12.2 三角形全等的判定 第1课时

合集下载

12.2 三角形全等的判定 第1课时 “边边边”

12.2 三角形全等的判定 第1课时 “边边边”

6、已知:如图 ,AC=FE,AD=FB,BC=DE.求证:(1)△ABC≌△FDE; (2) ∠C= ∠E.
证明:(1)∵ AD=FB, ∴AB=FD(等式性质). 在△ABC和△FDE 中,
AC=FE(已知),BC=DE(已知),AB=FD(已证),
如图, △ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,试说明:∠B=∠C.
∴∠B=∠C.
用尺规作一个角等于已知角
已知:∠AOB.求作: ∠A′O′B′=∠AOB.
用尺规作一个角等于已知角.
O
D
B
C
A
O′
C′
A′
B′
D ′
作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA, OB 于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC 长为半 径画弧,交O′A′于点C′;(3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
如图是一个风筝模型的框架,由DE=DF,EH=FH,就能说明∠DEH=∠DFH . 试用你所学的知识说明理由.
证明:连接DH.在△DEH和△DFH中 DE=DF, EH=FH, DH= DH , ∴△DEH≌△DFH(SSS). ∴∠DEH=∠DFH(全等三角形的对应相等 ).
A ′
B′
C′
想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?
作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '.
两个三角形全等的判定1: 三边对应相等的两个三角形全等.简写为“边边边”或“SSS”.

人教版数学八年级上册 12.2三角形全等的判定 第一课时 “边边边”(sss)判定(共31张ppt)(智能版推荐)

人教版数学八年级上册 12.2三角形全等的判定  第一课时 “边边边”(sss)判定(共31张ppt)(智能版推荐)

