五年级奥数专题讲义-第29讲行程问题(二)通用版(含答案)
五年级奥数行程问题列方程解行程问题

五年级奥数行程问题列方程解行程问题xx年xx月xx日•行程问题概述•相遇问题•追及问题目录•环行跑道问题•过桥问题•复杂行程问题综合分析01行程问题概述行程问题是指在运动过程中,涉及速度、时间、距离之间相互关系的问题。
在行程问题中,通常会涉及到两个或多个物体或人在同一条路线上相对或同向运动。
1 2 3物体或人在同一直线上运动,涉及相遇、追及、超越等问题。
直线型行程问题物体或人在圆形、椭圆形等曲线上运动,涉及最短路径、周长等问题。
曲线型行程问题结合直线和曲线型行程问题,涉及更复杂的运动关系和条件。
综合型行程问题明确题目中涉及的物体或人,以及他们之间的运动关系。
确定研究对象根据题目描述,建立行程问题的方程或不等式模型。
建立数学模型通过数学计算,求解方程或不等式的解,得到所需的结果。
解方程或不等式行程问题的解题思路02相遇问题相遇问题是指两个或多个物体(通常为运动物体)从不同的地点同时出发,在某一点相遇的数学问题。
相遇问题的基本要素包括:物体的数量、出发的时间、地点、速度、相遇的地点等。
相遇问题的定义1相遇问题的解题思路23确定物体的数量和它们的运动性质(同时同向或同时反向)。
确定物体出发的时间和地点,以及相遇的地点。
运用速度、时间、距离之间的关系,列出方程并求解。
相遇问题的实例解析•问题:甲、乙两人分别从A、B两地同时出发,相向而行,经过4小时后相遇。
甲的速度是10千米/小时,乙的速度是8千米/小时。
求A、B两地的距离。
•分析:甲和乙两人同时出发,相向而行,所以他们的相对速度是两者速度之和,即10千米/小时 + 8千米/小时 = 18千米/小时。
经过4小时后相遇,所以A、B两地的距离就是甲和乙两人相对速度乘以相遇时间。
•解法•设A、B两地的距离为x千米。
•根据题意,甲和乙两人相对速度为18千米/小时,相遇时间为4小时。
•则有方程:x = 18 × 4•解得:x = 72千米•答案:A、B两地的距离为72千米。
五年级奥数专题--行程问题

五年级奥数专题-行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位.行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等.每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度× 时间2. 相遇问题:路程和 = 速度和× 时间3. 追击问题:路程差 = 速度差× 时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的.①追击及遇问题一、例题与方法指导例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花圃的周长是多少米?思路导航:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间.第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰.例2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米.乙车每小时行多少千米?思路导航:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间.解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米.例3.兄妹二人同时从家里出发到学校去,家与学校相距1400米.哥哥骑自行车每分钟行200米,妹妹每分钟走80米.哥哥刚到学校就立即返回来在途中与妹妹相遇.从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?思路导航:从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍.因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了.解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米.二、巩固训练1.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行.甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?分析:如果乙在中途不停车,那么甲、乙两人从出发到相遇共行路程的和:328+22×1=350(千米),两车的速度和:28+22=50(千米/小时),然后根据相遇问题“路程和÷速度和=相遇时间”得350÷50=7(小时)解:(328+22×1)÷(28+22)=350÷50=7(小时)解法2:(328-22×1)÷(28+22)=300÷50=6(小时)6+1=7(小时)答:从出发到相遇经过了7小时.2.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?分析:从图中可知:快车3小时行的路程40×3=120千米,比全程的一半多12千米,全程的一半是120-12=108千米.而慢车3小时行的路程比全程的一半还少12千米,所以慢车3小时行的路程是108-12=96千米,由此可以求出慢车的速度.