高中物理必修2 模块检测(附答案)

合集下载

人教版高中物理必修二检测:模块综合检测 Word版含答案

人教版高中物理必修二检测:模块综合检测 Word版含答案

模块综合检测(时间:90分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,1~5小题只有一个选项正确,6~8小题有多个选项正确。

全部选对的得6分,选不全的得3分,有选错或不答的得0分)1.在牛顿发现太阳与行星间的引力过程中,得出太阳对行星的引力表达式后推出行星对太阳的引力表达式,是一个很关键的论证步骤,这一步骤采用的论证方法是()A.研究对象的选取B.理想化过程C.控制变量法D.等效法解析:对于太阳与行星之间的相互作用力,太阳和行星的地位完全相同,既然太阳对行星的引力符合关系式F∝,依据等效法,行星对太阳的引力也符合关系式F∝,故D项正确。

答案:D2.跳伞表演是人们普遍喜欢的观赏性体育项目,如图所示,当运动员从直升机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法中正确的是()A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关解析:根据运动的独立性原理,水平方向吹来的风不会影响竖直方向的运动,A、C错误;根据速度的合成,落地时速度v=,风速越大,v x越大,则降落伞落地时速度越大,B正确,D错误。

答案:B3.某老师在做竖直面内圆周运动快慢的实验研究,并给运动小球拍了频闪照片,如图所示(小球相邻影像间的时间间隔相等),小球在最高点和最低点的运动快慢比较,下列说法中不正确的是()A.该小球所做的运动不是匀速圆周运动B.最高点附近小球相邻影像间弧长短,线速度小,运动较慢C.最低点附近小球相邻影像间圆心角大,角速度大,运动较快D.小球在相邻影像间运动时间间隔相等,最高点与最低点运动一样快解析:由所给频闪照片可知,在最高点附近,像间弧长较小,表明最高点附近的线速度较小,运动较慢;在最低点附近,像间弧长较大,对应相同时间内通过的圆心角较大,故角速度较大,运动较快,A、B、C选项正确,D选项不正确。

2024_2025年新教材高中物理模块检测含解析新人教版选择性必修第二册

2024_2025年新教材高中物理模块检测含解析新人教版选择性必修第二册

模块达标验收(时间:90分钟满分:100分)一、选择题(本题共12小题,共40分。

第1~8小题,在每小题给出的四个选项中,只有一个正确选项,每小题3分;第9~12小题有多个正确选项,全选对的得4分,选对但不全的得2分,有选错的得0分)1.在物理学发展过程中,观测、试验、假说和逻辑推理等方法都起到了重要作用。

下列叙述不符合史实的是( )A.奥斯特在试验中视察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培依据通电螺线管的磁场和条形磁铁的磁场的相像性,提出了分子电流假说C.法拉第在试验中视察到,在通有恒定电流的静止导线旁边的固定闭合导线圈中,会出现感应电流D.楞次在分析了很多试验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变更解析:选C 通有恒定电流的静止导线旁边产生的磁场是不变的,在其旁边的固定闭合导线圈中没有磁通量的变更,因此,不会出现感应电流,选项C错误。

2.电阻R、电容C与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N极朝下,如图所示。

现使磁铁起先自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电状况是( )A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电解析:选D 磁铁自由下落,在N极接近线圈上端的过程中,通过线圈的磁通量方向向下且在增大,依据楞次定律可推断出线圈中感应电流的磁场方向向上,利用安培定则可推断出线圈中感应电流方向为逆时针绕向(由上向下看),流过R的电流方向从b到a,电容器下极板带正电。

选项D正确。

3.压敏电阻的阻值随所受压力的增大而减小,有位同学设计了利用压敏电阻推断升降机运动状态的装置,其工作原理如图所示。

将压敏电阻固定在升降机底板上,其上放置一个物块,在升降机运动过程的某一段时间内,发觉电流表的示数I不变,且I大于升降机静止时电流表的示数I0,在这段时间内( )A.升降机可能匀速上升B.升降机肯定匀减速上升C.升降机肯定处于失重状态D.通过压敏电阻的电流肯定比电梯静止时大解析:选C 在升降机运动过程的某一段时间内,电流表示数I 不变,且有I >I 0,则说明电源的路端电压增大了,从而分析出是压敏电阻的阻值增大了,压敏电阻受的压力减小了,由牛顿其次定律可知,物块具有向下的加速度,处于失重状态,升降机可能向下匀加速运动,也可能向上匀减速运动,故C 正确,A 、B 错误;因压敏电阻的阻值增大,电源总电流减小,电流表示数变大,故通过压敏电阻的电流肯定比电梯静止时小,D 错误。

高一物理必修二验收试卷及答案详解

高一物理必修二验收试卷及答案详解

物理必修二模块测试题一、单项选择题(每小题4分,共40分)1.关于匀速圆周运动,下列说法不正确的是()A.线速度不变B.角速度不变C.频率不变D.周期不变2.如图所示,飞机离地面高度为H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20 m/s同向行驶的汽车,欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处投弹?(g=10m/s2) ()A.600m B.800mC.1000m D.1200m3.宇宙飞船要与环绕地球运转的轨道空间站对接,飞船为了追上轨道空间站()A.只能从较低轨道上加速 B.只能从较高轨道上加速C.只能从与空间站同一高度轨道上加速 D.无论在什么轨道上,只要加速都行4.在放射宇宙飞船时,利用地球的自转可以尽量削减放射时火箭所供应的能量,那么最志向的放射场地应在地球的()A.北极 B.赤道 C.南极 D.除以上三个位置以外的其他某个位置5.下列关于地球同步通信卫星的说法中,正确的是()A.为避开通信卫星在轨道上相撞,应使它们运行在不同的轨道上B.通信卫星定点在地球上空某处,各个通信卫星的角速度相同,但线速度可以不同C.不同国家放射通信卫星的地点不同,这些卫星轨道不肯定在同一平面内D.通信卫星只能运行在赤道上空某一恒定高度上6.如右图所示,桌面高为h,质量m的小球从离桌面高H处自由下落,不计空气阻力,假设桌面为参考平面,则小球落到地面前瞬间的机械能为()A.0 B.mghC.mgH D.mg(H+h)7.在水平面上一轻质弹簧竖直放置,在它正上方一物体自由落下,如图2所示,在物体压缩弹簧速度减为零的过程中()A.物体的动能不断减小B.物体所受的合力为零C.弹簧的弹性势能不断增大D.物体的机械能守恒8.将物体以60 J的初动能竖直向上抛出,当它上升至某点P时,动能减为10 J,机械能损失10 J,若空气阻力大小不变,那么物体落回抛出点的动能为()A.36 J B.40 J C.48 J D.50 J9.质量相同的两个小球,分别用长l和2l的细绳悬挂在天花板上,分别拉起小球,使细绳伸直呈水平状态后轻轻释放,当小球到达最低位置时()A.它们的线速度相等B.它们的角速度相等 C.它们的向心加速度相等D.绳对球的拉力不相等10.如图3所示,长为L的细绳,一端系着一只小球,另一端悬于O点,将小球由图示位置由静止释放,当摆到O 点正下方时,绳被小钉拦住.当钉子分别处于图中A 、B 、C 三个不同位置时,小球接着摆的最大高度分别为h 1、h 2、h 3,则( )A .h 1>h 2>h 3B .h 1=h 2=h 3C .h 1>h 2=h 3D .h 1=h 2>h 3二、双项选择题(每小题6分,共24分。

最新人教版必修2高中物理模块检测检测题及答案

最新人教版必修2高中物理模块检测检测题及答案

模块检测[时间:90分钟满分:100分]一、单项选择题(本题共6小题,每小题4分,共24分)1.对做平抛运动的物体,若g已知,再给出下列哪组条件,可确定其初速度大小( )A.物体的水平位移B.物体下落的高度.物体落地时速度的大小D.物体运动位移的大小和方向2.一只小船在静水中的速度为3/,它要渡过一条宽为30 的河,河水流速为5 /,则以下说法正确的是( )A.该船可以沿垂直于河岸方向的航线过河B.水流的速度越大,船渡河的时间就越长.船头正指对岸渡河,渡河时间最短D.船头方向斜向上游,船渡河的时间才会最短3.如图1所示,小球A质量为,固定在长为L的轻细直杆一端,并随杆一起绕杆的另一端O点在竖直平面内做圆周运动,如果小球经过最高位置时速度为,则此时杆对球的作用力为( )图1A.支持力,g B.支持力,g.拉力,g D.拉力,g4.物体做自由落体运动,E p表示重力势能,表示下落的距离,以水平地面为零势能面,下列所示图象中,能正确反映E p和之间关系的是( )5.研究表明:地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未人类发射的地球同步卫星与现在相比( )A.距地面的高度不变B.距地面的高度变大.线速度变大D.向心加速度变大6.如图2所示,小球从静止开始沿光滑曲面轨道AB滑下,从B端水平飞出,撞击到一个与地面成θ=37°的斜面上,撞击点为已知斜面上端与曲面末端B相连,若AB的高度差为,B间的高度差为H,则与H的比值等于(不计空气阻力,37°=06,c37°=08)( )图2ABD二、多项选择题(本题共4小题,每小题6分,共24分)7.如图3所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为的小环,从大环的最高处由静止滑下,滑到大环的最低点的过程中(重力加速度大小为g)( )图3A.小环滑到大圆环的最低点时处于失重状态B.小环滑到大圆环的最低点时处于超重状态.此过程中小环的机械能守恒D.小环滑到大环最低点时,大环对杆的拉力大于(+M)g8.神舟十号飞船于2013年6月11日顺利发射升空,它是中国“神舟”号系列飞船之一,是中国第五艘载人飞船.升空后和目标飞行器天宫一号对接.任务是对“神九”载人交会对接技术的“拾遗补缺”.如图4所示,已知神舟十号飞船的发射初始轨道为近地点距地表200、远地点距地表330的椭圆轨道,对接轨道是距地表343的圆轨道.下列关于神舟十号飞船的说法中正确的是( )图4A.发射速度必须大于79/B.在对接轨道上运行速度小于79/.在初始轨道上的近地点速度大于在远地点的速度D.在初始轨道上的周期大于在对接轨道上的周期9.假设质量为的跳伞运动员,由静止开始下落,在打开伞之前受恒定阻力作用,下落的加速度为g,在运动员下落的过程中,下列说法正确的是( )A.运动员的重力势能减小了gB.运动员克服阻力所做的功为g.运动员的动能增加了gD.运动员的机械能减少了g10.两颗距离较近的天体,以天体中心连线上的某点为圆心,做匀速圆周运动,这两个天体称为双星系统.以下关于双星的说法正确的是( )A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比三、实验题(本题2小题,共12分)11.(5分)某同把附有滑轮的长木板平放在实验桌面上,将细绳一端拴在小车上,另一端绕过定滑轮,挂上适当的钩码使小车在钩码的牵引下运动,以此定量研究绳拉力做功与小车动能变的关系.此外还准备了打点计时器及配套的电、导线、复写纸、纸带、小木块等.组装的实验装置如图5所示.图5(1)若要完成该实验,必须的实验器材还有___________________________________;(2)实验开始前,他先通过调节长木板的倾斜程度平衡小车所受摩擦力,再调节木板一端定滑轮的高度,使牵引小车的细绳与木板平行.实验中将钩码重力做的功当作细绳拉力做的功.经多次实验发现拉力做的功总是要比小车动能增量大一些,这一情况可能是下列哪些原因造成的__________(填字母代号).A.释放小车的位置离打点计时器太近B.小车的质量比钩码的质量大了许多.摩擦阻力未完全被小车重力沿木板方向的分力平衡掉D.钩码做匀加速运动,钩码重力大于细绳拉力12.(7分)如图6所示,在“验证机械能守恒定律”的实验中,电火花计时器接在220V、50Hz的交流电上,自由下落的重物质量为1g,打下一条想的纸带如图7所示,取g=98/2,O为下落起始点,A、B、为纸带上打出的连续点迹,则:图6图7(1)打点计时器打B点时,重物下落的速度v B=________/;从起始点O到打B点的过程中,重物的重力势能减少量ΔE p=________J,动能的增加量ΔE=________J.(结果均保留3位有效字)(2)分析ΔEΔE p的原因是________________________________________________.三、计算题(共4小题,共40分)13.(8分)宇航员站在某星球表面,从高处以初速度v0水平抛出一个小球,小球落到星球表面时,与抛出点的水平距离是,已知该星球的半径为R,引力常量为G,求:(1)该星球的质量M;(2)该星球的第一宇宙速度.14.(8分)如图8所示,轨道AB被竖直地固定在水平桌面上,A距水平地面高H =075,距水平地面高=045.一质量=010g的小物块自A点从静止开始下滑,从点以水平速度飞出后落在地面上的D点.现测得、D两点的水平距离为=060.不计空气阻力,取g=10/2求:图8(1)小物块从点飞出时速度的大小v;(2)小物块从A点运动到点的过程中克服摩擦力做的功W f15.(12分)如图9所示,水平传送带AB的右端与在竖直面内的用内径光滑的钢管弯成的“9”形固定轨道相接,钢管内径很小.传送带的运行速度v0=40/,将质量=1g的可看做质点的滑块无初速度地放在传送带的A端.已知传送带长度L=40,离地高度=04,“9”字全高H=06,“9”字上半部分圆弧的半径R=01,滑块与传送带间的动摩擦因μ=02,重力加速度g=10/2,试求:图9(1)滑块从传送带A端运动到B端所需要的时间;(2)滑块滑到轨道最高点时对轨道的作用力;(3)滑块从D点抛出后的水平射程.(结果保留三位有效字)16.(12分)如图10所示,AB与D为两个对称斜面,其上部都足够长,下部分别与一个光滑的圆弧面的两端相切,圆弧圆心角为106°,半径R=20.一个质量为2g的物体从A点由静止释放后沿斜面向下运动,AB长度为L=5,物体与两斜面的动摩擦因均为μ=02(g=10/2,53°=08,c53°=06)求:图10(1)物体第一次到达弧底时,对E点的作用力;(2)物体在整个运动过程中系统产生的热量;(3)物体在整个运动过程中,对弧底E点最小作用力的大小.答案精析模块检测1.D 2 3A 4B 5B6.D [由A到B,由机械能守恒得g=v2,由B到小球做平抛运动,则H=g2,=v,联立三式解得=,选项D正确.]7.BD8.AB [第一宇宙速度是指发射地球卫星所需的最小发射速度,离地越高的卫星所需的发射速度越大,但在轨道上运行速度越小,即第一宇宙速度也是地球卫星最大绕行速度,其值为79 /,故A、B正确;根据开普勒第二定律,则近地点速度大于在远地点的速度,故正确;根据开普勒第三定律,在初始轨道上的周期小于在对接轨道上的周期,故D错.]9.D 10BD11.(1)刻度尺、天平(2)D12.(1)0775 0308 0300(2)由于纸带和打点计时器之间摩擦有阻力以及重物受到空气阻力13 (1) (2)解析(1)设星球表面的重力加速度为g,则由平抛运动规律:=v0,=g2再由g=G,解得:M=(2)设该星球的近地卫星质量为0,则g=解得v=14.(1)20/ (2)010J解析(1)从到D,根据平抛运动规律得竖直方向:=g2水平方向:=v·解得小物块从点飞出时速度的大小:v=20/ (2)小物块从A到,根据动能定得g(H-)-W=vf求得克服摩擦力做功W f=010J15.(1)2 (2)30N,方向竖直向上(3)113解析(1)滑块在传送带上加速运动时,由牛顿第二定律得知μg=,得=2 /2加速到与传送带速度相同所需时间为==2此过程位移=2=4此时滑块恰好到达B端,所以滑块从A端运动到B端的时间为=2(2)滑块由B运动到的过程中机械能守恒,则有gH+v=v,解得v=2 /滑块滑到轨道最高点时,由牛顿第二定律得F N+g=解得F N=30 N根据牛顿第三定律得到,滑块对轨道作用力的大小F N′=F N=30 N,方向竖直向上.(3)滑块从运动到D的过程中机械能守恒,得:g·2R+v=v,解得v D=2 /D点到水平地面的高度H=+(H-2R)=08D由H D=g′2得,′==04所以水平射程为′=v D′≈11316.(1)104N (2)80J (3)36N解释(1)物体从A点第一次运动到E点的过程中,由动能定gL53°+gR(1-c53°)-μgL c53°=v2-0F-g=N得F N=104N由牛顿第三定律知,物体第一次到达弧底时,对E点为竖直向下的压力,大小为104N(2)物体最终将在B圆弧中做往复运动,从A点开始运动至最终运动状态的B点,由能量转关系得gL53°=Q解得Q=80J(3)据题意可得,物体最终在B圆弧中做往复运动,由动能定有gR(1-c 53°)=v-0 F′-g=,得:F N′=36NN由牛顿第三定律知物体在弧底对E点的压力最小为36N。

高中物理必修二模块水平综合检测(全册最新整理含答案)

高中物理必修二模块水平综合检测(全册最新整理含答案)

