)无法确定解析:当四点在同一平面内时可确定一个,四点不共面时可确定4个,故选C.10.(2015蚌埠一中高二(上)期中)下列叙述中错误的是( B )(A)若P∈(α∩β)且α∩β=l,则P∈l(B)三点A,B,C确定一个平面(C)若直线a∩b=A,则直线a与b能够确定一个平面(D)若A∈l,B∈l且A∈α,B∈α,则l?α解析:选项A,点P是两平面的公共点,当然在交线上,故正确;选项B,只有不共线的三点才能确定一个平面,故错误;选项C,由公理的推论可知,两相交直线确定一个平面,故正确;选项D,由公理1,直线上有两点在一个平面内,则整条直线都在平面内.故选B.11.(2015德阳市中江县龙台中学高二(上)期中)如图,正方体ABCD A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点在同一个平面上的是.①A、C、O1、D1;②D、E、G、F;③A、E、F、D1;④G、E、O1、O2.解析:正方体ABCD A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,①所以O1是AD1的中点,所以O1是在平面ACD1;②因为E、G、F在平面BCC1B1内,D不在平面BCC1B1内,所以D、E、G、F 不共面;③由已知可得EF∥AD1,所以A、E、F、D1共面;④连接GO2,交A1D1于H,则H为A1D1的中点,连接HO1,则HO1∥GE,所以G、E、O1、O2四点共面.答案:①③④12.如图所示,平面ABD∩平面CBD=BD,E,F,G,H分别在AB,BC,CD,DA上,求证:EH与FG的交点P与B,D三点共线.证明:因为直线EH∩直线FG=P,所以P∈直线EH,而EH?平面ABD,所以P∈平面ABD.同理P∈平面CBD,即点P是平面ABD与平面CBD的公共点.显然,点B,D是平面ABD和平面CBD的公共点.由公理3知,点B,D,P都在平面ABD和平面CBD的交线上,即点B,D,P共线.探究创新13.在正方体AC1中,E、F分别为D1C1、B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图(1)求证:D、B、E、F四点共面;(2)作出直线A1C与平面BDEF的交点R的位置.(1)证明:由于CC1和BF在同一个平面内且不平行,故必相交.设交点为O,则OC1=C1C.同理直线DE与CC1也相交,设交点为O′,则O′C1=C1C,故O′与O重合.由此可证得DE∩BF=O,故D、B、F、E四点共面(设为α).(2)解:由于AA1∥CC1,所以A1、A、C、C1四点共面(设为β).P∈BD,而BD?α,故P∈α.又P∈AC,而AC?β,所以P∈β,所以P∈(α∩β).同理可证得Q∈(α∩β),从而有α∩β=PQ.又因为A1C?β,所以A1C与平面α的交点就是A1C与PQ的交点.连接A1C,则A1C与PQ的交点R就是所求的交点.。

点、直线、平面之间点位置关系测试题(含答案)

点、直线、平面之间点位置关系测试题(含答案)

第二章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解析由垂直同一直线的两平面平行知,B正确.答案 B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交解析由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案 B3.一直线l与其外三点A,B,C可确定的平面个数是()A.1个B.3个C.1个或3个D.1个或3个或4个解析当A,B,C共线且与l平行或相交时,确定一个平面;当A,B,C共线且与l异面时,可确定3个平面;当A,B,C三点不共线时,可确定4个平面.答案 D4.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案 D5.如图,在△ABC中,∠BAC=90°,P A⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是()A.5 B.8C.10 D.6解析这些直角三角形是:△P AB,△P AD,△P AC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个.答案 B6.下列命题正确的有()①若△ABC在平面α外,它的三条边所在直线分别交α于P,Q,R,则P,Q,R三点共线;②若三条平行线a,b,c都与直线l相交,则这四条直线共面;③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个解析易知①与②正确,③不正确.答案 C7.若平面α⊥平面β,α∩β=l,且点P∈α,P∉l,则下列命题中的假命题是()A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的直线在α内C.过点P且垂直于β的直线在α内D.过点P且垂直于l的平面垂直于β答案 B8.如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M,N分别是棱DD1,D1C1的中点,则直线OM()A.与AC,MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC,MN均不垂直解析易证AC⊥面BB1D1D,OM⊂面BB1D1D,∴AC⊥OM.计算得OM2+MN2=ON2=5,∴OM⊥MN.答案 A9.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M 点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③解析将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得平面与直线AB,B1C1都相交,故③错误,排除A,B,D.答案 C10.已知平面α外不共线的三点A,B,C到α的距离相等,则正确的结论是()A.平面ABC必平行于αB.平面ABC必不垂直于αC.平面ABC必与α相交D.存在△ABC的一条中位线平行于α或在α内解析排除A、B、C,故选D.答案 D11.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,则一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④ 答案 D12.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E ,F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等解析 易证AC ⊥平面BB 1D 1D ,∴AC ⊥BE .∵EF 在直线B 1D 1上,易知B 1D 1∥面ABCD ,∴EF ∥面ABCD ,V A -BEF =13×12×12×1×22=224.∴A 、B 、C 选项都正确,由排除法即选D.答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知A,B,C,D为空间四个点,且A,B,C,D不共面,则直线AB与CD的位置关系是________.解析如图所示:由图知,AB与CD为异面直线.答案异面14.在空间四边形ABCD的边AB,BC,CD,DA上分别取点E,F,G,H,如果EH,FG相交于一点M,那么M一定在直线________上.答案BD15.如图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________;(2)∠BAC=________.解析 (1)AB =AC ,AD ⊥BC ,∴BD ⊥AD ,CD ⊥AD ,∴∠BDC 为二面角的平面角,∠BDC =90°,∴BD ⊥DC .(2)设等腰直角三角形的直角边长为a ,则斜边长为2a .∴BD =CD =22a .∴折叠后BC =⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫22a 2=a . ∴折叠后△ABC 为等边三角形.∴∠BAC =60°.答案 (1)BD ⊥CD (2)60°16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则:①四边形BFD ′E 一定是平行四边形;②四边形BFD ′E 有可能是正方形;③四边形BFD ′E 在底面ABCD 内的投影一定是正方形;④平面BFD ′E 有可能垂直于平面BB ′D .以上结论正确的为__________.(写出所有正确结论的编号)解析 如图所示:∵BE =FD ′,ED ′=BF ,∴四边形BFD ′E 为平行四边形.∴①正确.②不正确(∠BFD ′不可能为直角).③正确(其射影是正方形ABCD).④正确.当E,F分别是AA′,CC′中点时正确.答案①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,已知点E,F,G,H分别为正方体ABCD-A1B1C1D1的棱AB,BC,CC1,C1D1的中点,求证:EF,HG,DC三线共点.证明∵点E,F,G,H分别为所在棱的中点,连接BC1,GF,如图.∴GF是△BCC1的中位线,∴GF∥BC1.∵BE∥C1H,且BE=C1H,∴四边形EBC1H是平行四边形.∴EH∥BC1,∴GF∥EH.∴E,F,G,H四点共面.∵GF≠EH,故EF与HG必相交.设EF∩HG=I.∵I∈GH,GH⊂平面CC1D1D,∴I∈平面CC1D1D.同理可证I∈平面ABCD.∴点I在交线DC上.即EF,HG,DC三线共点.18.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,P A⊥底面ABCD,P A=AB,点M在棱PD上,PB∥平面ACM.(1)试确定点M的位置,并说明理由;(2)求四棱锥P-ABCD的表面积.解 (1)点M 为PD 的中点.理由如下:连接BD ,设BD ∩AC =O ,则点O 为BD 的中点,连接OM ,∵PB ∥平面ACM ,∴PB ∥OM .∴OM 为△PBD 的中位线,故点M 为PD 的中点.(2)∵P A ⊥底面ABCD ,又底面是边长为1的正方形,∴S 正方形ABCD =1,S △P AB =S △P AD =12×1×1=12,S △PBC =12×1×2=22,S △PCD =12×1×2=22.故四棱锥P -ABCD 的表面积为S =1+2×12+22+22=2+ 2.19.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,如图.(1)求证:MN ∥面BB 1C 1C ;(2)求MN 的长.解 (1)证明:作NP ⊥AB 于P ,连接MP .NP ∥BC ,∴AP AB =AN AC =A 1M A 1B ,∴MP ∥AA 1∥BB 1, ∴面MPN ∥面BB 1C 1C . MN ⊂面MPN , ∴MN ∥面BB 1C 1C .(2)NP BC =AN AC =23a2a =13,NP =13a ,同理MP =23a . 又MP ∥BB 1,∴MP ⊥面ABCD ,MP ⊥PN . 在Rt △MPN 中MN =49a 2+19a 2=53a .20.(12分)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ ∥DC ,又PQ =12EB =DC , 所以四边形CQPD 为平行四边形,故DP ∥CQ .因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55,因此AD 和平面ABE 所成角的正弦值为55.21.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E ,F 分别是AB ,BD 的中点.求证:(1)直线EF ∥面ACD ; (2)平面EFC ⊥平面BCD . 证明 (1)在△ABD 中,∵E ,F 分别是AB ,BD 的中点, ∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥平面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD中,∵CD=CB,F为BD的中点,∴CF⊥BD.∵CF∩EF=F,∴BD⊥平面EFC,又∵BD⊂平面BCD,∴平面EFC⊥平面BCD.22.(12分)已知四棱锥P-ABCD(图1)的三视图如图2所示,△PBC为正三角形,P A垂直底面ABCD,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的体积;(3)求证:AC⊥平面P AB.解(1)过A作AE∥CD,根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1.又∵△PBC 为正三角形, ∴BC =PB =PC =2,且PE ⊥BC , ∴PE 2=PC 2-CE 2=3.∵P A ⊥平面ABCD ,AE ⊂平面ABCD ,∴P A ⊥AE . ∴P A 2=PE 2-AE 2=2,即P A = 2. 正视图的面积为S =12×2×2= 2.(2)由(1)可知,四棱锥P -ABCD 的高P A =2,底面积为S =AD +BC 2·CD =1+22×1=32,∴四棱锥P -ABCD 的体积为V P -ABCD =13S ·P A =13×32×2=22. (3)证明:∵P A ⊥平面ABCD ,AC ⊂平面ABCD ,∴P A ⊥AC . ∵在直角三角形ABE 中,AB 2=AE 2+BE 2=2, 在直角三角形ADC 中,AC 2=AD 2+CD 2=2, ∴BC 2=AA 2+AC 2=4,∴△BAC 是直角三角形. ∴AC ⊥AB .又∵AB ∩P A =A ,∴AC ⊥平面P AB .。