解:①甲乙两地路程的一半:40×3-12=108(千米)②慢车3小时行的路程:108-12=96(千米)③慢车的速度:96÷3=32(千米)答:慢车每小时行32千米.3.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?分析:从图上可以看出,小华和小明两人第一次相遇时,行了一个全程,小华行了85千米.当小华和小明第二次相遇时,共行了3个全程,这时小华共行了3个85千米,如果再加上35千米,相当于小华行了2个全程,甲乙两地全长也就可以求出来了.解:(1)甲乙出发到第二次相遇时,小华共行了多少千米?85×3=255(千米)(2)甲乙两城相距多少千米?(255+35)÷2=290÷2=145(千米)答:两城相距145千米.三、拓展提升1.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米.求甲乙两站相距多少千米?分析如图,从出发到第二次相遇时,客车和货车共行3个全程,在这段时间里客车一共比货车多行216千米,客车每小时比货车快54-48=6千米,这样可以求出行3个全程的时间为216÷6=36小时,由此可求出行一个全程时间:36÷3=12小时,因而可以求出甲乙两站的距离.解:①从出发到第二次是两车行驶的时间:216÷(54-48)=36(小时)②从出发到第一次相遇所用的时间:36÷3=12(小时)③甲乙两站的距离:(54+48)×12=1224(千米)答:求甲乙两站相距1224千米.2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇.求丙车的速度.分析:解答的关键是求出卡车的速度,从图上明显看出,甲车6小时的行程与乙车7小时的行程差正好是卡车的速度.再根据速度和、相遇时间和路程三者之间的关系,求出丙车速度.解:(1)卡车的速度:(60×6-48×7)÷(7-6)=24÷1=24(千米)(2)AB两地之间的距离:(60+24)×6=504(千米)(3)丙车与卡车的速度和:504÷8=64(千米)(4)丙车的速度:64-24=40(千米/小时)答:丙车的速度每小时40千米.3.两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?②火车过桥过桥问题也是行程问题的一种.首先要弄清列车通过一座桥是指从车头上桥到车尾离桥.列车过桥的总路程是桥长加车长,这是解决过桥问题的关键.过桥问题也要用到一般行程问题的基本数量关系:过桥问题的一般数量关系是:因为:过桥的路程= 桥长+ 车长所以有:通过桥的时间=(桥长+ 车长)÷车速车速= (桥长+ 车长)÷过桥时间公式的变形:桥长= 车速×过桥时间—车长车长= 车速×过桥时间—桥长后三个都是根据第二个关系式逆推出的.火车通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决.一、例题与方法指导例1.一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?思路导航:从火车头上桥,到火车尾离桥,这之间是火车通过这座大桥的过程,也就是过桥的路程是桥长+ 车长.通过“过桥的路程”和“车速”就可以求出火车过桥的时间.(1)过桥路程:6700 + 100 = 6800(米)(2)过桥时间:6800÷400 = 17(分)答:这列客车通过南京长江大桥需要17分钟.例2.一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?思路导航:要想求火车过桥的速度,就要知道“过桥的路程”和过桥的时间.(1)过桥的路程:160 + 440 = 600(米)(2)火车的速度:600÷30 = 20(米)答:这列火车每秒行20米.例3.某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?思路导航:火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢?原因是第一个隧道比第二个隧道长360—216 = 144(米),这144米正好和8秒相对应,这样可以求出车速.火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长.(1)第一个隧道比第二个长多少米?360—216 = 144(米)(2)火车通过第一个隧道比第二个多用几秒?24—16 = 8(秒)(3)火车每秒行多少米?144÷8 = 18(米)(4)火车24秒行多少米?18×24 = 432(米)(5)火车长多少米?432—360 = 72(米)答:这列火车长72米.二、巩固训练1.某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?思路导航:通过前两个已知条件,我们可以求出火车的车速和火车的车身长.(342—234)÷(23—17)= 18(米)……车速18×23—342 = 72(米)……………………车身长两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程÷速度和= 相遇时间”,可以求出两车错车需要的时间.(72 + 88)÷(18 + 22)= 4(秒)答:两车错车而过,需要4秒钟.2.一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?