高中物理必修二模块水平综合检测(最新整理)(时间:90分钟 满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是( )A .若小球初速度增大,则θ减小B .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .小球水平抛出时的初速度大小为gt tan θ2.关于摩擦力做功,以下说法正确的是( )A .滑动摩擦力阻碍物体的相对运动,所以一定做负功B .静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C .静摩擦力和滑动摩擦力不一定都做负功D .一对相互作用力,若作用力做正功,则反作用力一定做负功3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4 D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1 4.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-15.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R27.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d =0.50 m 盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .08.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh 9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为()A.n3k2T B.n3k T C.n2k T D.nk T10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B 即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点14.(全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2,则此探测器()A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O 的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p =__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.16.(8分)如图所示,在固定光滑水平板上有一光滑小孔O,一根轻绳穿过小孔,一端连接质量m=1 kg的小球A,另一端连接质量M=4 kg的物体B.当A球沿半径r=0.1 m的圆周做匀速圆周运动时,要使物体B不离开地面,A球做圆周运动的角速度有何限制(g取10 m/s2)?17.(14分)据报道,人们最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍.已知一个在地球表面质量为50 kg 的人在这个行星表面的重量约为800 N,地球表面处的重力加速度为10 m/s2.求:(1)该行星的半径与地球的半径之比;(2)若在该行星上距行星表面2 m高处,以10 m/s的水平初速度抛出一只小球(不计任何阻力),则小球的水平射程是多大.18.(16分)如图所示,一长度L AB =4.98 m 、倾角θ=30°的光滑斜面AB 和一固定粗糙水平台BC 平滑连接,水平台长度L BC =0.4 m ,离地面高度H =1.4 m ,在C 处有一挡板,小物块与挡板碰撞后以原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内.在斜面顶端A 处由静止释放质量为m =2 kg 的小物块(可视为质点),忽略空气阻力,小物块与BC 间的动摩擦因数μ=0.1,g 取10 m/s 2.求:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B 点多少次停下来,在BC 上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D 点,已知半球体半径r =0.75 m ,OD 与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板(sin 53°=45,cos 53°=35)?高中物理必修二模块水平综合检测(最新整理)参考答案一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t 到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g .下列说法正确的是()A .若小球初速度增大,则θ减小B .小球在t 时间内的位移方向与水平方向的夹角为θ2C .若小球初速度增大,则平抛运动的时间变长D .小球水平抛出时的初速度大小为gt tan θ解析:小球落地时竖直方向上的速度v y =gt ,因为落地时速度方向与水平方向的夹角为θ,则tan θ=gt v 0,可知若小球初速度增大,则θ减小,故A 正确;小球落地时位移方向与水平方向夹角的正切值tanα=y x =12gt 2v 0t =gt 2v 0,tan θ=2tan α,但α≠θ2,故B 错误;平抛运动的落地时间由高度决定,与初速度无关,故C 错误;速度方向与水平方向夹角的正切值tan θ=v y v 0=gt v 0,小球的初速度v 0=gt tan θ,故D 错误.答案:A2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功解析:摩擦力可以是动力,故摩擦力可做正功;一对相互作用力,可以都做正功,也可以都做负功;静摩擦力可以做功,也可以不做功,故选项A、B、D错误,C正确.答案:C3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶1解析:由题意知,A轮通过链条分别与C、D连接,自行车可有两种速度,B轮分别与C、D连接,又可有两种速度,所以该车可变换四种挡位;当A与D组合时,两轮边缘线速度大小相等,A转一圈,D 转4圈,即ωAωD=14,选项C 对. 答案:C4.已知靠近地面运转的人造卫星,每天转n 圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为( )A .nB .n 2 C.n 3-1 D.3n 2-1 解析:设同步卫星离地面的高度为h ,地球半径为R .近地卫星的周期为T 1=24 h n ,同步卫星的周期为T 2=24 h ,则T 1∶T 2=1∶n ,对于近地卫星有G Mm R 2=m 4π2T 21R , 对于同步卫星有G Mm ′(R +h )2=m ′4π2T 22(R +h ), 联立解得h =(3n 2-1)R ,故D 正确.答案:D5.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A .这三滴油依次落在OA 之间,且后一滴比前一滴离O 点远B .这三滴油依次落在OA 之间,且后一滴比前一滴离O 点近C .这三滴油依次落在OA 间同一位置上D.这三滴油依次落在O点上解析:油滴下落的过程中,在竖直方向上做自由落体运动,根据自由落体运动的规律可得,油滴运动的时间是相同的,在水平方向上,油滴离开车之后做匀速直线运动,但此时车做匀加速直线运动,油滴相对于车厢在水平方向上的位移就是车在水平方向上多走的位移,即Δx=12at2,由于时间和加速度都是确定不变的,所以三滴油会落在同一点,即落在OA间同一位置上,故C正确.答案:C6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R2解析:设其他土豆对该土豆的作用力为F,则该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=(mg)2+F2向,而F向=mω2R,所以F=m2g2+m2ω4R2,C正确.答案:C7.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50 m 盆边缘的高度为h=0.30 m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B的距离为()A.0.50 m B.0.25 mC.0.10 m D.0解析:设小物块在BC面上运动的总路程为s.物块在BC面上所受的滑动摩擦力大小始终为f=μmg,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh-μmgs=0,得到s=hμ=0.30.1m=3 m,d=0.50 m,则s=6d,所以小物块在BC面上来回运动共6次,最后停在B点.故选D.答案:D8.如图所示,质量为m的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC .动能损失了mghD .动能损失了32mgh解析:重力做功W G =-mgh ,故重力势能增加了mgh ,A 错.物体所受合力F =ma =34mg ,合力做功W 合=-F h sin 30°=-34mg ×2h =-32mgh ,由动能定理知,动能损失了32mgh ,B 、C 错,D 正确. 答案:D9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2k T D.nk T解析:设两颗星的质量分别为m 1、m 2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得:Gm1·m2(r1+r2)2=m1r14π2T2,Gm1·m2(r1+r2)2=m2r24π2T2,联立解得:m1+m2=4π2(r1+r2)3GT2,即T2=4π2(r1+r2)3G(m1+m2),因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=n3k T,选项B正确,其他选项均错.答案:B10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2解析:若s1<s2,由于高度决定了平抛运动的时间,所以两个物体运动时间相等.由x=v0t知:水平抛出两个物体的初速度关系为v1<v2.由于以相同的动能从同一点水平抛出,所以两个物体的质量关系是m2<m1.自抛出到落地的过程中,重力做的功W=mgh,所以W1>W2,平抛运动竖直方向做自由落体运动,所以落地瞬间两个物体的竖直方向速度v y相等,根据瞬时功率P=F v cos α,落地瞬间重力的即时功率P=mg v y.由于m2<m1,所以P1>P2,故A正确,B错误.以相同的动能从同一点水平抛出两个物体a和b,由于高度决定时间,所以两个物体运动时间相等.若s1=s2,平抛运动水平方向做匀速直线运动,所以水平抛出两个物体的初速度相等.由于以相同的动能从同一点水平抛出,所以两个物体的质量相等.所以自抛出到落地的过程中,重力做的功相等,即W1=W2.落地瞬间重力的即时功率相等,即P1=P2,则C、D错误.故选A.答案:A二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A .B 球在最低点较A 球在最低点更易脱离轨道B .若B 球在最低点与杆间的作用力为3mg ,则A 球在最高点受杆的拉力C .若某一周A 球在最高点和B 球在最高点受杆的力大小相等,则A 球受杆的支持力,B 球受杆的拉力D .若每一周做匀速圆周运动的角速度都增大,则同一周B 球在最高点受杆的力一定大于A 球在最高点受杆的力解析:两球的角速度相同,由向心力公式F n =mω2r 可知,由于B 的运动半径较大,所需要的向心力较大,而由题意,两球的重力相等,杆对两球的最大拉力相等,所以在最低点B 球更容易做离心运动,更容易脱离轨道,故A 正确.若B 球在最低点与杆间的作用力为3mg ,设B 球的速度为v B .则根据牛顿第二定律,得N B -mg =m v 2B 2L ,且N B =3mg ,得v B =2gL ,由v =ωr ,ω相等,A 的半径是B 的一半,则得此时A 的速度为v A =12v B =gL .对A 球,设杆的作用力大小为N A ,方向向下,则有mg +N A =m v 2A L ,解得N A =0,说明杆对A 球没有作用力,故B 错误.若某一周A 球在最高点和B 球在最高点受杆的力大小相等,设为F ,假设在最高点杆对A 、B 球产生的都是支持力,对B球有mg-F=mω2·2L;对A球有mg-F=mω2L;很显然上述两个方程不可能同时成立,说明假设不成立,则知两球所受的杆的作用力不可能同时是支持力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不可能同时成立,所以两球不可能同时受杆的拉力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是支持力,有mg-F=mω2L;两个方程能同时成立,所以可能A球受杆的支持力、B球受杆的拉力.对B球,若杆对B球产生的是支持力,有mg-F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不能同时成立,所以不可能A球受杆的拉力,而B球受杆的支持力.综上,A球在最高点和B球在最高点受杆的力大小相等时,A球受杆的支持力、B球受杆的拉力,故C正确.当两球在最高点所受的杆的作用力都是支持力时,则对B球,有mg-F B=mω2·2L,得F B=mg-2mω2L;对A球,若杆对A球产生的是支持力,有mg-F A=mω2L,得F A=mg-mω2L,可得F A>F B,故D错误.答案:AC12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大解析:在转动过程中,两物块做圆周运动都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供所需向心力时,绳子中就会产生拉力,当这两个力的合力都不足以提供向心力时,物块将会与CD杆发生相对滑动.根据向心力公式F向=m v 2R=mω2R,可知在发生相对滑动前物块的运动半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力大小等于物块所受的合力,故D 正确.由于A的运动半径比B的小,A、B的角速度相同,知当角速度逐渐增大时,B物块先达到最大静摩擦力;角速度继续增大,B物块靠绳子的拉力和最大静摩擦力提供向心力;角速度增大,拉力增大,则A物块所受的摩擦力减小,当拉力增大到一定程度,A物块所受的摩擦力减小到零后反向,角速度增大,A物块所受的摩擦力反向增大.所以A所受的摩擦力先增大后减小,再增大;B物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,故A、C错误,B正确.答案:BD13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点解析:过山车在竖直圆轨道上做圆周运动,机械能守恒,动能和重力势能相互转化,速度大小变化,不是匀速圆周运动,故A错误;在最高点,重力和轨道对车的压力提供向心力,当压力为零时,速度最小,则mg=m v 2R,解得:v=gR,故B正确;在最低点时,重力和轨道对车的压力提供向心力,加速度向上,乘客处于超重状态,故C正确;过山车在斜面h=2R高处由静止滑下到最高点的过程中,根据动能定理得:12m v ′2=mg (h -2R )=0.解得;v ′=0,所以不能通过最高点,故D 错误.故选B 、C.答案:BC14.(2015·课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2,则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103 NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有G M 地mR 2地=mg 地,在月球表面附近有G M 月m R 2月=mg 月,可得g 月=1.656 m/s 2,所以探测器落地的速度为v =2g 月h =3.64 m/s ,故A 错误;探测器悬停时受到的反冲作用力为F =mg 月≈2×103 N ,B 正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C 错误;在靠近星球的轨道上有G Mm R 2=mg =m v 2R ,即有v =gR ,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D正确.答案:BD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O。

物理必修模块2答案(人教版)

物理必修模块2答案(人教版)

北京市普通高中课程改革实验模块考试物理必修模块2参考样卷答案及评分参考(人教版)第 I 卷(机读卷 共50分)第II 卷(非机读卷 共50分)一、填空题(每小题5分,共15分)11.增大……………………………………………………………..…3分大于………………………………………………………….…….2分12.万有引力………………………………….……………..………..3分失重……………………………………..……………..………….2分13.等于…………………………………………………..……………3分大于………………………………………………….……………2分二、论述、计算题(共35分)14.(8分)(1)拉力F 在此过程中所做的功W = Fs = 64 J ………………………………………………4分(2)由动能定理,物体运动到B 点时的动能E kB = W =64 J …………………………………………….. 4分15.(8分)(1)地球对卫星的万有引力的大小F=G2r Mm……………………………………………………..…4分. (2)设卫星的速度大小为v ,由牛顿第二定律有G 2rMm=m r v 2解得 v =rGM……………………………………………4分. 16.(9分)汽车转弯时,汽车受的静摩擦力提供向心力。

根据牛顿第二定律有f m =m rv 2m解得:v m =mrf m =15m/s………………………………………………………5分 (2)① 在转弯处增设限速标志;② 将转弯处的路面设计为外高内低. ……………………………………………………其他说法中合理的均可得分。

………………………………………..…4分 17.(10分)(1)设小球离开轨道时的速度大小为v ,对于平抛运动过程有x=vt , h =21gt 2所以 v =2hgx= 6 m/s ………………………………………………5分 (2)对于小球在轨道上的运动过程,根据机械能守恒定律有mg (H-h )=21mv 2 所以 H=h+2gv 2= 5 m…………………………………………………5分。

人教版高中物理必修二模块过关检测卷答案

人教版高中物理必修二模块过关检测卷答案

-1-人教版高中物理必修二模块过关检测卷答案一、1. C 点拨:两个运动的初速度合成与加速度合成图如答图1所示,当a 与v 重合时,物体做直线运动;当a 与v 不重合时,物体做抛物线运动。

由于题目没有给出两个运动的加速度和初速度的具体数值及方向,所以以上两种情况都有可能,故正确答案为C 。

2. A 点拨:做曲线运动时,物体所受外力一定指向弯曲一侧,如果是轨迹a,质点所受外力方向一定是变化的,跟题干质点受到恒力作用矛盾,故不可能是轨迹a 。

3. D 点拨:物体做平抛运动时,在竖直方向做自由落体运动,则gt v y =。

所以选项D 正确。

4.BC 点拨:匀速圆周运动中线速度大小不变,向心加速度是描述线速度方向变化快慢的物理量。

5. D 点拨:由R T 4R G 222πm Mm =得,2234T G R πM =,所以41641T T R R 332B2A B ===A ;又因为3322242TGMGMT TR v πππω===,所以1218T T v v 33A B B ===A 。

6. D 点拨:设1S 和2S 的质量分别为1m 、2m ,对于1S 有221121r )T 2(r m m G m ⋅=π,得212224m GTr r π=。

解决本题的关键是把万有引力定律应用到双星系统上,紧紧抓住一方对另一方的引力是另一方做圆周运动的向心力。

7.BC 点拨:第一宇宙速度是人造卫星的最大运行速度,最小发射速度;而在卫星中的所有物体均处于完全失重状态,但物体的质量是物体本身的属性,因此在卫星中物体的质量不变。

8.A 点拨:如果物体所受合外力为零,根据功的公式αcos Fx W =,外力做功一定为零,故A 正确;物体做匀速圆周运动时,由于速度方向不断变化,是变速运动,合外力始终指向圆心,但由于跟速度方向垂直,不做功,动能不变,故B 、C 、D 错误。

9.CD 点拨:跳伞运动员跳离飞机,在尚未打开降落伞的这段时间内,运动员向下运动,重力对运动员做正功,-2-重力势能减少,空气阻力对运动员做负功;由于重力大于空气阻力,运动员向下做加速运动,其动能增加,故A 、B 错,C 、D 正确。

高中物理必修二全册综合检测模块综合测试题(最新整理含答案)

高中物理必修二全册综合检测模块综合测试题(最新整理含答案)