2024届高考数学立体几何专项练——(3)空间点、直线、平面之间的位置关系

2024届高考数学立体几何专项练——(3)空间点、直线、平面之间的位置关系

2024届高考数学立体几何专项练——(3)空间点、直线、平面之间的位置关系1.已知平面α,β,γ两两垂直,直线a ,b ,c 满足a α⊂,b β⊂,c γ⊂,则直线a ,b ,c 不可能满足以下哪种关系()A.两两垂直B.两两平行C.两两相交D.两两异面2.如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为π3,2AB =,则棱1AA ,1CC 的夹角为()A.π3B.π4C.2π3D.π23.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A.π2B.π3C.π4D.π64.已知三棱柱111ABC A B C -的所有棱长均为2,1AA ⊥平面ABC ,则异面直线1A B ,1AC 所成角的余弦值为() A.14B.64C.104D.1545.在正四面体ABCD 中,已知,E F 分别是,AB CD 上的点(不含端点),则()A.不存在,E F ,使得EF CD ⊥ B.存在E ,使得DE CD⊥C.存在E ,使得DE ⊥平面ABC D.存在,E F ,使得平面CDE ⊥平面ABF6.下列结论中不正确的是()A.若两个平面有一个公共点,则它们有无数个公共点B.若已知四个点不共面,则其中任意三点不共线C.若点A 既在平面α内,又在平面β内,则α与β相交于b ,且点A 在b 上D.任意两条直线不能确定一个平面7.若空间中n 个不同的点两两距离都相等,则正整数n 的取值()A.至多等于3B.至多等于4C.等于5D.大于58.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线9.如图,正方体1111ABCD A B C D -中,E ,F ,M ,N 分别为11111,,,BC CC A D C D 的中点,则直线EF ,MN 所成角的大小为()A.π6B.π4C.π3D.π210.(多选)若a ,b ,c 表示空间中三条不同的直线,γ表示平面,则下列命题正确的有()A.若//a b ,//b c ,则//a cB.若a γ⊥,b γ⊥,则//a bC.//a γ,//b γ,则//a bD.若a b ⊥,b c ⊥,则a c⊥11.(多选)已知正方体1111ABCD A B C D -,则()A.直线1BC 与1DA 所成的角为90︒B.直线1BC 与1CA 所成的角为90︒C.直线1BC 与平面11BB D D 所成的角为45︒D.直线1BC 与平面ABCD 所成的角为45︒12.(多选)将正方形ABCD 沿对角线BD 折成直二面角A BD C --,下列四个结论中正确的是()A.AC BD⊥B.ACD △是等边二角形C.直线AB 与平面BCD 所成的角是60°D.AB 与CD 所成的角为60°13.若一个角两边和另一个角两边分别平行,一个角为45°,则另一个角为_________.14.已知α与β是两个不重合的平面,则下列推理正确个数是__________.①,,,A l A B l B l ααα∈∈∈∈⇒⊂;②,,,A A B B AB αβαβαβ∈∈∈∈⇒⋂=;③,l A l A αα⊄∈⇒∉;④,A l l A αα∈⊂⇒∈.15.正方体1111ABCD A B C D -中,M 是AB 的中点,则1DB 与CM 所成角的余弦值为___________.16.,αβ是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥,②αβ⊥,③m β⊥,④n α⊥.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:_______________.17.如图所示,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有__________(填序号).18.已知E,F,G,H分别是三棱锥A BCD-棱AB,BC,CD,DA的中点,AC与BD 所成角为60°,且2==,则EG=____________.AC BD答案以及解析1.答案:B解析:设l αβ=I ,且l 与a ,b 均不重合,假设////a b c ,由//a b 可得//a β,//b α,又l αβ=I ,可知//a l ,//b l ,又////a b c ,可得//c l ,因为α,β,γ两两互相垂直,所以l 与γ相交,即l 与c 相交或异面,若l 与a 或b 重合,同理可得l 与c 相交或异面,可知假设错误,由此可知三条直线不能两两平行.故选B.2.答案:D解析:如图,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC .在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为π3,2AB =,所以PAB △是边长为2的等边三角形,所以2PA PC ==.又22AC =,所以222AC PA PC =+,所以PA PC ⊥,所以棱1AA ,1CC 的夹角为π2,故选D.3.答案:D解析:如图,记正方体的棱长为a ,则1111112AD C B AC B D a ====,所以1122B P PC a ==,221162BP B P B B a =+=,在1BC P △中,由余弦定理得22211113cos 22PB C B PC PBC PB C B +-∠==⋅,所以1π6PBC ∠=.又因为11//AD BC ,所以1PBC ∠即为直线PB 与1AD 所成的角,所以直线PB 与1AD 所成的角为π6.故选D.解析:如图,设F 是线段BC 的中点,连接1AC 交1AC 于点N ,连接NF ,AF ,由题意知,四边形11ACC A 为正方形,∴N 是1AC 的中点,1//NF A B ∴,ANF ∴∠是异面直线1A B ,1AC 所成的角或其补角,1AA ⊥ 平面ABC ,三棱柱111ABC A B C -的所有棱长均为2,1122AC A B ∴==,3AF =,1122AN AC ∴==,1122NF A B ==,222(2)(2)(3)1cos 4222ANF +-∴∠==⨯⨯,∴异面直线1A B ,1AC 所成角的余弦值为14.故选A.5.答案:D解析:为了方便解题,将正四面体ABCD 放入正方体中,如图所示.连接,HG OD ,对于选项A ,取,E F 分别为,AB CD 的中点,则易知EF CD ⊥,所以选项A 不正确;对于选项B ,在正方体中,易知CD ⊥平面ABHG ,因为过点D 且与平面ABHG 平行的平面不经过点E ,所以不存在E ,使得DE CD ⊥,故选项B 不正确;对于选项C ,在正方体中,易证OD ⊥平面ABC ,所以不存在E ,使得DE ⊥平面ABC ,故选项C 不正确;对于选项D ,设OD 与平面ABC 的交点为K ,连接CK ,只要令平面CDK 与AB 的交点为E 即可得平面CDE ⊥平面ABF ,故选项D 正确.解析:由基本事实3可知,如果两个不重合的平面有一个公共点,则它们相交于过这一点的一条直线,有无数个公共点,因此选项A 正确;选项B 正确;选项C 符合基本事实3,因此选项C 正确;若两条直线平行或相交,则可以确定一个平面,因此选项D 错误.7.答案:B解析:当3n =时,显然成立,排除C ,D ;当4n =时(正四面体)也满足,排除A ,故选B.8.答案:B解析:如图,连接BD ,BE .N 为正方形ABCD 的中心,N BD ∴∈.又M 是ED 的中点,M ED ∴∈,M ∴,N ∈平面BED .∴由图知BM 与EN 相交.设ED DC a ==,则2BD a =,2EB a =.在EBD △中,由中线定理得()22222124EN ED EB BD a ⎡⎤=+-=⎣⎦,EN a ∴=.又72BM a =,BM EN ∴≠.故选B.9.答案:C 解析:略10.答案:AB解析:A 项,空间中线线平行有传递性,如图1,故A 项正确;B 项,如图2,故B 项正确;C 项,如图3,故C 项错误;D 项,如图4,故D 项错误.11.答案:ABD解析:A 项,如图,易证11//A D B C ,显然11BC B C ⊥,所以11BC DA ⊥,故A 项正确;B 项,因为11BC B C ⊥,111BC A B ⊥,所以1BC ⊥平面11A B CD ,从而11BC CA ⊥,故B 项正确;C 项,如图,设1111A C BD O = ,则111C O B D ⊥,11C O BB ⊥,所以1C O ⊥平面11BB D D ,从而1C BO ∠即为直线1BC 与平面11BB D D 所成的角,易证11A BC △为正三角形,O 为11A C 的中点,所以130C BO ∠=︒,故C 项错误;D 项,显然1C BC ∠即为直线1BC 与平面ABCD 所成的角,且145C BC ∠=︒,故D 项正确.12.答案:ABD解析:设正方形的边长为1,取BD 的中点O ,连接OA ,CO ,可得OC BD ⊥,OA BD ⊥,OC OA O = ,BD ∴⊥平面AOC .AC ⊂ 平面AOC ,BD AC ∴⊥,A 正确.正方形ABCD 沿对角线BD 折成直二面角A BD C --,即平面ABD ⊥平面BCD .OC BD ⊥ ,平面ABD 平面BCD BD =,OC ∴⊥平面ABD ,同理OA ⊥平面BCD ,OC OA ∴⊥.在Rt OAC △中,22OC OA ==,221AC OA OC ∴=+=,故ACD △为等边三角形,故B 正确.OA ⊥ 平面BCD ,ABO ∴∠为直线AB 与平面BCD 所成的角,而45ABO ∠=︒,故C错误.过点D 作//DE AB 且DE AB =,连接CE ,OE ,则CDE ∠或其补角为AB 与CD 所成的角.在ODE △中,1DE =,22OD =,3π4EDO ∠=,由余弦定理得2223π52cos42OE OD DE OD DE =++⋅⋅=.易知CO ⊥平面ABD ,OE ⊂平面ABD ,CO OE ∴⊥.在Rt COE △中,2223CE OE OC =+=.又1DE CD ==,由余弦定理得2221cos 22CD DE CE CDE CD DE +-∠==-⋅,120CDE ∴∠=︒,即AB 与CD 所成的角为60°,故D正确.故选ABD.13.答案:45°或135°解析:若一个角两边和另一个角两边分别平行,则这两个角相等或互补,由一个角为45°,则另一个角为45°或135°.14.答案:3解析:由基本事实2知,①正确;由基本事实3知,②正确;若l A α⋂=,显然有,l A l α⊂∈/,但是A α∈,③错误;④正确.15.答案:1515解析:将正方体1111ABCD A B C D -补成一个长方体,连接1111,,//CE ME DB CE ,所以1MCE ∠是异面直线1DB 与CM 所成角(或其补角),设正方体的棱长为a .在三角形1MCE 中,11513,3,22CM a CE a ME a ===,那么222151331544cos 155232a a a MCE a a+-∠==⨯⨯.16.答案:若②③④则①或若①③④则②解析:若①m n ⊥,②αβ⊥,③m β⊥成立,则n 与α可能平行也可能相交,也可能n α⊂,即④n α⊥不一定成立;若①m n ⊥,②αβ⊥,④n α⊥成立,则m 与β可能平行也可能相交,也可能m β⊂,即③m β⊥不一定成立.若①m n ⊥,③m β⊥,④n α⊥成立,则②αβ⊥成立.若②αβ⊥,③m β⊥,④n α⊥成立,则①m n ⊥成立.17.答案:②④解析:如题干图①中,直线//GH MN ;题干图②中,G ,H ,N 三点共面,但M ∉平面GHN ,因此直线GH 与MN 异面;题干图③中,连接MG(图略),//GM HN ,因此,GH 与MN 共面;题干图④中G ,M ,N 三点共面,但H ∉平面GMN ,所以GH 与MN 异面.18.答案:1或3解析:因为E ,F ,G ,H 分别是三棱锥A BCD -棱AB ,BC ,CD ,DA 的中点,所以EF 为ABC △的中位线,故//EF AC 且12EF AC =,同理GH 为ACD △的中位线,故//GH AC 且12GH AC =,所以EF 平行且等于GH ,所以四边形EFGH 是平行四边形且112EF AC ==,同理//FG BD 且112FG BD ==,因为AC 与BD 所成角为60°,所以60EFG ∠=︒或120°,当60EFG ∠=︒时,1EG =.当120EFG ∠=︒时,3EG =.。

直线与平面的位置关系练习题

直线与平面的位置关系练习题

直线与平面的位置关系练习题直线与平面的位置关系是几何学中的基础概念之一,理解和掌握这一概念对于解决几何题目非常重要。

本文将为你提供一些直线与平面的位置关系的练习题,帮助你巩固这一知识点。

练习题1:已知直线l与平面α相交于点A,点B在直线l上。

连接点B与平面α的交点为点C,若AB的垂直平分线交平面α于点D,则下列哪个选项是正确的?A) 线段CD平分线段BC的长度。

B) 线段AD平分线段AB的长度。

C) 三角形BCD垂直于平面α。

D) 线段CD平分角A。

练习题2:已知平面α与平面β垂直,直线p在平面α上,点A在直线p上。

连接点A与平面β的交点为点B,在平面β上取一点C。

若AB平行于平面β,那么以下哪个选项是正确的?A) 直线p与平面β交于一条直线上的所有点。

B) 线段BC与线段AB平行。

C) 线段AC垂直于平面α。

D) 线段CB平分角A。

练习题3:已知平面α与平面β相交于直线l,点A在平面α上且不在直线l上。

连接点A与平面β的交点为点B,连接点A与直线l的交点为点C。

以下哪个选项是正确的?A) 点A、点B、点C不共线。

B) 线段AC在平面β上的投影是线段BC。

C) 直线l是平面α与平面β的交线。

D) 点A在直线BC上。

练习题4:已知平面α与平面β相交于直线l,点A在直线l上,点B在平面β上,且线段AB平行于平面α。

连接点B与直线l的交点为点C。

若点D是线段AC的中点,那么下列哪个选项是正确的?A) 直线BC平分线段AD。

B) 线段CD平行于平面β。

C) 三角形ABC垂直于平面β。

D) 点D在直线l上。

练习题5:已知平面α与平面β相交于直线l,点A在平面α上,点B在平面β上,且线段AB垂直于直线l。

连接点A与平面β的交点为点C。

以下哪个选项是正确的?A) 点B、点C、点A共线。

B) 线段CB平分线段AB。

C) 点C、点B、点A不共面。

D) 三角形ABC是等腰三角形。

以上是直线与平面的位置关系练习题,通过解答这些题目,你可以巩固理解直线与平面的位置关系的概念,并提高解决几何问题的能力。

第二章点、直线、平面之间的位置关系练习题及答案

第二章点、直线、平面之间的位置关系练习题及答案

第二章 《点、直线、平面之间的位置关系》一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是A .①B .②C .③D .④2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||;③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是A .1B .2C .3D .43.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。