(265 + 985)÷25 = 50(秒)答:需要50秒钟.3.一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?(200 + 50)÷25 = 10(米)答:这列火车每秒行10米.三、拓展提升1.一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?1分= 60秒30×60—240 = 1560(米)答:这座桥长1560米.2.一列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一座桥,共用40秒钟,桥长150米,问这条隧道长多少米?15×40—240—150 = 210(米)答:这条隧道长210米.3.一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?1200÷(75—15)= 20(米)20×15 = 300(米)答:火车长300米.4.在上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?(18 + 17)×10—182 = 168(米)答:另一列火车长168米.。
奥数行程问题归纳总结及部分例题及答案

奥数行程:多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
如“多人行程问题”,实际最常见的是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
总之,行程问题是重点,也是难点,更是锻炼思维的好工具。
只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!奥数行程:多人行程例题及答案(一)行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。
五年级奥数行程问题应用题及答案

行程问题奥数题及答案1甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车?行程答案:小汽车出发遇到第一辆客车是在(300-60×1.5)÷(100+60)=21/16小时,小汽车每行一段需要30÷100=3/10小时,此时在(21/16)÷(3/10)=4又3/8段的地方相遇。
遇到第一辆客车后,每隔5÷(100+60)=5/160小时遇到一辆客车,当在端点遇到客车时,每断路只能再遇到9辆车[(3/10)÷(5/160)=9.6],因此过路标少于3/10-9×(5/160)=3/160小时遇到客车时,才能满足条件。
当小汽车行完5段,就刚好在路标处遇到第7辆,因此这段只能遇到9辆,下一次刚好能遇到10辆,所以共遇到了7+9+10=26辆。
行程问题奥数题及答案2A城每隔30分钟有直达班车开往B镇,速度为每小时60千米;小王骑车从A城去B 镇,速度为每小时20千米。
当小王出发30分钟时,正好有一趟班车(这是第一趟)追上并超过了他;当小王到达B镇时,第三趟班车恰好与他同时到达。
A、B间路程为多少千米?行程答案:由于班车速度是小王速度的3倍,所以当第一趟班车追上并超过小王的`那一刻,由于小王已出发30分钟,所以第一趟班车已出发30÷3=10分钟;再过50分钟,第三趟班车出发,此时小王已走了30+50=80分钟,从此刻开始第三趟班车与小王同向而行,这是一个追及问题。
由于班车速度是小王速度的3倍,所以第三趟班车走完全程的时间内小王走了全程的三分之一,所以小王80分钟走了全程的三分之二,AB间路程为:20×80/60÷2/3=40千米。
五年级奥数竞赛班专题讲义行程问题2速度的变化加答案

行程问题2·速度的变化3.用比来体现速度的变化【例1】A、B两地相距7200米,甲、乙分别从A、B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇.甲的速度是每分钟行多少米?【例2】甲、乙二人分别从A、B两地同时出发,相向而行.出发时速度比是3:2,两人相遇后,甲的速度提高20%,乙的速度提高50%.当甲到达B地时,乙离A还有4千米.A、B两地的距离是多少千米?【例3】一辆汽车从甲地开往乙地.如果将车速提高五分之一,可以比原定时间提前半小时到达;如果以原速行驶84千米后再将车速提高三分之一,也比原定时间提前半小时到达,那么甲、乙两地相距多少千米?【例4】在微风的催送下,一艘轮船由甲港到乙港要3小时,今天这艘船照例在微风的催送下从甲地出发,当行驶到全程的13处时,突然风向变化,速度减为原来的25,行驶8千米后,又变顺风,接着以原速的2倍行完剩下的航程,结果到达乙港比往常迟36分钟.求甲港到乙港的距离.【例5】快慢二车分别以各自速度同时从甲地开往乙地,返回时各自速度都减少20%,出发1.5小时后,快车在返回途中与慢车相遇,当慢车到达乙地时,快车离甲地还有甲乙两地之间路程的25,那么快车在甲乙两地往返一次需要多少小时?【例6】一辆大货车与一辆小轿车,分别以各自的速度同时从甲地开往乙地,到乙地后立刻返回,返回时各自的速度都提高20%.出发后1.5小时,小轿车在返回的途中与大货车相遇.当大货车到达乙地时,小轿车离甲地还有甲、乙两地之间路程的15.那么,小轿车在甲、乙两地之间往返一次共用多少小时?【例7】男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A 点出发.