高中物理必修二(全册)必修二模块综合测试题(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是()A.若小球初速度增大,则θ减小B.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.小球水平抛出时的初速度大小为gt tan θ2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则()A.该车可变换两种不同挡位B.该车可变换五种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=4∶14.已知靠近地面运转的人造卫星,每天转n圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为()A.n B.n2C.n3-1D.3n2-15.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R27.如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50 m盆边缘的高度为h =0.30 m.在A处放一个质量为m的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B的距离为()A.0.50 m B.0.25 mC .0.10 mD .08.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mgh C .动能损失了mgh D .动能损失了32mgh9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A.n 3k 2T B.n 3k T C.n 2k T D.nk T10.以相同的动能从同一点水平抛出两个物体a 和b ,落地点的水平位移为s 1和s 2,自抛出到落地的过程中,重力做的功分别为W 1、W 2,落地瞬间重力的即时功率为P 1和P 2( )A .若s 1<s 2,则W 1>W 2,P 1>P 2B .若s 1<s 2,则W 1>W 2,P 1<P 2C .若s 1=s 2,则W 1>W 2,P 1>P 2D .若s 1=s 2,则W 1<W 2,P 1<P 2二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大13.如图为过山车以及轨道简化模型,以下判断正确的是()A.过山车在圆轨道上做匀速圆周运动B.过山车在圆轨道最高点时的速度应不小于gRC.过山车在圆轨道最低点时乘客处于超重状态D.过山车在斜面h=2R高处由静止滑下能通过圆轨道最高点14.(课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面 4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2,则此探测器() A.在着陆前的瞬间,速度大小约为8.9 m/sB.悬停时受到的反冲作用力约为2×103 NC.从离开近月圆轨道到着陆这段时间内,机械能守恒D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位) 15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A.动能变化量与势能变化量B.速度变化量与势能变化量C.速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A.交流电源B.刻度尺C.天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A、B、C,测得它们到起始点O的距离分别为h A、h B、h C.已知当地重力加速度为g,打点计时器打点的周期为T.设重物的质量为m.从打O点到打B点的过程中,重物的重力势能变化量ΔE p=__________,动能变化量ΔE k=________.图乙(4)大多数学生的实验结果显示,重力势能的减少量大于动能的增加量,原因是________.A.利用公式v=gt计算重物速度B.利用公式v=2gh计算重物速度C.存在空气阻力和摩擦阻力的影响D.没有采用多次实验取平均值的方法(5)某同学想用下述方法研究机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度v,描绘v2h图象,并做如下判断:若图象是一条过原点的直线,则重物下落过程中机械能守恒.请你分析论证该同学的判断依据是否正确.16.(8分)如图所示,在固定光滑水平板上有一光滑小孔O,一根轻绳穿过小孔,一端连接质量m=1 kg的小球A,另一端连接质量M=4 kg的物体B.当A球沿半径r=0.1 m的圆周做匀速圆周运动时,要使物体B不离开地面,A 球做圆周运动的角速度有何限制(g取10 m/s2)?17.(14分)据报道,人们最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍.已知一个在地球表面质量为50 kg的人在这个行星表面的重量约为800 N,地球表面处的重力加速度为10 m/s2.求:(1)该行星的半径与地球的半径之比;(2)若在该行星上距行星表面2 m高处,以10 m/s的水平初速度抛出一只小球(不计任何阻力),则小球的水平射程是多大.18.(16分)如图所示,一长度L AB=4.98 m、倾角θ=30°的光滑斜面AB和一固定粗糙水平台BC平滑连接,水平台长度L BC=0.4 m,离地面高度H=1.4 m,在C处有一挡板,小物块与挡板碰撞后以原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内.在斜面顶端A处由静止释放质量为m=2 kg 的小物块(可视为质点),忽略空气阻力,小物块与BC间的动摩擦因数μ=0.1,g 取10 m/s2.求:(1)小物块第一次与挡板碰撞前的速度大小;(2)小物块经过B点多少次停下来,在BC上运动的总路程为多少;(3)某一次小物块与挡板碰撞反弹后拿走挡板,最后小物块落在D点,已知半球体半径r=0.75 m,OD与水平面夹角为α=53°,求小物块与挡板第几次碰撞后拿走挡板(sin 53°=45,cos 53°=35)?高中物理必修二(全册)必修二模块综合测试题参考答案一、单项选择题(本大题共10小题,每小题3分,共30分.每小题中只有一个选项是正确的,选对得3分,错选、不选或多选均不得分)1.如图所示,从某高度水平抛出一小球,经过时间t到达地面时,速度与水平方向的夹角为θ,不计空气阻力,重力加速度为g.下列说法正确的是()A.若小球初速度增大,则θ减小B.小球在t时间内的位移方向与水平方向的夹角为θ2C.若小球初速度增大,则平抛运动的时间变长D.小球水平抛出时的初速度大小为gt tan θ解析:小球落地时竖直方向上的速度v y=gt,因为落地时速度方向与水平方向的夹角为θ,则tan θ=gtv0,可知若小球初速度增大,则θ减小,故A正确;小球落地时位移方向与水平方向夹角的正切值tan α=yx=12gt2v0t=gt2v0,tan θ=2tanα,但α≠θ2,故B错误;平抛运动的落地时间由高度决定,与初速度无关,故C错误;速度方向与水平方向夹角的正切值tan θ=v yv0=gtv0,小球的初速度v0=gttan θ,故D错误.答案:A2.关于摩擦力做功,以下说法正确的是()A.滑动摩擦力阻碍物体的相对运动,所以一定做负功B.静摩擦力虽然阻碍物体间的相对运动趋势,但不做功C.静摩擦力和滑动摩擦力不一定都做负功D.一对相互作用力,若作用力做正功,则反作用力一定做负功解析:摩擦力可以是动力,故摩擦力可做正功;一对相互作用力,可以都做正功,也可以都做负功;静摩擦力可以做功,也可以不做功,故选项A 、B 、D 错误,C 正确.答案:C3.变速自行车靠变换齿轮组合来改变行驶速度.如图是某一变速车齿轮转动结构示意图,图中A 轮有48齿,B 轮有42齿,C 轮有18齿,D 轮有12齿,则( )A .该车可变换两种不同挡位B .该车可变换五种不同挡位C .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =1∶4D .当A 轮与D 轮组合时,两轮的角速度之比ωA ∶ωD =4∶1解析:由题意知,A 轮通过链条分别与C 、D 连接,自行车可有两种速度,B 轮分别与C 、D 连接,又可有两种速度,所以该车可变换四种挡位;当A 与D 组合时,两轮边缘线速度大小相等,A 转一圈,D 转4圈,即ωA ωD =14,选项C 对. 答案:C4.已知靠近地面运转的人造卫星,每天转n 圈,如果发射一颗同步卫星,它离地面的高度与地球半径的比值为( )A .nB .n 2 C.n 3-1 D.3n 2-1 解析:设同步卫星离地面的高度为h ,地球半径为R .近地卫星的周期为T 1=24 h n ,同步卫星的周期为T 2=24 h ,则T 1∶T 2=1∶n ,对于近地卫星有G Mm R 2=m 4π2T 21R , 对于同步卫星有G Mm ′(R +h )2=m ′4π2T 22(R +h ), 联立解得h =(3n 2-1)R ,故D 正确.答案:D5.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图所示.当滴管依次滴下三滴油时(设三滴油都落在车厢底板上),下列说法中正确的是()A.这三滴油依次落在OA之间,且后一滴比前一滴离O点远B.这三滴油依次落在OA之间,且后一滴比前一滴离O点近C.这三滴油依次落在OA间同一位置上D.这三滴油依次落在O点上解析:油滴下落的过程中,在竖直方向上做自由落体运动,根据自由落体运动的规律可得,油滴运动的时间是相同的,在水平方向上,油滴离开车之后做匀速直线运动,但此时车做匀加速直线运动,油滴相对于车厢在水平方向上的位移就是车在水平方向上多走的位移,即Δx=12at2,由于时间和加速度都是确定不变的,所以三滴油会落在同一点,即落在OA间同一位置上,故C正确.答案:C6.一箱土豆在转盘上随转盘以角速度ω做匀速圆周运动,其中一个处于中间位置的土豆质量为m,它到转轴的距离为R,则其他土豆对该土豆的作用力为()A.mg B.mω2RC.m2g2+m2ω4R2D.m2g2-m2ω4R2解析:设其他土豆对该土豆的作用力为F,则该土豆受到重力mg和F作用.由于该土豆做匀速圆周运动,所以这两个力的合力提供该土豆做匀速圆周运动的向心力,如图所示.根据直角三角形的关系得F=(mg)2+F2向,而F向=mω2R,所以F=m2g2+m2ω4R2,C正确.答案:C7.如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d =0.50 m 盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停下的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0解析:设小物块在BC 面上运动的总路程为s .物块在BC 面上所受的滑动摩擦力大小始终为f =μmg ,对小物块从开始运动到停止运动的整个过程进行研究,由动能定理得mgh -μmgs =0,得到s =h μ=0.30.1 m =3 m ,d =0.50 m ,则s =6d ,所以小物块在BC 面上来回运动共6次,最后停在B 点.故选D.答案:D8.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体( )A .重力势能增加了34mghB .动能损失了12mghC.动能损失了mghD.动能损失了32mgh解析:重力做功W G=-mgh,故重力势能增加了mgh,A错.物体所受合力F=ma=34mg,合力做功W合=-Fhsin 30°=-34mg×2h=-32mgh,由动能定理知,动能损失了32mgh,B、C错,D正确.答案:D9.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()A.n3k2T B.n3k TC.n2k T D.nk T解析:设两颗星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,根据万有引力提供向心力可得:Gm1·m2(r1+r2)2=m1r14π2T2,Gm1·m2(r1+r2)2=m2r24π2T2,联立解得:m1+m2=4π2(r1+r2)3GT2,即T 2=4π2(r1+r2)3G(m1+m2),因此,当两星总质量变为原来的k倍,两星之间的距离变为原来的n倍时,两星圆周运动的周期为T′=n3k T,选项B正确,其他选项均错.答案:B10.以相同的动能从同一点水平抛出两个物体a和b,落地点的水平位移为s1和s2,自抛出到落地的过程中,重力做的功分别为W1、W2,落地瞬间重力的即时功率为P1和P2()A.若s1<s2,则W1>W2,P1>P2B.若s1<s2,则W1>W2,P1<P2C.若s1=s2,则W1>W2,P1>P2D.若s1=s2,则W1<W2,P1<P2解析:若s1<s2,由于高度决定了平抛运动的时间,所以两个物体运动时间相等.由x=v0t知:水平抛出两个物体的初速度关系为v1<v2.由于以相同的动能从同一点水平抛出,所以两个物体的质量关系是m2<m1.自抛出到落地的过程中,重力做的功W=mgh,所以W1>W2,平抛运动竖直方向做自由落体运动,所以落地瞬间两个物体的竖直方向速度v y相等,根据瞬时功率P=F v cos α,落地瞬间重力的即时功率P=mg v y.由于m2<m1,所以P1>P2,故A正确,B错误.以相同的动能从同一点水平抛出两个物体a和b,由于高度决定时间,所以两个物体运动时间相等.若s1=s2,平抛运动水平方向做匀速直线运动,所以水平抛出两个物体的初速度相等.由于以相同的动能从同一点水平抛出,所以两个物体的质量相等.所以自抛出到落地的过程中,重力做的功相等,即W1=W2.落地瞬间重力的即时功率相等,即P1=P2,则C、D错误.故选A.答案:A二、多项选择题(本大题共4小题,每小题6分,共24分.每小题有多个选项是正确的,全选对得6分,少选得3分,选错、多选或不选得0分)11.如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A 和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点与杆间的作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力,B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大,则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力解析:两球的角速度相同,由向心力公式F n=mω2r可知,由于B的运动半径较大,所需要的向心力较大,而由题意,两球的重力相等,杆对两球的最大拉力相等,所以在最低点B球更容易做离心运动,更容易脱离轨道,故A正确.若B球在最低点与杆间的作用力为3mg,设B球的速度为v B.则根据牛顿第二定律,得N B-mg=m v2B2L,且N B=3mg,得v B=2gL,由v=ωr,ω相等,A的半径是B的一半,则得此时A的速度为v A=12v B=gL.对A球,设杆的作用力大小为N A,方向向下,则有mg+N A=m v2AL,解得N A=0,说明杆对A球没有作用力,故B错误.若某一周A球在最高点和B球在最高点受杆的力大小相等,设为F,假设在最高点杆对A、B球产生的都是支持力,对B球有mg-F=mω2·2L;对A球有mg-F=mω2L;很显然上述两个方程不可能同时成立,说明假设不成立,则知两球所受的杆的作用力不可能同时是支持力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不可能同时成立,所以两球不可能同时受杆的拉力.对B球,若杆对B球产生的是拉力,有mg+F=mω2·2L;对A球,若杆对A球产生的是支持力,有mg-F=mω2L;两个方程能同时成立,所以可能A球受杆的支持力、B球受杆的拉力.对B 球,若杆对B球产生的是支持力,有mg-F=mω2·2L;对A球,若杆对A球产生的是拉力,有F+mg=mω2L;两个方程不能同时成立,所以不可能A球受杆的拉力,而B球受杆的支持力.综上,A球在最高点和B球在最高点受杆的力大小相等时,A球受杆的支持力、B球受杆的拉力,故C正确.当两球在最高点所受的杆的作用力都是支持力时,则对B球,有mg-F B=mω2·2L,得F B=mg-2mω2L;对A球,若杆对A球产生的是支持力,有mg-F A=mω2L,得F A=mg-mω2L,可得F A>F B,故D错误.答案:AC12.如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO1在水平面内转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO1轴的距离为物块A到OO1轴的距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是()A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大,后保持不变C.A受到的静摩擦力先增大后减小D.A受到的合外力一直在增大解析:在转动过程中,两物块做圆周运动都需要向心力来维持,一开始是静摩擦力作为向心力,当摩擦力不足以提供所需向心力时,绳子中就会产生拉力,当这两个力的合力都不足以提供向心力时,物块将会与CD杆发生相对滑动.根据向心力公式F向=mv2R=mω2R,可知在发生相对滑动前物块的运动半径是不变的,质量也不变,随着速度的增大,向心力增大,而向心力大小等于物块所受的合力,故D正确.由于A的运动半径比B的小,A、B的角速度相同,知当角速度逐渐增大时,B物块先达到最大静摩擦力;角速度继续增大,B物块靠绳子的拉力和最大静摩擦力提供向心力;角速度增大,拉力增大,则A物块所受的摩擦力减小,当拉力增大到一定程度,A物块所受的摩擦力减小到零后反向,角速度增大,A物块所受的摩擦力反向增大.所以A所受的摩擦力先增大后减小,再增大;B 物块所受的静摩擦力一直增大,达到最大静摩擦力后不变,故A 、C 错误,B 正确.答案:BD13.如图为过山车以及轨道简化模型,以下判断正确的是( )A .过山车在圆轨道上做匀速圆周运动B .过山车在圆轨道最高点时的速度应不小于gRC .过山车在圆轨道最低点时乘客处于超重状态D .过山车在斜面h =2R 高处由静止滑下能通过圆轨道最高点解析:过山车在竖直圆轨道上做圆周运动,机械能守恒,动能和重力势能相互转化,速度大小变化,不是匀速圆周运动,故A 错误;在最高点,重力和轨道对车的压力提供向心力,当压力为零时,速度最小,则mg =m v 2R ,解得:v =gR ,故B 正确;在最低点时,重力和轨道对车的压力提供向心力,加速度向上,乘客处于超重状态,故C 正确;过山车在斜面h =2R 高处由静止滑下到最高点的过程中,根据动能定理得:12m v ′2=mg (h -2R )=0.解得;v ′=0,所以不能通过最高点,故D 错误.故选B 、C.答案:BC14.(2015·课标全国Ⅰ卷)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m 高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg ,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s 2,则此探测器( )A .在着陆前的瞬间,速度大小约为8.9 m/sB .悬停时受到的反冲作用力约为2×103 NC .从离开近月圆轨道到着陆这段时间内,机械能守恒D .在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运动的线速度解析:在地球表面附近有G M 地m R 2地=mg 地,在月球表面附近有G M 月m R 2月=mg 月,可得g 月=1.656 m/s 2,所以探测器落地的速度为v =2g 月h =3.64 m/s ,故A 错误;探测器悬停时受到的反冲作用力为F =mg 月≈2×103 N ,B 正确;探测器由于在着陆过程中开动了发动机,因此机械能不守恒,C 错误;在靠近星球的轨道上有G Mm R 2=mg =m v 2R ,即有v =gR ,可知在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故选项D 正确.答案:BD三、非选择题(本题共4小题,共46分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(8分)利用图甲装置做“验证机械能守恒定律”实验.图甲(1)为验证机械能是否守恒,需要比较重物下落过程中任意两点间的________.A .动能变化量与势能变化量B .速度变化量与势能变化量C .速度变化量与高度变化量(2)(多选)除带夹子的重物、纸带、铁架台(含铁夹)、电磁打点计时器、导线及开关外,在下列器材中,还必须使用的两种器材是________.A .交流电源B .刻度尺C .天平(含砝码)(3)实验中,先接通电源,再释放重物,得到图乙所示的一条纸带.在纸带上选取三个连续打出的点A 、B 、C ,测得它们到起始点O 的距离分别为h A 、h B 、。

