2018届高三数学每天一练半小时:第21练 利用导数研究不等式问题含答案

合集下载

18届高考数学问题2.6导数在研究不等式中的创新应用提分练习

18届高考数学问题2.6导数在研究不等式中的创新应用提分练习

2.6导数在研究不等式中的创新应用一、考情分析在高中新课标中,导数在数学各类问题以及各个学科和许多领域中有着非常广泛的应用. 导数已成为研究函数性质的一种重要工具,例如求函数的单调区间、求最大(小)值、求函数的值域等等.在新课程背景下,不等式内容已大幅度降低要求,压轴题中出现不等式内容,一般情况都需要转化为函数,利用函数的性质,通过求导,利用单调性求出极值、最值,因此,很多时侯可以利用导数作为工具研究函数性质,从而解决不等式问题.下面具体讨论导数在解决与不等式有关的问题时的作用.二、经验分享1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.3.利用导数研究含参数函数的单调性问题,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.三、知识拓展1.若函数f(x)在定义域A上存在最大值与最小值,则(1)对任意x∈A,f(x)>0⇔f(x)min>0;(2)存在x∈A,f(x)>0⇔f(x)max>0.2.利用导数解不等式的思路(1)已知一个含f′(x)的不等式,可得到和f(x)有关的函数的单调性,然后可利用函数单调性解不等式.(2)利用导数证明不等式的方法证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F′(x)<0,则F(x)在(a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x)<0,即证明了f(x)<g(x).(3)利用导数解决不等式的恒成立问题的策略①首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.②也可分离变量,构造函数,直接把问题转化为函数的最值问题.四、题型分析(一) 利用导数证明不等式利用导数研究函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的,即把证明不等式转化为证明函数的单调性.常见的有如下几种形式:直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立.有时先把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目的.【例1】【2017江西省抚州市七校高三上学期联考】已知函数()()x f x x a e =+,其中a R ∈. (1)若曲线()y f x =在点(0,)A a 处的切线l 与直线|22|y a x =-平行,求l 的方程; (2)若[]1,2a ∀∈,函数()f x 在(,2)a b e -上为增函数,求证:232ae b e -≤<+.【分析】(1)求导数,利用导数的几何意义求曲线()x f 在点(0,A a 可求出a ,进而可求l 的方程;(2)由函数为增函数得'()(1)0x f x x a e =++≥对(,2)a x b e ∈-恒成立,即1x a ≥--对(,2)a x b e ∈-恒成立,即1a b e a ≥--对[]1,2a ∈恒成立,设()1a g a e a =--,利用导数判断()a g 的单调性,得2max ()(2)3g a g e ==-结果得证.(2)由题意可得'()(1)0x f x x a e =++≥对(,2)a x b e ∈-恒成立, ∵0xe >,∴10x a ++≥,即1x a ≥--对(,2)a x b e ∈-恒成立, ∴1aa b e --≤-,即1ab e a ≥--对[]1,2a ∈恒成立,设()1ag a e a =--,[]1,2a ∈,则'()10ag a e =->,∴()g a 在[]1,2上递增,∴2max ()(2)3g a g e ==-,∴23b e ≥-.又2a b e -<,∴232ae b e -≤<+.【点评】证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可,证明时要注意自变量的选取.【小试牛刀】【2018届四川省彭州高三9月月考】已知曲线()2ln ln x a x a f x x++=在点()(),e f e 处的切线与直线220x e y +=平行, a R ∈. (1)求a 的值; (2)求证:()x f x a xe>.