在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3秒.那么两人第二交迎面相遇的地点离A点多少米?【例8】A、B两人同时从700米长的山坡坡底出发向上跑,跑到坡顶立即返回.他们两的上坡速度不同,下坡速度则是两人各自上坡速度的二倍.B首先到达坡顶,立即沿原路返回,并且在离坡顶70米处与A相遇.当B到达坡底(注:起点)时,A落后多少米?计算达标1.213 52x xx +--=-解:2(2)5(1)3010x x x+--=-24553010x x x+-+=-25103045x x x-+=--721x=3x=2.3251 624x xx--+=-解:2(32)12303(1)x x x-+=--6412303x x x-+=-+ 3412303x x x-+=+-1127x=2711x=3.232132 x x--=+解:2(23)63(2)x x-=+-46663x x-=+-43666x x+=++718x=187x=4.121 23x x--+=解:3(1)2(2)6x x-+-=33246x x-+-=32643x x+=++513x=135x=练习1.一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【答案】5 18【解】车速提高20%,所用时间是原来的10051206=,从甲地到乙地,以原来行驶需51166⎛⎫÷-=⎪⎝⎭(时),车速提高30%后需86(130%)413÷+=(时),应提前1813小时.实际提前了1小时,所以车速提高30%行驶的路程占全程的181311318÷=,原速行驶了全程的13511818-=.2. 从上海开车去南京,原计划中午11:30到达,但出发后车速提高了17,11点名就到了.第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市间的路程是多少千米? 【答案】288【解】从上海到南京,车速提高到原来的87,所用时间是原来的78,所以原计划行车时间为171428⎛⎫÷-= ⎪⎝⎭(时). 从南京回上海,车速提高到原来的76,所用时间是原来的67,因为到达上海提前了13小时,所以提速后行驶的时间相当于原速行驶1671373⎛⎫÷-= ⎪⎝⎭(时).两市之间相距7120442883⎛⎫÷-⨯= ⎪⎝⎭(千米 ).3. 一辆车从甲地开往乙地.如果把车减少10%,那么要比原定时间迟1小时到达.如果对原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少? 【答案】540千米【解】车速减少10%,所用时间就是原定时间的109.原定时间是101199⎛⎫÷-= ⎪⎝⎭(时).如果一开始车速就提高20%,那么应比原定时间少用9[11(220%)] 1.5⨯-÷+=(时).实际少用1小时,所以按原速行驶的路程占全程的1(1.51) 1.53-÷=,全程为11805403÷=(千米).4. 一辆汽车按计划速度行驶1小时,剩下路程用计划速度的35继续行驶到达目的地的时间比计划时间迟了2小时,如果按计划速度行驶的路程再增加60千米,那么到达目的地的时间比计划时间只迟1小时,问计划速度是多少?全程有多远? 【答案】40千米;160千米【解法1】剩下的路程行驶速度与原速度比为3:5,则时间比为5:3.2(53)33÷-⨯=(小时),314+=(小时);同样道理:31(53)32÷-⨯=(小时),36041402⎛⎫÷--= ⎪⎝⎭(千米)(计划速度)404160⨯=(千米)(全程).【解法2】设计划速度为V ,时间为t ,则有:3(1)(12)5t V V t -⨯=-+,4t =;60416014135V V V V -⨯-++=-,40V =,404160⨯=(千米).5. 甲、乙两人分别从A 、B 两地同时出发,相向而行.他们相遇时,甲比乙多跑90米,相遇后乙的速度减少50%,甲到B 后立即调头,追上乙时离A 还有90米,那么,AB 间的路程为 米. 【答案】450【解析1】如图,甲、乙相遇地点D 距离AB 中点C :90245÷=(米),那么45BD BC =-米.乙减速后行45DE =米90AC ÷-米45AC =-米45BC =-米.即乙减速前后行的路程一样.而乙减速前后的速度比为2:1,从而乙减速前后的时间比为1:2.即总时间是相遇前时间的3倍.相遇前甲行45AC +米,整个过程就应该行(45)33135AC AC +⨯=+米米,即135EC =米.所以,22(90135)450BC AC ==⨯+=(米).【解析2】因为90AD =,∴DC BC =,∴相遇到追上这个过程中,甲走了3倍的DC ,而乙走了一倍DC ,此时:3:1v v =甲乙,则原速比为3:2,则:3:2AC BC =.则3290450(m)32AB -⎛⎫=÷= ⎪+⎝⎭.6. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地,若车在行过丙地72千米的顶地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲、乙两地全程 千米.【解】从丙到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丙到乙计划用4026034(43)⎛⎫- ⎪⎝⎭⨯=-(时).所以原计划小李从甲地到乙地要走246+=(时). 从丁到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丁到乙计划用401.56032.5(43)-⨯=-(时),所以甲乙全程为722882 2.5166=--(千米).乙甲90DCBA。