学完本节课你应该知道
定理:三条边都相等的三角形全等
全等三角形 “边边边”
判定
数学语言表示和证明
尺规画定三角形 尺规作图
尺规画等角
动笔练一练
• 满足下列条件的两个三角形不一定全等的
是( C )
A. 有一边相等的两个等边三角形 B. 有一腰和底边对应相等的两个等腰三角形 C. 周长相等的两个三角形 D. 三条边都相等的三角形
动笔练一练
• 在四边形ABCD中, 已知:AB=CD, AD=CB。试证明: ∠A=∠C。
动笔练一练
证明: 在△ABC和△FDE中:
AB=CD(已知) AD=CB(已知) BD=DB(公共边) ∴△ABD ≌△ ACD(SSS) ∴∠A=∠C(全等三角形的对 应角相等)
课后练一练
请同学们独立完成配套课后练习题。
下课!
谢谢同学们!
在我的印象里,他一直努力而自知,每天从食堂吃饭后,他总是习惯性地回到办公室看厚厚的专业书不断提升和充实自己,他的身上有九零后少见的沉稳。同事们恭喜他,大多看 到了他的前程似锦,却很少有人懂得他曾经付出过什么。就像说的:“如果这世上真有奇迹,那只是努力的另一个名字,生命中最难的阶段,不是没有人懂你,而是你不懂自已。” 而他的奇迹,是努力给了挑选的机会。伊索寓言中,饥饿的狐狸想找一些可口的食物,但只找到了一个酸柠檬,它说,这只柠檬是甜的,正是我想吃的。这种只能得到柠檬,就说 柠檬是甜的自我安慰现象被称为:“甜柠檬效应”。一如很多人不甘平庸,却又大多安于现状,大多原因是不知该如何改变。看时,每个人都能从角色中看到自已。高冷孤独的安 迪,独立纠结的樊胜美,乐观自强的邱莹莹,文静内敛的关睢尔,古怪精灵的曲筱绡。她们努力地在城市里打拼,拥有幸或不幸。但她依然保持学习的习惯,这样无论什么事她都 有最准确的判断和认知;樊胜美虽然虚荣自私,但她努力做一个好HR,换了新工作后也是拼命争取业绩;小蚯蚓虽没有高学历,却为了多卖几包咖啡绞尽脑汁;关睢尔每一次出镜 几乎都是在房间里戴着耳机听课,处理文件;就连那个嬉皮的曲筱潇也会在新年之际为了一单生意飞到境外……其实她们有很多路可以走:嫁人,啃老,安于现状。但每个人都像 个负重的蜗牛一样缓缓前行,为了心中那丁点儿理想拼命努力。今天的努力或许不能决定明天的未来,但至少可以为明天积累,否则哪来那么多的厚积薄发和大器晚成?身边经常 有人抱怨生活不幸福,上司太刁,同事太蛮,公司格局又不大,但却不想改变。还说:“改变干嘛?这个年龄了谁还能再看书考试,混一天是一天吧。”一个“混”字就解释了他 的生活态度。前几天我联系一位朋友,质问为什么好久不联系我?她说自已每天累的像一条狗,我问她为什么那么拼?她笑:“如果不努力我就活得像一条狗了。”恩,新换的上 司,海归,虽然她有了磨合几任领导的经验,但这个给她带来了压力。她的英语不好,有时批阅文件全是大段大段的英文,她心里很怄火,埋怨好好的中国人,出了几天国门弄得 自己像个洋鬼子似的。上司也不舒服,流露出了嫌弃她的意思,甚至在一次交待完工作后建议她是否要调一个合适的部门?她的脸红到了脖子,想着自己怎么也算是老员工,由她 羞辱?两个人很不愉快。但她有一股子倔劲,不服输,将近40岁的人了,开始拿出发狠的学习态度,报了个英语培训班。回家后捧着英文书死啃,每天要求上中学的女儿和自己英 语对话,连看电影也是英文版的。功夫不负有心人,当听力渐渐能跟得上上司的语速,并流利回复,又拿出漂亮的英文版方案,新上司看她的眼光也从挑剔变柔和,某天悄悄放了 几本英文书在她桌上,心里突然发现上司并没那么讨厌。心态好了,她才发现新上司的优秀,自从她来了后,部门业绩翻了又翻,奖金也拿到手软,自己也感觉痛快。她说:这个 社会很功利,但也很公平。别人的傲慢一定有理由,如果想和平共处,需要同等的段位,而这个段位,自己可能需要更多精力,但唯有不断付出,才有可能和优秀的人比肩而立。 人为什么要努力?一位长者告诉我:“适者生存。”这个社会讲究适者生存,优胜劣汰。虽然也有潜规则,有套路和看不见的沟沟坎坎,但一直努力的人总会守得云开见月明。有 些人明明很成功了,但还是很拼。比如剧中的安迪,她光环笼罩,商场大鳄是她的男闺蜜,不离左右,富二代待她小心呵护,视若明珠,加上她走路带风,职场攻势凌历,优秀得 让身边人仰视。这样优秀的人,不管多忙,每天都要抽出两个小时来学习。她的学习不是目的,而是能量,能让未来的自己比过去更好一些。现实生活中,努力真的重要,它能改 变一个人的成长轨迹,甚至决定人生成败。有一句鸡汤:不着急,你想要的,岁月都会给你。其实,岁月只能给你风尘满面,而希望,唯有努力才能得到!9、懂得如何避开问题的 人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的永远是家,走出去看到的才 是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。财富买不来好观念,好观念能换来 亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。人与人之间的差别,主要差在两耳之间的 那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的时候要找一条出路!孩子贫穷是与父母的有一定 的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度;有什么态度,就会有什么行为;有什么行为,就产生 什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行