①当()0,1x ∈时, ()1f x f e e ⎛⎫≥= ⎪⎝⎭,而()'313x xx x e e -⎛⎫= ⎪⎝⎭,故3x x e 在()0,1上递增, 33x x e e e ∴<<, ()3x xf x e ∴>即()3x f x x e>; ②当[)1,x ∈+∞时, 2ln 3ln 30033x x ++≥++=,令()23x x g x e =,则()()232xx x g x e='-故()g x 在[)1,2上递增, ()2,+∞上递减, ()()21223g x g e ∴≤=<, 223ln 3ln 3x x x x e ∴++>即()3x f x x e>; 综上,对任意0x >,均有()3x f x xe>. (二) 利用导数解决不等式恒成立问题、存在性问题不等式恒成立问题或存在性问题是高考中非常多的一种题型,此类问题一般都会涉及到求参数范围,往往把变量分离后可以转化为m >f (x ) (或m <f (x ))恒成立,于是m 大于f (x )的最大值(或m 小于f (x )的最小值),从而把不等式恒成立问题转化为函数求最值问题.因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法.【例2】【2017广西梧州高三上学期摸底联考】已知函数()2ln f x x x x =-+. (1)求函数()f x 的单调区间;(2)证明:当2a ≥时,关于x 的不等式()2112a f x x ax ⎛⎫<-+-⎪⎝⎭恒成立; (3)若正实数12,x x 满足()()()2212121220f x f x x x x x ++++=,证明1212x x +≥.【解析】(1)()()2121210x x f x x x x x-++'=-+=>,由()0f x '<,得2210x x -->,又0x >,所以1x >,所以()f x 的单调减区间为()1,+∞,函数()f x 的增区间是()0,1, (2)令()()()22111ln 1122a g x f x x ax x ax a x ⎡⎤⎛⎫=--+-=-+-+⎪⎢⎥⎝⎭⎣⎦,所以()()()21111ax a x g x ax a x x-+-+'=-+-=因为2a ≥,所以()()11a x x a g x x ⎛⎫-+ ⎪⎝⎭'=-,令()0g x '=,得1x a=,所以当()10,,0x g x a ⎛⎫'=> ⎪⎝⎭;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<, 因此函数()g x 在10,x a ⎛⎫∈ ⎪⎝⎭是增函数,在⎪⎭⎫ ⎝⎛+∞∈,1a x 是减函数, 故函数()g x 的最大值为()2111111ln 11ln 22g a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭令()1lna 2h a a ⎛⎫=-⎪⎝⎭,因为()12ln 204h =-<,又因为()h a 在()0,a ∈+∞是减函数,所以当2a ≥时,()0h a <,即对于任意正数x 总有()0g x <, 所以关于x 的不等式()2112a f x x ax ⎛⎫<-+-⎪⎝⎭恒成立;【点评】 利用导数来处理存在性问题和恒成立问题,常用的是变量分离的方法,此类方法的解题步骤是:①分离变量;②构造函数(非变量一方);③对所构造的函数求最值(一般需要求导数,有时还需求两次导数);④写出变量的取值范围.【小试牛刀】【2018届辽宁丹东市五校协作体高三上学期联考】设函数()()()222ln 2f x x a x a =-+-,其中0x >, R a ∈,存在0x 使得()045f x ≤成立,则实数a 的值是 A.15 B. 25 C. 12D. 1 【答案】A【解析】由题意得,函数()f x 表示动点(),2ln M x x 和动点(),2N a a 间的距离的平方.其中动点(),2ln M x x 在函数2ln y x =的图象上,动点(),2N a a 在直线2y x =上.问题可转化为求直线2y x =上的动点到曲线2ln y x =的最小距离.由2ln y x =得2y x '=.令22x=,解得1x =.故曲线2ln y x =上的点()1,0M 到直线2y x =的距离最小,且最小距离为2555d ==,由题意可得()45f x ≥.根据题意存在0x 使得()045f x ≤成立,则()045f x =,此时点(),2N a a 恰好为垂足,由20112MN a k a -==--,解得15a =.选A.(三) 利用导数解不等式对于一些复杂的不等式求解问题,有的并没有现成的公式和规律可用,有时我们可根据题中条件联想构造出到相应的函数,根据函数的性质转化为处理函数的单调性或最值问题,我们都可以选择用导数作工具来研究函数问题.这种解题方法也是转化与化归思想在中学数学中的重要体现.【例3】【2017湖北省襄阳市四校高三上学期期中联考】奇函数()f x 定义域为()(),00,ππ-,其导函数是()'f x .