(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
五年级奥数,行程问题,讲义

由于乙先到B城,并当即折返,且距离B城12千米出与甲相遇,那么相遇时,可知乙比甲多行了2×12=24千米,而甲每小时比乙慢4千米,那么可求出他们行驶的时间为24÷4=6小时。又由题意可知相遇时甲只行小时,
综合式子:
〔60-12〕÷[〔12×2〕÷4]=8千米/小时
综合式子:
〔60+50〕×[35×2÷〔60-50〕]=770 千米
习题:
甲、乙两辆汽车同时从A、B两地相对开出,甲车每小时行45千米,乙车每小时行65千米,当乙车到达两地中点处时,与甲车还相距60千米,那么A、B两地间的路程长多少千米?
例题二:
小华和小林分别同时从家和少年宫出发,相向而行。小华每分钟行120米,5分钟后小华已超过中点50米,这是他们两还相距30米,小林每分钟行多少米?
思路分析:
此题也是追及问题。要求两地间的距离,可以用甲车的速度乘以甲车行的时间求得。同样,用乙车的速度乘以乙车行的时间也能求得。甲车载途中应故障修车用了3小时,可以看成,一开始甲车因故“迟出发3小时〞根据甲车比乙车迟到1小时,想到这1小时乙车已休息而甲车还在行驶,也可以把这1小时放到行车的开始。那么,此题就转化成乙车出发两小时后,甲车才出发。两车同时到达目的地。这就不难想到,甲乙两车的路程差就是乙车先开出2小时所行的路程:35×2=70〔千米〕
本讲我们主要学习行程问题中的相遇问题。相遇问题是两物体想向运动,公走一段路程可分为想向,相背,环形运动等相遇问题。
相遇问题有如下的关系式:
速度和×相遇时间=相遇路程
相遇路程÷相遇时间=速度和
相遇路程÷速度和=相遇时间
例题一:
甲、乙两辆货车分别从A、B两个城市想向开发,甲每小时行60千米,乙每小时行50千米,两车在距离两城中点35千米处相遇。那么A、B两城间的路程是多少千米?
苏教版五年级数学下册 第29讲 行程问题(2)

第29讲行程问题讲义本周的主要内容是“追及问题”。
追及问题一般是指两个物体同方向运动,由于各自的速度不同后者追上前者的问题。
追及问题的基本数量关系是:速度差×追及时间=追及路程解答“追及问题”一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
抓住“速度差”这一关键点,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。
例1、中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60千米的两地同方向开出,且中巴车在前。
求几小时后小轿车追上中巴车?练习1.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分跑120米;哥哥在后,每分跑140米。
几分钟后哥哥追上弟弟?2、甲骑自行车从A地到B地,每小时行16千米,1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。
A、B两地相距多少千米?3.甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。
走15分钟后甲返回原地取东西,而乙继续前进。
甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙,甲骑车多少分钟才能追上乙?例2、一辆汽车从甲地开往乙地,要行360千米,开始按计划以每小时45千米的速度行驶,途中因汽车出故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
问汽车是在离甲地多远处修车的?练习1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班;正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
求小王是在离工厂多远处遇到熟人的?2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。
这辆车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。
加油站离乙地多少千米?3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数学习讲义第29讲行程问题(二)练习及答案

第29讲行程问题(二)
一、专题简析:
1、追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前
者的问题。
追及问题的基本数量关系是:
速度差×追及时间=追及路程
2、解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因
为两者之间存在着速度差。
抓住“追及的路程必须用速度差来追”这一道理,
结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理
解题意,就可以正确解题。
二、精讲精练
例1 中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?