高中物理模块综合检测(二)(含解析)新人教版必修2

高中物理模块综合检测(二)(含解析)新人教版必修2

高中物理模块综合检测(二)(含解析)新人教版必修2(时间:90分钟 满分:100分)一、选择题(本大题共12小题,每小题4分,共48分.其中1~8题为单选,9~12题为多选,选对得4分,漏选得2分,多选、错选均不得分)1.如图所示,在水平地面上O 点的正上方有A 、B 两点,已知OA =AB =h .现分别从A 、B 两点以20 m/s 和10 m/s 的水平速度同时抛出甲、乙两球,不计空气阻力,下列说法正确的是( )A .两球都在空中时,它们之间的竖直距离保持不变B .两球都在空中时,它们之间的水平距离保持不变C .两球有可能同时落地D .如果h 取某一合适的值,甲、乙两球有可能落到水平地面上的同一点解析:平抛运动可以看成是水平方向匀速运动与竖直方向自由落体运动的合运动.两球都在空中时,竖直方向做自由落体运动,它们之间的竖直距离保持不变,A 正确;由x =v 0t ,可知水平间距将越来越大,由t =2hg可知两球不可能同时落地,由x A =v A2hg ,x B =v B4hg=v A ·hg,可知x A >x B ,两球不可能落在地面上同一点,故B 、C 、D 错误. 答案:A2.如图所示,两轮用皮带传动,皮带不打滑.图中有A 、B 、C 三点,这三点所在处半径r A >r B =r C ,则这三点的向心加速度a A 、a B 、a C 的关系是( )A .a A =aB =aC B .a C >a A >a B C .a C <a A <a BD .a C =a B >a A解析:A 、B 两点线速度相等,由a =v 2r知,a A <a B ;A 、C 两点角速度相等,由a =ω2r ,知a C <a A ,故选C.答案:C3.以一定速度竖直上抛一个小球,小球上升的最大高度为h ,空气阻力的大小恒为F f ,则从抛出至落回到原出发点的过程中,空气阻力对小球做的功为( )A .0B .-F f hC .-2F f hD .-4F f h解析:上升阶段,空气阻力做功W 1=-F f h .下落阶段空气阻力做功W 2=-F f h ,整个过程中空气阻力做功W =W 1+W 2=-2F f h ,故C 选项正确.答案:C4.2017年11月6日报道,中国的首批隐形战斗机现已在一线部队全面投入使用,演习时,在某一高度匀速飞行的战斗机在离目标水平距离s 时投弹,可以准确命中目标.现战斗机飞行高度减半,速度大小减为原来的23,要仍能命中目标,则战斗机投弹时离目标的水平距离应为(不考虑空气阻力) ( )A.13sB.23sC.23s D.223s 解析:设原来的速度大小为v ,高度为h ,根据平抛运动的规律,可知在竖直方向有h =12gt 2,解得t =2hg;在水平方向有s =vt =v2hg.现战斗机高度减半,速度大小减为原来的23,要仍能命中目标,则有s ′=23vt ′,12h =12gt ′2,联立以上各式可解得s ′=23s ,故C 正确,A 、B 、D 错误.答案:C5.(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )A .v 1>v 2.v 1= GMr B .v 1>v 2,v 1> GM r C .v 1<v 2,v 1=GM rD .v 1<v 2,v 1>GM r解析:“东方红一号”从近地点到远地点万有引力做负功,动能减小,所以v 1>v 2,过近地点圆周运动的速度为v =GMr ,由于“东方红一号”在椭圆上运动,所以v 1> GMr,故B 正确.答案:B6.一物块放在水平面上,在水平恒力F 的作用下从静止开始运动,物块受到的阻力与速度成正比,则关于拉力F 的功率随时间变化的规律,正确的是( )解析:由题意,阻力与速度的关系式为f =kv ,根据牛顿第二定律,得F -f =F -kv =ma ,解得a =F m -kmv ,在运动过程中,速度增大,加速度减小,物块做加速度减小的加速运动,可知vt 图线的切线斜率逐渐减小,根据P =Fv 知,F 不变,则Pt 图线的形状与vt 图线的形状相同,故C 正确,A 、B 、D 错误.答案:C7.如图甲所示,以斜面底端为重力势能的零势能面,一物体在平行于斜面的拉力作用下,由静止开始沿光滑斜面向下运动.运动过程中物体的机械能与物体位移关系的图象(E-x 图象)如图乙所示,其中0~x 1过程的图线为曲线,x 1~x 2过程的图线为直线.根据该图象,下列判断正确的是 ( )A .0~x 1过程中物体所受拉力可能沿斜面向下B .0~x 2过程中物体的动能先增大后减小C .x 1~x 2过程中物体做匀加速直线运动D .x 1~x 2过程中物体可能在做匀减速直线运动解析:物体下滑过程只有重力、拉力做功,由题图可知,0~x 1过程中物体的机械能减少,由功能关系得拉力做负功,所以物体所受拉力沿斜面向上,故A 错误;由题图可知,物体发生相同的位移,克服拉力做的功越来越少,重力做的功不变,故合外力做的功越来越多,由动能定理,可知物体的动能越来越大,故B 错误;物体沿斜面向下运动,合外力方向沿斜面向下,在x 1~x 2过程中,机械能和位移成线性关系,故拉力大小不变,物体受力恒定,物体做匀加速直线运动,故C 正确,D 错误.答案:C8.如图所示,两颗星组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A .m 1、m 2做圆周运动的线速度之比为3∶2B .m 1、m 2做圆周运动的角速度之比为3∶2C .m 1做圆周运动的半径为25LD .m 2做圆周运动的半径为25L解析:根据F 万=F 向,对m 1有G m 1m 2L 2=m 1v 21r 1=m 1r 1ω2,对m 2有G m 1m 2L 2=m 2v 22r 2=m 2r 2ω2,又r 1+r 2=L ,由以上各式得v 1v 2=r 1r 2=m 2m 1=23,A 错误;由于T 1=T 2,故ω=2πT 相同,B 错误;r 1=25L ,r 2=35L ,C 正确,D 错误.答案:C9.如图甲、乙所示,民族运动会上有一个骑射项目,运动员骑在奔驰的马背上沿跑道AB 运动,且向他左侧的固定目标拉弓放箭.假设运动员骑马奔驰的速度为v 1,运动员静止时射出的箭的速度为v 2,跑道离固定目标的最近距离OC =d .若不计空气阻力的影响,要想命中目标且射出的箭在空中飞行时间最短,则A .运动员放箭处离目标的距离为v 1v 2dB .运动员放箭处离目标的距离为 v 21+v 22v 2dC .箭射到固定目标的最短时间为d v 2D .箭射到固定目标的最短时间为dv 22-v 21解析:联系“小船渡河模型”,可知射出的箭同时参与了v 1、v 2两个运动,要想命中目标且射出的箭在空中飞行时间最短,箭射出的方向应与马运动的方向垂直,故箭射到固定目标的最短时间为t =dv 2,箭的速度v =v 21+v 22,所以运动员放箭处离固定目标的距离为x =vt=v21+v22v2d,B、C正确.答案:BC10.如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则( )A.物块始终受到三个力作用B.只有在a、b、c、d四点,物块受到合外力才指向圆心C.从a到b,物体所受的摩擦力先减小后增大D.从b到a,物块处于超重状态解析:在cd两点处,只受重力和支持力,在其他位置处物体受到重力、支持力、静摩擦力三个力的作用,故A错误;物体做匀速圆周运动,合外力提供向心力,所以合外力始终指向圆心,故B错误;从a运动到b,物体的加速度的方向始终指向圆心,水平方向的加速度先减小后反向增大,根据牛顿第二定律可得,物体所受木板的摩擦力先减小后增大,故C正确;从b运动到a,向心加速度有向上的分量,所以物体处于超重状态,故D正确.答案:CD11.将一物体从地面以一定的初速度竖直上抛,从抛出到落回原地的过程中,空气阻力恒定.以地面为零势能面,则下列反映物体的机械能E、动能E k、重力势能E p及克服阻力所做的功W随距地面高度h变化的四个图象中,可能正确的是( )解析:物体运动过程中受重力和阻力,除重力外其余力做的功等于机械能的变化量,上升过程和下降过程中物体一直克服阻力做功,故机械能不断减小,但落回原地时有速度,机械能不可能为零,故A错误;物体运动过程中受重力和阻力,合力做功等于动能的变化量,上升过程动能不断减小,表达式为-(mg+f)h=E k-E k0,下降过程动能不断增大,表达式为(mg -f)(H-h)=E k,故B正确;重力做功等于重力势能的减少量,以地面为零势能面,故E p=mgh,故C正确;上升过程中克服阻力所做的功W=fh,下降过程中克服阻力做的功为W=f(H-h)=fH-fh,故D正确.答案:BCD12.已知某卫星在赤道上空轨道半径为r 1的圆形轨道上,绕地球运行的周期为T ,卫星运动方向与地球自转方向相同,赤道上某城市的人恰好每三天看到五次卫星掠过某正上方.假设某时刻,该卫星在如图A 点变轨进入椭圆轨道,近地点B 到地心距离为r 2.设卫星由A 到B 运动的时间为t ,地球自转周期为T 0,不计空气阻力.则( )A .T =3T 05B .T =3T 08C .t =(r 1+r 2)T 4r 1r 1+r 22r 1D .卫星由图中圆轨道进入椭圆轨道的过程,机械能不变解析:赤道上某城市的人恰好每三天看到五次卫星掠过其正上方,知三天内卫星转了8圈,则有3T 0=8T ,解得T =3T 08,故A 错误,B 正确;根据开普勒第三定律,知⎝ ⎛⎭⎪⎫r 1+r 223(2t )2=r 31T 2,解得t =(r 1+r 2)T4r 1r 1+r 22r 1,故C 正确;卫星由圆轨道进入椭圆轨道,需减速,则机械能减小,故D 错误.答案:BC二、非选择题(本题共5小题,共52分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(6分)图甲是“研究平抛物体的运动”的实验装置图.(1)实验前应对实验装置反复调节,直到斜槽末端切线______.每次让小球从同一位置由静止释放,是为了每次平抛__________.(2)图乙是正确实验取得的数据,其中O 为抛出点,则此小球做平抛运动的初速度为________m/s.(3)在另一次实验中将白纸换成方格纸,每小格的边长L =5 cm ,通过实验,记录了小球在运动途中的三个位置,如图丙所示,则该小球做平抛运动的初速度为________m/s.解析:(2)解法一 取点(32.0,19.6)分析可得:0.196=12×9.8×t 21,0.32=v 0t 1,解得v 0=1.6 m/s.解法二 取点(48.0,44.1)分析可得:0.441=12×9.8×t 22,0.48=v 0t 2, 解得v 0=1.6 m/s.(3)由图可知,物体由A →B 和B →C 所用的时间相等,且有: Δy =gT 2,x =v 0T , 解得v 0=1.48 m/s.答案:(1)水平 初速度相同 (2)1.6 (3)1.4814.(9分)某同学把附有滑轮的长木板平放在实验桌上,将细绳一端拴在小车上,另一端绕过定滑轮,挂上适当的钩码,使小车在钩码的牵引下运动,以此定量探究绳拉力做功与小车动能变化的关系.此外还准备了打点计时器及配套的电源、导线、复写纸、纸带、小木块等.组装的实验装置如图所示.(1)若要完成该实验,必需的实验器材还有哪些?___________.(2)实验开始时,他先调节木板上定滑轮的高度,使牵引小车的细绳与木板平行.这样做的目的是__________(填字母代号).A .避免小车在运动过程中发生抖动B .可使打点计时器在纸带上打出的点迹清晰C .可以保证小车最终能够实现匀速直线运动D .可在平衡摩擦力后使细绳拉力等于小车受的合力(3)平衡摩擦力后,当他用多个钩码牵引小车时,发现小车运动过快,致使打出的纸带上点数较少,难以选到合适的点计算小车速度.在保证所挂钩码数目不变的条件下,请你利用本实验的器材提出一个解决方法:_____________________________________.(4)他将钩码重力做的功当作细绳拉力做的功,经多次实验发现拉力做功总是要比小车动能增量大一些.这一情况可能是下列哪些原因造成的______(填字母代号).A .在接通电源的同时释放了小车B .小车释放时离打点计时器太近C .阻力未完全被小车重力沿木板方向的分力平衡掉D .钩码做匀加速运动,钩码重力大于细绳拉力解析:(1)实验要处理纸带测速度,需要刻度尺,要分析动能的变化,必须要测出小车的质量,因此还需要天平.(2)实验中调节定滑轮高度,使细绳与木板平行,可在平衡摩擦力后使细绳的拉力等于小车所受的合力,如果不平行,细绳的拉力在垂直于木板的方向上就有分力,改变了摩擦力就不能使细绳拉力等于小车所受的合力,D 正确.(3)在所挂钩码个数不变的情况下,要减小小车运动的加速度,可以增大小车的质量,即可在小车上加适量的砝码(或钩码).(4)如果用钩码重力做的功当作细绳拉力做的功,发现拉力做的功总比小车动能的增量大,原因可能是阻力未被完全平衡掉,因此拉力做功一部分用来增大小车动能,一部分用来克服阻力做功;也可能是小车做加速运动,因此细绳的拉力小于钩码的重力,钧码的重力做的功大于细绳的拉力做的功,即大于小车动能的增量,C 、D 项正确.答案:(1)刻度尺、天平(包括砝码)(2)D (3)可在小车上加适量的砝码(或钩码) (4)CD15.(10分)雨伞边缘的半径为r ,距水平地面的高度为h ,现将雨伞以角速度ω匀速旋转,使雨滴自伞边缘甩出,落在地面上成一个大圆圈.求:(1)大圆圈的半径; (2)雨滴落到地面时的速率.解:(1)因为雨滴离开雨伞的速度为v 0=ωr ,雨滴做平抛运动的时间为t =2h g.雨滴的水平位移为x =v 0t =ωr2h g,雨滴落在地上形成的大圆的半径为R =r 2+x 2=r1+2hω2g.(2)设雨滴落地时的速度为v,根据机械能守恒定律,得1 2mv2=12mv20+mgh,解得v=ω2r2+2gh.16.(12分)如图所示,半径为R的半球形陶罐固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO′之间的夹角θ为45°.已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为f=24 mg.(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的最大值和最小值.解析:(1)当小物块受到的摩擦力为零,支持力和重力的合力提供向心力,有mg tan θ=mω20R sin θ,解得ω0=2g R.(2)当ω>ω0时,重力和支持力的合力不够提供向心力,当角速度最大时,摩擦力方向沿罐壁切线向下时摩擦力达到最大值,设此时最大角速度为ω1,由牛顿第二定律,得f cos θ+F N sin θ=mω21R sin θ,f sin θ+mg=F N cos θ,联立以上三式,解得ω1=32g 2R.当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2,由牛顿第二定律,得F N sin θ-f cos θ=mω22R sin θ,mg=F N cos θ+f sin θ,联立解得ω2=2g 2R.答案:(1) 2gR(2)32g2R2g2R17.(15分)2018年平昌冬季奥运会雪橇运动,其简化模型如图所示:倾角为θ=37°的直线雪道AB 与曲线雪道BCDE 在B 点平滑连接,其中A 、E 两点在同一水平面上,雪道最高点C 所对应的圆弧半径R =10 m ,B 、C 两点距离水平面AE 的高度分别为h 1=18 m 与h 2=20 m ,雪橇与雪道各处的动摩擦因数均为μ=0.1,运动员可坐在电动雪橇上由A 点从静止开始向上运动,若电动雪橇以恒定功率1.2 kW 工作10 s 后自动关闭,则雪橇和运动员(总质量m =50 kg)到达C 点的速度为2 m/s ,到达E 点的速度为10 m/s.已知雪橇运动过程中不脱离雪道,且sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,求:(1)雪橇在C 点时对雪道的压力. (2)雪橇在BC 段克服摩擦力所做的功.(3)若仅将DE 改成与曲线雪道CD 平滑相接的倾斜直线雪道(如图中虚线所示),求雪橇到E 点时速度.解析:(1)在C 点,雪橇和人由重力和支持力的合力提供向心力,由牛顿第二定律,得mg -F N =m v 2R,代入数据解得F N =480 N.由牛顿第三定律,可知雪橇对轨道的压力大小为480 N ,方向竖直向下. (2)雪橇在AB 段受到的滑动摩擦力为F f =μmg cos 37°=40 N ,从A 到C ,根据动能定理,得Pt -mgh 2-F f ·h 1sin 37°-W fBC =12mv 2,解得W fBC =700 J.(3)设CE 的水平距离为x ,从C 点到E 点过程,若是曲线轨道,克服摩擦力做的功为W CE =μmgL 1cos θ1+μmgL 2cos θ2+μmgL 3cos θ3+…=μmg (x 1+x 2+x 3+…)=μmgx ,若是直线轨道,克服摩擦力做的功为W ′CE =μmgL cos θ=μmgx ,故将DE 改成倾斜直轨道,克服摩擦力做功不变,即损失的机械能也不变,则E 点速度v E =10 m/s.答案:(1)480 N 方向竖直向下 (2)700 J (3)10 m/s。

高中物理必修二:模块综合测评(解析版)

高中物理必修二:模块综合测评(解析版)

必修二模块综合测评一、选择题(共8小题,共48分,在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得零分)1.自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分(如图),行驶时( )A. 大齿轮边缘点比小齿轮边缘点的线速度大B. 后轮边缘点比小齿轮边缘点的角速度大C. 大齿轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比D. 后轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比【答案】D【解析】【详解】大齿轮边缘点与小齿轮边缘点的线速度相等,A错;后轮与小齿轮的角速度相等,B错;根据a n=知大齿轮边缘点与小齿轮边缘点的向心加速度与它们的半径成反比,C错误;根据a n=ω2r知后轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比,D正确.故选D.【点睛】本题考查圆周运动的规律的应用,知道同缘转动线速度相等,同轴转动角速度相同;同时考查了灵活选择物理规律的能力.对于圆周运动,公式较多,要根据不同的条件灵活选择公式.2.“嫦娥一号”绕月卫星成功发射之后,我国又成功发射了“嫦娥二号”,其飞行高度距月球表面100 km,所探测到的有关月球的数据比飞行高度为200 km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示,则有( )【导学号:22852129】A. “嫦娥二号”线速度比“嫦娥一号”小B. “嫦娥二号”周期比“嫦娥一号”小C. “嫦娥二号”角速度比“嫦娥一号”小D. “嫦娥二号”加速度比“嫦娥一号”小【答案】B【解析】根据万有引力提供向心力,得,,.可知r越大,向心加速度越小,线速度越小,角速度越小,周期越大.而“嫦娥一号”轨道半径比“嫦娥二号”大,故ACD错误,B正确.答案选B.3.有一水平恒力F先后两次作用在同一物体上,使物体由静止开始沿水平面前进s,第一次是沿光滑水平面运动,第二次是沿粗糙水平面运动,设第一次力对物体做的功为W1,平均功率为P1;第二次力对物体做的功为W2,平均功率为P2,则有( )A. W1=W2,P1=P2B. W1=W2,P1>P2C. W1<W2,P1=P2D. W1<W2,P1<P2【答案】B【解析】【详解】由W=Fs知道,两种情况下的力F和位移s均相等,则W1=W2;根据牛顿第二定律可知,因为a1>a2由s=at2知t1<t2,由P=知P1>P2,故B项正确.【点睛】本题就是对功的公式和功率公式的直接考查,在计算功率时要注意,求平均功率的大小,要注意公式的选择.4.如图,一个电影替身演员准备跑过一个屋顶,然后水平跳跃并离开屋顶,在下一个建筑物的屋顶上着地。

2019年(人教版)高中物理必修二:模块综合检测卷(含答案)

2019年(人教版)高中物理必修二:模块综合检测卷(含答案)

2019年(人教版)高中物理必修二:模块综合检测卷(含答案)物理·必修2(人教版)模块综合检测卷(考试时间:90分钟分值:100分)一、单项选择题(本题共10小题,每题3分,共30分.在每小题给出的四个选项中,只有一个选项正确.)1.发现万有引力定律的科学家是()A.开普勒 B.牛顿C.卡文迪许 D.爱因斯坦答案:B2.经典力学适用于解决( )A.宏观高速问题 B.微观低速问题C.宏观低速问题 D.微观高速问题答案:C3.关于向心加速度的物理意义,下列说法中正确的是( )A.描述线速度的大小变化的快慢B.描述线速度的方向变化的快慢C.描述角速度变化的快慢D.描述向心力变化的快慢答案:B4.当质点做匀速圆周运动时,如果外界提供的合力小于质点需要的向心力了,则( )A.质点一定在圆周轨道上运动B.质点一定向心运动,离圆心越来越近C.质点一定做匀速直线运动D.质点一定离心运动,离圆心越来越远答案:D5.忽略空气阻力,下列几种运动中满足机械能守恒的是( )A.物体沿斜面匀速下滑 B.物体自由下落的运动C.电梯匀速下降 D.子弹射穿木块的运动答案:B6.人造地球卫星中的物体处于失重状态是指物体( )A.不受地球引力作用B.受到的合力为零C.对支持物没有压力D.不受地球引力,也不受卫星对它的引力答案:C7.物体做竖直上抛运动时,下列说法中正确的是( )A.将物体以一定初速度竖直向上抛出,且不计空气阻力,则其运动为竖直上抛运动B.做竖直上抛运动的物体,其加速度与物体重力有关,重力越大的物体,加速度越小C.竖直上抛运动的物体达到最高点时速度为零,加速度为零,处于平衡状态D.竖直上抛运动过程中,其速度和加速度的方向都可改变答案:A8.已知地球的第一宇宙速度为7.9 km/s,第二宇宙速度为11.2 km/s, 则沿圆轨道绕地球运行的人造卫星的运动速度( )A.只需满足大于7.9 km/sC.大于等于7.9 km/s,而小于11.2 km/sD.一定等于7.9 km/s答案:B9.如图甲、乙、丙三种情形表示某物体在恒力F作用下在水平面上发生一段大小相同的位移,则力对物体做功相同的是( )A.甲和乙 B.甲、乙、丙 C.乙和丙 D.甲和丙答案:D10.如图所示,物体P以一定的初速度沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P做匀变速直线运动B.P的加速度大小不变,但方向改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大答案:C二、双项选择题(本题共6小题,每题5分,共30分.在每小题给出的四个选项中有两个选项正确,全部选对得6分,漏选得3分,错选或不选得0分.)11.关于质点做匀速圆周运动,下列说法中正确的是( )A.质点的速度不变 B.质点的周期不变C.质点的角速度不变 D.质点的向心加速度不变答案:BC12.对下列四幅图的描述正确的是( )A.图A可能是匀速圆周运动的速度大小与时间变化的关系图象B.图B可能是竖直上抛运动的上升阶段速度随时间变化的关系图象C.图C可能是平抛运动的竖直方向加速度随时间变化的关系图象D.图D可能是匀速圆周运动的向心力大小随时间变化的关系图象答案:BD13.关于同步地球卫星,下列说法中正确的是( )A.同步地球卫星可以在北京上空B.同步地球卫星到地心的距离为一定的C.同步地球卫星的周期等于地球的自转周期D.同步地球卫星的线速度不变答案:BC14.三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A=m B>m C,则三个卫星( )A.线速度大小的关系是v A>v B=v CB.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B=F CD.向心加速度大小的关系是a A>a B>a C答案:AB15.如右图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由摆下.不计空气阻力,则在重物由A点摆向最低点B的过程中( ) A.弹簧与重物的总机械能守恒 B.弹簧的弹性势能增加C.重物的机械能不变 D.重物的机械能增加答案:AB三、非选择题(本大题3小题,共40分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.) 16.(11分)在“验证机械能守恒定律”的实验中,打点计时器所用电源频率为50 Hz,当地重力加速度的值为9.80 m/s2,测得所用重物的质量为1.00 kg.若按实验要求正确地选出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示(相邻计数点时间间隔为0.02 s),那么:(1)纸带的______端与重物相连;(2)打点计时器打下计数点B时,物体的速度v B=________;(3)从起点O到打下计数点B的过程中重力势能减少量是ΔE p=________,此过程中物体动能的增加量ΔE k=________(取g=9.8 m/s2);(4)通过计算,数值上ΔE p____ΔE k(填“>”“=”或“<”),这是因为________________________________________________________________________;(5)实验的结论是______________________________________________________.解析:(1)重物在开始下落时速度较慢,在纸带上打的点较密,越往后,物体下落得越快,纸带上的点越稀.所以,纸带上靠近重物的一端的点较密,因此纸带的左端与重物相连.(2)v B =OC -OA2T=0.98 m/s.(3)ΔE p =mg×OB =0.49 J ,ΔE k =12mv B 2=0.48 J.(4)ΔE p >ΔE k ,这是因为实验中有阻力. (5)在实验误差允许范围内,机械能守恒.答案:(1)左 (2)0.98 m/s (3)0.49 J 0.48 J (4)> 这是因为实验中有阻力 (5)在实验误差允许范围内,机械能守恒17.(4分)如图所示,将轻弹簧放在光滑的水平轨道上,一端与轨道的A 端固定在一起,另一端正好在轨道的B 端处,轨道固定在水平桌面的边缘上,桌边悬一重锤.利用该装置可以找出弹簧压缩时具有的弹性势能与压缩量之间的关系.(1)为完成实验,还需下列那些器材_ _______.A .秒表B .刻度尺C .白纸D .复写纸E .小球F .天平(2)某同学在上述探究弹簧弹性势能与弹簧压缩量的关系的实验中,得到弹簧压缩量x 和对应的小球离开桌面后的水平位移s的一些数据如下表,则由此可以得到的实验结论是________________________________________________________________________.实验次序 1 2 3 4 x/cm 2.00 3.00 4.00 5.00 s/cm10.2015.1420.1025.30答案:(1)BCDE (2)弹簧的弹性势能与弹簧压缩量的平方成正比18.(8分)如图一辆质量为500 kg的汽车静止在一座半径为50 m的圆弧形拱桥顶部.(取g=10 m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6 m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?解析:(1)汽车受重力G和拱桥的支持力F,二力平衡,故F=G=5 000 N根据牛顿第三定律,汽车对拱桥的压力为5 000 N.(2)汽车受重力G和拱桥的支持力F,根据牛顿第二定律有G-F=m v2r故F=G-mv2r=4 000 N根据牛顿第三定律,汽车对拱桥的压力为4 000 N.(3)汽车只受重力GG=m v2 rv=gr=10 5 m/s.答案:见解析19.(8分)要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.求摩托车在直道上行驶所用的最短时间.有关数据见表格.某同学是这样解的:要使摩托车所用时间最短,应先由静止加速到最大速度 v1=40 m/s,然后再减速到v2=20 m/s,t1=v1a1;t2=(v1-v2)a2;t=t1+t2.你认为这位同学的解法是否合理?若合理,请完成计算;若不合理,请说明理由,并用你自己的方法算出正确结果.启动加速度a1 4 m/s2制动加速度a28 m/s2直道最大速度v140 m/s弯道最大速度v220 m/s直道长度s 218 m解析:①不合理②理由:因为按这位同学的解法可得t 1=v 1a 1=10s ,t 2=(v 1-v 2)a 2=2.5s总位移x =v 12t 1+v 1+v 22t 2=275m>s.③由上可知摩托车不能达到最大速度v 2,设满足条件的最大速度为v ,则v 22a 1+v 2-v 222a 2=218.解得v =36m/s ,这样加速时间t 1=v a 1=9 s ,减速时间t 2=(v 1-v 2)a 2=2 s ,因此所用的最短时间t =t 1+t 2=11 s.答案:见解析20.(9分)如下图所示,质量m =60 kg 的高山滑雪运动员,从A 点由静止开始沿雪道滑下,从B 点水平飞出后又落在与水平面成倾角θ=37°的斜坡上C 点.已知AB 两点间的高度差为h =25 m ,B 、C 两点间的距离为s =75 m ,(g 取10 m/s 2,cos 37°=0.8,sin 37°=0.6),求:(1)运动员从B 点飞出时的速度v B 的大小. (2)运动员从A 到B 过程中克服摩擦力所做的功.解析:(1)设由B 到C 平抛运动的时间为t 竖直方向: h BC =ssin 37° h BC =12gt 2水平方向: scos 37°=v B t 代入数据,解得: v B =20 m/s.(2)A 到B 过程由动能定理有 mgh AB +W f =12mv B 2-0代入数据,解得W f =-3 000 J所以运动员克服摩擦力所做的功为3 000 J. 答案:见解析。