其中真命题是A .①和②B .①和③C .③和④D .①和④4.已知直线n m l 、、及平面α,下列命题中的假命题是A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是 A .BC ∥平面PDF B .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 6.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直. 其中正确命题的个数为A .0B .1C .2D .3 7.下列命题中,正确的是 A .经过不同的三点有且只有一个平面 B .分别在两个平面内的两条直线一定是异面直线 C .垂直于同一个平面的两条直线是平行直线D .垂直于同一个平面的两个平面平行8.已知直线m 、n 与平面βα,,给出下列三个命题:①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是 A .0 B .1 C .2 D .3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4 10.过三棱柱任意两个顶点的直线共15条,其中异面直线有A .18对B .24对C .30对D .36对 11.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C的中点.那么,正方体的过P 、Q 、R 的截面图形是A .三角形B .四边形C .五边形D .六边形 12.不共面的四个定点到平面α的距离都相等,这样的平面α共有A .3个B .4个C .6个D .7个 13.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是A .l m l ⊥=⋂⊥,,βαβαB .γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D .αβα⊥⊥⊥m n n ,,14.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么A .①是真命题,②是假命题B . ①是假命题,②是真命题C . ①②都是真命题D .①②都是假命题 15.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有A .1个B .2个C .3个D .4个二、填空题1.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)2.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号) 3.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是____________.(写出所有真命题的编号)4.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命题的序号)5. 已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:① 若//m α,则m 平行于平面α内的任意一条直线② 若//,,,m n αβαβ⊂⊂则//m n③若,,//m n m n αβ⊥⊥,则//αβ④若//,m αβα⊂,则//m β上面命题中,真命题的序号是____________(写出所有真命题的序号)6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、计算题1. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB. (Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.2. 已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60。

2023高考数学复习专项训练《空间中直线与平面的位置关系》(含解析)

2023高考数学复习专项训练《空间中直线与平面的位置关系》(含解析)

2023高考数学复习专项训练《空间中直线与平面的位置关系》一、单选题(本大题共12小题,共60分)1.(5分)设m,n为两条不同的直线,α,β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α//β②若m//α,m//β,则α//β③若m//α,n//α,则m//n④若m⊥α.n⊥α,则m//n上述命题中,所有真命题的序号是()A. ①④B. ②③C. ①③D. ②④2.(5分)直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,下列命题正确的是:A. l与l1,l2都不相交B. l与l1,l2都相交C. l至多与l1,l2中的一条相交D. l至少与l1,l2中的一条相交3.(5分)已知α、β是不同的平面,m、n是不同的直线,则下列命题不正确的是()A. 若m⊥α,m//n,n⊂β,则α⊥βB. 若m//α,α∩β=n,,则m//nC. 若m//n,m⊥α,则n⊥αD. 若m⊥α,m⊥β,则α//β4.(5分)已知两条直线m、n,两个平面α、β,给出下面四个命题:①m//n,m⊥α⇒n⊥α①α//β,m⊂α,n⊂β⇒m//n①m//n,m//α⇒n//α①α//β,m//n,m⊥α,⇒m⊥β其中正确命题的序号是()A. ①①B. ①①C. ①①D. ①①5.(5分)已知α,β是两个不同的平面,下列四个条件中能推出α//β的是()①存在一条直线m,m⊥α,m⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线m,n,m⊂α,n⊂β,m//β,n//α;④存在两条异面直线m,n,m⊂α,n⊂β,m//β,n//α.A. ①①B. ①①C. ①①D. ①①6.(5分)棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A. 平行B. 相交C. 平行或相交D. 不相交7.(5分)若α,β是两个不同的平面,m,n,l是三条不同的直线,则下列命题错误的是()A. 若m⊂α,l∩α=A,且A∉m,则l与m不共面B. 若m,l是异面直线,l//α,m//α,且n⊥l,n⊥m,则n⊥αC. 若l⊂α,m⊂α,l∩m=A,l//β,m//β,则α//βD. 若l//α,m//β,α//β,则l//m8.(5分)已知平面α⊥平面β,α∩β=n,直线l⊂α,直线m⊂β,则下列说法正确的个数是()①若l⊥n,l⊥m,则l⊥β;②若l//n,则l//β;③若m⊥n,l⊥m,则m⊥α.A. 0B. 1C. 2D. 39.(5分)已知a,b为两条不同直线,α、β为两个不同平面.下列命题中正确的是()A. 若a//α,b//α,则a与b共面B. 若a⊥α,α//β,则a⊥βC. 若a⊥α,α⊥β,则a//βD. 若α//b,β//b,则α//β10.(5分)若直线l平行于平面α,则()A. α内所有直线与l平行B. 在α内不存在直线与l垂直C. α内存在唯一的直线与l平行D. α内存在无数条直线与l成60°角11.(5分)在空间中,设l是一条直线,α,β是两个不同的平面.下列结论正确的是()A. 若l//α,l//β,则α//βB. 若l⊥α,l⊥β,则α//βC. 若l//α,α//β,则l//βD. 若l//α,α⊥β,则l⊥β12.(5分)直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共25分)13.(5分)设l,m,n是空间三条不同的直线,α,β是空间两个不重合的平面,给出下列四个命题:①若l与m异面,m//n,则l与n异面;②若l//α,α//β,则l//β;③若α⊥β,l⊥α,m⊥β,则l⊥m;④若m//α,m//n,则n//α.其中正确命题的序号有 ______ .(请将你认为正确命题的序号都填上)14.(5分)作直线a、b和平面α,则下列小组内两个事件互为对立事件的有 ______组(请填写个数).A组:“a//b”和“a⊥b”;B组:“a、b为异面直线”和“a⊥b”;C组:“a//α或a⊂α”和“a与α相交”.15.(5分)已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m//α且n//α,则m//n;②若m⊥β且m⊥n,则n//β;③若m⊥α且m//β,则α⊥β;④若n⊂α且m不垂直于α,则m不垂直于n.其中正确命题的序号为______.16.(5分)若α、β是两个相交平面,则在下列命题中,真命题的序号为______.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线.④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.17.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,那么P到平面ABC的距离为________.三、解答题(本大题共6小题,共72分)18.(12分)如图,四棱锥P−ABCD中,AD//BC,AB=BC=1AD,E,F,H分别为线段AD,PC,CD的中点,AC2与BE交于O点,G是线段OF上一点.(1)求证:AP//平面BEF;(2)求证:GH//平面PAD.19.(12分)用符号语表示图中点、直线、平面的位置关系.20.(12分)如图,在正三棱柱ABC−A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为√29,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)21.(12分)如图,正方体ABCD−A1B1C1D1中,M,N分别是AB,A1D1的中点.判断直线MN与平面BB1D1D的位置关系,并说明理由.22.(12分)如图,在棱长为a的正方体ABCD−A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF。

点、直线、平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结

点、直线、平面之间的位置关系知识点总结点、直线、平面之间的位置关系一、线、面之间的平行、垂直关系的证明 书中所涉及的定理和性质可分为以下三类:1、平行关系与平行关系互推;2、垂直关系与垂直关系互推;线面平行线面平行面面平行定线面平面面平行面面平行3、平行关系与垂直关系互推。

以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。

线线平行传递性:b c c a b a //////⇒⎭⎬⎫; 面面平行传递性:γαβγβα//////⇒⎭⎬⎫;线面垂直、线面垂直⇒线面平行:ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥;线面垂直线面垂面面垂直性质定理两平面面面垂直两平面内分别垂直于交线的面面垂线面垂直⇒线线平行(线面垂直性质定理):b a b a //⇒⎭⎬⎫⊥⊥αα;线面垂直⇒面面平行:βαβα//⇒⎭⎬⎫⊥⊥a a ;线面垂直、面面平行⇒线面垂直:βαβα⊥⇒⎭⎬⎫⊥a a //; 线线平行、线面垂直⇒线面垂直:αα⊥⇒⎭⎬⎫⊥b a b a //; 线面垂直、线面平行⇒面面垂直:βααβ⊥⇒⎭⎬⎫⊥a a //。

备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。

符号化语言一览表 ①线面平行ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂;αββα////a a ⇒⎭⎬⎫⊂;ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥; ②线线平行:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭;b a b a //⇒⎭⎬⎫⊥⊥αα;////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭;b c c a b a //////⇒⎭⎬⎫;③面面平行:,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭;βαβα//⇒⎭⎬⎫⊥⊥a a ;γαβγβα//////⇒⎭⎬⎫;④线线垂直:b a b a ⊥⇒⎭⎬⎫⊂⊥αα; ⑤线面垂直:,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭;,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭;βαβα⊥⇒⎭⎬⎫⊥a a //;αα⊥⇒⎭⎬⎫⊥b a ba //; ⑥面面垂直:二面角900;βααβ⊥⇒⎭⎬⎫⊥⊂a a ;βααβ⊥⇒⎭⎬⎫⊥a a //;二、立体几何中的重要方法1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角) ⑴异面直线所成角的求法:①平移法:平移直线,构造三角形; ②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系. 注:还可用向量法,转化为两直线方向向量的夹角.⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin θ;③三线三角公式12cos cos cos θθθ=.注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解; ②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法. 注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;还可用向量法,转化为两个班平面法向量的夹角.2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:d=.3、证明平行、垂直的理论途径:①证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点(定义);(2)转化为两直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.②证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点(定义);(2)转化为线线平行;(3)转化为面面平行.③证明平面与平面平行的思考途径:(1)转化为判定两平面无公共点(定义);(2)转化为线面平行;(3)转化为线面垂直.④证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直.⑤证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面交线垂直.⑥证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.。

2024高考数学基础知识综合复习第20讲空间点直线平面之间的位置关系课件

2024高考数学基础知识综合复习第20讲空间点直线平面之间的位置关系课件
ABC1D1为平行四边形,所以AD1∥BC1.
因为在正方形A1ADD1中,AD1⊥A1D,所以BC1⊥A1D,故A错误;
因为AD1∥BC1,AD1⊂平面A1ADD1,BC1⊄平面A1ADD1,所以BC1∥平面
A1ADD1,故B正确;
因为AD1∥BC1,AD1与B1D1相交,在等边三角形AB1D1中,∠AD1B1不为直角,所
α互相垂直
l⊥α
直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,
它们唯一的公共点P叫做垂足
图示
画法
画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的
一边垂直
(2)直线与平面垂直的判定定理
文字
语言
符号
语言
图形
语言
如果一条直线与一个平面内的两条相交的直线垂直,那么该直线与
此平面垂直
符号语言 a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α
图形语言
(2)面面平行的性质定理
两个平面平行,如果另一个平面与这两个平面相交,那么两条交
文字语言
线平行
符号语言 α∥β,γ∩α=a,γ∩β=b⇒)直线与平面垂直的概念
定义
记法
有关
概念
如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面
∵AC⊂平面 ACD,EF⊄平面 ACD,∴EF∥平面 ACD,故 A 正确.
由正方体性质可得 AC⊥BD,故 B 正确.
∵E,F,G,H 分别是棱 AB,BC,CD,AD 的中点,EF∥AC 且
1
GH=2AC,
1
EF=2AC,GH∥AC

∴EF∥GH,EF=GH,∴四边形 EFGH 是平行四边形,故 E,F,G,H 四点共面,故

新高考数学通用版总复习一轮课件第八章第3讲点直线平面之间的位置关系

新高考数学通用版总复习一轮课件第八章第3讲点直线平面之间的位置关系

为( )
①如果两个平面有三个不在一条直线上的公共点,那么这
两个平面重合;
②两条直线可以确定一个平面;
③空间中,相交于同一点的三条直线在同一平面内;
④若 M∈α,M∈β,α∩β=l,则 M∈l.
A.1 个
B.2 个
C.3 个
D.4 个
解析:过不共线的三点有且只有一个平面,因此①正确; 若两直线异面则不能确定一个平面,因此②不正确; 正方体中一个顶点引出的三条棱,不在同一平面内,因此 ③不正确; 由公理可知④正确,故选 B. 答案:B
答案:③④
(3)(2019 年全国Ⅲ)如图 8-3-8,点 N 为正方形 ABCD 的中 心,△ECD 为正三角形,平面 ECD⊥平面 ABCD,点 M 是线 段 ED 的中点,则( )
图 8-3-8 A.BM=EN,且直线 BM,EN 是相交直线 B.BM≠EN,且直线 BM,EN 是相交直线 C.BM=EN,且直线 BM,EN 是异面直线 D.BM≠EN,且直线 BM,EN 是异面直线
第3讲 点、直线、平面之间的位置关系
1.空间中点、直线、平面之间位置关系的基本性质(即四条 公理的“图形语言”“文字语言”“符号语言”列表)及推论
(续表)
A∈l,B∈l, A∈α,B∈α ⇒l⊂α
P∈α,P∈β ⇒αP∩∈βl =l,
ab∥∥cc⇒ a∥b
2.空间线、面之间的位置关系
3.异面直线所成的角 过空间任一点 O 分别作异面直线 a 与 b 的平行线 a′与 b′. 那么直线 a′与 b′所成的___锐__角__或__直__角____,叫做异面直线 a 与 b 所成的角(或夹角),其范围是__(_0_°__,__9_0_°__]__.
题组一 走出误区 1.(多选题)设α是给定的平面,A,B 是不在α内的任意两点, 则( ) A.在α内存在直线与直线 AB 异面 B.在α内存在直线与直线 AB 相交 C.在α内存在直线与直线 AB 平行 D.存在过直线 AB 的平面与α垂直