12.2 第1课时三角形的全等的判定(一)数学人教版八上同步课堂教案

12.2 第1课时三角形的全等的判定(一)数学人教版八上同步课堂教案

第十二章全等三角形12.2 三角形全等的判定第1课时三角形的全等的判定(一)(SSS)一、教学目标1.通过探究判定三角形全等条件的过程,提高分析和解决问题的能力.2.理解并掌握“边边边”判定方法,能利用“边边边”证明两个三角形全等.3.会用尺规作一个角等于已知角,了解图形的作法.二、教学重难点重点:利用“边边边”证明两个三角形全等.难点:用尺规作一个角等于已知角.三、教学过程【新课导入】[课件展示]教师利用多媒体展示如下两个三角形的重合过程.[复习导入]1. 观察这两个三角形,它们之间是什么关系?(它们是全等三角形,因为能够重合的两个三角形叫全等三角形.)2.如图,已知△ABC与△DEF全等,用几何语言表达全等三角形的性质,找出其中相等的边与角.(∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF;(全等三角形对应边相等)∠A=∠D,∠B=∠E,∠C=∠F.(全等三角形对应角相等))学生通过演示复习全等三角形的定义及性质,为探究新知识作好准备.[提出问题]如果AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F,那么△ABC 和△△DEF能够完全重合,即可判定△ABC≌△△DEF.那么一定要满足三条边分别相等,三个角分别相等,才能保证两个三角形全等吗?能否选取其中的一部分条件,简捷地判定两个三角形全等呢?让我们带着这个问题一起走进全等三角形的判定之旅.【新知探究】知识点1 探究判定三角形全等的条件[提出问题](1)一个对应条件可以吗?画出两个三角形,使得满足一个相等条件,此时的两三角形全等吗?①只有一条边相等(假设为3cm).[动手操作]每个学生在准备好的卡纸上画出一条边为3cm长的三角形,之后剪下来,和同桌所作的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,比如两人画的都是等边三角形,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[提出问题]②只有一个角相等(假设为45°).[动手操作]每个学生在准备好的卡纸上画出一个角为45°的三角形,之后剪下来,和同桌所作的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,比如两人画的都是等腰直角三角形,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[归纳总结]满足一个对应条件相等的两个三角形不一定全等.[提出问题](2)两个对应条件可以吗?先来思考下有几种情况?[交流讨论]小组之间交流讨论.得出有三种情况:①有两条边对应相等.②有两个角对应相等.③有一条边和一个角分别对应相等.[提出问题]画出两个三角形,使得满足两个相等条件,此时的两三角形全等吗?①有两条边对应相等(假设一条边为3cm,另一条边为4cm).②有两个角对应相等(假设一个角为30°,另一个角为60°).③有一条边和一个角分别对应相等(假设一条边为4cm,一个角为30°).[动手操作]将学生分为三大组,每组同学负责一种情况的三角形.各组学生在准备好的卡纸上画出满足条件的三角形,之后剪下来,和同桌所作的满足相同条件的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[归纳总结]满足两个对应条件相等的两个三角形不一定全等.[提出问题]由探究1可知,满足六个条件中的一个或两个条件对应相等,都不能保证两个三角形全等,那么满足六个条件中的三个条件对应相等,能否保证两个三角形全等呢?知识点2 “SSS”证全等[提出问题]先任意画出一个△ABC,再画出一个△A'B'C',使得A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下来,放到△ABC上,它们全等吗?[动手操作]按照老师的要求,每个学生在准备好的卡纸上画出满足条件两个三角形△ABC和△A'B'C',,之后剪下来,看两者是否能够重合(发现重合,所以得到结论是“全等”).之后教师利用多媒体展示示例,验证结论,并说明画△A'B'C'的方法,帮助不会画的学生.[归纳总结]三边分别相等的两个三角形全等(可以简写为“边边边”或“SSS”).该判定定理的几何语言:在△ABC 和△ A'B'C'中,AB=A'B',,,∴△ABC≌△A'B'C'(SSS).[课件展示]教师利用多媒体展示如下例题:例在如图所示的三角形钢架中,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD .证明:∵D 是BC中点,∴BD =DC.在△ABD与△ACD 中,,,,∴△ABD≌△ACD(SSS).[归纳总结]根据例题,总结如下步骤和规则:[课件展示]跟踪训练(2021•云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.证明:在△CDA和△DCB中,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.提醒学生:有些题目的已知条件隐含在题设或图形之中,如公共边,公共角,对顶角等;在图形中,通过证明两个三角形全等,可以为进一步寻求边等、角等、线段间的特殊关系等提供了方法和依据.知识点3 用尺规作一个角等于已知角[课件展示]三角形中线的定义.[提出问题]已知:∠AOB.求作:∠A'O'B'=∠AOB.你会怎么做?根据“三边分别相等判定三角形全等”的结论思考一下吧![交流讨论]小组之间交流讨论,之后在准备好的卡纸上试着作一作.[课件展示]教师利用多媒体展示作法:作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O'A',以点O'为圆心,OC长为半径画弧,交O'A'于点C';(3)以点C'为圆心,CD 长为半径画弧,与第2步中所画的弧交于点D';(4)过点D'画射线O'B',则∠AOB=∠A'O'B'.【课堂小结】【课堂训练】1.如图,在△ABC中,BC=AC,BE=AE,则由“SSS”可以判定( C )A.△ACD≌△BCDB.△ADE≌△BDEC.△ACE≌△BCED.以上都对2.如图,点A,D,B,E在同一条直线上,AD=BE,AC=EF,要使能利用“SSS”判定△ABC≌△EDF,需添加的条件为 BC=DF .【解析】利用SSS判定,则两三角形的三条边应对应相等. 添加BC=DF.∵AD=BE,∴AD+DB=BE+BD,即AB=ED.又知AC=EF,∴添加的条件是BC=DF时,可证得△ABC≌△EDF.提醒学生:等边加同边,其和还是等边.3.(2021•东莞市二模)如图,OA=OB,AC=BC,∠ACO=30°,则∠ACB= 60° .【解析】在△ACO和△BCO中,∴△AOC≌△BOC(SSS).∴∠BCO=∠ACO=30°.∴∠ACB=∠BCO+∠ACO=60°,故答案为60°.4.如图,AB=AC,DB=DC,请说明∠B=∠C.解:连接AD.在△ABD和△ACD中,,,,∴△ABD≌△ACD(SSS).∴∠B=∠C.提醒学生:学会作辅助线帮助解题.5.如图,在△ABC中,AB=AC,D,E是BC的三等分点,AD=AE,求证:△ABE≌△ACD.证明:∵D,E是BC的三等分点,∴BD=DE=EC .∴BD+DE=DE+EC,即BE=CD .在△ABE和△ACD中,,,,∴△ABE≌△ACD(SSS).提醒学生:等边加同边,其和还是等边.6.如图,已知AC=FE,AD=FB,BC=DE.求证:AC//EF,DE//BC.证明:∵AD=FB,∴AD+DB=FB+BD,即AB=FD.在△ABC和△FDE中,,,,∴△ABC≌△FDE(SSS),∴∠A=∠F,∠ABC=∠FDE.∴AC//EF,DE//BC.7.如图,过点C作直线DE,使DE//AB.解:作法:(1)过点C作直线MN与AB相交,交点为F;(2)在直线MN的右侧作∠FCE,使∠FCE=∠AFC;(3)反向延长CE,则直线DE即为所求.【教学反思】本节课是判定三角形全等的第一节课,对于新知识的接受,一部分同学表现出了吃力.刚开始,探究判定三角形全等的条件时,对许多学生来说进行分类有困难,因为他们不知到从什么地方下手,以及做到不重不漏,课堂上,我给予了学生这样一个分类讨论的步骤:第一种情况:满足一个元素;第二种情况:满足两个元素;第三种情况:满足三个元素.在每种情况中,再分边与角.这样分类的好处就是:渗透了数学中的分类讨论思想;明确对应关系,使得后继学习变得顺利.在做练习时,学生对于新知识的掌握在细节上还不牢固,比如,证明全等时的书写格式,有同学忘记写在哪两个三角形中证全等,有同学漏写大括号等等,在今后的教学中,一定要纠正细节,保证学生对而准确地完成一道题.。