当0x π<<时,有()()'sin cos 0f x x f x x -<,则关于x 的不等式()2sin 4f x f x π⎛⎫< ⎪⎝⎭的解集为( ) A .,4ππ⎛⎫⎪⎝⎭ B .,,44ππππ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ C .,00,44ππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭D .,0,44πππ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭【答案】D【点评】解决此类问题的关键是根据导数的运算法则,构造合适的函数,再利用已知条件确定函数单调性解不等式.【小试牛刀】【2018届山东省济南高三12月考】已知()f x 是定义在R 上的函数, ()'f x 是()f x 的导函数,且满足()()'3f x f x >, 13f e ⎛⎫= ⎪⎝⎭,则()3ln f x x <的解集为( )A. ()0,eB. 130,e ⎛⎫ ⎪⎝⎭ C. ()1,e D. 131,e ⎛⎫ ⎪⎝⎭【答案】B 【解析】令()()3xf xg x e =,则有()()()()3330xxf x f x f xg x e e ''-==>,所以()g x 在R 上为增函数.13f e ⎛⎫= ⎪⎝⎭,则有: 11313f g e ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭,因为()()()3l n 3l n l n ln x f x f x g x e x ==,所以()3ln f x x <即为()3ln 1f x x <,即()1ln 13g x g ⎛⎫<= ⎪⎝⎭.由()g x 在R 上为增函数得: 1ln 3x <,解得130x e <<.故选B. 五、迁移运用1.【2018届甘肃省高台县高三上学期12月模拟】已知函数()1x f x x e=+,若对任意x R ∈, ()f x ax >恒成立,则实数a 的取值范围是( )A. (),1e -∞-B. (]1,1e -C. [)1,1e - D. ()1,e -+∞ 【答案】B【解析】函数()1x f x x e =+,对任意x R ∈, ()f x ax >恒成立,∴1xx ax e+>恒成立, 即()11x a x e >-x 恒成立;设()()()1,1x g x h x a x e==-,x ∈R ;在同一坐标系内画出两个函数的图象,如图所示;则满足不等式恒成立的是h (x )的图象在g (x )图象下方,求()g x 的导数()'xg x e -=-,且过()g x 图象上点()00,x y 的切线方程为()000x y y ex x --=--,且该切线方程过原点(0,0),则000x y e x -=-⋅,即000x x e e x --=-⋅,解得01x =-;∴切线斜率为0x k ee -=-=-,∴应满足a −1>−e ,即a >1−e ;又a −1⩽0,∴a ⩽1,∴实数a 的取值范围是(1−e ,1].故选B.2.【2018届】广东省五校高三12月联考】已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x , 2x 使得()10f x >,且()20f x >,则a 的取值范围是( ) A. ()ln3,2 B. [)2ln3,2- C. (]0,2ln3- D. ()0,2ln3- 【答案】C【解析】由题意可知, ()0f x >,即()()ln 2240,0x a x a a +--+>>, ()22ln 40ax a x x a ∴->-->,设()()2ln 4,2g x x x h x ax a =--=-,由()121'2x g x x x -=-=,可知()2ln 4g x x x =--,在10,2⎛⎫⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数, ()2h x ax a =-的图象恒过点()2,0,在同一坐标系中作出()(),g x h x 的图象如下:若有且只有两个整数12,x x ,使得()10f x >,且()20f x >,则()()()(){11 33a h g h g >>≤,即0{2 23a a a ln >->-≤-,解得02ln3a <≤-,故选C.3.【2018届重庆市高三11月月考】已知可导函数()f x 的导函数为()'f x , ()02018f =,若对任意的x R ∈,都有()()'f x f x >,则不等式()2018x f x e <的解集为( )A. ()0,+∞B. 21,e ⎛⎫+∞ ⎪⎝⎭C. 21,e ⎛⎫-∞ ⎪⎝⎭ D. (),0-∞ 【答案】A 【解析】令()()()()()()0,02018xxf x f x f xg x g x g e e -<'=='=∴因此()2018xf x e < ()()()201800xf xg x g x e ⇒<⇒⇒,选A.4.