人教高中物理必修2-- 模块综合测评--(附解析答案)

人教高中物理必修2-- 模块综合测评--(附解析答案)

模块综合测评(用时:60分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~5小题只有一项符合题目要求,6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列关于力和运动的说法中,正确的是( )A.物体在变力作用下不可能做直线运动B.物体做曲线运动,其所受的外力不可能是恒力C.不管外力是恒力还是变力,物体都有可能做直线运动D.不管外力是恒力还是变力,物体都有可能做匀速圆周运动【解析】物体做曲线运动的条件是合力与速度不在同一条直线上,若受到的变力和速度方向相同,则做直线运动,A错误;平抛运动是曲线运动,过程中受到的合力恒定,等于重力大小,B错误;匀速圆周运动过程中,物体受到的加速度时时刻刻指向圆心,根据牛顿第二定律可知受到的合力时时刻刻指向圆心,为变力,D错误.【答案】 C2.在飞船进入圆形轨道环绕地球飞行时,它的线速度大小( )A.等于7.9 km/sB.介于7.9 km/s和11.2 km/s之间C.小于7.9 km/sD.介于7.9 km/s和16.7 km/s之间【解析】卫星在圆形轨道上运动的速度v=G Mr.由于r>R,所以v<G MR=7.9 km/s,C正确.【答案】 C3.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中( )A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J【解析】根据动能定理得韩晓鹏动能的变化ΔE=W G+W f=1 900 J-100 J=1 800 J>0,故其动能增加了1 800 J,选项A、B错误;根据重力做功与重力势能变化的关系W G=-ΔE p,所以ΔE p=-W G=-1 900 J<0,故韩晓鹏的重力势能减小了1 900 J,选项C正确,。

高一物理必修2模块学业水平测试模拟试题附参考答案

高一物理必修2模块学业水平测试模拟试题附参考答案

高一物理必修2模块学业水平测试模拟试题试卷满分:120分 考试时间:100分钟一、选择题(每题3分,共45分)1.物体运动时,若其加速度的大小和方向均不变,则物体 ( ) A .一定做直线运动 B .一定做曲线运动 C .可能做曲线运动 D .可能做匀速圆周运动 2.如图1所示,一根长绳跨过定滑轮,其一端系一重物,另一端握在一人手中,若人以恒定的速率V 沿地面匀速运动,当绳与水平方向成θ角时,物体上升的瞬时速度应为 ( )A .Vsin θB .VcosθC .V/sin θD .V/cosθ3.如图2所示,质量为m 的物体沿半径为R 的圆形轨道自A 点滑下,A 点的法线为水平方向,B 点的法线竖直方向,C 为弧AB 的中点,物体和轨道间的滑动摩擦因数为μ,当物体滑到C 点时,速度值为V ,此时物体受到的摩擦力为( )A .μmg B. μmV 2/RC.)(2RV g m +μ D.)22(2R V g m +μ 4.若已知某行星绕太阳公转的轨道半径为r ,公转周期为T ,引力常量为G ,则由此可求出 ( )A .行星的质量B .太阳的质量C .行星的密度D .太阳的密度 5.在空间实验室绕地球做圆轨道运动时,能使用下列有关仪器来完成的实验是( ) A .用天平测物体的质量B .用水银温度计测实验舱内的温度C .用水银气压计来测实验舱内的气压D .用浮力演示实验验证阿基米德定律6.质量相同的两个小球,分别用l 和2l 的细绳悬挂在天花板上.分别拉起小球,使线伸直呈水平状态,然后轻轻释放,当小球到达最低位置时 ( ) A .两球运动的线速度相等 B .两球运动的角速度相等 C .两球的向心加速度相等 D .细绳对两球的拉力相等7.当重力对物体做正功时,关于物体的重力势能和动能可能的变化情况,下面说法图1图2B正确的是:( )A .重力势能一定增加,动能一定减小B .重力势能一定减小,动能一定增加C .重力势能一定减小,动能不一定增加D .重力势能不一定减小,动能一定增加8.一个质量为 m 的物体,以速度v 1竖直向上抛出,物体在上升过程中,受空气阻力为f ,能到达的最大高度为h ,则人对物体做的功为 ( )A .mgh mv +2121 B .fh mv +2121 C .2121mv D .mgh fh +9.质量为m 的物体从静止开始自由下落,不计空气阻力,在t 秒内重力对物体做功的平均功率是 ( )A .mg 2tB .mg 2t/2C .mgt/4D .mgt10.如图4所示,小球从高处下落到竖直放置的轻弹簧上,在小球接触弹簧到将弹簧压缩到最短的整个过程中,下列叙述中正确的是 ( ) A .小球动能先减小后增大 B .小球动能先增大后减小 C .动能和弹性势能之和总保持不变D .重力势能、弹性势能和动能之和保持不变11、当重力对物体做正功时,物体的:( ) A 、重力势能一定增加,动能一定减小 B 、重力势能一定减小,动能一定增加 C 、重力势能不一定减小,动能一定增加 D 、重力势能一定减小,动能不一定增加12、物体m 沿着光滑斜面由静止开始下滑,斜面倾角为θ,当它在竖直方向下降的高度为h 时,重力的瞬时功率为:( ) A 、gh mg 2 B 、θCos gh mg 2 C 、θghSin mg 2 D 、θSin gh mg 213、一物体在竖直弹簧上的一定高度自由下落,后又被弹簧弹回,则物体的动能最大时是在:( )A 、物体刚接触弹簧时B 、物体把弹簧压缩最短时C 、物体的重力与弹力大小相等时D 、弹簧等于原长时图414、质量不等,但有相同动能的两个物体,在动摩擦因数相同的水平面上滑动至停止,则:( ) A 、质量大的滑行距离大 B 、质量小的滑行距离大 C 、质量小的滑行时间短D 、它们克服摩擦力所做的功一样大15、如图所示,轻弹簧的一端悬挂于O 点,另一端与小球P 相连接,将P 提起使弹簧处于水平位置且无形变,然后自由释放小球,让它自由摆下,在小球摆到最低点的过程中:( ) A 、小球的机械能守恒 B 、小球的动能增加 C 、小球的机械能减少D 、不能确定小球的机械能是否守恒 二、填空题 (每空2分,共20分)16. 质量为m的物体静止在水平桌面上,物体与桌面间的摩擦系数为μ,用水平力F推物体,物体发生位移s 时去掉F,物体还能前进的距离为_____________. 17.平抛物体的初速度v 。

高中物理必修二模块学业测评(附答案)

高中物理必修二模块学业测评(附答案)

必修二模块学业测评一一、单项选择题(本大题共8小题,每小题3分,共24分)1.在物理学建立的过程中,有许多伟大的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是()A.牛顿最早指出力不是维持物体运动的原因并提出了惯性定律B.伽利略创造了把实验和逻辑推理结合起来的科学研究方法C.开普勒认为,在高山上水平抛出一物体,只要速度足够大就不会再落在地球上D.卡文迪许发现了万有引力定律,并通过实验测出了引力常量2.下列说法正确的是()A.曲线运动一定是变速运动,一定有加速度,做曲线运动的物体一定处于非平衡状态B.做匀速直线运动的物体机械能一定守恒C.世界上某些发达国家发射的人造地球卫星运行时周期可以为80 minD.经典力学理论普遍成立,大到天体,小到微观粒子均适用3.如图M1-1所示,设想从某一天起,地球的引力减小一半,那么,对于漂浮在水面上的船来说,下列说法正确的是()图M1-1A.船受到的重力将减小,但船吃水的深度h将不变B.船受到的重力将减小,且船吃水的深度h也减小C.船受到的重力将不变,且船吃水的深度h也不变D.船受到的重力将不变,但船吃水的深度h将减小4.如图M1-2所示,两个质量相等的物体分别从两个高度相等而倾角不同的光滑斜面顶部由静止开始下滑到底部,则下列说法不正确的是()图M1-2A.到达底部时重力的功率相等B.到达底部时速度大小相等,但方向不同C.下滑过程中重力做的功相等D.到达底部时动能相等5.图M1-3为厦门胡里山炮台的一门大炮.假设炮弹水平射出,以海平面为零势能面,炮弹射出时的动能恰好为重力势能的3倍,不计空气阻力,则炮弹落到海平面时速度方向与海平面的夹角为()图M1-3A.30°B.45°C.60°D.75°6.如图M1-4所示,A、B叠放着,A用绳系在固定的墙上,用力F拉着B使其向右移动,以F'、f AB和f BA分别表示绳对A的拉力、A对B的摩擦力和B对A的摩擦力,则()图M1-4A .F 做正功,f AB 做负功,f BA 做正功,F'不做功 B .F 和f BA 做正功,f AB 和F'做负功C .F 做正功,其他力都不做功D .F 做正功,f AB 做负功,f BA 和F'不做功7.如图M1-5所示,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v 从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g ) ( )图M1-5A .v 216g B .v 28g C .v 24g D .v 22g8.将质量为m 的小物块以初速度v 0竖直向上抛出,假定物块所受的空气阻力f 大小不变,已知重力加速度大小为g ,则物块上升的最大高度和返回到原抛出点时的速度分别为 ( ) A .v 022g(1+f mg )和v 0√mg-fmg+fB .v 022g(1+fmg )和v 0√mgmg+f C .v 022g(1+2fmg )和v 0√mg-fmg+f D .v 022g(1+2f mg )和v 0√mgmg+f二、多项选择题(本大题共4小题,每小题4分,共16分,每小题给出的四个选项中至少有两个选项正确,全部选对的得4分,选对但不全的得3分,有选错的得0分)9.某同学为体会与向心力相关的因素,做了个小实验:手通过细绳使小球在光滑水平桌面上做匀速圆周运动,细绳保持水平.下列说法正确的是 ( )A .若保持小球运动的周期不变,减小绳长,则绳的拉力将增大B .若保持小球运动的周期不变,增大绳长,则绳的拉力将增大C .若保持绳长不变,增大小球运动的角速度,则绳的拉力将增大D .若保持绳长不变,增大小球运动的周期,则绳的拉力将增大10.[2018·江西赣州期中] 2017年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图M1-6所示.关于航天飞机的运动,下列说法中正确的是 ( )图M1-6A .在轨道Ⅱ上经过A 点的速度小于经过B 点的速度B .在轨道Ⅱ上经过A 点的速度等于在轨道Ⅰ上经过A 点的速度C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 点的加速度小于在轨道Ⅰ上经过A 点的加速度11.质量为m 的汽车在平直路面上由静止启动,运动过程的v-t 图像如图M1-7所示,已知t 1时刻汽车达到额定功率,之后保持额定功率运动,整个过程中汽车受到的阻力恒定,由图可知 ( )图M1-7A .在0~t 1时间内,汽车的牵引力大小为mv 1t 1B .在0~t 1时间内,汽车的瞬时功率与时间t 成正比C .汽车受到的阻力为mv 12t 1(v 2-v 1)D .在t 1~t 2时间内,汽车牵引力做的功为12m (v 22-v 12)12.如图M1-8所示,质量都为m 的a 、b 两球固定在轻杆的两端,轻杆可绕过O 点的水平轴在竖直面内无摩擦转动,已知两球到O 点的距离L 1>L 2.在图示的水平位置由静止释放两球至a 到达最低点的过程中 ( )图M1-8A .杆对a 球做正功B .杆对b 球做负功C .杆对a 球做负功D .杆对b 球做正功三、填空与实验题(第13小题6分,第14小题10分,共16分)13.[2018·湖北省重点高中联考] (1)研究平抛运动,下面做法可以减小实验误差的是 (填选项前的字母).A .尽量减小钢球与斜槽间的摩擦B .使用密度大、体积小的钢球C .实验时,让小球每次都从同一位置由静止开始滚下D .使斜槽末端切线保持水平 (2)某同学在做“研究平抛运动”的实验时,忘记记下小球做平抛运动的起点位置O ,A 为小球运动一段时间后的位置,以A 为坐标原点建立的坐标系如图M1-9所示,由图可求出小球做平抛运动的初速度为 m/s,小球做平抛运动的抛出点的坐标是 .(g 取10 m/s 2,计算结果均保留两位有效数字)图M1-914.某实验小组利用如图M1-10所示的装置做“验证机械能守恒定律”的实验.图M1-10(1)在做该实验时,除了铁架台、夹子、纸带、打点计时器、重锤、学生电源外,还需要下列器材中的(填选项前的字母).A.天平B.毫米刻度尺C.弹簧测力计D.秒表(2)以下关于实验操作过程的说法正确的是(填选项前的字母).A.将打点计时器接到学生电源的直流输出端上B.先接通电源后释放纸带C.实验前,应用夹子夹住纸带的上端,使纸带竖直,重锤应远离打点计时器D.重锤下落的高度既可以用刻度尺直接测量,又可以用公式h n=12g t n2计算得到(3)如图M1-11所示为该实验小组得到的一条纸带,打点计时器的打点周期为T,在计算纸带上N点对应的重锤速度时,小组内的几位同学采用了以下几种方法进行计算,其中正确的是(填选项前的字母).图M1-11A.v N=ngTB.v N=(n-1)gTC.v N=x n+x n+12T D.v N=d n+1-d n-12T(4)取打下O点时重锤的重力势能为零,计算出该重锤下落不同高度h时所对应的动能E k和重力势能E p,建立坐标系,横轴表示h,纵轴表示E k和E p,根据测量数据在图中绘出图线Ⅰ和图线Ⅱ,如图M1-12所示.已求得图线Ⅰ的斜率的绝对值k1=2.89 J/m,则图线Ⅱ的斜率k2= (结果保留三位有效数字)J/m.重锤和纸带在下落过程中所受到的平均阻力f与重锤所受重力G的比值为fG= (用字母k1和k2表示).图M1-12四、计算题(本大题共4小题,共44分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(10分)[2018·河北冀州中学月考]图M1-13为中国月球探测工程的标志,它以中国书法的笔触,勾勒出一轮明月和一双踏在其上的脚印,象征着月球探测的终极梦想.一位勤于思考的同学为探月宇航员设计了如下实验:在距月球表面高h处以初速度v0水平抛出一个物体,然后测量该物体的水平位移为x.通过查阅资料知道月球的半径为R,引力常量为G,若物体只受月球引力的作用,请你求出:(1)月球表面的重力加速度;(2)月球的质量;(3)环绕月球表面运行的宇宙飞船的速率.图M1-1316.(10分)[2018·新疆兵团第二师华山中学月考]如图M1-14所示,用内壁光滑的薄壁细圆管弯成的由半圆形APB(圆半径比细管的内径大得多)和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径R=1.0 m,BC段长L=1.5 m.弹射装置将一个质量为0.1 kg的小球(可视为质点)以v0=3 m/s的水平初速度从A点射入轨道,小球从C点离开轨道随即水平飞出,桌子的高度h=0.8 m,不计空气阻力,g取10 m/s2.求:(1)小球在半圆轨道上运动时的角速度ω、向心加速度a的大小及圆管在水平方向上对小球的作用力大小;(2)小球从A点运动到B点的时间t;(3)小球在空中做平抛运动的时间及落到地面D点时的速度大小.图M1-1417.(12分)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图M1-15所示,质量m=60 kg 的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?图M1-1518.(12分)某电视台的娱乐节目在策划一个射击项目,如图M1-16所示,他们制作了一个大型圆盘射击靶,半径R=0.8 m,沿半径方向等间距画有10个同心圆(包括边缘处,两同心圆所夹区域由外向内分别标注1,2,3,…,10环),圆盘射击靶固定于水平地面上,C点位于靶心正上方圆盘边缘处,BC与地面平行且与圆盘垂直,BC=1.2 m.平台上处于原长的弹簧右端固定,左端A点处有一小球与弹簧接触但不粘连,小球质量m=0.02 kg.现用水平向右的推力将小球从A点缓慢推到D点(弹簧仍在弹性限度内),推力所做的功W=0.25 J,当撤去推力后,小球沿平台向左运动,从B点飞出,最后刚好击中靶心.小球在A点右侧不受摩擦力,小球与AB段平台间的动摩擦因数为0.2,不计空气阻力,g取10 m/s2.(1)求小球在B点的速度大小.(2)求小球在AB段的运动时间.(3)若用水平向右的力将小球从A点缓慢推至某点(弹簧仍在弹性限度内),推力所做的功W'=0.32 J,当撤去推力后,小球沿平台向左运动,最后击中靶上的第几环?图M1-16模块学业测评(一)1.B [解析] 伽利略最早指出力不是维持物体运动的原因,牛顿提出了惯性定律,故A 错误.伽利略创造了把实验和逻辑推理结合起来的科学研究方法,故B 正确.牛顿设想了卫星模型,认为在高山上水平抛出一物体,只要速度足够大就不会再落在地球上,故C 错误.牛顿发现了万有引力定律,卡文迪许通过实验测出了引力常量,故D 错误.2.A [解析] 做曲线运动的物体速度方向沿轨迹的切线方向,所以速度方向时刻在改变,而速度是矢量,所以速度一定变化,曲线运动是变速运动,变速运动则一定有加速度,做曲线运动的物体一定处于非平衡状态,选项A 正确;做匀速直线运动的物体可能有除重力以外的力对物体做功,机械能可能不守恒,如竖直方向上做匀速直线运动的物体的机械能不守恒,选项B 错误;根据开普勒第三定律R 3T 2=k 知,卫星的轨道半径越大,其运行周期越大,近地卫星的周期约为84.5 min,即卫星运行的最短周期约为84.5 min,所以卫星运行的周期不可能为80 min,选项C 错误;经典力学理论对微观粒子不适用,选项D 错误.3.A [解析] 船受到的重力来源于地球的引力,故船受到的重力随地球引力的减小而减小;当船平衡时,重力等于浮力,即mg=ρ水gV 排,则V 排=mρ水,可见船吃水的深度h 将不变,选项A 正确.4.A [解析] 物体由顶部到底部的过程,由动能定理得mgh=12mv 2-0,所以两种情况下的末速度大小相等,而倾角θ不等,根据P G =mgv sin θ可知,两个物体到达底端时重力的功率不相等,A 错误;物体由顶部到底部的过程,由动能定理得mgh=12mv 2-0,所以物体的末动能相同,到达底部时速度大小相等,但方向不同,B 、D 正确;下滑过程中重力做的功相等,都为mgh ,C 正确.5.A [解析] 设射出时炮弹的初速度为v 0,高度为h ,炮弹落到海平面上时的速度大小为v ,方向与水平方向的夹角为α.根据机械能守恒定律得12m v 02+mgh=12mv 2,据题意有12m v 02=3mgh ,联立解得v=2√33v 0,则cos α=v 0v =√32,可得α=30°,选项A 正确.6.D [解析] 求恒力做的功时,定义式W=Fl cos α中的l 应是力F 的作用点发生的位移,F'、f BA 的作用点即A 物体没有发生位移,所以它们做的功均为零;而F 、f AB 的作用点即B 物体发生了位移,所以它们做的功均不为零,F 做正功,f AB 做负功.选项D 正确.7.B [解析] 物块上升到最高点的过程,机械能守恒,有12mv 2=2mgr+12m v 12,由平抛运动规律,水平方向,有x=v 1t ,竖直方向,有2r=12gt 2,解得x=√4v 2gr-16r 2,当r=v 28g时,x 最大,B 正确.8.A [解析] 设物块上升的最大高度为h ,返回到原抛出点时的速度为v ,则上升过程中根据动能定理有-(mg+f )h=0-12m v 02,整个过程中根据动能定理有-2fh=12mv 2-12m v 02,联立解得h=v 022g(1+fmg),v=v 0√mg-fmg+f ,所以选项A 正确.9.BC10.AC [解析] 航天飞机在轨道Ⅱ上运动过程中机械能守恒,航天飞机由A 到B 过程,万有引力做正功,航天飞机的动能增大,速度变大,因此在轨道Ⅱ上经过A 点的速度小于经过B 点的速度,故A 正确;航天飞机由轨道Ⅰ变轨到轨道Ⅱ,要做近心运动,要在A 点减速,因此在轨道Ⅱ上经过A 点的速度小于在轨道Ⅰ上经过A 点的速度,故B 错误;根据开普勒第三定律a 3T 2=k ,由于轨道Ⅱ的半长轴小于轨道Ⅰ的半径,则在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,故C 正确;由牛顿第二定律得G Mmr 2=ma ,解得a=GMr 2,则在轨道Ⅱ上经过A 点的加速度等于在轨道Ⅰ上经过A 点的加速度,故D 错误.11.BC [解析] 在0~t 1时间内,汽车做匀加速运动,有F 1-f=ma=mv 1t 1,牵引力F 1=f+mv 1t 1,汽车的瞬时功率P=F 1at 与时间t 成正比,选项A 错误,选项B 正确;在t 1时刻,功率P m =F 1v 1,在t 2时刻,功率P m =F 2v 2=fv 2,联立得阻力f=mv 12t 1(v 2-v 1),选项C 正确;在t 1~t 2时间内,由动能定理有W 牵-W f =12m (v 22-v 12),可见汽车牵引力做的功W 牵≠12m (v 22-v 12),选项D 错误.12.CD [解析] 对b ,由动能定理得-mgL 2+W 2=E k b ,可得W 2>0,选项D 正确;a 、b 组成的系统机械能守恒,杆对系统做功的代数和为0,则杆对a 球做负功,选项C 正确. 13.(1)BCD (2)1.0 (-10 cm,-5 cm)[解析] (1)钢球与斜槽间的摩擦对实验无影响,只要到达斜槽末端的速度相等即可,选项A 错误;使用密度大、体积小的钢球可减小相对的阻力,从而减小误差,选项B 正确;实验时,让小球每次都从同一位置由静止开始滚下,以保证初速度相同,选项C 正确;使斜槽末端切线保持水平,以保证抛出时的初速度水平,选项D 正确.(2)由于小球在竖直方向做自由落体运动,故在竖直方向有Δh=gT 2,由图可知Δh=h 2-h 1=(40cm -15 cm)-15 cm =10 cm =0.1 m;将Δh=0.1 m,g=10 m/s 2代入Δh=gT 2,解得T=0.1 s .小球在水平方向上做匀速直线运动,故x=v 0T ,将x=10 cm =0.1 m 代入,解得v 0=0.10.1 m/s =1.0 m/s;因竖直方向上两段相等时间的位移之比为15∶25=3∶5,则根据初速度为零的匀变速直线运动的规律可知,抛出点到原点的竖直位移为5 cm;水平位移是10 cm,则抛出点的坐标是(-10 cm,-5 cm).14.(1)B (2)B (3)CD (4)2.75(2.69~2.84均正确)k 1-k 2k 1[解析] (1)在做“验证机械能守恒定律”的实验时,需要用毫米刻度尺测量纸带上点间的距离.(2)实验操作过程中应使用交流电源,先接通电源后释放纸带,选项A 错误,B 正确;实验前,重锤应靠近打点计时器,重锤下落的高度用刻度尺直接测量,不能用公式h n =12g t n 2计算得到,选项C 、D 错误.(3)N 点对应的重锤速度为以该点为中间时刻的一段位移的平均速度,则v N =x n +x n+12T或v N =d n+1-d n-12T.(4)由图线Ⅱ得其斜率k 2=ΔE kℎ=2.75 J/m;由功能关系得-fh=ΔE k +ΔE p ,又知k 1=-ΔE pℎ=G ,则f G=k 1-k 2k 1.15.(1)2ℎv 02x 2(2)2ℎR 2v 02Gx 2(3)v0x √2R ℎ[解析] (1)物体在月球表面做平抛运动,在水平方向上有x=v 0t ,在竖直方向上有h=12g 月t 2, 联立可得月球表面的重力加速度g 月=2ℎv 02x 2.(2)设月球的质量为M 月,对月球表面上质量为m 的物体,有G M 月m R 2=mg 月,解得M 月=2ℎR 2v 02Gx 2.(3)设环绕月球表面飞行的宇宙飞船的速率为v ,则有m'g 月=m'v 2R,解得v=v0x√2R ℎ.16.(1)3 rad/s 9 m/s 20.9 N (2)1.05 s (3)0.4 s 5 m/s [解析] (1)小球做匀速圆周运动的角速度ω=v0R =3 rad/s向心加速度a=v 02R=9 m/s 2圆管对球的作用力F=ma=0.9 N(2)小球从A 到B 的时间t 1=12T=πω=1.05 s(3)小球在竖直方向上做自由落体运动,由h=12gt 2解得 t=0.4 s 落地时竖直方向上的速度v y =gt=4 m/s落地的速度大小 v=√v 02+v y2=5 m/s 17.(1)144 N (2)12.5 m[解析] (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax 由牛顿第二定律有mg Hx -f=ma联立以上两式,代入数据解得f=144 N(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有mgh+W=12m v C 2-12m v B 2设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg=m v C2R由运动员能够承受的最大压力为其所受重力的6倍,联立以上两式,代入数据解得R=12.5 m . 18.(1)3 m/s (2)1 s (3)第六环[解析] (1)设小球运动到B 点时速度大小为v B ,由平抛运动规律可知v B =√2Rg=3 m/s .(2)设小球运动到A 点时速度为v A ,由功能关系得W=E p =12m v A 2解得v A=5 m/s从A运动到B的过程,加速度大小为a=μg=2 m/s2=1 s.从A运动到B的时间为t=v A-v Bat=4 m(3)设A、B间的距离为L,则L=v A+v B2当推力所做的功W'=0.32 J时,设小球运动到B点时速度为v'B,则由能量守恒定律得E'p-μmv'B2mgL=12E'p=W'解得v'B=4 m/s=0.3 s小球做平抛运动的时间为t'=BCv'Bgt'2=0.45 m下落的高度为H=12每环间距为0.08 m,所以击中靶上的第六环.。