高中数学 第二章 点、直线、平面之间的位置关系 2.1.3 空间中直线与平面之间的位置关系练习(含解

高中数学 第二章 点、直线、平面之间的位置关系 2.1.3 空间中直线与平面之间的位置关系练习(含解

高中数学第二章点、直线、平面之间的位置关系2.1.3 空间中直线与平面之间的位置关系练习(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章点、直线、平面之间的位置关系2.1.3 空间中直线与平面之间的位置关系练习(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章点、直线、平面之间的位置关系2.1.3 空间中直线与平面之间的位置关系练习(含解析)新人教A版必修2的全部内容。

2.1.3 空间中直线与平面之间的位置关系班级: 姓名:_____________1。

已知直线a在平面α外,则()A。

a∥αB。

直线a与平面α至少有一个公共点C。

a∩α=AD。

直线a与平面α至多有一个公共点【解析】选D.因为a在平面α外,所以a∥α或a∩α=A,所以直线a与平面α至多有一个公共点.2。

已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线( )A.只有一条,不在平面α内B.有无数条,一定在平面α内C.只有一条,且在平面α内D.有无数条,不一定在平面α内【解析】选C.过直线l和点P作一平面β与α相交于m,因为l∥α,所以l与α无公共点,所以l与m无公共点,又l⊂β,m⊂β,故l∥m,又m⊂α,即m是过点P且平行于l的直线。

若n也是过P且与l平行的直线,则m∥n,这是不可能的。

故C正确。

3。

若直线l不平行于平面α,且l⊄α,则( )A。

α内的所有直线与l异面B.α内不存在与l平行的直线C。

α内存在唯一的直线与l平行D.α内的直线与l都相交【解析】选B.因为l不平行于α,且l⊄α,故l与α相交,记l∩α=A。

高中数学《点、直线、平面之间的位置关系》单元测试题(含答案)

高中数学《点、直线、平面之间的位置关系》单元测试题(含答案)

高中数学《点、直线、平面之间的位置关系》单元测试题(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b是异面直线,直线c∥a,则c与b的位置关系是( )A.相交B.异面C.平行D.异面或相交2.下列命题正确的是( )A.一直线与一个平面内的无数条直线垂直,则此直线与平面垂直B.两条异面直线不能同时垂直于一个平面C.直线与平面所成的角的取值范围是:0°<θ≤180°D.两异面直线所成的角的取值范围是:0°<θ<90°3.棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是( )A.平行B.相交词C.平行或相交D.不相交4.设a,b是空间两条垂直的直线,且b∥平面α,则在“a∥α”“a α”“a∩α”这三种情况中,能够出现的情况有( )A.0个B.1个C.2个D.3个5.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A.平行B.垂直C.斜交D.不能确定6.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥β[来C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l7.BC是Rt△ABC的斜边,PA⊥平面ABC,PD⊥BC于D点,则图中共有直角三角形的个数是( )A.8个B.7个C.6个D.5个8.以下说法中,正确的个数为( )①已知直线a,b和平面α.若a∥b,a∥α,则b∥α;②已知直线a,b,c和平面α.a是斜线,与平面α相交,b是射影所在直线,c α,且c⊥b,则c⊥a;③三个平面两两相交,且它们的交线各不相同,则这三条交线互相平行;④已知平面α,β,若α∩β=a,b⊥a,则b⊥α或b⊥β.A.1个B.2个C.3个D.4个9.已知点O为正方体ABCD -A1B1C1D1的底面ABCD的中心,则下列结论正确的是( )A.直线OA1⊥平面AB1C1B.直线OA1∥平面CB1D1C.直线OA1⊥直线ADD.直线OA1∥直线BD110.某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.C.D.611.已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD= ( )A.2B.C.D.112.如图所示,在正四棱锥S-ABCD(顶点S在底面ABCD上的射影是正方形ABCD的中心)中,E是BC的中点,P点在侧面△SCD内及其边界上运动,并且总是保持PE ⊥AC.则动点P的轨迹与△SCD组成的相关图形最有可能是图中的( )二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.如图,直四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧棱长AA1=,则异面直线A1B1与BD1所成的角大小等于.14.如图,AB是☉O的直径,C是圆周上不同于A,B的点,PA垂直于☉O所在的平面,AE⊥PB于E,AF⊥PC于F,因此, ⊥平面PBC.(填图中的一条直线)15.四棱锥S-ABCD的底面ABCD是正方形,AC与BD相交于点O,且SO⊥平面ABCD,若四棱锥S-ABCD的体积为12,底面对角线的长为2,则侧面与底面所成的二面角等于.16.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是(写出所有正确命题的编号).①当0<CQ<时,S为四边形;②当CQ=时,S为等腰梯形;③当CQ=时,S与C1D1的交点R满足C1R=;④当<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)在长方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:CE,D1F,DA三线交于一点.18.(12分)如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD.(2)求异面直线SA与PD所成角的正切值.19.(12分)如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC.(2)设Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC.20.(12分)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.(1)求证:EF∥平面ABC1D1 .(2)求证:EF⊥B1C.(3)求三棱锥B1-EFC的体积.21.(12分)(能力挑战题)在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC1⊥B1D.求证:(1)平面A1EC∥平面AB1D.(2)平面A1BC1⊥平面AB1D.22.(12分)(能力挑战题)如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论.(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.高中数学《点、直线、平面之间的位置关系》单元测试题参考答案1.【解析】选D.根据空间两条直线的位置关系和公理4可知c与b异面或相交,但不可能平行.2.【解析】选B.A.错误.一直线与一个平面内的无数条直线垂直,并不意味着和平面内的任意直线垂直,所以此直线与平面不一定垂直.B.正确.由线面垂直的性质定理可知,两条异面直线不能同时垂直于一个平面.C.错误.直线与平面所成的角的取值范围是:0°≤θ≤90°.D.错误.两异面直线所成的角的取值范围是:0°<θ≤90°.3.【解析】选A.因为棱柱的侧棱是互相平行的,所以由直线与平面平行的判定定理可知,侧棱所在的直线与不含这条侧棱的侧面所在的平面平行.4.【解析】选D.如图正方体中,b∥平面α,直线a是在直线b的垂面内的任意直线(与b异面).由图可知,“a∥α”“a α”“a∩α”三种情况都有可能.5.【解析】选B.根据线面平行的性质,在已知平面内可以作出两条相交直线与已知两条异面直线分别平行.因此,一直线与两异面直线都垂直,一定与这个平面垂直.6.【解析】选D.因为m,n为异面直线,所以过空间内一点P,作m′∥m,n′∥n,则l⊥m′,l⊥n′,即l垂直于m′与n′确定的平面γ,又m⊥平面α,n⊥平面β,所以m′⊥平面α,n′⊥平面β,所以平面γ既垂直于平面α,又垂直于平面β,所以α与β相交,且交线垂直于平面γ,故交线平行于l,故选D.7.【解析】选A.因为PA⊥平面ABC,所以PA⊥BC,因为PD⊥BC,PA∩PD=P,所以BC⊥平面PAD,所以AD⊥BC,图中直角三角形有△PAC,△PAD,△PAB,△ABC,△PDC,△PDB,△ADC,△ADB,共8个.8.【解析】选A.①错误.直线b的位置不确定,直线b可以在α内,也可以平行于α.②正确.c同时垂直于斜线和射影.③错误.例如,长方体同一顶点的三个面.④错误.没有说明b是否在平面α或β内,则b可以在这两个平面外.9.【解析】选B.可证平面A1BD∥平面CB1D1.10.【解析】选B.四棱台的上下底面均为正方形,两底面边长和高分别为1,2,2, V棱台=(S上+S下+)h=(1+4+)×2=.11.【解析】选C.根据题意,直二面角α-l-β,点A∈α,AC⊥l,可得AC⊥平面β,则AC⊥CB,△ACB为直角三角形,且AB=2,AC=1,由勾股定理可得,BC=;在Rt△BCD中,BC=,BD=1,由勾股定理可得,CD=.12.【解析】选A.如图所示,连接BD与AC相交于点O,连接SO,取SC的中点F,取CD的中点G,连接EF,EG,FG,因为E,F分别是BC,SC的中点,所以EF∥SB,EF⊄平面SBD,SB 平面SBD,所以EF∥平面SBD,同理可证EG∥平面SBD,又EF∩EG=E,所以平面EFG∥平面SBD,由题意得SO⊥平面ABCD,AC⊥SO,因为AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD,所以AC⊥平面EFG,所以AC⊥GF,所以点P在直线GF上.【变式备选】如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是( )A.1个B.2个C.3个D.4个【解析】选C.①正确.易证BC 1∥平面ACD 1,所以点P 在正方体ABCD-A 1B 1C 1D 1的面对角线BC 1上运动时,点P 到平面ACD 1的距离不变.又因为11A D PC P ACD V V ,--=所以三棱锥A-D 1PC 的体积不变.②正确.易证平面A 1BC 1∥平面ACD 1,所以A 1P ∥平面ACD 1;③错误.因为DB=DC 1,所以当点P 是BC 1的中点时,DP ⊥BC 1;④正确.因为B 1D ⊥平面ACD 1,所以平面PDB 1⊥平面ACD 113.【解析】因为A 1B 1∥AB,所以∠ABD 1是异面直线A 1B 1与BD 1所成的角,在Rt △ABD 1中,∠BAD 1=90°,AB=1,AD 1===, 所以tan ∠ABD 1==,所以∠ABD 1=60°.答案:60°14.【解析】因为AB是☉O的直径,C是圆周上不同于A,B的点,所以BC⊥AC,因为PA垂直于☉O所在的平面,所以BC⊥PA,又PA∩AC=A,所以BC⊥平面PAC,又AF 平面PAC,所以AF⊥BC,又AF⊥PC,BC∩PC=C,所以AF⊥平面PBC.答案:AF15.【解析】取BC的中点E,连接OE,SE,因为OB=OC,所以OE⊥BC,因为SO⊥平面ABCD,所以SO⊥BC,所以BC⊥平面SOE,所以∠SEO是侧面SBC与底面ABCD所成的二面角,因为正方形ABCD的对角线长为2,所以正方形ABCD的边长为2,OE=,由题意得×(2)2×SO=12,所以SO=3,所以tan∠SEO===,所以∠SEO=60°.答案:60°16.【解析】(1)当0<CQ<时,截面如图1所示,截面是四边形APQM,故①正确.(2)当CQ=时,截面如图2所示,易知PQ∥AD1且PQ=AD1,S是等腰梯形,故②正确.(3)当CQ=时,截面如图3所示,易得C1R=,截面是五边形,故③正确.(4)当<CQ<1时,如图4是五边形,故④不正确.(5)当CQ=1时,截面是边长相等的菱形如图5所示,由勾股定理易求得AC1=,MP=,故其面积为S=×AC1×MP=,故⑤正确.答案:①②③⑤17.【解题指南】可证D1F与CE的交点P在直线AD上.【证明】连接EF,D1C,A1B,因为E为AB的中点,F为AA1的中点,所以EF∥A1B,EF=A1B,又因为A1B∥D1C,所以EF∥D1C,所以E,F,D1,C四点共面,且EF=D1C,设D1F与CE相交于点P.又D1F⊂平面A1D1DA,CE⊂平面ABCD,所以P为平面A1D1DA与平面ABCD的公共点, 又平面A1D1DA∩平面ABCD=DA,根据公理3可得P∈DA,即CE,D1F,DA三线交于一点.18.【解析】(1)连接PO,因为P,O分别为SB,AB的中点,所以PO∥SA, 因为PO⊂平面PCD,SA⊄平面PCD,所以SA∥平面PCD.(2)因为PO∥SA,所以∠DPO为异面直线SA与PD所成的角,因为AB⊥CD,SO⊥CD,AB∩SO=O,所以CD⊥平面SOB.因为PO⊂平面SOB,所以OD⊥PO,在Rt△DOP中,OD=2,O P=SA=SB=,所以tan∠DPO===,所以异面直线SA与PD所成角的正切值为.19.【证明】(1)由AB是圆的直径,得AC⊥BC;由PA垂直于圆所在的平面,得PA⊥平面ABC.又BC⊂平面ABC,得PA⊥BC. 又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,所以BC⊥平面PAC.又BC⊂平面PBC,所以平面PAC⊥平面PBC.(2)连接OG并延长交AC于M,连接QM,QO.由G为△AOC的重心,知M为AC的中点,由Q为PA的中点,得QM∥PC,又因为QM⊄平面PBC,PC⊂平面PBC,所以QM∥平面PBC.又由O为AB的中点,得OM∥BC.同理可证,OM∥平面PBC.因为QM∩OM=M,QM⊂平面QMO,OM⊂平面QMO,所以,据面面平行的判定定理得,平面QMO∥平面PBC.又QG⊂平面QMO,故QG∥平面PBC.20.【解析】(1)连接BD1,在△DD1B中,E,F分别为D1D,DB的中点,则EF∥D1B,因为EF∥D1B,D1B⊂平面ABC1D1,EF⊄平面ABC1D1,所以EF∥平面ABC1D1.(2)因为B1C⊥AB,B1C⊥BC1,AB,BC1⊂平面ABC1D1,AB∩BC1=B,所以B1C⊥平面ABC1D1,又B D1⊂平面ABC1D1,所以B1C⊥BD1,又因为EF∥BD1,所以EF⊥B1C.(3)因为CF⊥平面BDD1B1,所以CF⊥平面EFB1且CF=BF=,因为EF=BD1=,B 1F===,B 1E===3,所以EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, 所以111B EFC C B EF B EF 1V V S CF 3--===×·EF ·B 1F ·CF=××××=1. 21.【证明】(1)因为点D,E 分别是BC,B 1C 1的中点,所以A 1E ∥AD,EC ∥B 1D,故A 1E ∥平面AB 1D,EC ∥平面AB 1D,又A 1E ∩EC=E,所以平面A 1EC ∥平面AB 1D.(2)因为△ABC 是正三角形,点D 是BC 的中点,所以AD ⊥BC,又因为平面ABC ⊥平面BCC 1B 1,所以AD ⊥平面BCC 1B 1,所以AD ⊥BC 1,又BC 1⊥B 1D,AD ∩B 1D=D,从而BC 1⊥平面AB 1D.又BC 1⊂平面A 1BC 1,所以平面A 1BC 1⊥平面AB 1D.22.【解题指南】(1)通过线面平行的判定定理,利用平行四边形的性质作辅助线来证明.。