【2018届陕西省西安高三上学期期中考试】已知函数()3213f x x a x =-,若对于任意的[]12,0,1x x ∈,都有()()121f x f x -≤成立,则实数a 的取值范围是( )A. ,33⎡-⎢⎣⎦B. 33⎛⎫- ⎪ ⎪⎝⎭C. ⎡⎫⎛⋃⎪ ⎢⎪ ⎣⎭⎝⎦D. ⎛⎫⎛⋃ ⎪ ⎪ ⎝⎭⎝⎭ 【答案】A5.【2017山西临汾一中等五校高三第三联考】设函数()3236222x x f x e x x x ae x ⎛⎫=+-+-- ⎪⎝⎭,若不等式()0f x ≤在[)2,-+∞上有解,则实数a 的最小值为( )A .312e -- B .322e -- C .3142e -- D .11e-- 【答案】C时,()0<'x g ,当()+∞∈,1x 时,()0>'x g ,故()x g 在[)1,2-上是减函数,在()+∞,1上是增函数;故346.【2017河北省武邑中学高三上学期第三次调研考试】已知()f x 是定义在R 上的偶函数,其导函数为()'f x ,若 ()()'f x f x <,且()()()13,20152f x f x f +=-=,则不等式()12x f x e -<的解集为( )A .()1,+∞B .(),e +∞ C. (),0-∞ D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】A【解析】可取特殊函数11()22211x x f x e e x --=⇒<⇒>⇒>,故选A.7.【2017四川省资阳市高三上学期第一次诊断考试】已知()f x 是定义在区间(0)+∞,上的函数,其导函数为 ()f x ',且不等式()2()x f x f x '<恒成立,则( )A .4(1)(2)f f <B . 4(1)(2)f f >C . (1)4(2)f f <D . (1)4(2)f f '<【答案】B【解析】设函数2()()f x g x x =(0)x >,则243()2()()2()()0x f x xf x xf x f x g x x x''--'==<,所以函数()g x 在(0,)+∞为减函数,所以(1)(2)g g <,即22(1)(2)12f f >,所以4(1)(2)f f >,故选B . 【技巧点睛】对于已知不等式中既有()f x 又有'()f x ,一般不能直接确定'()f x 的正负,即不能确定()f x 的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有()()g x xf x =,()()f x g x x =,()()x g x e f x =,()()xf xg x e =等等. 8.【2017山西省孝义市高三上学期二轮模考】设函数()y f x =在(,)-∞+∞内有定义,对于给定的正数k ,定义函数:()(())()(())k f x f x k f x kf x k ≤⎧=⎨>⎩,取函数()2xf x x e -=--,若对任意的(,)x ∈-∞+∞,恒有()()k f x f x =,则( )A .k 的最大值为2B .k 的最小值为2 C. k 的最大值为1 D .k 的最小值为1 【答案】D【解析】由题意,得'()1xf x e -=-+,易知'(0)0f =,当0x <时,'()0f x >;当0x >时,'()0f x <,所以()f x 在0x =时,取得极大值0(0)201f e =--=,也是最大值.由()k f x 的定义,知当1k ≥时,()()k f x f x =恒成立,因此k 的最小值为1,故选D .9. 【2017山西省孝义市高三上学期二轮模考】已知函数2ln ()()()x x b f x b R x+-=∈,若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则实数b 的取值范围是( )A .(-∞B .3(,)2-∞ C. 9(,)4-∞ D .(,3)-∞ 【答案】C【解析】由题意,得2212()ln ()()x x b x x b f x x +----'=,则()()f x xf x +'=2ln ()x x b x +--212()ln ()x x b x x b x +----=12()x x b x +-.若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则12()0x x b +->,所以12b x x <+.设1()2g x x x =+,则222121()122x g x x x -'=-=,当122x ≤≤时,()0g x '<;当22x ≤≤时,()0g x '>,所以()g x 在1[,22上单调递减,在[2上单调递增,所以当2x =,函数()g x 取最大值,最大值为19(2)244g =+=,所以max 9()4b g x <=,故选C . 10.【2017重庆八中高三上学期二调】函数()f x 的导函数为'()f x ,对x R ∀∈,都有'()()f x f x >成立,若2(2)f e =,则不等式()x f x e >的解是( )A .(2,)+∞B .(0,1)C .