练习一
(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上?
(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?
例2一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?
练习二
(1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
小王是在离工厂多远处遇到熟人的?。
五年级奥数行程问题二 (2)

行程问题二例题1中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上?2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?3.甲乙两人以每分钟60米的速度同时同地步行出发,走15分钟后甲返回原地取东西,而乙继续前进。
甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙,甲汽车多少分钟才能追杀乙?一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
小王是在离工厂多远处遇到熟人的?2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。
这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。
加油站离乙地多少千米?3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。
汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。
为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙。
已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?1.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。
爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明?2.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。
小学数学奥数基础教程(五年级)目30讲全

小学奥数基础教程(五年级)- 1 -小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一) 第4讲定义新运算(二) 第5讲数的整除性(一) 第6讲数的整除性(二) 第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
小学数学奥数基础教程(五年级)目30讲全

小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
五年级奥数行程问题:火车过桥问题讲座及练习

五年级奥数讲座--------火车行程问题两列火车错车用的时间是:(A的车身长+B的车身长)÷(A车的速度+B车的速度)两列火车超车用的时间是:(A的车身长+B的车身长)÷(A车的速度-B车的速度)(注:A车追B车)火车过桥问题,可用下面的关系式求火车通过的时间:(列车长度+桥的长度)÷列车速度火车通过两座桥,或通过一座桥,隧道,车头走过的长度是:桥长+火车长或隧道长+火车长其中火车长一样,比较长和隧道长,再比较所用的时间的差,就又求出火车的速度以及车身长。
人坐在列车上往窗外看另一列车,相当人在一定时间内走过一座桥。
例1 一列慢车,车身长120米,车速是每秒15米,一列快车车身长160米,车速是每秒20米,两车在双轨轨道上相向而行,从车头相遇到车尾相离要用多少秒钟?解答:(120+160)÷(15+20)=280÷35=8(秒)答:两车从车头相遇到车尾相离用8秒钟。
练习11、在有上、下行的轨道上,两列火车相对开来,甲列车的车身长235米,每秒行驶25米,乙列车的车身长215米,每秒行驶20米。
求这两列火车从车头相遇到车尾离开需要多少秒钟。
2、一列货车和一列客车在互相平行的双轨道上行驶,货车车身长180米,每秒行20米;客车车身长270米,每秒行25米。
两车相向而行,从车头相遇到车尾离开,需要多少时间?3、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米,慢车在前面行驶,快车从后面追上到完全超过需多少秒?例2 一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需多长时间?解:(150+450)÷20=30(秒)答:需要30秒。
练习24、一列火车全长215米,每秒行驶25米,要经过长960米的大桥,求全车通过要多少秒?5、 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?6、 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?7、一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?例3 一列客车通过860米长的大桥,需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟,求这列客车行驶的速度及车身的长度各多少米。