直线与平面位置关系练习题

直线与平面位置关系练习题

直线与平面位置关系练习题直线与平面位置关系练习题直线与平面的位置关系是几何学中的基础概念之一。

理解和熟练掌握这一概念对于解决几何问题至关重要。

本文将给出一些直线与平面位置关系的练习题,帮助读者加深对该概念的理解。

练习题1:已知直线L上有两个点A、B,平面P上有一点C。

求证:若直线L与平面P相交于点O,则点O必定在线段AB上。

解答:首先,我们需要明确直线与平面的相交关系。

当直线与平面相交时,它们的交点可以是一个点、一条直线或者不存在。

在这个问题中,我们已知直线L与平面P相交于点O,因此点O存在于直线L上。

接下来,我们需要证明点O必定在线段AB上。

根据直线的定义,直线是无限延伸的,因此直线L上的点可以有无数个。

而线段是有两个端点的有限延长线段,因此线段AB上的点是有限的。

假设点O不在线段AB上,那么点O必定在线段AB的延长线上。

在这种情况下,直线L将与线段AB的延长线相交于点O,而不是与线段AB本身相交。

这与已知条件直线L与平面P相交于点O矛盾,因此假设不成立。

因此,我们可以得出结论:点O必定在线段AB上。

练习题2:已知直线L与平面P相交于点O,且直线L与平面P的交点O在直线L上的投影点为点A。

证明:直线L上的任意一点B都在平面P上。

解答:首先,我们需要明确直线与平面的相交关系。

根据已知条件,直线L与平面P相交于点O,即直线L上至少存在一个点在平面P上。

接下来,我们需要证明直线L上的任意一点B都在平面P上。

假设存在直线L上的某一点B不在平面P上,那么点B必定在平面P的一侧。

根据直线的定义,直线是无限延伸的,因此直线L上的点可以有无数个。

而平面是一个二维空间,它可以把空间分为两个部分。

如果点B在平面P的一侧,那么直线L上的其他点也会在平面P的同一侧。

然而,根据已知条件直线L与平面P相交于点O,即直线L上至少存在一个点在平面P上。

因此,直线L上的任意一点B都在平面P上。

练习题3:已知直线L与平面P相交于点O,且直线L与平面P的交点O在直线L上的投影点为点A。

第2节 空间点、直线、平面之间的位置关系--2025年高考数学复习讲义及练习解析

第2节  空间点、直线、平面之间的位置关系--2025年高考数学复习讲义及练习解析

第二节空间点、直线、平面之间的位置关系1.与平面有关的基本事实及推论(1)与平面有关的三个基本事实基本事实内容图形符号基本事实1过01不在一条直线上的三个点,有且只有一个平面A ,B ,C 三点不共线⇒存在唯一的α使A ,B ,C ∈α基本事实2如果一条直线上的02两个点在一个平面内,那么这条直线在这个平面内A ∈l ,B ∈l ,且A ∈α,B ∈α⇒l ⊂α基本事实3如果两个不重合的平面有一个公共点,那么它们有且只有一条03过该点的公共直线P ∈α,且P ∈β⇒α∩β=l ,且P ∈l (2)基本事实1的三个推论推论内容图形作用推论1经过一条直线和这条直线外一点,有且只有一个平面确定平面的依据推论2经过两条相交直线,有且只有一个平面推论3经过两条平行直线,有且只有一个平面2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言a ∥b a ∥αα∥β相交关系图形语言符号语言a ∩b =A a ∩α=A α∩β=l独有关系图形语言符号语言a ,b 是异面直线a ⊂α3.基本事实4和等角定理基本事实4:平行于同一条直线的两条直线04互相平行.等角定理:如果空间中两个角的两边分别对应平行,那么这两个角05相等或互补.4.异面直线所成的角(1)定义:已知a ,b 是两条异面直线,经过空间任意一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的角叫做异面直线a 与b 所成的角(或夹角).(2)1.证明点共线与线共点都需用到基本事实3.2.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.1.概念辨析(正确的打“√”,错误的打“×”)(1)两两相交的三条直线最多可以确定三个平面.()(2)没有公共点的两条直线是异面直线.()(3)两个平面α,β有一个公共点A,就说α,β相交于过点A的任意一条直线.()答案(1)√(2)×(3)×2.小题热身(1)(人教A必修第二册习题8.4T3改编)下列说法正确的是()A.两组对边分别相等的四边形确定一个平面B.和同一条直线异面的两条直线一定共面C.与两异面直线分别相交的两条直线一定不平行D.一条直线和两平行线中的一条相交,也必定和另一条相交答案C解析两组对边分别相等的四边形可能是空间四边形,故A错误;如图1,直线DD1与B1C1都是直线AB的异面直线,而DD1与B1C1是异面直线,故B错误;如图2,直线AB与CD 是异面直线,若AC∥BD,有AC与BD确定一个平面α,则AC⊂α,BD⊂α,所以A∈α,B ∈α,C∈α,D∈α,所以AB⊂α,CD⊂α,这与直线AB与CD是异面直线矛盾,则直线AC 与BD一定不平行,故C正确;如图1,AB∥CD,而直线AA1与AB相交,但与直线CD不相交,故D错误.故选C.(2)(2023·四川绵阳中学诊断考试)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面答案D解析依题意,直线b和c的位置关系可能是相交、平行或异面.故选D.(3)(2024·湖北荆州中学阶段考试)如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D 在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC 的交线上,所以平面ABC∩平面β=CD.故选C.(4)(2024·浙江杭州二中月考)如图,在三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.CC1与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60°答案C解析由于CC1与B1E都在平面C1B1BC内,故CC1与B1E是共面的,A错误;由于CC1⊂平面C1B1BC,而AE与平面C1B1BC交于点E,点E不在CC1上,故CC1与AE是异面直线,B错误;同理,AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,又E为BC的中点,△ABC为正三角形,所以AE⊥BC,D错误.故选C.考点探究——提素养考点一基本事实的应用例1如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点,连接D1F,CE.求证:(1)E ,C ,D 1,F 四点共面;(2)CE ,D 1F ,DA 三线共点.证明(1)如图所示,连接CD 1,EF ,A 1B ,∵E ,F 分别是AB ,AA 1的中点,∴EF ∥A 1B ,且EF =12A 1B .又A 1D 1∥BC ,A 1D 1=BC ,∴四边形A 1BCD 1是平行四边形,∴A 1B ∥CD 1,∴EF ∥CD 1,∴EF 与CD 1能够确定一个平面ECD 1F ,即E ,C ,D 1,F 四点共面.(2)由(1)知EF ∥CD 1,且EF =12CD 1,∴四边形CD 1FE 是梯形,∴CE 与D 1F 必相交,设交点为P ,则P ∈CE ,且P ∈D 1F ,∵CE ⊂平面ABCD ,D 1F ⊂平面A 1ADD 1,∴P ∈平面ABCD ,且P ∈平面A 1ADD 1.又平面ABCD ∩平面A 1ADD 1=DA ,∴P ∈DA ,∴CE ,D 1F ,DA 三线共点.【通性通法】共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上.(3)证明线共点问题的常用方法:先证其中两条直线交于一点,再证其他直线经过该点.【巩固迁移】1.(多选)(2024·湖北襄阳五中质检)下列关于点、线、面的位置关系的说法中不正确的是()A .若两个平面有三个公共点,则它们一定重合B .空间中,相交于同一点的三条直线在同一平面内C .直线a ,b 分别和异面直线c ,d 都相交,则直线a ,b 是异面直线D .正方体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则A ,M,O三点共线,且A,M,O,C四点共面答案ABC解析对于A,当这三点共线时,两个平面可以不重合,如图,在正方体ABCD-A1B1C1D1中,A,D,E三个点在一条直线上,但平面ABCD与平面ADD1A1相交,不重合,故A不正确;对于B,从点A出发的三条棱AA1,AB,AD不在同一平面内,故B不正确;对于C,如图,记直线AA1,B1C1分别为c,d,直线AB1,A1B1分别为a,b,可知AB1∩A1B1=B1,则此时直线a,b相交,故C不正确;对于D,平面AA1C∩平面AB1D1=AO,因为直线A1C交平面AB1D1于点M,所以M∈AO,即A,M,O三点共线,因为A,M,O三点共线,直线和直线外一点可以确定一个平面,所以A,O,C,M四点共面,故D正确.故选ABC.考点二空间两条直线的位置关系例2(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列结论正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交答案D解析如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确.故选D.(2)如图,在直三棱柱ABC-A1B1C1中,与直线BC1异面的棱有()A.1条 B.2条C.3条D.4条答案C解析在直三棱柱ABC-A1B1C1的棱所在的直线中,与直线BC1异面的直线有A1B1,AC,AA1,共3条.故选C.【通性通法】空间两条直线位置关系的判定方法和技巧【巩固迁移】2.(2023·广东广州调研)若空间中四条直线l1,l2,l3,l4,满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1,l4既不平行也不垂直D.l1,l4位置关系不确定答案D解析如图所示,在正方体ABCD-A1B1C1D1中,取AA1为l2,BB1为l3,AD为l1,BC为l4,则l1∥l4;取AD为l1,AB为l4,则l1⊥l4;取AD为l1,A1B1为l4,则l1与l4异面,因此l1,l4的位置关系不确定.故选D.3.(2024·南京模拟)如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是()A .直线CD 与直线GH 异面B .直线CD 与直线EF 共面C .直线AB 与直线EF 平行D .直线GH 与直线EF 共面答案B解析如图,点C 与点G 重合,故A 错误;∵CE ∥BD ,且CE =BD ,∴四边形CDBE 是平行四边形,∴CD ∥EF ,∴CD 与EF 共面,故B 正确;∵AB ∩EF =B ,∴AB 与EF 相交,故C 错误;∵EF 与GH 既不平行也不相交,∴EF 与GH 是异面直线,故D 错误.故选B.考点三异面直线所成的角例3(2024·河北邢台月考)已知圆柱的母线长与底面半径之比为3∶2,四边形ABCD 为其轴截面,若点E 为上底面AB ︵的中点,则异面直线DE 与AB 所成角的余弦值为()A .21111B .277C .34D .33答案A解析如图所示,因为AB ∥CD ,所以∠EDC (或其补角)为异面直线DE 与AB 所成的角.设CD 的中点为O ,过点E 作EF ⊥底面圆于F ,连接OE ,OF ,因为E 是AB ︵的中点,所以F 是CD ︵的中点,CD ⊥OF .又因为EF ⊥圆O ,所以EF ⊥CD .由于EF ∩OF =F ,OF ,EF ⊂平面OEF ,则CD ⊥平面OEF ,OD ⊥OE .设AD =3,则OD =OF =2.所以OE =7,ED =11,所以cos ∠EDC =OD DE =211=21111.故选A.【通性通法】求异面直线所成角的步骤(1)作:通过作平行线得到相交直线.(2)证:证明所作角为异面直线所成的角(或其补角).(3)求:解三角形,求出所作的角,如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.【巩固迁移】4.(2023·湖北荆州模拟)在直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,且斜边BC=2,D是BC的中点,若AA1=2,则异面直线A1C与AD所成角的大小为() A.30°B.45°C.60°D.90°答案C解析如图,取B1C1的中点D1,连接A1D1,则AD∥A1D1,∠CA1D1(或其补角)就是异面直线A1C与AD所成的角.连接D1C.∵A1B1=A1C1,∴A1D1⊥B1C1,又A1D1⊥CC1,B1C1∩CC1=C1,∴A1D1⊥平面BCC1B1,∵D1C⊂平面BCC1B1,∴A1D1⊥D1C,∴△A1CD1为直角三角形,在Rt△A1CD1中,A1C=2,CD1=3,∴∠CA1D1=60°.故选C.课时作业一、单项选择题1.下列叙述错误的是()A.若P∈α∩β,且α∩β=l,则P∈lB.若直线a∩b=A,则直线a与b能确定一个平面C.三点A,B,C确定一个平面D.若A∈l,B∈l且A∈α,B∈α,则l⊂α答案C解析对于A,点P是两平面的公共点,则点P在两平面的交线上,故A正确;对于B,由基本事实的推论可知,两相交直线确定一个平面,故B正确;对于C,只有不共线的三点才能确定一个平面,故C错误;对于D,由基本事实2,直线上有两点在一个平面内,则这条直线在平面内,故D正确.故选C.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列判断正确的是() A.若m⊥α,n⊥β,α⊥β,则直线m与n相交或异面B.若α⊥β,m⊂α,n⊂β,则直线m与n一定平行C.若m⊥α,n∥β,α⊥β,则直线m与n一定垂直D.若m∥α,n∥β,α∥β,则直线m与n一定平行答案A解析m,n是两条不同的直线,α,β是两个不同的平面,对于A,若m⊥α,n⊥β,α⊥β,则直线m与n相交垂直或异面垂直,故A正确;对于B,若α⊥β,m⊂α,n⊂β,则直线m与n相交、平行或异面,故B错误;对于C,若m⊥α,n∥β,α⊥β,则直线m与n相交、平行或异面,故C错误;对于D,若m∥α,n∥β,α∥β,则直线m与n平行、相交或异面,故D错误.