三角形全等的判定1第一课时

 三角形全等的判定1第一课时
已知任意△ABC,画一个△A´B´C´,使A´B´=AB,
C
A´C´=AC,B´C´ =BC.这两个三角形全等吗?
剪下 △A´B´C´放在△ABC上,可以看
到△A´B´C´≌ △ABC,所以这两个三
A

B
角形全等.由此可以得到判定两个三角
形全等的一个公理.


归纳总结
A'
A
B
C
B'
三边分别相等的两个三角形全等.
②摆出三个条件用大括号括起来;
③写出全等结论,标明根据.
巩固训练
1. 工人师傅常用角尺平分一个任意角. 做法如下:如图,
∠AOB是一个任意角,在边OA,OB上分别取OM=ON,
移动角尺,使角尺两边相同的刻度分别与M,N重合. 过
角尺顶点C的射线OC便是∠AOB的平分线.为什么?
解:在ΔCMO和ΔCNO中,
OM =ON(已知),

CM =CN(已知),
CO=CO(公共边),

M
C
O
CMO ≌ CNO(SSS)
.
COM =CON (全等三角形对应角相等).
OC 是∠AOB的平分线.
A
N
B
巩固训练
2. 如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC.
A
点A与BC中点D的支架.求证: △ABD≌△ACD.