物理模块必修2综合检测(含详解答案)

物理模块必修2综合检测(含详解答案)

物理模块必修2综合检测(含详解答案)限时:90分钟总分:100分一、选择题(每小题4分,共40分)1.某物体在一足够大的光滑水平面上向西运动,当它受到一个向南的恒定外力作用时,物体的运动将是()A.直线运动且是匀变速直线运动B.曲线运动但加速度方向不变、大小不变,是匀变速曲线运动C.曲线运动但加速度方向改变、大小不变,是非匀速曲线运动D.曲线运动但加速度方向和大小均改变,是非匀变速曲线运动2.某物体的运动由水平方向和竖直方向两个分运动合成,已知水平方向的运动加速度为4m/s2,竖直方向的加速度为3m/s2,则该物体实际运动的加速度大小为()A.7m/s2B.1m/s2C.5m/s2D.在1~7m/s2之间,具体大小不确定3.某人以一定的速率乘小船垂直河岸向对岸划去,在平时水流缓慢时,渡河所用时间为2分钟,某次由于降雨,河里的水流速度加快,若这个人仍以这一速率垂直渡河,则这次渡河的时间() A.比2分钟时间长B.比2分钟的时间短C.时间仍等于2分钟D.由于水速不清,故时间不能确定4.质量为m的物体随水平传送带一起匀速运动,A为传送带的终端皮带轮.如图1所示,皮带轮半径为r ,要使物体通过终端时能水平抛出,皮带轮的转速至少为( )图1A.12πg r B.gr C.gr D.gr 2π5.如图2所示,质量为m 的小球固定在长为l 的细轻杆的一端,绕细杆的另一端O 在竖直平面内做圆周运动.球转到最高点A 时,线速度的大小为gl /2,此时( )图2A .杆受到mg /2的拉力B .杆受到mg /2的压力C.杆受到3mg/2的拉力D.杆受到3mg/2的压力6.(2011·山东卷)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方7.木星至少有16颗卫星,1610年1月7日伽利略用望远镜发现了其中的4颗.这4颗卫星被命名为木卫1、木卫2、木卫3和木卫4.他的这个发现对于打破“地心说”提供了重要的依据.若将木卫1、木卫2绕木星的运动看做匀速圆周运动,已知木卫2的轨道半径大于木卫1的轨道半径,则它们绕木星运行时()A.木卫2的周期大于木卫1的周期B.木卫2的线速度大于木卫1的线速度C.木卫2的角速度大于木卫1的角速度D.木卫2的向心加速度大于木卫1的向心加速度8.星球上的物体在星球表面附近绕星球做匀速圆周运动所必须具备的速度v1叫做第一宇宙速度,物体脱离星球引力所需要的最小速度v2叫做第二宇宙速度,v2与v1的关系是v2=2v1.已知某星球的半径为r,它表面的重力加速度是地球表面重力加速度g的1/6.若不计其他星球的影响,则该星球的第一宇宙速度v1和第二宇宙速度v2分别是()A.v1=gr,v2=2grB.v1=gr6,v2=gr3C.v1=gr6,v2=gr3D.v1=gr,v2=gr 39.中国人自己制造的第一颗直播通信卫星“鑫诺二号”在西昌卫星发射中心发射成功,定点于东经92.2度的上空(拉萨和唐古拉山口即在东经92.2.度附近),“鑫诺二号”载有22个大功率转发器,如果正常工作,可同时支持200余套标准清晰度的电视节目,它将给中国带来1 000亿元人民币的国际市场和几万人的就业机会,它还承担着“村村通”的使命,即满足中国偏远山区民众能看上电视的愿望.关于“鑫诺二号”通信卫星的说法正确的是()A.它一定定点在赤道上空B.它可以定点在拉萨或唐古拉山口附近的上空C.它绕地球运转,有可能经过北京的上空D.与“神舟六号”载人飞船相比,“鑫诺二号”的轨道半径大,环绕速度小10.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v接近行星赤道表面匀速飞行,测出运动的周期为T,已知万有引力常量为G,则可得()A.该行星的半径为v T 2πB.该行星的平均密度为3πGT2C.无法测出该行星的质量D.该行星表面的重力加速度为2πv T二、填空题(每题5分,共20分)11.在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:A.让小球多次从________位置上滚下,在一张印有小方格的纸上记下小球碰到铅笔笔尖的一系列位置,如图3中的a、b、c、d所示.B.按图安装好器材,注意斜槽末端________,记下平抛初位置O点和过O点的竖直线.C.取下白纸以O为原点,以竖直线为y轴建立平面直角坐标系,用平滑曲线画出小球做平抛运动的轨迹.图3图4(1)完成上述步骤,将正确的答案填在横线上.(2)上述实验步骤的合理顺序是________.(3)已知图3中小方格的边长L=2.5 cm,则小球平抛的初速度为v0=________m/s,小球在b点的速率为________m/s.(取g=10m/s2) 12.小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度.他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t内踏脚板转动的圈数为N,那么脚踏板转动的角速度ω=________;要推算自行车的骑行速度,还需要测量的物理量有________;自行车骑行速度的计算公式v=________.图513.我国在1984年4月8日成功发射了第一颗试验地球同步通信卫星,1986年2月1日又成功发射了一颗地球同步通信卫星,它们进入预定轨道后,这两颗人造卫星的运行周期之比T1∶T2=________,轨道半径之比R1∶R2=________,绕地球公转的角速度之比ω1∶ω2=________.14.1969年7月21日,美国宇航员阿姆斯特朗在月球上烙下了人类第一只脚印,迈出了人类征服月球的一大步.在月球上,如果阿姆斯特朗和同伴奥尔德林用弹簧秤称量出质量为m的仪器的重力为F;而另一位宇航员科林斯驾驶指令舱,在月球表面附近飞行一周,记下时间为T,根据这些数据写出月球质量的表达式________.三、计算题(每题10分,共40分)15.(10分)水平抛出的一个石子,经过0.4 s落到地面,落地时的速度方向跟水平方向的夹角是53°,(g取10m/s2,sin53°=0.8,cos53°=0.6)求:(1)石子的抛出点距地面的高度;(2)石子抛出的水平初速度;(3)石子的落地点与抛出点的水平距离.16.(10分)如图6所示,一过山车在半径为R的轨道内运动,过山车的质量为M,里面人的质量为m,运动过程中人与过山车始终保持相对静止.求:(1)当过山车以多大的速度经过最高点时,人对座椅的压力大小刚好等于人的重力?此时过山车对轨道的压力为多大?(2)当过山车以6gR的速度经过最低点时,人对座椅的压力为多大?图617. (10分)如图7所示,在倾角为α=30°的光滑斜面顶点处固定一原长l0=0.2m的轻弹簧,弹簧另一端与放在光滑斜面体上质量m =2kg的物体C相连后,弹簧长度变为l1=0.25m.当斜面连同物体C 一起绕竖直轴AB 转动时,求:图7(1)转速n =60 r/min 时弹簧的长度是多少?(2)转速为多少时,物体C 对斜面无压力?(g 取10m/s 2)18.(10分)2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A *”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A *做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A *就处在该椭圆的一个焦点上.观测得到S2星的运行周期为15.2年.(1)若将S2星的运行轨道视为半径r =9.50×102天文单位的圆轨道,试估算人马座A *的质量M A 是太阳质量M S 的多少倍(结果保留一位有效数字);(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为m 的粒子具有的势能为E p =-G Mm R (设粒子在离黑洞无限远处的势能为零),式中M、R分别表示黑洞的质量和半径.已知引力常量G=6.7×10-11N·m2/kg2,光速c=3.0×108m/s,太阳质量M S=2.0×1030kg,太阳半径R S=7.0×108m,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A*的半径R A与太阳半径R S之比应小于多少(结果按四舍五入保留整数).答案与解析1.解析:由于物体后来受到的是一个向南的恒力作用,因而物体将做匀变速运动,又由于物体所受的这个力向南,与物体原来的运动方向不在一直线上,因而物体一定做曲线运动,一定要注意加速度是由物体所受的外力和质量决定的,且加速度方向总和合外力方向一致.答案:B2.解析:有的人可能会错选D,造成错误的主要原因是对两个分运动的确定性没有把握好,因为两个分运动一个水平方向另一个竖直方向,大小也都确定了,当然合运动也是一个定值,而不是一个范围,由平行四边形定则很容易可以求出合运动的加速度a=5m/s2.若两个分运动是确定的,则合运动就一定是确定的,因而做题前,一定要看清题目,避免画蛇添足.答案:C3.解析:造成错解的主要原因是对运动的独立性没有理解透彻,认为水流加快时,船的速度增大,渡河时间减少,而实际上,船的速度增大了,但是船的位移也增大了,而船在垂直河岸的分速度大小并第 10 页 共 15 页 金太阳新课标资源网没有改变,河的宽度是一定的,由于渡河时间等于垂直河岸的位移与垂直河岸的渡河速度即小船速度的比值,而以上两个量都不变,故时间不变,仍为2分钟.答案:C4.解析:如果物体的速度为gr ,则在圆周最高点mg -F N =m v 2r ,F N =0,即对轨道无压力,物体做平抛运动.答案:C5.解析:假设球受杆的拉力,则T +mg =m v 2l ,T =-mg 2,负号说明球受杆的力应向上,故杆受球的压力大小为mg 2. 答案:B6.解析:本题考查万有引力与航天中的卫星问题,意在考查考生对天体运动规律、第一宇宙速度的理解和同步卫星的认识.对同一个中心天体而言,根据开普勒第三定律可知,卫星的轨道半径越大,周期就越长,A 正确.第一宇宙速度是环绕地球运行的最大线速度,B错.由G Mm r 2=ma 可得轨道的半径大的天体加速度小,C 正确.同步卫星只能在赤道的正上空,不可能经过北极的正上方,D 错.答案:AC7.解析:木卫1和木卫2做匀速圆周运动所需要的向心力由万有引力提供,即G Mm r 2=ma =m v 2r =mω2r =m ⎝ ⎛⎭⎪⎫2πT 2r ,解得a =G M r 2,v = G M r ,ω= G M r 3,T = 4π2r 3GM ;由题设条件知r 2>r 1,所以a 1>a 2,v 1>v 2,ω1>ω2,T 1<T 2,选项A 正确.金太阳新课标资源网答案:A8.解析:对于贴着星球表面的卫星mg ′=m v 21r ,解得:v 1=g ′r =gr6,又由v 2=2v 1,可求出v 2= gr 3. 答案:B9.解析:“鑫诺二号”通讯卫星是同步卫星,必位于赤道上空,A 正确.由地理知识,拉萨、唐古拉山、北京均不在赤道,B 、C 错误.同步卫星T =24 h ,大于“神舟六号”飞船的周期,根据GMmr 2=m 4π2T 2r ,T =4π2r 3GM ,知T 大,r 大,v = GMr ,则v 小,D 正确.答案:AD10.解析:由T =2πR v 可得:R =v T 2π,A 正确;又GMmR 2=m v 2R 可得:M =v 3T 2πG ,C 错误;由M =43πR 3·ρ,得:ρ=3πGT 2,B 正确,又GMmR 2=mg ,得:g =2πvT ,D 正确.答案:ABD11.解析:由表格可以看出,a 、b 、c 、d 四点水平方向之间的距离都是2个方格边长,所以它们相邻两点之间的时间间隔相等,根据Δy bc -Δy ab =gt 2得t = Δy bc -Δy abg = 2l -lg =l g =2.5×10-210s =0.05 s. 平抛运动的初速度等于水平方向匀速运动的速度,即 v 0=x t =2l t =2×2.5×10-20.05m/s =1.0m/s ,金太阳新课标资源网b 点的竖直分速度v by =3l 2t =3×2.5×10-22×0.05m/s =0.75m/s ,故b 点的速率v b =v 20+v 2y =1.25m/s.答案:(1)A.同一 B .切线水平 (2)BAC (3)1.0 1.25 12.解析:依据角速度的定义式ω=θt ,得ω=2N πt ;要求自行车的骑行速度,还要知道牙盘的齿轮数m (半径r 1)、飞轮的齿轮数n (半径r 2)、自行车后轮的半径R ;由v 1=ωr 1=v 2=ω2r 2,又齿轮数与轮子的半径成正比,则有ωm =ω2n ,且ω2=ω后,v =ω后R ,联立以上各式解得v =m n ωR =2πmNnt R 或v =r 1r 2ωR =2πNr 1tr 2R .答案:2πNt 牙盘的齿轮数m 、飞轮的齿轮数n 、自行车后轮的半径R (牙盘的半径r 1、飞轮的半径r 2、自行车后轮的半径R )mn ωR 或2πmNnt R (2πNr 1r 2t R 或r 1r 2ωR ).13.解析:所有同步卫星除与质量有关的物理量不同外,其他所有物理量的大小都是相同的.答案:1∶1 1∶1 1∶114.解析:在月球表面质量为m 的物体重力近似等于万有引力.设月球的半径为R ,则由F =GMmR2,得R =GMmF ①;设指令舱的质量为m ′,指令舱靠近月球表面飞行,其轨道半径约等于月球半径,做圆周运动的向心力等于万有引力,则有GMm ′R 2=m ′⎝ ⎛⎭⎪⎫2πT 2R ②,则由①②式得M =T 4F 316π4Gm 3.金太阳新课标资源网答案:T 4F 316π4Gm 315.解析:(1)由h =12gt 2得h =0.8m.(2)tan53°=v y v 0=gtv 0解得v 0=3m/s.(3)x =v 0t =1.2m.答案:(1)0.8m (2)3m/s (3)1.2m16.解析:(1)在最高点时,人的重力和座椅对人的压力的合力提供向心力,根据牛顿第二定律F N +mg =m v 21R ,F N =mg , 解得v 1=2gR .将过山车和人作为一个整体,向心力由整体的总重力和轨道的压力的合力提供,设此时轨道对整体的压力为F ,根据牛顿第二定律F+(M +m )g =(M +m )v 21R ,解得F =(M +m )g .根据牛顿第三定律,过山车对轨道的压力为(M +m )g ,方向向上. (2)在最低点时,以人为研究对象 F ′-mg =m v ′2R ,解得F ′=7mg .根据牛顿第三定律可知,人对座椅的压力为7mg ,方向向下. 答案:(1)2gR (M +m )g (2)7mg 17.解析:金太阳新课标资源网图8物体在斜面上受到三个力作用:mg 、F N 和F ,如图1所示.设弹簧劲度系数为k ,物体放在斜面上平衡时F =mg sin30°,由胡克定律得F =k (l 1-l 0),所以k (l 1-l 0)=mg sin30°,k =mg sin30°/(l 1-l 0)=200N/m.(1)设斜面体和物体C 以n =60 r/min =1 Hz 转动时弹簧的长度为l 2,此时,物体所受的力在竖直方向上平衡,即F N cos30°+k (l 2-l 0)sin30°=mg ,在水平方向上合力为向心力,即k (l 2-l 0)cos30°-F N sin30°=4π2n 2ml 2cos30°,由以上两式解得L 2=0.36m.(2)设转速为n ′时,物体对斜面无压力,此时弹簧的长度为l 3.由k (l 3-l 0)sin30°=mg ,k (l 3-l 0)cos30°=4π2n ′2ml 3cos30°,得l 3=mgk sin30°+l 0=0.4m ,所以n ′=k (l 3-l 0)4π2ml 3≈1.125 r/s =67.5 r/min.答案:(1)0.36m (2)67.5 r/min18.解析:(1)S2星绕人马座A *做圆周运动的向心力由人马座A *对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T ,则G M A m S2r2=m S2ω2r ,金太阳新课标资源网ω=2πT ,设地球质量为m E ,公转轨道半径为r E ,周期为T E ,则 G M S m E r 2E =m E (2πT E)2r E ,综合上述三式得M A M S =⎝ ⎛⎭⎪⎫r r E 3⎝ ⎛⎭⎪⎫T E T 2.式中T E =1年, r E =1天文单位, 代入数据可得M AM S≈4×106. (2)引力对粒子作用不到的地方即为无限远,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律,粒子在黑洞表面处的能量也小于零,则有12mc 2-G MmR <0,依题意可知R =R A ,M =M A , 可得R A <2GM Ac2,代入数据得R A <1.2×1010m. R AR S<17. 答案:(1)4×106R AR S<17。