故选A.3.(2024·辽宁营口模拟)已知空间中不过同一点的三条直线a,b,l,则“a,b,l两两相交”是“a,b,l共面”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析空间中不过同一点的三条直线a,b,l,若a,b,l共面,则a,b,l相交或a,b,l 有两个平行、另一直线与之相交或三条直线两两平行,所以若a,b,l共面,则a,b,l两两相交不一定成立;而若a,b,l两两相交,则a,b,l共面成立.故“a,b,l两两相交”是“a,b,l共面”的充分不必要条件.故选A.4.(2024·辽宁沈阳高三模拟)如图是某正方体的展开图,其中A,B,C,D,E,F分别是原正方体对应棱的中点,则在原正方体中与AB异面且所成的角为60°的直线是()A.CD B.DEC.EF D.CE答案C解析由题设,将展开图还原成正方体及各点的空间位置如图所示.结合选项及正方体的性质知,与AB异面的直线有EF,CE,其中只有EF与AB所成的角为60°.故选C.5.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M,N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是()A.MN=12EF,且MN与EF平行B.MN≠12EF,且MN与EF平行C.MN=12EF,且MN与EF异面D.MN≠12EF,且MN与EF异面答案D解析设正方体ABCD-A1B1C1D1的棱长为2a,则MN=MC21+C1N2=2a,作点E在平面ABCD内的射影为点G,连接EG,GF,所以EF=EG2+GF2==3a,所以MN≠12EF,故A,C错误;连接A1D,B1C,因为E为平面ADD1A1的中心,所以DE=12A1D,又因为M,N分别为B1C1,CC1的中点,所以MN∥B1C,又因为B1C∥A1D,所以MN∥ED,且DE∩EF=E,所以MN与EF异面,故B错误,D正确.6.(2023·山东威海期末)在空间四边形ABCD中,若E,F分别为AB,BC的中点,G∈CD,H∈AD,且CG=2GD,AH=2HD,则()A .直线EH 与FG 平行B .直线EH ,FG ,BD 相交于一点C .直线EH 与FG 异面D .直线EG ,FH ,AC 相交于一点答案B 解析因为CG =2GD ,AH =2HD ,且∠ADC =∠HDG ,所以△ADC ∽△HDG ,所以HG ∥AC 且HG =13AC ,因为E ,F 分别为AB ,BC 的中点,所以EF ∥AC 且EF =12AC ,所以HG ∥EF 且HG ≠EF ,故四边形EFGH 为梯形,且EH ,FG 是梯形的两腰,所以EH ,FG 交于一点,设交点为P ,则P ∈EH ,P ∈FG ,又因为EH ⊂平面ABD ,FG ∈平面BCD ,所以P ∈平面ABD ,且P ∈平面BCD ,又平面ABD ∩平面BCD =BD ,所以P ∈BD ,所以点P 是直线EH ,BD ,FG 的公共点,故直线EH ,FG ,BD 相交于一点.故选B.7.(2024·浙江绍兴质检)在正三棱柱ABC -A 1B 1C 1中,所有棱长均为2,M ,N 分别为AB ,BC 的中点,则异面直线A 1M 与B 1N 所成角的余弦值为()A .55B .45C .34D .710答案D解析如图,延长MB 到P ,使得BP =MB ,因为M 是AB 的中点,则MP =AB ,又MP ∥A 1B 1,所以四边形A 1B 1PM 是平行四边形,A 1M ∥B 1P ,所以异面直线A 1M 与B 1N 所成的角是∠PB 1N (或其补角),又N 是BC 的中点,所以BP =BN =1,PN =BP 2+BN 2-2BP ·BN cos ∠PBN =12+12-2×1×1×cos120°=3,又三棱柱是正三棱柱,所以B 1P =B 1N =12+22=5,cos ∠PB 1N =B 1P 2+B 1N 2-PN 22B 1P ·B 1N =5+5-32×5=710.故选D.8.(2023·上海浦东华师大二附中练习)已知正方体ABCD-A1B1C1D1中,M,N,P分别是棱A1D1,D1C1,AB的中点,Q是线段MN上的动点,则下列直线中,始终与直线PQ异面的是()A.AB1B.BC1C.CA1D.DD1答案A解析对于A,AB1⊂平面ABB1A1,P∈平面ABB1A1,Q∉平面ABB1A1,所以直线PQ与AB1异面,A符合题意;对于B,当点Q与点N重合时,因为PB∥NC1,又M,N,P分别是棱A1D1,D1C1,AB的中点,所以PB=NC1,所以直线PQ∥BC1,B不符合题意;对于C,连接A1P,PC,CN,NA1,在正方体中,易得A1P∥CN且A1P=CN,所以A1C与PN相交,即当点Q与点N重合时,直线PQ与CA1相交,C不符合题意;对于D,取A1B1的中点H,连接D1H交MN于点E,连接DP,PH,因为PH∥DD1且PH=DD1,所以DP∥D1H且DP=D1H,故当点Q与点E重合时,直线PQ与DD1相交,D不符合题意.故选A.二、多项选择题9.(2023·广西梧州模拟)下图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形是()答案BD解析对于A,直线GH∥MN;对于B,G,H,N三点共面,但M∉平面GHN,N∉GH,因此直线GH与MN异面;对于C,连接GM,GM∥HN,因此直线GH与MN共面;对于D,G,M,N三点共面,但H∉平面GMN,G∉MN,因此直线GH与MN异面.故选BD. 10.(2024·江苏南京一中高三检测)在四面体A-BCD中,M,N,P,Q,E分别为AB,BC,CD,AD,AC的中点,则下列说法正确的是()A .M ,N ,P ,Q 四点共面B .∠QME =∠CBDC .△BCD ∽△MEQD .四边形MNPQ 为梯形答案ABC 解析对于A ,易知MQ ∥BD ,NP ∥BD ,则MQ ∥NP ,所以M ,N ,P ,Q 四点共面,故A 正确;对于B ,根据等角定理,得∠QME =∠CBD ,故B 正确;对于C ,由等角定理,知∠QME =∠CBD ,∠QEM =∠BCD ,所以△BCD ∽△MEQ ,故C 正确;对于D ,易知MQ ∥BD ,MQ =12BD ,NP ∥BD ,NP =12BD ,所以MQ ∥NP ,MQ =NP ,所以四边形MNPQ 为平行四边形,故D 不正确.故选ABC.三、填空题11.(2023·安徽芜湖阶段考试)设a ,b ,c 是空间的三条直线,下面给出四个命题:①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线;③若a 和b 相交,b 和c 相交,则a 和c 也相交;④若a 和b 共面,b 和c 共面,则a 和c 也共面.其中真命题的个数是________.答案0解析若a ⊥b ,b ⊥c ,则a 与c 可能相交、平行、异面,故①错误;若a ,b 异面,b ,c 异面,则a ,c 可能异面、相交、平行,故②错误;若a ,b 相交,b ,c 相交,则a ,c 可能异面、相交、平行,故③错误;同理④错误.故真命题的个数为0.12.(2024·湖南长郡中学阶段考试)如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为________.答案π2解析取D 1D 的中点G ,连接AG ,GF ,记A 1E 与AG 的交点为M ,如图所示,因为G ,F 分别是棱D 1D ,CC 1的中点,所以GF ∥AB ,且GF =AB ,故四边形ABFG 为平行四边形,所以AG ∥BF ,所以A 1E 与BF 所成的角即为A 1E 与AG 所成的角,因为E ,G 是棱AD ,D 1D的中点,所以A 1A =AD ,AE =GD ,∠A 1AD =∠ADG =π2,所以△A 1AE ≌△ADG ,所以∠AA 1E =∠DAG ,因为∠DAG +∠A 1AG =∠A 1AE =π2,所以∠AA 1E +∠A 1AG =π2,所以∠AMA 1=π-(∠AA 1E +∠A 1AG )=π2,故A 1E 与AG 所成的角为π2,即A 1E 与BF 所成的角为π2.13.(2024·陕西渭南模拟)在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1D 1,A 1A 的中点,点O 为对角线AC ,BD 的交点,若平面EOF ∩平面ABCD =l ,l ∩AB =G ,且AG =kGB ,则实数k =________.答案13解析延长EF ,交DA 的延长线于点H ,连接OH ,交AB 于点G ,∵H ∈EF ,EF ⊂平面EOF ,H ∈AD ,AD ⊂平面ABCD ,平面EOF ∩平面ABCD =l ,∴H ∈l ,故直线OH 即为直线l ,取AD 的中点M ,连接MO ,ME ,又E ,F 分别是棱A 1D 1,A 1A 的中点,∴AH =A 1E =AM ,∴AG =12MO =14AB ,BG =34AB ,∴AG =13GB ,即k =13.14.(2024·湖南衡阳八中校考阶段练习)如图所示,圆锥底面半径为2,O 为底面圆心,A ,B为底面圆O 上的点,且∠AOB =π3,∠PAO =π4,则直线OA 与PB 所成角的余弦值为________.答案24解析连接AB ,取AP ,AB ,PO 的中点分别为M ,Q ,N ,连接OQ ,则MN ∥OA ,MQ ∥PB ,PO ⊥平面AOB ,所以∠NMQ (或其补角)为直线OA 与PB 所成的角,又OA ⊂平面AOB ,OB ⊂平面AOB ,所以PO ⊥OA ,PO ⊥OB ,因为∠AOB =π3,∠PAO =π4,OA =OB =2,所以PO =OA =2,ON =12PO =1,PB =2PO =22,OQ =32×2=3,所以MQ =12PB =2,NQ =OQ 2+ON 2=2,MN =12OA =1,则由余弦定理,得cos ∠NMQ =12+(2)2-222×1×2=-24,所以直线OA 与PB 所成角的余弦值为24.四、解答题15.(2024·河南洛阳阶段考试)如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,点G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,H ,G 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,H ,G 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC ,∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.16.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,所以FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.17.(多选)(2023·山西太原模拟)如图是正四面体的平面展开图,G ,H ,M ,N 分别为DE ,BE ,EF ,EC 的中点,在这个正四面体中,下列结论正确的是()A .GH 与EF 平行B .BD 与MN 为异面直线C .GH 与MN 成60°角D .DE 与MN 垂直答案BCD 解析如图,还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合,连接GM ,易知GH 与EF 异面,BD 与MN 异面.又△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,MN ∥AF ,∴MN ⊥DE .故选BCD.18.(多选)(2023·辽宁沈阳东北育才学校校考模拟预测)在正方体ABCD -A ′B ′C ′D ′中,E ,F ,G 分别为棱BB ′,DD ′,CC ′上的一点,且D ′F D ′D =B ′E B ′B =CG C ′C=λ,H 是B ′C ′的中点,I 是棱C ′D ′上的动点,则()A .当λ=13时,G ∈平面AEF B .当λ=12时,AC ′⊂平面AEF C .当0<λ<1时,存在点I ,使A ,F ,I ,H 四点共面D .当0<λ<1时,存在点I ,使FI ,EH ,CC ′三条直线交于同一点答案BCD 解析对于A ,当λ=13时,如图1,在CC ′上取点M ,使MC ′=13C ′C ,取CD 的中点N ,连接GN ,易知GN ∥MD ∥EA ,GN ⊄平面AEF ,故G ∉平面AEF ,所以A 错误;对于B ,如图2,当λ=12时,E ,F ,G 分别为BB ′,DD ′,CC ′的中点,连接BG ,FC ′,EC ′,GF ,易知四边形BGC ′E 与ABGF 均为平行四边形,则BG ∥AF ,BG ∥EC ′,所以AF ∥EC ′,则A ,F ,C ′,E 四点共面,AC ′⊂平面AEF ,所以B 正确;对于C ,如图3,延长AF ,与A ′D ′的延长线交于点M ,连接MH ,与C ′D ′的交点即为点I ,则A ,F ,I ,H 四点共面,所以C 正确;对于D ,如图4,连接EH 并延长,与CC ′的延长线交于点N ,连接FN ,与C ′D ′的交点即为点I ,则存在点I ,使FI ,EH ,CC ′三条直线交于同一点N ,所以D 正确.故选BCD.19.(2023·河南校考模拟预测)如图,已知四棱锥D 1-ABCD 的底面ABCD 为平行四边形,M 是棱DD 1上靠近点D 的三等分点,N 是BD 1的中点,平面AMN 交CD 1于点H ,则D 1H D 1C=________.答案25解析如图所示,补全四棱锥为三棱柱,作D 1E ∥AB ,且D 1E =AB ,连接BE ,CE ,因为四边形ABCD 为平行四边形,所以AB ∥CD ,且AB =CD ,则D 1E ∥AB ∥CD ,且D 1E =AB =CD ,所以四边形ABED 1和四边形D 1DCE 都是平行四边形,因为N 是BD 1的中点,则延长AN 必过点E ,所以A ,N ,E ,H ,M 在同一平面内,因为DD 1∥CE ,所以△D 1MH ∽△CEH ,又因为M 是棱DD 1上靠近点D 的三等分点,所以D 1H CH =D 1M CE =23,则D 1H D 1C =25.。