∵D是BC的中点,
∴BD=CD.
在△ABD和△ACD中,
= ,
ቐ = ,
= ,
∴△ABD≌△ACD(SSS).
归纳总结
证明的书写步骤:
(1)准备条件:

12.2 三角形全等的判定(第一课时SSS)(解析版)

12.2 三角形全等的判定(第一课时SSS)(解析版)

八年级数学上分层优化堂堂清十二章 三角形12.2三角形全等的判定第一课时(解析版)学习目标:1.经历实验探究的过程,直观发现三边相等的两个三角形全等。

会用直规作图法作“一条线段等于已知线段,一个角等于已知角”,提高动手操作能力。

知道这样作图的理由。

2.能利用“SSS ”进行有关的计算或证明。

发展逻辑推理能力、计算能力和空间观念。

老师对你说:知识点1 全等三角形的判定1:边边边(SSS )文字:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等.图形: 符号:在ABC D 与'''A B C D 中,()'''''''''=ìï=\D @D íï=îAB A B AC A C ABC A B C SSS BC B C 证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;④写出结论:写出全等结论.注意:(1)说明两三角形全等所需的条件应按对应边的顺序书写.(2)结论中所出现的边必须在所证明的两个三角形中.知识点2 用尺规作一个角等于已知角已知:∠AOB .求作: ∠A ′O ′B ′=∠AOB .作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C 、D;C'B'A'C BA(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB .知识点3 运用边边边定理证明和计算运用“SSS ”证明两个三角形全等主要是找边相等,边相等除了题目中已知的边相等外,还有一些相等边隐含在题设或图形中。

人教版八年级数学上册《12-2 三角形全等的判定(第1课时)》教学课件PPT初二优秀公开课

人教版八年级数学上册《12-2 三角形全等的判定(第1课时)》教学课件PPT初二优秀公开课
例2 已知:如图,AB=AC,AD=AE,BD=CE. 求证:∠BAC=∠DAE.
分析:要证∠BAC=∠DAE,而这两个角所在 三角形显然不全等,我们可以利用等式的性质 将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明 △ABD≌ △ACE,根据全等三角形的性质可得∠BAD=∠CAE.
探究新知
这说明有三个角对应相等的两个三角形不一定全等.
探究新知
②三条边
已知两个三角形的三条边都分别为3cm、4cm、6cm .它 们一定全等吗?
3cm
4cm
6cm
6cm 4cm
4cm 6cm
3cm
3cm
探究新知
做一做 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′= AB ,B′C′
=BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,它们全
D HC
课堂小结
边边边
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
应用
思路分析 书写步骤
结合图形找隐含条件和现有 条件,找准备条件
四步骤
注意
1.说明两三角形全等所需的条件应按对 应边的顺序书写 2.结论中所出现的边必须在所证明的两 个三角形中
课后作业
作 业 内 容
教材作业
从课后习题中选 取 自主安排 配套练习册练 习
3.已知△ABC ≌ △DEF,找出其中相等的边与角.
A
D
B
①AB=DE
④ ∠A=∠D
C
E
② BC=EF
⑤ ∠B=∠E
F
③ CA=FD
⑥ ∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角形全等.

八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册12.2三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版

八年级数学上册 12.2 三角形全等的判定第1课时用“SSS”判定三角形全等说课稿(新版)新人教版一. 教材分析《新人教版八年级数学上册》第12.2节讲述了三角形全等的判定,这是初中的一个重要知识点。

在这一节中,学生将学习到用“SSS”(Side-Side-Side,即边-边-边)方法判定三角形全等。

通过这一节的学习,学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的基本概念,如三角形的边、角等,并掌握了用“ASA”(Angle-Side-Angle,即角-边-角)和“AAS”(Angle-Angle-Side,即角-角-边)方法判定三角形全等。

因此,学生在理解和掌握用“SSS”方法判定三角形全等时,已经有了相关的基础知识。

三. 说教学目标1.知识与技能:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

2.过程与方法:通过观察、操作、思考、交流等活动,学生能够自主探索用“SSS”方法判定三角形全等的过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,培养合作意识和团队精神,增强对数学学科的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解三角形全等的概念,掌握用“SSS”方法判定三角形全等的方法和技巧。