(1,)+∞D .(0,ln 2)【答案】A【解析】∵x R ∀∈,都有'()()f x f x >有()x g 在R 上单调递增,∵不等式()xf x e >,∴()1>xg ,∵2(2)f e =,∴()12=g ,∴2>x ,故选:A .11.【2017河北沧州一中高三11月月考】已知,a b R ∈,直线2y ax b π=++与函数()tan f x x =的图象在4x π=-处相切,设()2xg x e bx a =++.若在区间[]1,2上,不等式()22m g x m ≤≤-恒成立,则实数m( )A .有最大值1e +B .有最大值e C.有最小值e D .有最小值e - 【答案】A12.【2017河北武邑中学高三四调】已知定义在R 上的奇函数()y f x =满足()'2f x <,则不等式()()11ln 223x f x x e x ++-+->+的解集为( ) A .()2,1-- B .()1,-+∞C .()1,2-D .()2,+∞【答案】A【解析】由题意可知:设11223x g x f x ln x e x +=+-+---()()(),2x ->,求导11132x g x f x e x +'='+---+()(),由2f x '()<,即20f x '-()<,130f x '+-()<,由函数的单调性可知:1102x e x +--+<恒成立,∴0g x '()<恒成立,∴g x ()在2-+∞(,)单调递减,由y f x =()为奇函数,则00f =(),∴0101230g f ln e -=---+=()(),由11223x f x ln x e x ++-+-+()()>,即01g x g =-()>(),由函数的单调递减,∴21x --<<,∴不等式11223x f x ln x e x ++-+-+()()>的解集21--(,),故选A.13.【2017四川自贡普高一诊】设函数()()31x f x e x ax a =--+,其中1a <,若有且只有一个整数0x 使得()00f x ≤,则a 的取值范围是( )A .23 4e ⎛⎫ ⎪⎝⎭,B .23 4e ⎡⎫⎪⎢⎣⎭, C.2 1e ⎛⎫ ⎪⎝⎭, D .2 1e ⎡⎫⎪⎢⎣⎭, 【答案】D14. 【2017中原名校高三上学期第三次质量考评】已知函数()f x 的定义域为R ,()'f x 为函数()f x 的导函数,当[)0,x ∈+∞时,()'2sin cos 0x x f x ->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( ) A .15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B .15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭C.3134324f f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭ D .1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】令()()2sin F x x f x =-,则()()''sin 2F x x fx =-.因为当[)0,x ∈+∞时,()'2sin cos 0x x fx ->,即()'sin2x f x >,所以()()''sin 20F x x f x =->,所以()()2sin F x x f x =-在[)0,x ∈+∞上单调递增.又x R ∀∈,()()cos21f x f x x -++=,所以()()22sin f x f x x -+=,所以()()()()2222sin sin 2sin sin x f x x x f x x f x ⎡⎤---=-+=+-⎣⎦,故()()2sin F x x f x =-为奇函数,所以()()2sin F x x f x =-在R 上单调递增,所以5463F F ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭.即15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故选B. 15.【2018届江苏省徐州高三第一学期期中】已知函数()322f x x x a =--,若存在(]0,x a ∈-∞,使()00f x ≥,则实数a 的取值范围是__________.【答案】][)1,02,⎡-⋃+∞⎣【解析】由三次函数图像可知只需()()()32020210f a a a a a a a ≥⇒--≥⇒-+≥⇒ 实数a 的取值范围是][)1,02,⎡-⋃+∞⎣16.【2018届四川省成都高三上学期一诊模拟】设函数()()21,,x x xf xg x x e+==对任意()12,0,,x x ∈+∞不等式()()121g x f x kk ≤+恒成立,则正数k 的取值范围是__________.