五年级奥数竞赛之行程问题

行程问题(一)研究有关物体运动的速度、距离、时间三者关系的应用题,叫做行程问题。
行程问题的基本数量关系是: 距离=速度×时间无论多么复杂的行程问题,都要根据这个关系式进行分析、推理。
根据两个物体运动的状态大致可分为三种情况:(1)相向而行:距离=速度和×相遇时间(2)相背而行:相背距离=速度和×时间(3)同向而行:(速度慢的在前,快的在后)追及距离=速度差×追及时间在环形跑道上,追及距离=速度差×追及时间1、小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒,爸爸问小明这座桥有多长,于是小明马上从铁路旁的一根电线杆计时,到第10根电线杆用时25秒。
根据路旁两根电线杆的间隔为50米,小明算出了大桥的长度。
那么,大桥的长为 米。
2、跑道一圈长400米,现在进行3000米赛跑,张明平均每秒跑5.8米,小林每分钟跑43圈。
当张明快到达终点时,小林又和他并肩相遇了,这时张明离终点 米3、A 、B 两地相距540千米。
甲、乙两车往返行驶于A 、B 两地之间,都是到达一地之后立即返回,乙车较甲车快。
设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地。
那么,到两车第三次相遇为止,乙车共走了 千米。
4.A 、B 两地相距10千米,一个班学生45人,由A 地去B 地。
现有一辆马车,车速是人步行速度的3倍,马车每次可乘坐9人,在A 地先将第一批9名学生送往B 地,其余学生同时步行向B 地前进;车到B 地后,立即返回,在途中与步行学生相遇后,再接9名学生送往B 地,余下学生继续向B 地前进;……这样多次往返,当全体学生都到达B 地时,马车共行了 千米。
5、有一辆沿公路不停地往返于M 、N 两地之间的汽车。
老王从M 地沿这条公路步行向N 地,速度为每小时3.6千米,中途迎面遇到从N 地驶来的这辆汽车,经20分钟又遇到这辆汽车从后面折回,再过50分钟又迎面遇到这辆汽车,再过40分钟又遇到这辆车再折回。
小学数学奥数基础教程(五年级)目30讲全

小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第2讲数字谜(二)这一讲主要讲数字谜的代数解法及小数的除法竖式问题。
例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相分析与解:这道题可以从个位开始,比较等式两边的数,逐个确定各个(100000+x)×3=10x+1,300000+3x=10x+1,7x=299999,x=42857。
这种代数方法干净利落,比用传统方法解简洁。
我们再看几个例子。
例2 在□内填入适当的数字,使左下方的乘法竖式成立。
求竖式。
例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。
解:竖式中除数与8的积是三位数,而与商的百位和个位的积都是四位数,所以x=112,被除数为989×112=110768。
右上式为所求竖式。
代数解法虽然简洁,但只适用于一些特殊情况,大多数情况还要用传统的方法。
例4 在□内填入适当数字,使下页左上方的小数除法竖式成立。
分析与解:先将小数除法竖式化为我们较熟悉的整数除法竖式(见下页右上方竖式)。
可以看出,除数与商的后三位数的乘积是1000=23×53的倍数,即除数和商的后三位数一个是23=8的倍数,另一个是53=125的奇数倍,因为除数是两位数,所以除数是8的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 29 讲行程问题(二)
基础卷
1.轿车每小时行驶 84km,中巴车每小时行驶 60km,两车由同一地点出发。
已知中巴车先开 30 分钟。
这时轿车顺者中巴的方向开出,轿车经过多少时间能追上中巴车?
30分后中巴士行30千米
30/(84-60)=1.25小时
答:经过1.25小时追上.
2. A、 B 两人从 100m 跑道的起点和终点同时出发沿着同一方向跑步, B 在前每分钟跑 100m, A 在后每分钟跑 120m。
几分钟后A 追上 B?
5分钟,A每分钟比B多跑20米,两人相距100米,5分钟后,两人相遇.
3.甲骑自行车从 A 村到 B 村,速度为每小时 15km. 1 小时后乙骑自行车也从 A 村到 B 村,速度为每小时 18km,结果两人同时到达 B 村。
A、 B 两村相距多少千米?
A、 B 两村相距90千米
4.一辆汽车从南京开往上海要行驶 360km,开始按计划以每小时45km 的速度行驶.途中因汽车故障修车 2 小时,如按时赶到上
海,修好后的汽车每小时必须行驶 75km。
问:汽车在离南京多远处出了故障?
设在离南京x千米处出故障。
则x/45+2+(360-x)/75=360/45。
得答案为x=135千米。
5.小明家离学校 3km,他每天骑车以每分钟 200m 的速度上学,正好准时到校。
有一天他出发几分钟后因交通阻塞耽误 4 分钟,为了准时到校;后面的路必须每分钟多行 100m。
求小明是在离家多远处遇阻塞的?