2.教学难点:学生能够灵活运用“SSS”方法判定三角形全等,解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等,引导学生主动参与课堂活动,培养学生的自主学习能力。

2.教学手段:利用多媒体课件、学具、黑板等,辅助学生直观地理解三角形全等的概念和“SSS”方法。

六. 说教学过程1.导入:通过复习三角形的基本概念和已学的判定方法(ASA和AAS),引导学生进入新的学习内容。

2.自主探究:学生分组合作,利用学具和多媒体课件,观察和操作三角形,自主探索用“SSS”方法判定三角形全等的过程。

三角形全等的判定(第1课时)

三角形全等的判定(第1课时)

第十二章全等三角形12.2 全等三角形的判定第1课时利用“边边边”判定三角形全等一、教学目标【知识与技能】1.掌握“边边边”的内容;2.能初步应用“边边边”条件判定两个三角形全等.3. 能用尺规作一个角等于已知角.【过程与方法】经历探索三角形全等条件的过程,体会用操作、归纳得出数量结论的过程.【情感态度与价值观】通过探索三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力.二、课型新授课三、课时第1课时,共4课时。

四、教学重难点【教学重点】探索三角形全等的条件,会应用“边边边”判定两个三角形全等.【教学难点】探索三角形全等的条件,用尺规作一个角等于已知角.五、课前准备教师:课件、三角尺、圆规、直尺等。