高考数学二轮专题复习知能专练十四点直线平面之间的位置关系

高考数学二轮专题复习知能专练十四点直线平面之间的位置关系

高考数学二轮专题复习知能专练十四点直线平面之间的位置关系一、选择题1.下列四个命题中,正确命题的个数是( )①若平面α∥平面β,直线m∥平面α,则m∥β;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;④直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0 B.1C.2 D.3解析:选B ①若平面α∥平面β,直线m∥平面α,则m∥β或m⊂β,故①不正确;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β或相交,故②不正确;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;此命题中,若B∈β,且AB与l异面,同时AB⊥l,此时AB 与β相交,故③不正确;命题④是正确的.2.(2017·泉州模拟)设a,b是互不垂直的两条异面直线,则下列命题成立的是( )A.存在唯一直线l,使得l⊥a,且l⊥bB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一平面α,使得a⊂α,且b∥αD.存在唯一平面α,使得a⊂α,且b⊥α解析:选C a,b是互不垂直的两条异面直线,把它放入正方体中如图,由图可知A不正确;由l∥a,且l⊥b,可得a⊥b,与题设矛盾,故B不正确;由a⊂α,且b⊥α,可得a⊥b,与题设矛盾,故D不正确,故选C.3.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①② B.①②③C.① D.②③解析:选B 对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∴BC⊥AC,又∵PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC.对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC.对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离.故①②③都正确.4.设l为直线,α,β是两个不同的平面.下列命题中正确的是( ) A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥β。

高考理科数学通用版三维二轮专题复习专题检测:(十四) 点、直线、平面之间的位置关系 Word版含解析

高考理科数学通用版三维二轮专题复习专题检测:(十四) 点、直线、平面之间的位置关系 Word版含解析

专题检测(十四)点、直线、平面之间的位置关系一、选择题1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B若E,F,G,H四点不共面,则直线EF和GH肯定不相交,但直线EF 和GH不相交,E,F,G,H四点可以共面,例如EF∥GH,故甲是乙成立的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m⊥α,m⊥β,则α∥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n∥β,m∥n,则α∥β.其中正确的命题是()A.①②B.②③C.①④D.②④解析:选B两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.3.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是()A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:选B A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC ⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC.又AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B 中条件不能判断出AP⊥BC,故选B.4.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件;②若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充要条件.判断正确的是()A.①②都是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是假命题解析:选B若b⊂α,a⊄α,a∥b,则由线面平行的判定定理可得a∥α,反过来,若b⊂α,a⊄α,a∥α,则a,b可能平行或异面,则b⊂α,a⊄α,“a∥b”是“a∥α”的充分不必要条件,①是真命题;若a⊂α,b⊂α,α∥β,则由面面平行的性质可得a∥β,b∥β,反过来,若a⊂α,b⊂α,a∥β,b∥β,则α,β可能平行或相交,则a⊂α,b⊂α,则“α∥β”是“a∥β,b∥β”的充分不必要条件,②是假命题,选项B正确.5.(2017·惠州三调)如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有()A.1个B.2个C.3个D.4个解析:选B将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面PAD,E∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.6.在下列四个正方体中,能得出异面直线AB⊥CD的是()解析:选A对于A,作出过AB的平面ABE,如图①,可得直线CD与平面ABE垂直,根据线面垂直的性质知,AB⊥CD成立,故A正确;对于B,作出过AB的等边三角形ABE,如图②,将CD平移至AE,可得CD与AB所成的角等于60°,故B不成立;对于C、D,将CD平移至经过点B的侧棱处,可得AB,CD所成的角都是锐角,故C和D均不成立.故选A.二、填空题7.如图,DC ⊥平面ABC ,EB ∥DC ,EB =2DC ,P ,Q 分别为AE ,AB 的中点.则直线DP 与平面ABC 的位置关系是________.解析:连接CQ ,在△ABE 中,P ,Q 分别是AE ,AB 的中点,所以PQ 綊12EB .又DC 綊12EB ,所以PQ 綊DC ,所以四边形DPQC 为平行四边形,所以DP ∥CQ .又DP ⊄平面ABC ,CQ ⊂平面ABC ,所以DP ∥平面ABC .答案:平行8.如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于E ,AF⊥DC 交DC 于F ,且AD =AB =2,则三棱锥D -AEF 体积的最大值为________.解析:因为DA ⊥平面ABC ,所以DA ⊥BC ,又BC ⊥AC ,DA ∩AC =A ,所以BC ⊥平面ADC ,所以BC ⊥AF .又AF ⊥CD ,BC ∩CD =C ,所以AF ⊥平面DCB ,所以AF ⊥EF ,AF ⊥DB .又DB ⊥AE ,AE ∩AF =A ,所以DB ⊥平面AEF ,所以DE 为三棱锥D -AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF 的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D -AEF 的体积V ≤13×12×2=26(当且仅当a =b =1时等号成立). 答案:269.如图,直三棱柱ABC -A1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为________.解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF .由已知可以得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h . 又2×2=h 22+(2)2,所以h =233,DE =33. 在Rt △DB 1E 中,B 1E = ⎝⎛⎭⎫222-⎝⎛⎭⎫332=66. 由面积相等得66×x 2+⎝⎛⎭⎫222=22x ,得x =12. 即线段B 1F 的长为12. 答案:12三、解答题10.(2017·江苏高考)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .证明:(1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD ,所以EF ∥AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .11.(2017·安徽名校阶段性测试)如图所示,正方形ABCD 所在平面与圆O 所在平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在平面,垂足E 是圆O 上异于C ,D 的点,AE =3,圆O 的直径CE =9.(1)求证:平面ABE ⊥平面ADE ;(2)求五面体ABCDE 的体积.解:(1)证明:∵AE 垂直于圆O 所在平面,CD ⊂圆O 所在平面,∴AE ⊥CD .又CD ⊥DE ,AE ∩DE =E ,AE ⊂平面ADE ,DE ⊂平面ADE ,∴CD ⊥平面ADE .在正方形ABCD 中,CD ∥AB ,∴AB ⊥平面ADE .又AB ⊂平面ABE ,∴平面ABE ⊥平面ADE .(2)连接AC ,BD ,设正方形ABCD 的边长为a ,则AC =2a ,又AC 2=CE 2+AE 2=90,∴a =35,DE =6,∴V B -ADE =13BA ·S △ADE =13×35×⎝⎛⎭⎫12×3×6=9 5. 又AB ∥CD ,CD ⊂平面CDE ,∴点B 到平面CDE 的距离等于点A 到平面CDE 的距离,即AE ,∴V B -CDE =13AE ·S △CDE =13×3×⎝⎛⎭⎫12×35×6=95, 故V ABCDE =V B -CDE +V B -ADE =18 5.12.(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .(1)在AB 边上是否存在点P ,使AD ∥平面MPC?(2)当点P 为AB 边的中点时,求点B 到平面MPC 的距离.解:(1)当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12, 在△ADB 中,AP PB =12,∴AD ∥PN . ∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .(2)∵平面AMD ⊥平面MBCD ,平面AMD ∩平面MBCD =DM ,AM ⊥DM ,∴AM ⊥平面MBCD .∴V P -MBC =13×S △MBC ×AM 2=13×12×2×1×12=16. 在△MPC 中,MP =12AB =52,MC =2, 又PC = ⎝⎛⎭⎫122+12=52, ∴S △MPC =12×2×⎝⎛⎭⎫522-⎝⎛⎭⎫222=64. ∴点B 到平面MPC 的距离为d =3V P -MBC S △MPC =3×1664=63.。