算术方法:
先分析:
从堵塞的地方到学校这段路程,平常的速度是200米/分钟,堵塞这天的速度是(100+200)=300米/分钟
速度比=200:300=2:3
这段路程相等,所以用时与速度成反比,用时比=3:2
又知这段路程平时比堵塞这天多用4分钟
所以这段路程平时用时
4÷(3-2)×3=12(分钟)
这段路程是12×200=2400米
所以家离堵塞的地方3000-2400=600(米)
列式如下:
100+200=300(米)
3×1000-4÷(300-200)×300×200
=3000-12×200
=3000-2400
=600(米)
答:小明是在离家600米远的地方遇堵塞的。
方程方法:
设小明是在离家X米远的地方遇堵塞的。
3千米=3000米
X÷200+4+(3000-X)÷(200+100)=3000÷200
解方程得X=600
答:小明是在离家600米远的地方遇堵塞的。
6.汽车以每小时 45km 的速度从甲地出发, 4 小时后到达乙地。
如果汽车出发 1 小时后返回甲地取东西,然后立即从甲地出发.为了能在原来的时间内到达乙地,汽车从甲地驶向乙地的速度是多少?
剩下时间=4-1-1=2小时
速度=45×4÷2=90千米/小时
提高卷
1.兄弟二人以每分钟 60m 的速度同时、同地、同向步行出发,
走了 10 分钟后哥哥返回原地取东西,而弟弟继续前进。
哥哥取东西用去 5 分钟,然后骑自行车以每分钟 360m 的速度追弟弟,问:几分钟后哥哥追上弟弟?
追及时间=路程差/速度差
路程差:兄弟二人同行的10分钟路程+哥哥返回的时间和取东西的时间内弟弟所走的路程
速度差:哥哥汽车速度—弟弟步行速度
列式:[60*10+60*(10+5)]/(360-60)=5(分)
所以解得,5分钟后哥哥追上弟弟。
2.甲、乙两车同时同地由东车站开往西车站,甲车每小时行驶60km,乙车每小时行驶 40km,出发 0.5小时后,甲车因故障停下修车用 1.5 小时,修好车后甲车继续按原速行驶,经过多长时间追上乙车?
【40×1.5-(60-40)×0.5】÷(60-40)
=【60-10】÷20
=50÷20
=2.5小时
3.师、徒两人加工同样多的零件,师傅每小时加工 20 件,徒弟每小时加工 15 件。
一天徒弟比师傅早工作 2 小时,到下午同时完成。
求师、徒两人一天共加工多少零件?
徒弟早工作2小时,能完成:2×15=30个
下午同时完成,说明在师傅工作的时间内,师傅要比徒弟多做这30个每小时,师傅比徒弟多做:20-15=5个
师傅工作时间为:30÷5=6小时
每人加工:20×6=120个
两人一共加工:120×2=240个
4.甲、乙两人在周长 720m 的环形跑道上沿着相同的方向同时从同一地点出发,甲每分钟走 55m,乙每分钟走 65m。
问:至少经过几分钟乙从甲的身后追上甲?
720÷(65-55)=72
至少经过72分钟乙从甲的身后追上甲
5.在一个 400m 的环形跑道上兄弟两人同时从同一地点、同方向出发,哥哥 10 分钟后从弟弟的身后追上弟弟.如果两人同时从同一地点反向而行,只要 4 分钟两人就相遇,求兄弟两人的速度。
哥哥70米/分,弟弟30米/分
设哥哥y米/分,弟弟x米/分,10y-10x=400,4x+4y=4oo
x=30,y=70
6.父亲、母亲、小孩三人的步行速度分别为每分钟 100m、
90m、 75m。
父亲在公路的 A 处,母亲、小孩在公路的 B 处,三人同时出发相向而行。
父亲、母亲相遇了 3 分钟后父亲与小孩相遇。
求 A、 B 之间的距离。
解:设AB之间相距x米
∴[x/(100+90)]+3=x/(100+75)
15x=99750
x=6650
∴6650米=6.65千米
答:AB之间相距6.65千米。