学生:三角尺、圆规、直尺。

六、教学过程(一)导入新课为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?(二)探索新知1.师生互动,探究两个三角形全等的条件教师问1:什么叫全等三角形?学生回答:能够完全重合的两个三角形叫全等三角形.教师问2:全等三角形有什么性质?学生回答:全等三角形的对应边相等,对应角相等.(出示课件4)教师讲解:我们如何识别两个三角形是否全等呢?我们从“条件尽可能的少”出发,逐步增加条件分类进行操作验证,希望得到我们想要的结论.教师问3:满足一个条件对应相等时,识别两个三角形全等,共有几种情况呢?分别是哪些情况?学生讨论并回答:一共有两种情况,①只给一条边时;②只给一个角时.教师问4:请同学们每人画出一个边长为3cm的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.教师问5:请同学们每人画出一个45°的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.结论:只有一条边或一个角对应相等的两个三角形不一定全等.(出示课件6)教师问6:如果满足两个条件判断两个三角形全等,你能说出有哪几种可能的情况?学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.教师请同学们分别按下列条件做一做.①三角形两条边分别为3cm,4cm.三角形②三角形的一条边为4cm,一内角为30°,.③三角形两内角分别为30°和45°教师问7:同学根据①画出的两个三角形全等吗?学生作出图形并且组内识别后回答:两条边对应相等的两个三角形不一定全等.(出示课件8)教师问8:同学根据②画出的两个三角形全等吗?学生做出图形并且组内识别后回答:一条边一个角对应相等的两个三角形不一定全等.(出示课件9)教师问9:同学根据③画出的两个三角形全等吗?学生做出图形并且组内识别后回答:两个角对应相等的两个三角形不一定全等.(出示课件10)教师分析并归纳结论:只满足两个条件画出的三角形不一定全等.总结点拨:(出示课件11)一个条件①一角;②一边;两个条件①两角;②两边;③一边一角.结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等.教师问10:给出三个条件画三角形,会有几种可能的情况?学生思考后师生归纳:有四种可能,即三角、三边、两边一角、两角一边分别相等.教师问11:已知两个三角形的三个内角分别为30°,60° ,90° 它们一定全等吗?学生作出图形并且组内识别后回答:有三个角对应相等的两个三角形不一定全等.(出示课件13)教师问12:已知两个三角形的三条边都分别为3cm、4cm、6cm .它们一定全等吗?(出示课件14)教师演示作法,学生按要求尺规作图,动手操作,通过比较得出结论.这两个三角形相等.教师问13:任意两个三角形的三条边都分别相等.它们一定全等吗?我们进行下边的操作:做一做:先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?教师演示作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B', A 'C'.(出示课件15)学生按要求尺规作图,动手操作,通过比较得出结论.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).总结:(出示课件16)“边边边”判定方法文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)几何语言:在△ABC和△ DEF中,{AB=DE,BC=EF,CA=FD,∴△ABC ≌△ DEF(SSS).例1:如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:(1)△ABD ≌△ACD.(2)∠BAD = ∠CAD.(出示课件17)解题思路:①先找隐含条件:公共边AD ;②再找现有条件:AB=AC③最后找准备条件:D 是BC 的中点→BD=CD师生共同解答如下:(出示课件18)证明:(1)∵ D 是BC 中点,∴ BD =DC.在△ABD 与△ACD 中,{AB =AC (已知)BD =CD (已证)AD =AD (公共边) ∴ △ABD ≌ △ACD ( SSS ).(2)由(1)得△ABD≌△ACD ,∴ ∠BAD= ∠CAD.(全等三角形对应角相等)总结点拨:(出示课件19)证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;:④写出结论:写出全等结论.例2:已知:如图,AB=AC,AD=AE,BD=CE.求证:∠BAC=∠DAE. (出示课件21)分析:要证∠BAC=∠DAE,而这两个角所在三角形显然不全等,我们可以利用等式的性质将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明△ABD≌△ACE,根据全等三角形的性质可得∠BAD=∠CAE.师生共同解答如下:(出示课件22)证明:在△ABD和△ ACE中,AB=AC,AD=AE,BD=CE,∴ △ ABD≌ △ ACE(SSS),∴∠BAD=∠CAE.∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.例3:用尺规作一个角等于已知角.已知:∠AOB.求作:∠A′O′B′=∠AOB.(出示课件24)师生共同解答如下:(出示课件25)作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD 长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.(三)课堂练习(出示课件28-34)1. 如图,D,F是线段BC上的两点,AB=EC,AF=ED,要使△ABF≌△ECD ,还需要条件___________________(填一个条件即可).2.如图,AB=CD,AD=BC, 则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD ≌△CDB;④ BA∥DC.正确的个数是( )A . 1个 B. 2个 C. 3个 D. 4个3. 已知:如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△AED.4. 已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB,(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径作弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.5. 如图,AD=BC,AC=BD.求证:∠C=∠D .(提示: 连结AB)6. 