高中数学必修二检测题 直线与平面、平面与平面之间的位置关系 答案解析

高中数学必修二检测题 直线与平面、平面与平面之间的位置关系 答案解析

高中数学必修二课时跟踪检测(九)空间中直线与平面之间的位置关系平面与平面之间的位置关系一、基础级对点练一直线与平面的位置关系1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交 D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D1、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有() A.2个B.3个C.4个 D.5个解析:选B如图所示,结合图形可知:AA1∥平面BC1,AA1∥平面DC1,AA1∥平面BB1D1D.3.若直线a⊄平面α,则下列结论中成立的个数是()①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a平行的直线.A.0 B.1C.2 D.3解析:选A∵直线a⊄平面α,∴直线a与平面α可能相交或平行.若a与α平行,则α内与a平行的直线有无数条;若a与α相交,则α内的直线可以与a相交,也可以与a 异面.故①②③④都不正确.4.若直线l上有两点到平面α的距离相等,则直线l与平面α的关系是________.解析:当这两点在α的同侧时,l与α平行;当这两点在α的异侧时,l与α相交.答案:平行或相交5.简述下列问题的结论,并画图说明:(1)直线a⊂平面α,直线b∩a=A,则b和α的位置关系如何?(2)直线a⊂α,直线b∥a,则直线b和α的位置关系如何?解:(1)由图①可知:b⊂α或b∩α=A.(2)由图②可知:b⊂α或b∥α.对点练二平面与平面的位置关系6.若两个平面互相平行,则分别在这两个平行平面内的直线()A.平行B.异面C.相交 D.平行或异面解析:选D两直线分别在两个平行平面内,则这两条直线没有公共点,所以分别在两个平行平面内的直线平行或异面.故选D.7.如图所示,用符号语言可表示为()A.α∩β=l B.α∥β,l∈αC.l∥β,l⊄α D.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.8.平面α与平面β平行,且a⊂α,下列四种说法中①a与β内的所有直线都平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直;④a与β无公共点.其中正确的个数是()A.1 B.2C.3 D.4解析:选B如图,在长方体中,平面ABCD∥平面A′B′C′D′,A′D′⊂平面A′B′C′D′,AB⊂平面ABCD,A′D′与AB不平行,且A′D′与AB垂直,所以①③错.9.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c ∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c ∥a.二、提高级1.若一条直线上有两点在已知平面外,则下列结论正确的是()A.直线上所有的点都在平面外B.直线上有无数多个点都在平面外C.直线上有无数多个点都在平面内D.直线上至少有一个点在平面内解析:选B一条直线上有两点在已知平面外,则直线与平面平行或相交.相交时有且只有一个点在平面内,故A、C不对;直线与平面平行时,直线上没有一个点在平面内,故D不对.2.若直线a∥平面α,直线b∥平面α,则a与b的位置关系是()A.平行B.相交C.异面 D.以上都有可能解析:选D如图所示,在正方体ABCD-A1B1C1D1中,A1B1∥平面ABCD,A1D1∥平面ABCD,有A1B1∩A1D1=A1;又D1C1∥平面ABCD,有A1B1∥D1C1;取BB1和CC1的中点M,N,连接MN,则MN∥平面ABCD,有A1B1与MN异面.故选D.3.若三个平面两两相交,有三条交线,则下列命题中正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点解析:选D三个平面两两相交,有三条交线,三条交线两两平行或交于一点.如三棱柱的三个侧面两两相交,交线是三棱柱的三条侧棱,这三条侧棱是相互平行的;但有时三条交线交于一点,如长方体的三个相邻的表面两两相交,交线交于一点,此点就是长方体的顶点.4.a,b是两条异面直线,A是不在直线a,b上的点,则下列结论成立的是() A.过A有且只有一个平面同时平行于直线a,bB.过A至少有一个平面同时平行于直线a,bC.过A有无数个平面同时平行于直线a,bD.过A且同时平行于直线a,b的平面可能不存在解析:选D直线a和点A确定一个平面,若b平行于这个平面,则a含于这个平面,故不存在过A且同时平行于直线a,b的平面,选D.5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析:如图所示,与平面ABB1A1平行的直线有6条:D1E1,E1E,ED,DD1,D1E,DE 1.答案:66.下列命题:①两个平面有无数个公共点,则这两个平面重合;②若l,m是异面直线,l∥α,m∥β,则α∥β.其中错误命题的序号为________.解析:对于①,两个平面相交,则有一条交线,也有无数多个公共点,故①错误;对于②,借助于正方体ABCD-A1B1C1D1,AB∥平面DCC1D1,B1C1∥平面AA1D1D,又AB与B1C1异面,而平面DCC1D1与平面AA1D1D相交,故②错误.答案:①②7.试画图说明三个平面可把空间分成几个部分?解:三个平面可把空间分成4(如图①)、6(如图②③)、7(如图④)或8(如图⑤)个部分.8.在正方体ABCD-A1B1C1D1中,E、F分别为B1C1、A1D1的中点.求证:平面ABB1A1与平面CDFE相交.证明:在正方体ABCD-A1B1C1D1中,E为B1C1的中点,∴EC与B1B不平行,延长CE与BB1,延长线相交于一点H,∴H∈EC,H∈B1B,又知B1B⊂平面ABB1A1,CE⊂平面CDFE,∴H∈平面ABB1A1,H∈平面CDFE,故平面ABB1A1与平面CDFE相交.。

高一数学下学期单元测验题:点直线平面之间的位置关系

高一数学下学期单元测验题:点直线平面之间的位置关系

高一数学下学期单元测验题:点直线平面之间的位置关系【】记得有一句话是这么说的:数学是一门描写数字之间关系的科学,是我们前进的阶梯。

对于高中学生的我们,数学在生活中,考试科目里更是尤为重要,所以小编在此为您发布了文章:高一数学下学期单元测验题:点直线平面之间的位置关系希望此文能给您带来帮助。

本文题目:高一数学下学期单元测验题:点直线平面之间的位置关系一、选择题1.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )A. B. C. D.2.下面列举的图形一定是平面图形的是( )A.有一个角是直角的四边形B.有两个角是直角的四边形C.有三个角是直角的四边形D.有四个角是直角的四边形3.垂直于同一条直线的两条直线一定( )A.平行B.相交C.异面D.以上都有可能4.如右图所示,正三棱锥(顶点在底面的射影是底面正三角形的中心)中,分别是的中点,为上任意一点,则直线与所成的角的大小是()A. B. C. D.随点的变化而变化。

5.互不重合的三个平面最多可以把空间分成( )个部分A. B. C. D.6.把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为( )A. B. C. D.二、填空题1. 已知是两条异面直线,,那么与的位置关系____________________。

2. 直线与平面所成角为,,则与所成角的取值范围是_________3.棱长为的正四面体内有一点,由点向各面引垂线,垂线段长度分别为,则的值为。

4.直二面角- - 的棱上有一点,在平面内各有一条射线,与成,,则。

5.下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)当AP= AB时,有AD∥平面MPC.
理由如下:
连接BD交MC于点N,连接NP.
在梯形MBCD中,DC∥MB, = = ,
在△ADB中, = ,∴AD∥PN.
∵AD⊄平面MPC,PN⊂平面MPC,
∴AD∥平面MPC.
(2)∵平面AMD⊥平面MBCD,平面AMD∩平面MBCD=DM,AM⊥DM,∴AM⊥平面MBCD.
3.如图,在三棱锥PABC中,不能证明AP⊥BC的条件是()
A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PC
D.AP⊥平面PBC
解析:选BA中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC.又AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.
由已知可以得A1B1= ,
设Rt△AA1B1斜边AB1上的高为h,则DE= h.
又2× =h ,
所以h= ,DE= .
在Rt△DB1E中,B1E= = .
由面积相等得 × = x,得x= .
即线段B1F的长为 .
答案:
三、解答题
10.(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
∴VPMBC= ×S△MBC× = × ×2×1× = .
在△MPC中,MP= AB= ,MC= ,
又PC= = ,
∴S△MPC= ×Байду номын сангаас× = .
∴点B到平面MPC的距离为
d= = = .
专题检测(十四)点、直线、平面之间的位置关系
一、选择题
1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件
解析:选B若E,F,G,H四点不共面,则直线EF和GH肯定不相交,但直线EF和GH不相交,E,F,G,H四点可以共面,例如EF∥GH,故甲是乙成立的充分不必要条件.
6.在下列四个正方体中,能得出异面直线AB⊥CD的是()
解析:选A对于A,作出过AB的平面ABE,如图①,可得直线CD与平面ABE垂直,根据线面垂直的性质知,AB⊥CD成立,故A正确;对于B,作出过AB的等边三角形ABE,如图②,将CD平移至AE,可得CD与AB所成的角等于60°,故B不成立;对于C、D,将CD平移至经过点B的侧棱处,可得AB,CD所成的角都是锐角,故C和D均不成立.故选A.
答案:
9.如图,直三棱柱ABCA1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.
5.(2017·惠州三调)如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:
①直线BE与直线CF异面;
②直线BE与直线AF异面;
③直线EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正确的有()
A.1个B.2个
C.3个D.4个
解析:选B将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面PAD,E∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.
解析:选B若b⊂α,a⊄α,a∥b,则由线面平行的判定定理可得a∥α,反过来,若b⊂α,a⊄α,a∥α,则a,b可能平行或异面,则b⊂α,a⊄α,“a∥b”是“a∥α”的充分不必要条件,①是真命题;若a⊂α,b⊂α,α∥β,则由面面平行的性质可得a∥β,b∥β,反过来,若a⊂α,b⊂α,a∥β,b∥β,则α,β可能平行或相交,则a⊂α,b⊂α,则“α∥β”是“a∥β,b∥β”的充分不必要条件,②是假命题,选项B正确.
故VABCDE=VBCDE+VBADE=18 .
12.(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD中,AM=CD= AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.
(1)在AB边上是否存在点P,使AD∥平面MPC?
(2)当点P为AB边的中点时,求点B到平面MPC的距离.
答案:平行
8.如图,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥DAEF体积的最大值为________.
解析:因为DA⊥平面ABC,所以DA⊥BC,又BC⊥AC,DA∩AC=A,所以BC⊥平面ADC,所以BC⊥AF.又AF⊥CD,BC∩CD=C,所以AF⊥平面DCB,所以AF⊥EF,AF⊥DB.又DB⊥AE,AE∩AF=A,所以DB⊥平面AEF,所以DE为三棱锥DAEF的高.因为AE为等腰直角三角形ABD斜边上的高,所以AE= ,设AF=a,FE=b,则△AEF的面积S= ab≤ · = × = ,所以三棱锥DAEF的体积V≤ × × = (当且仅当a=b=1时等号成立).
二、填空题
7.如图,DC⊥平面ABC,EB∥DC,EB=2DC,P,Q分别为AE,AB的中点.则直线DP与平面ABC的位置关系是________.
解析:连接CQ,在△ABE中,P,Q分别是AE,AB的中点,所以PQ綊 EB.又DC綊 EB,所以PQ綊DC,所以四边形DPQC为平行四边形,所以DP∥CQ.又DP⊄平面ABC,CQ⊂平面ABC,所以DP∥平面ABC.
因为AD⊂平面ABD,
所以BC⊥AD.
又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,
所以AD⊥平面ABC.
又因为AC⊂平面ABC,
所以AD⊥AC.
11.(2017·安徽名校阶段性测试)如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径CE=9.
2.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:
①若α∩β=m,n⊂α,n⊥m,则α⊥β;
②若m⊥α,m⊥β,则α∥β;
③若m⊥α,n⊥β,m⊥n,则α⊥β;
④若m∥α,n∥β,m∥n,则α∥β.
其中正确的命题是()
A.①②B.②③
C.①④D.②④
解析:选B两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.
(1)求证:平面ABE⊥平面ADE;
(2)求五面体ABCDE的体积.
解:(1)证明:∵AE垂直于圆O所在平面,CD⊂圆O所在平面,∴AE⊥CD.
又CD⊥DE,AE∩DE=E,AE⊂平面ADE,DE⊂平面ADE,
∴CD⊥平面ADE.
在正方形ABCD中,CD∥AB,
∴AB⊥平面ADE.
又AB⊂平面ABE,
∴平面ABE⊥平面ADE.
(2)连接AC,BD,设正方形ABCD的边长为a,则AC= a,
又AC2=CE2+AE2=90,
∴a=3 ,DE=6,
∴VBADE= BA·S△ADE
= ×3 × =9 .
又AB∥CD,CD⊂平面CDE,
∴点B到平面CDE的距离等于点A到平面CDE的距离,即AE,
∴VBCDE= AE·S△CDE= ×3× =9 ,
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
证明:(1)在平面ABD内,因为AB⊥AD,EF⊥AD,
所以EF∥AB.
又因为EF⊄平面ABC,AB⊂平面ABC,
所以EF∥平面ABC.
(2)因为平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,
BC⊂平面BCD,BC⊥BD,
所以BC⊥平面ABD.
4.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:
①若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件;
②若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充要条件.
判断正确的是()
A.①②都是真命题
B.①是真命题,②是假命题
C.①是假命题,②是真命题
D.①②都是假命题
相关文档
最新文档