2019年(人教版)高中物理必修二:模块综合检测卷(含答案)

2019年(人教版)高中物理必修二:模块综合检测卷(含答案)

模块综合检测卷(考试时间:90分钟分值:100分)一、单项选择题(本题共10小题,每题3分,共30分.在每小题给出的四个选项中,只有一个选项正确.) 1.发现万有引力定律的科学家是( )A.开普勒 B.牛顿C.卡文迪许 D.爱因斯坦答案:B2.经典力学适用于解决( )A.宏观高速问题 B.微观低速问题C.宏观低速问题 D.微观高速问题答案:C3.关于向心加速度的物理意义,下列说法中正确的是( )A.描述线速度的大小变化的快慢B.描述线速度的方向变化的快慢C.描述角速度变化的快慢D.描述向心力变化的快慢答案:B4.当质点做匀速圆周运动时,如果外界提供的合力小于质点需要的向心力了,则( )A.质点一定在圆周轨道上运动B.质点一定向心运动,离圆心越来越近C.质点一定做匀速直线运动D.质点一定离心运动,离圆心越来越远答案:D5.忽略空气阻力,下列几种运动中满足机械能守恒的是( )A.物体沿斜面匀速下滑 B.物体自由下落的运动C.电梯匀速下降 D.子弹射穿木块的运动答案:B6.人造地球卫星中的物体处于失重状态是指物体( )A.不受地球引力作用B.受到的合力为零C.对支持物没有压力D.不受地球引力,也不受卫星对它的引力答案:C7.物体做竖直上抛运动时,下列说法中正确的是( )A.将物体以一定初速度竖直向上抛出,且不计空气阻力,则其运动为竖直上抛运动B.做竖直上抛运动的物体,其加速度与物体重力有关,重力越大的物体,加速度越小C.竖直上抛运动的物体达到最高点时速度为零,加速度为零,处于平衡状态D.竖直上抛运动过程中,其速度和加速度的方向都可改变答案:A8.已知地球的第一宇宙速度为 km/s,第二宇宙速度为 km/s, 则沿圆轨道绕地球运行的人造卫星的运动速度( )A.只需满足大于 km/sB.小于等于 km/sC.大于等于 km/s,而小于 km/sD.一定等于 km/s答案:B9.如图甲、乙、丙三种情形表示某物体在恒力F作用下在水平面上发生一段大小相同的位移,则力对物体做功相同的是( )A.甲和乙 B.甲、乙、丙 C.乙和丙 D.甲和丙答案:D10.如图所示,物体P以一定的初速度沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P做匀变速直线运动B.P的加速度大小不变,但方向改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大答案:C二、双项选择题(本题共6小题,每题5分,共30分.在每小题给出的四个选项中有两个选项正确,全部选对得6分,漏选得3分,错选或不选得0分.)11.关于质点做匀速圆周运动,下列说法中正确的是( )A.质点的速度不变 B.质点的周期不变C.质点的角速度不变 D.质点的向心加速度不变答案:BC12.对下列四幅图的描述正确的是( )A.图A可能是匀速圆周运动的速度大小与时间变化的关系图象B.图B可能是竖直上抛运动的上升阶段速度随时间变化的关系图象C.图C可能是平抛运动的竖直方向加速度随时间变化的关系图象D.图D可能是匀速圆周运动的向心力大小随时间变化的关系图象答案:BD13.关于同步地球卫星,下列说法中正确的是( )A.同步地球卫星可以在北京上空B.同步地球卫星到地心的距离为一定的C.同步地球卫星的周期等于地球的自转周期D.同步地球卫星的线速度不变答案:BC14.三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A=m B>m C,则三个卫星( )A.线速度大小的关系是v A>v B=v CB.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B=F CD.向心加速度大小的关系是a A>a B>a C答案:AB15.如右图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由摆下.不计空气阻力,则在重物由A点摆向最低点B的过程中( ) A.弹簧与重物的总机械能守恒 B.弹簧的弹性势能增加C.重物的机械能不变 D.重物的机械能增加答案:AB三、非选择题(本大题3小题,共40分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.) 16.(11分)在“验证机械能守恒定律”的实验中,打点计时器所用电源频率为50 Hz,当地重力加速度的值为 m/s2,测得所用重物的质量为 kg.若按实验要求正确地选出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示(相邻计数点时间间隔为 s),那么:(1)纸带的______端与重物相连;(2)打点计时器打下计数点B时,物体的速度v B=________;(3)从起点O到打下计数点B的过程中重力势能减少量是ΔE p=________,此过程中物体动能的增加量ΔE k=________(取g= m/s2);(4)通过计算,数值上ΔE p____ΔE k(填“>”“=”或“<”),这是因为________________________________________________________________________;(5)实验的结论是______________________________________________________.解析:(1)重物在开始下落时速度较慢,在纸带上打的点较密,越往后,物体下落得越快,纸带上的点越稀.所以,纸带上靠近重物的一端的点较密,因此纸带的左端与重物相连.(2)v B =OC -OA2T= m/s.(3)ΔE p =mg×OB = J ,ΔE k =12mv B 2= J.(4)ΔE p >ΔE k ,这是因为实验中有阻力. (5)在实验误差允许范围内,机械能守恒.答案:(1)左 (2) m/s (3) J J (4)> 这是因为实验中有阻力 (5)在实验误差允许范围内,机械能守恒17.(4分)如图所示,将轻弹簧放在光滑的水平轨道上,一端与轨道的A 端固定在一起,另一端正好在轨道的B 端处,轨道固定在水平桌面的边缘上,桌边悬一重锤.利用该装置可以找出弹簧压缩时具有的弹性势能与压缩量之间的关系.(1)为完成实验,还需下列那些器材_ _______.A .秒表B .刻度尺C .白纸D .复写纸E .小球F .天平(2)某同学在上述探究弹簧弹性势能与弹簧压缩量的关系的实验中,得到弹簧压缩量x 和对应的小球离开桌面后的水平位移s的一些数据如下表,则由此可以得到的实验结论是________________________________________________________________________.实验次序 1 2 3 4 x/cm s/cm答案:(1)BCDE (2)弹簧的弹性势能与弹簧压缩量的平方成正比18.(8分)如图一辆质量为500 kg的汽车静止在一座半径为50 m的圆弧形拱桥顶部.(取g=10 m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6 m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?解析:(1)汽车受重力G和拱桥的支持力F,二力平衡,故F=G=5 000 N根据牛顿第三定律,汽车对拱桥的压力为5 000 N.(2)汽车受重力G和拱桥的支持力F,根据牛顿第二定律有G-F=m v2r故F=G-mv2r=4 000 N根据牛顿第三定律,汽车对拱桥的压力为4 000 N.(3)汽车只受重力GG=m v2 rv=gr=10 5 m/s.答案:见解析19.(8分)要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.求摩托车在直道上行驶所用的最短时间.有关数据见表格.某同学是这样解的:要使摩托车所用时间最短,应先由静止加速到最大速度 v1=40 m/s,然后再减速到v2=20 m/s,t1=v1a1;t2=(v1-v2)a2;t=t1+t2.你认为这位同学的解法是否合理?若合理,请完成计算;若不合理,请说明理由,并用你自己的方法算出正确结果.启动加速度a1 4 m/s2制动加速度a 2 8 m/s 2直道最大速度v 1 40 m/s 弯道最大速度v 2 20 m/s 直道长度s218 m解析:①不合理②理由:因为按这位同学的解法可得t 1=v 1a 1=10s ,t 2=(v 1-v 2)a 2=总位移x =v 12t 1+v 1+v 22t 2=275m>s.③由上可知摩托车不能达到最大速度v 2,设满足条件的最大速度为v ,则v 22a 1+v 2-v 222a 2=218.解得v =36 m/s ,这样加速时间t 1=v a 1=9 s ,减速时间t 2=(v 1-v 2)a 2=2 s ,因此所用的最短时间t =t 1+t 2=11 s.答案:见解析20.(9分)如下图所示,质量m =60 kg 的高山滑雪运动员,从A 点由静止开始沿雪道滑下,从B 点水平飞出后又落在与水平面成倾角θ=37°的斜坡上C 点.已知AB 两点间的高度差为h =25 m ,B 、C 两点间的距离为s =75 m ,(g 取10 m/s 2,cos 37°=,sin 37°=,求:(1)运动员从B 点飞出时的速度v B 的大小. (2)运动员从A 到B 过程中克服摩擦力所做的功.解析:(1)设由B 到C 平抛运动的时间为t 竖直方向: h BC =ssin 37° h BC =12gt 2水平方向: scos 37°=v B t 代入数据,解得:v B =20 m/s.(2)A 到B 过程由动能定理有 mgh AB +W f =12mv B 2-0代入数据,解得W f =-3 000 J所以运动员克服摩擦力所做的功为3 000 J. 答案:见解析。

必修二高中物理人教版模块综合测试(附答案)

必修二高中物理人教版模块综合测试(附答案)