如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全 等的三角形?它们全等的条件是什么?参考答案:1. BF=CD2.C3. 证明:∵BD=CE,∴BD -CD=CE -CD .∴BC=ED .在△ABC 和△ADE 中,AC=AD (已知),AB=AE (已知),BC=ED (已证),∴△ABC≌△AED(SSS ).4. 证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′,在△OCD 和△O′C′D′中D COAB∴△OCD≌△O′C′D′(SSS),∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.5. 证明:连接AB两点,在△ABD和△BAC中,AD=BC,BD=AC,AB=BA,∴△ABD≌△BAC(SSS)∴∠D=∠C.6.解:(四)课堂小结今天我们学了哪些内容:1.本节课学了判定两个三角形全等的条件数目和全等三角形的判定方法(边边边)2.利用尺规作图作一个角等于已知角(五)课前预习预习下节课(12.2)教材37页到39页的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意画△ABC,使AB=3cm,BC=4cm,剪下来,观察任意 两个同学的三角形是否能够重合.
思考:满足两边对应相等的两个三角形是否全等?
A D
B
C AB=DE BC=EF
E
F
提示:不一定全等.
任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB, B′C′=BC,C′A′=CA,判断两个三角形是否全等.
3.如图,在四边形ABCD中AB=CD,AD=BC,则∠A=∠C请说
明理由.
【解析】在△ABD和△CDB中 AB=CD (已知), AD=CB (已知), BD=DB (公共边), ∴ △ABD ≌△CDB (SSS),
D
C
A
B
∴ ∠A= ∠C( 全等三角形的对应角相等 ).
我们利用前面的结论,你 可以得到作一个角等于已知角 的方法吗?
已知:∠AOB,求作:∠A′O′B′=∠AOB
D O B A
D′ B′
A′
C
O′
C′
作法:1.以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D; 2.画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于 点C′;
3.以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;
用数学语言表述:
在△ABC和△DEF中, AB=DE,
A
BC=EF,
CA=FD,
B
D
C
∴ △ABC ≌△ DEF(SSS).
E F
【例题】
【例】如图,△ABC是一个钢架,AB=AC,AD是连接A与BC 中点D的支架.
A
求证:△ABD≌ △ACD.
分析:要证明△ABD≌△ACD, 首先看这两个三角形的三条边是 B D C
4.过点D′画射线O′B′,则∠A′O′B′=∠AOB.
通过本课时的学习,需要我们掌握:
1.三角形全等的判定定理一——SSS.
2.利用它可以证明简单的三角形全等问题.
A 1.如图,AB=AC,AE=AD,BD=CE, 求证:△AEB ≌ △ ADC. B E D C
【证明】 ∵BD=CE,∴ BD-ED=CE-ED,即BE=CD. 在△ AEB和△ ADC中,
AB=AC,
AE=AD, BE=CD, ∴△AEB ≌ △ADC (SSS).
2.已知AC=FE,BC=DE,点A,D,B,F在一条直线上, AD=FB(如图),要用“边边边”证明△ABC ≌△ FDE,
除了已知中的AC=FE,BC=DE以外,还应该有什么条件?
怎样才能得到这个条件? 【解析】要证明△ABC ≌△FDE,
否对应相等.
A 证明:∵ ∴ D是BC的中点, BD=CD, B D C
在△ABD和△ACD中, AB=AC (已知), BD=CD (已证),
AD=AD (公共边),
∴ △ABD ≌ △ACD (SSS).
证明的书写步骤: ①准备条件:证全等时要用的间接条件要先证好; ②三角形全等书写三步骤: 写出在哪两个三角形中; 摆出三个条件用大括号括起来; 写出全等结论.
12.2 三角形全等的判定
第1课时
想一想:
已知△ABC ≌△ A′B′ C′,找出其中相等的边与角:
A
A′
B
AB =A′B′ ∠A =∠A′
C
BC =B′C′ ∠B =∠B′
B′
AC =A′C′
∠C =∠C′
C′
思考:满足这六个条件可以保证△ABC≌△A′B′C′吗?
动脑思考,分类辨析
思考 如果只满足这些条件中的一部分,那么能保 证△ABC ≌△A′B′C′吗? 追问1 全等吗? 追问2 全等吗? 当满足一个条件时, △ABC 与△A′B′C′ 当满足两个条件时, △ABC 与△A′B′C′ ① 两边 ② 一边一角 ③ 两角
还应该有AB=FD这个条件. ∵DB是AB与DF的公共部分,且
AD=FB, ∴AD+DB=BF+DB,即AB=FD.
3.(昆明·中考)如图,点B,D,C,F在一条直线上,且 BC=FD,AB=EF. (1)请你只添加一个条件(不再加辅助线), 使△ABC≌△EFD,你添加的条件是 ;
(2)添加了条件后,证明△ABC≌△EFD. A
作法:1.画线段A′B′=AB; 2.分别以A′,B′为圆心,以线段AC,BC为半径画弧,两 弧交于点C′; 3.连接线段B′C′,A′C′.
C A
C´ B A´ B´
剪下 △A´B´C´放在△ABC上,可以看到△A´B´C´ ≌
△ABC,由此可以得到判定两个三角形全等的一个公理.
三角形全等判定一: 三边分别相等的两个三角形全等 , 简写成:“边边边” 或“SSS”.
两个条件
追问3 当满足三个条件时, △ABC 与△A′B′C′ 全等吗?满足三个条件时,又分为几种情况呢?
三个条件
Hale Waihona Puke ① 三边 ② 三角 ③ 两边一角 ④ 两角一边
1.会用“SSS”(“边边边”)判定三角形全等.
2.会用尺规作一个角等于已知角,了解作图的道理. 3.经历探索三角形全等条件的过程,体会利用操作、归纳 获得数学结论的过程.
【跟踪训练】
1.如图,AB=CD,AC=BD,△ABC和△DCB是否全等? 【解析】△ABC≌△DCB. A D C
理由如下:
AB = DC, B
AC = DB, ∴△ABC≌△DCB (SSS). BC= CB, 2.如图,D,F是线段BC上的两点, AB=EC,AF=ED,要使△ABF≌△ECD , 还需要条件 BF=CD 或BD=CF . B D F C A E
C D E
B
F
【解析】 (1) AC=ED. (2)在△ ABC和△ EFD中, AB=EF, BC=FD, AC=ED,

△ABC ≌ △EFD
(SSS).
在数学这门科学里,我们发现真理的 主要工具是归纳和类比. ——拉普拉斯
相关文档
最新文档