高中物理模块必修二综合测试(共100分,时间90分钟)分钟)班级:班级: 号数:号数:号数: 姓名:姓名:姓名: 成绩:成绩:成绩:(共100分,时间90分钟)分钟)一、选择题(本题共10个小题,每小题4分,共40分)分)1.(经典回放)在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于(应等于( )A.arcsin Rg v 2B.arctan Rgv 2C.21arcsin Rg v 22D.arccot Rgv 2 2.(经典回放)某品牌电动自行车的铭牌如下:某品牌电动自行车的铭牌如下: 车型:20时(车轮直径:508mm ) 电池规格:36V 12 Ah (蓄电池)(蓄电池)(蓄电池) 整车质量:40kg 额定转速:210r/min(转/分)分)外形尺寸:L 1 800mm×W 650mm×H 1 100mm 充电时间:2-8h 电机:后轮驱动、直流永磁式电机电机:后轮驱动、直流永磁式电机额定工作电压/电流:36V/5 A 根据此铭牌中的有关数据,可知该车的额定时速约为(根据此铭牌中的有关数据,可知该车的额定时速约为( )A.15 km/h B.18 km/h C .20 km/h D.25 km/h 3.小轿车和吉普车的质量之比为3∶2,如果它们以相同的功率在同一平直马路上匀速行驶,设所受阻力与车重成正比,那么刹车后,它们滑行的距离之比为( ) A.4∶9 B.9∶4 C.4∶3 D.3∶4 4.下列实例中,系统的机械能守恒的是(.下列实例中,系统的机械能守恒的是( ) A.物体做平抛运动,不计空气阻力物体做平抛运动,不计空气阻力 B.物体沿光滑斜面向上匀速运动物体沿光滑斜面向上匀速运动C.站在静止小车上的人,从车上向后跳出站在静止小车上的人,从车上向后跳出D.弹簧将小球竖直向上弹出弹簧将小球竖直向上弹出5.1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,号小行星命名为吴健雄星,该小行星该小行星的半径为16km.若将此小行星和地球均看成质量分布均匀的球体,小行星的速度与地球相同.已知地球半径R=6 400km ,地球表面重力加速度为g ,这个小行星表面的重力加速度为( )A.400g B.4001g C.20g D.201g 6.雨滴由静止开始下落,遇到水平方向吹来的风.下述说法中正确的是(下述说法中正确的是( ) A.风速越大,雨滴下落时间越长风速越大,雨滴下落时间越长B.风速越大,雨滴着地时速度越大风速越大,雨滴着地时速度越大C.雨滴下落时间与风速无关雨滴下落时间与风速无关D.雨滴着地速度与风速无关雨滴着地速度与风速无关7.三颗人造地球卫星A 、B 、C 绕地球做匀速圆周运动,如图1所示.已知m A =m B >m C ,则(则()图1 A.线速度的大小关系为v A >v B =v CB.周期的大小关系为T A <T B =T CC.向心力的大小关系为F A =F B <F CD.半径与周期的关系为323232CC BB AA T R T R T R ==8.(2004高考上海卷,8)滑块以速率v 1惯性沿固定斜面由底端向上运动,当它回到出发点时速率变为v 2,且v 1>v 2,若滑块向上运动的位移中点为A .取斜面底端重力势能为零,则…( )A.上升时机械能减小,下降时机械能增大上升时机械能减小,下降时机械能增大B.上升时机械能减小,下降时机械能也减小上升时机械能减小,下降时机械能也减小C.上升过程中动能和势能相等的位置在A 点上方点上方D.上升过程中动能和势能相等的位置在A 点下方点下方9.(2005高考全国卷,21)最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1 200年,它与该恒星的距离为地球到太阳距离的100倍.假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有(两个数据可以求出的量有( ) A .恒星质量与太阳质量之比.恒星质量与太阳质量之比 B .恒星密度与太阳密度之比.恒星密度与太阳密度之比 C .行星质量与地球质量之比.行星质量与地球质量之比D .行星运行速度与地球公转速度之比.行星运行速度与地球公转速度之比10.如图2所示,一光滑圆环竖直放置,AB 为其水平方向的直径,甲、乙两球以同样大小的初速度从A 处出发,沿环的内侧始终不脱离环运动到达B 点,则(点,则()图2 A.甲先到达B B.乙先到达B C.同时到达B D.若质量相同,它们同时到达B 二、填空题(每空2分,共18分)分)11.2003年10月,我国成功发射了质量为m 的“神舟”五号载人宇宙飞船,它标志着我国载人航天技术达到了一个新的水平.该宇宙飞船在环绕地球的椭圆轨道上运行,设运行过程中它的速度最大值为v m ,当它由远地点运行到近地点的过程中,地球引力对它做的功为W ,则宇宙飞船在近地点处的速度为__________,在远地点处的速度为__________. 12.质量为m 的汽车,启动后在发动机功率P 保持不变的条件下行驶,保持不变的条件下行驶,经过一段时间后将经过一段时间后将达到以速度v 匀速行驶的状态;若行驶中受到的摩擦阻力大小保持不变,则汽车从静止开始启动后,在车速增至41v 时,汽车加速度的大小为__________. 13.小球做平抛运动的闪光照片的一部分如图3所示.图中每小格边长为1.09cm ,闪光的快慢为每秒30次.根据此图计算小球平抛运动的初速度v 0=__________和当地的重力加速度g=__________. 图3 14.如图4所示,水平桌面上固定着斜面体A ,斜面体的斜面是曲面,由其截面图可以看出曲面下端的切面是水平的,另有小铁块B ,现提供的实验测量工具有天平、直尺,其他的实验器材可根据实验需要自选要求设计一个实验,测出小铁块B 自斜面顶端由静止下滑到底端的过程中摩擦力对小铁块B 做的功.请回答下列问题:请回答下列问题:(1)简要说明实验中要测量的物理量(要求在图上标明)____________________________;(2)简要说明实验步骤________ __________ _______ __ _;(3)写出实验结果的表达式(重力加速度g 已知)___________________. 15.一艘宇宙飞船飞到月球的表面附近,一艘宇宙飞船飞到月球的表面附近,绕月球做近表面匀速圆周运动绕月球做近表面匀速圆周运动若宇航员用一只机械表测得绕行一周所用时间为T ,则月球的平均密度的大小是___________________. 三、计算题(本题共6个小题,每小题7分,共42分)分) 16.我国台湾省的一位特技演员第一个骑摩托车飞越长城.已知他跨越的水平距离约60m ,如果起跳的水平台比着地水平台高约7.2 7.2 mm ,且有100 100 m m 的水平助跑道,则他在助跑道上乘车行驶的平均加速度是多大 17.如图5所示,半径为R 、内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同的速率进入管中,A 通过最高点C 时,对管壁上部的压力为3mg,B 通过最高点C 时,对管壁下部的压力为0.75mg.求A 、B 两球落地点间的距离. 图5 18.一个质量为m 的小球拴在钢绳的一端,另一端施大小为F 1的拉力作用,在水平面上做半径为R 1的匀速圆周运动(如图6所示).今将力的大小改为F 2,使小球仍在水平面上做匀速圆周运动,但半径变为R 2,在小球运动的半径由R 1变为R 2的过程中拉力对小球做的功多大?功多大?19.在H=20m 高的阳台上,高的阳台上,弹簧枪将质量弹簧枪将质量m=15g 的弹丸以v 0=10m/s 的速度水平射出,的速度水平射出,弹弹丸落入沙坑后,在沙坑中运动的竖直距离h=20cm.不计空气阻力,试求:不计空气阻力,试求: (1)弹簧枪对弹丸所做的功;)弹簧枪对弹丸所做的功; (2)弹丸落到沙坑时的动能;)弹丸落到沙坑时的动能;(3)弹丸克服沙坑阻力所做的功.(g 取10m/s 2) 20.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h.要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道卫星在通过赤道上空时,卫星上的摄像机每次至少应拍摄地面上赤道圆周的弧长是多少?(设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T) 21.(2005高考广东卷,15)已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地心做圆周运动,由G 222)2(Tm hMm p =h 得M=22224GT h p . (1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果; (2)请根据已知条件再提出两种估算地球质量的方法并解出结果. m M ¢3pr 3()rGMp 2GMr 324p又因为m A =m B >m C ,所以F a >T b >T c ,C 错误.根据G 2r Mm =mr(T p 2)2可得:2234pGM T r =,所以它们的半径与周期的关系为:232323C C B B A A T R T R T P ==,D 错误. 答案:AB 8、解析:由题意可知,上升过程中摩擦力做负功,下降过程中摩擦力还做负功,故A 错,B 对设物体上升最大位移为s ,动、势能相等时位移为l ,速度为v 0,则在上升过程中由动能定理得(mgsinθ+F 摩)·s=21mv 12①(mgsinθ+F 摩)·l=21mv 12-21mv 32② 由动、势能相等得mglsinθ=21mv 32③联立②③得l=m g F m v 22121+摩,由①得s=m g F m v +摩2121所以l>2s,C 对,D 错.错.答案:BC 9、解析:太阳系外的行星围绕恒星做圆周运动,地球围绕太阳做圆周运动,万有引力提供行星或地球运动的向心力,根据牛顿运动定律得:G2rMm =mr(T p 2)2,再加上题中的已知条件可得恒星与太阳的质量之比,A 正确.由于不知道恒星和太阳的半径之比,由于不知道恒星和太阳的半径之比,所以无法所以无法比较恒星与太阳的密度之比,B 错误.行星质量无法求出,行星质量无法求出,也就无法比较行星质量与地球质也就无法比较行星质量与地球质量大小及它们的比值,C 错误但根据G 2r Mm =m r v 2可以比较行星运行速度与地球公转速度之比,D 正确.正确的选项为A 、D. 答案:AD 1010、、解析:圆环是光滑的,没有摩擦力的作用,在小球由A 点开始运动的过程中,只有重力对小球做功,小球的机械能守恒,甲、乙两小球在A 点的速度相同,又没有任何阻力做功,则小球在B 点的速度大小也相等,点的速度大小也相等,且与且与A 点的速度大小相等甲小球是先减速后加速,而乙小球则是先加速后减速,而乙小球则是先加速后减速,到达到达B 点的速度均相等,点的速度均相等,所以乙小球在运动的过程中的平均所以乙小球在运动的过程中的平均速度肯定要大于甲小球运动的平均速度,所以乙小球先到达,正确选项为B. 答案:B 1111、、解析:宇宙飞船在运动的过程中,只有万有引力做功,所以宇宙飞船的机械能守恒,根据机械能守恒定律可知,飞船在近地点时离地面的距离小,飞船在近地点时离地面的距离小,所以飞船的速度大所以飞船的速度大.而在远地点时,飞船离地面的高度大,势能大,动能小,速度也就小,所以宇宙飞船在运动的过程中,最大的速度就是近地点的速度,即v m ;在宇宙飞船由近地点到远地点运动的过程中,根据机械能守恒定律得:21mv m 2=W+21mv 2,则可得远地点时的速度为v=m W v m 22-答案:v m mWv m 22-1212、、解析:本题考查汽车行驶过程中的功率问题当汽车以恒定功率行驶时,当汽车以恒定功率行驶时,汽车的牵引力汽车的牵引力等于汽车所受的摩擦阻力,即F=f ,根据功率与牵引力的关系P=Fv=fv ,所以,所以f=v P ;当汽车由静止开始速度行驶至41v 时,此时的牵引力为F′,则P=F′4v ,得到,得到 F′=v P 4,根据牛顿第二定律,F′F′-f=ma -f=ma ,将上述数据代入解得a=mv P3. 答案:mv P 31313、、解析:由题图中的闪光照片可以看出,小球从A→B→C→D 的过程中,在水平方向上都是一个小格,而在竖直方向上,小球从A→B→C→D 的过程中分别是2、3、4个小格,很显然,A 点不是小球的抛出点,但做平抛运动的物体在竖直方向上做匀加速运动.满足在任何相等的时间间隔内的位移之差为一常数,根据平抛运动的规律可解出小球平抛运动的初速度和重力加速度的值.根据水平方向的匀速运动可以得到:l=v 0t ,得:v 0=3011009.12-´=t l m/s=0.327 m/s ;在竖直方向上,根据Δy=gT 2,则g=222)301(1009.1-´=D T ym/s 2=9.81 m/s 2. 答案:0.327 m/s 9.81 m/s 21414、、解析:(1)在本题中,应该考虑求小铁块在最低点的速度的大小,就应该将小铁块的运动是平抛运动分解开来,即水平方向上的匀速直线运动和竖直方向上的自由落体运动,所以在实验中要测量的物理量是斜面的高度H ,桌面到地面的高度h ,O 到P 的距离s ,小铁块B 的质量m.(2)实验的步骤:①用天平测出B 的质量;②如下图所示安装实验器材,地面铺白纸、复写纸并用胶带粘牢;③用手按住斜面A ,让B 从斜面顶端由静止开始滑下,记录落地点P 1;④重复③步骤五次,找到平均落点位置P ;⑤用直尺测图中标明的H 、h 、s;⑥实验结束,整理仪器归位.(3)小铁块B 由斜面顶端运动到底端的过程中,根据动能定理可得:据动能定理可得:mgH-W F =21mv 02,所以W F =mgH-21mv 02,又s=v 0t;h=21gt 2,联立以上各式解得:,联立以上各式解得:W F =mgH-h m gs 42答案:(1)斜面的高度H ,桌面到地面的高度h ,O 到P 的距离s ,小铁块B 的质量m (2)实验的步骤见思路分析)实验的步骤见思路分析(3)W F =mgH-hm gs 42 1515、、解析:宇宙飞船绕月球做近表面匀速圆周运动时万有引力提供宇宙飞船做圆周运动的向心力,根据牛顿运动定律和向心力公式得:G2RMm =mR(T p 2)2,由此可得月球的质量为:M=2324GTR p ,根据公式ρ=VM 得:得:ρ=232323344GT R GT R V M p p p ==. 答案:23GT p1616、、解析:特技演员骑摩托车飞越长城时做平抛运动,根据平抛运动的水平方向的匀速运动和竖直方向上的自由落体运动,可以得到:x=v 0t,h=21gt 2,代入数据:,代入数据: 60=v 0t,7.2=21×10×10×t t 2,由此可解得:v 0=50 m/s.特技演员在水平跑道上做匀加速直线运动,特技演员在水平跑道上做匀加速直线运动,根据运动学公式可得:v 02=2as ,代入数据502=2×=2×a×a×a×100100,所以a=12.5 m/s2. 答案:12.5 m/s 21717、、解析:根据小球A 、B 在管的上端的受力情况,列牛顿第二定律方程进行求解.小球A在最高点C 受重力mg 、管上部对它的向下的压力3mg ,列方程得:mg+3mg=m Rv A 2,可解得:v a =gR 2;对小球B 在最高点C 处的受力情况进行分析列方程得:处的受力情况进行分析列方程得:mg-0.75mg=m R v B 2,可解得:v b =2gR .小球从C 点出去后,再做平抛运动,因为两小球所在竖直高度相同,所以运动时间相同,时间的大小可由公式2R=21gt 2,得,得t=gR2由水平方向上的匀速运动可得:由水平方向上的匀速运动可得:x a =v a t=gR 2×gR2=4R ,x b =v b t=2gR ×gR2=R ,所以A 、B 两球落地点间距离为:两球落地点间距离为:Δx=x a -x b =4R-R=3R. 答案:3R 1818、、解析:在本题中,绳的拉力作为小球做圆周运动的向心力是变力,求变力做的功应使用动能定理.设半径为R 1、R 2时小球圆周运动的线速度大小分别为v 1、v 2,由向心力公式得F 1=m2121R v ①F 2=m2222R v ②由动能定理得:W=21mv 22-21mv 12③由①②③式得:W=21(F 2R 2-F 1R 1) 答案:21(F 2R 2-F 1R 1) 1919、、解析:(1)弹簧枪对弹丸做功的过程是发生在弹簧枪将弹丸射出的过程,在此过程中根据动能定理得:根据动能定理得: W F =21mv 02=21×15×15×1010-3×102 J=0.75 J. (2)弹丸被弹出后做平抛运动,对弹丸的运动,由动能定理得:mgH=21mv 2-21mv 02,代入数据,可得落地动能为:入数据,可得落地动能为:14pp2θ=2π1④s=32)(4+p. :32)(4+pG2)(+=m(2p)M=2)(4+p②F=G2=m(2p)M=24p方法二:在地面重力近似等于万有引力,由F=G 2RMm=mg 得M=G gR 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修二模块检测(时间:60分钟满分:100分)一、选择题(共9小题,第1~4题为单项选择题,第5~9题为多项选择题,每小题6分,共54分)1.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中正确的是( B )A.日心说的代表人物是托勒密B.英国物理学家卡文迪许利用“扭秤”首先较准确地测定了引力常量C.伽利略用“月—地检验”证实了万有引力定律的正确性D.第谷得出了行星运动定律解析:日心说的代表人物是哥白尼,A错;根据物理学史可知B正确;伽利略年代还没有出现万有引力定律,C错;开普勒得出了行星运动定律,D错误.2.斜面上有P,R,S,T四个点,如图所示,PR=RS=ST,从P点正上方的Q 点以速度v水平抛出一个物体,物体落于R点,若从Q点以速度2v水平抛出一个物体,不计空气阻力,则物体落在斜面上的( A )A.R与S间的某一点B.S点C.S与T间某一点D.T点解析:平抛运动的时间由下落的高度决定,下落的高度越高,运动时间越长.如果没有斜面,增加速度后物体下落至与R等高时,其位置恰位于S点的正下方的一点,但实际当中斜面阻碍了物体的下落,物体会落在R与S点之间斜面上的某个位置,A项正确.3.竖直向上的恒力F作用在质量为m的物体上,使物体从静止开始运动升高h,速度达到v,在这个过程中,设阻力恒为f,则下列表述正确的是( D )A.F对物体做的功等于物体动能的增量,即Fh=mv2B.F对物体做的功等于物体机械能的增量,即Fh=mv2+mghC.F与f对物体做的功等于物体动能的增量,即(F-f)h=mv2D.物体所受合力的功等于物体动能的增量,即(F-f-mg)h=mv2解析:加速运动过程终结时,物体的动能、重力势能均得到增加.除此之外,在所述过程中,因为有阻力的存在,还将有内能产生,其值为fh,可见Fh>mv2,同时,Fh>mv2+mgh,Fh=mgh+mv2+fh,经变形后,可得A,B,C错误,D正确.4.一物体静置在平均密度为ρ的球形天体表面的赤道上.已知引力常量G,若由于天体自转使物体对天体表面的压力恰好为零,则天体自转周期为( D )A.()B.()C.()D.()解析:由万有引力提供向心力得G=mr()2,而M=ρ·πR3,r=R,解得T=(),故D正确.5.已知月球上没有空气,重力加速度为地球的,假如你登上月球,你能够实现的愿望是( AC )A.轻易将100 kg物体举过头顶B.放飞风筝C.做一个同地面上一样的标准篮球场,在此打球,发现自己成为扣篮高手D.推铅球的水平距离变为原来的6倍解析:因为g月=g地,所以在月球上举100 kg的物体,相当于在地球上举16.7 kg的物体,故A正确;在月球上弹跳高度是地球上的6倍,故C正确;根据平抛运动x=v0,知D错;月球上没有空气,故不能放飞风筝,B错.6.物体在运动过程中,克服重力做功50 J,则以下说法中正确的是( BD )A.物体的高度一定降低了B.物体的高度一定升高了C.物体的重力势能一定是50 JD.物体的重力势能一定增加50 J解析:克服重力做功,即重力做负功,重力势能增加,高度升高,克服重力做多少功,重力势能就增加多少,但重力势能的大小是相对的,对不同参考平面,重力势能的大小不确定.故选项A,C错误,B,D正确. 7.如图所示,恒力F通过光滑定滑轮将质量为m的物体P提升,物体P 向上的加速度为a,在P上升h的过程中,力F做功为( BD )A.mghB.FhC.(F+ma)hD.m(g+a)h解析:根据牛顿第二定律有F-mg=ma,所以F=m(g+a),则恒力F做功为W=Fh=m(g+a)h,故B,D正确.8.如图所示,M,N是两块挡板,挡板M高h′=10 m,挡板N的下边缘高h=11.8 m.从高H=15 m的A点以速度v0水平抛出一小球,A点与两挡板的水平距离分别为d1=10 m,d2=20 m.N板的上边缘高于A点,若能使小球直接进入挡板M的右边区域,则小球水平抛出的初速度v0的大小是下列给出数据中的哪个(g取10 m/s2)( BC )A.8 m/sB.14 m/sC.20 m/sD.26 m/s解析:要让小球落到挡板M的右边区域,下落的最大高度为Δh1=5 m,由t1=得出t1=1 s,由d1=v01t1,得出v01=10 m/s;要让小球落到挡板M的右边区域,下落的最小高度为Δh2=3.2 m,由t2=得出t2=0.8 s,由d2=v02t2,得出v02=25 m/s.所以v0的范围为10 m/s≤v0≤25 m/s,故B,C正确.9.如图所示是某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若小车在平直的公路上以初速度v0开始加速行驶,经过时间t,前进了距离l,达到最大速度v max,设此过程中电动机功率恒为额定功率P,受到的阻力恒为f,则此过程中电动机所做的功为( ABD )A.fv max tB.PtC.ftD.m +fl-m解析:由于功率恒定,则W=Pt,故B对;又由于达到最大速度时,P=Fv max=fv max,则W=Pt=fv max t,故A对,C错;又由动能定理W-fl=m -m,则W=m -m+fl,故D对.二、非选择题(共46分)10.(8分)某同学用如图(甲)所示的装置验证动能定理.为了提高实验精度,该同学多次改变小滑块下落高度H的值,测出对应的平抛运动水平位移x,并算出x2如下表所示,进而画出x2H图线如图(乙)所示.滑块下落高度H平抛水平位移x/cm平抛水平位移的平方x2/cm2h 5.5 30.252h 9.1 82.813h 11.7 136.894h 14.2 201.645h 15.9 252.816h 17.6 309.767h 19.0 361.008h 20.6 424.369h 21.7 470.89(1)原理分析:若滑块在下滑过程中所受阻力很小,则只要满足,便可验证动能定理.(2)实验结果分析:实验中获得的图线未过坐标原点,而交在了大约(0.2h,0)处,原因是 .解析:(1)若滑块在下滑过程中所受阻力很小,由动能定理,mgH=m,根据平抛运动规律,x=v0t,H=gt2,显然x2与H成正比,即只要满足x2与H成正比,便可验证动能定理.(2)实验中获得的图线未过坐标原点,而交在了大约(0.2h,0)处,原因是滑块需要克服阻力做功.答案:(1)x2与H成正比(2)滑块需要克服阻力做功11.(11分)某同学利用重物自由下落来“验证机械能守恒定律”的实验装置如图(甲)所示.(1)请指出实验装置中存在的明显错误.(2)进行实验时,为保证重物下落时初速度为零,应(选填“A”或“B”).A.先接通电源,再释放纸带B.先释放纸带,再接通电源(3)根据打出的纸带,选取纸带上连续打出的1,2,3,4四个点如图(乙)所示.已测出1,2,3,4到打出的第一个点O的距离分别为h1,h2,h3,h4,打点计时器的打点周期为T.若代入所测数据能满足表达式gh3= (用题目中已测出的物理量表示),则可验证重物下落过程机械能守恒.解析:(1)从题图(甲)中的实验装置中发现,打点计时器接在了“直流电源”上,打点计时器的工作电源是“交流电源”.因此,明显的错误是打点计时器接在“直流电源”上.(2)为了使纸带上打下的第1个点是速度为零的初始点,应该先接通电源,让打点计时器正常工作后,再释放纸带.若先释放纸带,再接通电源,当打点计时器打点时,纸带已经下落,打下的第1个点的速度不为零.因此,为保证重物下落的初速度为零,应先接通电源,再释放纸带.(3)根据实验原理,只要验证gh n=即可验证机械能守恒定律.因此需求解v3.根据匀变速直线运动规律关系式可得,v3=,则有=,故只要在误差允许范围内验证gh3=成立,就可验证重物下落过程中机械能守恒.答案:(1)打点计时器接“直流电源”(或打点计时器应接“交流电源”)(2)A (3)12.(12分)不可伸长的轻绳长l=1.2 m,一端固定在O点,另一端系一质量为m=2 kg的小球.开始时,将小球拉至绳与竖直方向夹角θ=37°的A处,无初速度释放,如图所示,取cos 37°=0.8,g=10 m/s2.求:(1)小球运动到最低点B时绳对球的拉力大小;(2)若小球运动到B点时,对小球施加一沿速度方向的瞬时作用力F,让小球在竖直面内做完整的圆周运动,F做功的最小值.解析:(1)小球从A到B过程中,有mgl(1-cos 37°)=mv2在B点,有F T-mg=m解得F T=28 N.(2)小球通过最高点的速度为v C,由牛顿第二定律得mg=m从A到C的过程W-mgl(1+cos 37°)=m-0解得W=55.2 J.答案:(1)28 N (2)55.2 J13.(15分)如图所示,长为l的绳子下端连着质量为m的小球,上端悬于天花板上,当把绳子拉直时,绳子与竖直方向的夹角为60°,此时小球静止于光滑水平桌面上.重力加速度为g.(1)当小球以角速度ω1=做圆锥摆运动时,桌面对小球的支持力为多大?(2)当小球以角速度ω2=做圆锥摆运动时,绳子的张力为多大?解析:当支持力N恰好为0时,有mgtan 60°=m lsin 60°解得ω0=.(1)因为ω0>,所以桌面对小球有支持力,设N1为桌面对小球的支持力,F1为绳的张力,则N1+F1cos 60°=mgF1sin 60°=m lsin 60°解得N1=.(2)因为>ω0,所以小球离开桌面,设此时绳的张力为F2,则F2sin θ=m lsin θ解得F2=4mg.答案:(1)mg (2)4mg。

相关文档
最新文档