【答案】121k e ≥- 【解析】对任意()12,0,x x ∈+∞,不等式()()121g x f x kk ≤+恒成立,则等价为()()121g x kf x k ≤+恒成立, ()2112x f x x x x +=++≥=,当且仅当1x x =,即1x =时取等号,即()f x 的最小值是2,由()x xg x e =,则()()21'x x x x e xe x g x e e--==,由()'0g x >得01x <<,此时函数()g x 为增函数,由()'0g x >得1x >,此时函数()g x 为减函数,即当1x =时, ()g x 取得极大值同时也是最大值()11g e =,则()()12g x f x 的最大值为1122e e=,则由112k k e ≥+,得21ek k ≥+,即()211k e -≥,则121k e ≥-,故答案为121k e ≥-. 17.【2017湖北荆州高三上学期第一次质量检测】 已知函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <, 则a 的取值范围是_________.(e 为自然对数的底数) 【答案】3,12e ⎡⎫⎪⎢⎣⎭【解析】设a ax x h x e x g x -=-=)(),12()(,由题设存在唯一的整数0x 使得在直线)1(-=x a y 的下方.因)12()(/+=x e x g x ,故当21-<x 时, 0)(/<x g ,函数)12()(-=x e x g x 单调递减;当21->x 时,0)(/>x g ,函数)12()(-=x e x g x 单调递增.所以当21-=x 时,函数)12()(-=x e x g x 取最小值12)21()(min -<-=-=e g x g ,而03)1(,1)0(>=-=e g g ,且直线)1(-=x a y 恒过点)0,1(,故由题设须满足⎩⎨⎧-≥--->--1310ea a a ,即e a 231≤<.故应填答案3,12e ⎡⎫⎪⎢⎣⎭. 18.已知()xf x xe =,2()(1)g x x a =-++,若12,x x ∃∈R ,使得21()()f x g x ≤成立,则实数a 的取值范围是____________. 【答案】1[,)e-+∞【解析】12,x x ∃∈R ,使得21()()f x g x ≤成立,等价于min max ()()f x g x ≤,'()(1)xxxf x e xe x e =+=+,当1x <-时,'()0f x <,()f x 递减,当1x >-时,'()0f x >,()f x 递增,∴当1x =-时,()f x 取得最小值,min 1()(1)f x f e =-=-;当1x =-时,()g x 取得最大值为max ()(1)g x g a =-=,∴1a e-≤,即实数a 的取值范围是1a e≥-.19.【2017宁夏育才中学高三上学期第二次月】已知函数()ln f x ax x =+,其中a ∈R . (Ⅰ)若()f x 在区间[1,2]上为增函数,求a 的取值范围; (Ⅱ)当e a =-时,证明:()20f x +≤;(Ⅲ)当e a =-时,,并说明理由.【答案】(Ⅱ)证明见解析;(Ⅲ)没有实数解. 【解析】函数()f x 定义域),0(+∞∈x , (Ⅰ)因为()f x 在区间[1,2]上为增函数,所以()0f x '≥在[1,2]x ∈上恒成立,在[1,2]x ∈上恒成立,(Ⅲ)由(Ⅱ)知, max ()2f x =-, 所以2|)(|≥x f .令0)(='x g ,得e x =.令()0g x '>,得(0,e)x ∈,所以函数)(x g 在(0,e)单调递增, 令()0g x '<,得(e,)x ∈+∞,所以函数)(x g 在(e,)+∞单调递减; 所以即2)(<x g . 所以)(|)(|x g x f > ,所以,20. 【2017江西省抚州市七校高三上学期联考】记{}max ,mn 表示m ,n 中的最大值,如{max ={}2()max 1,2ln f x x x =-,2221()max ln ,()242g x x x x a x a a ⎧⎫=+-+-++⎨⎬⎩⎭.(1)设21()()3()(1)2h x f x x x =---,求函数()h x 在(0,1]上零点的个数; (2)试探讨是否存在实数(2,)a ∈-+∞,使得3()42g x x a <+对(2,)x a ∈++∞恒成立?若存在,求a 的 取值范围;若不存在,说明理由. 【答案】(1)2个;(2)存在,ln 21(,2]4-. (2)假设存在实数(2,)a ∈-+∞,使得3()42g x x a <+对(2,)x a ∈++∞恒成立, 则2223ln 4,213()244,22x x x a x a x a a x a ⎧+<+⎪⎪⎨⎪-+-++<+⎪⎩对(2,)x a ∈++∞恒成立,即21ln 4,2(2)()0x x a x x a ⎧-<⎪⎨⎪+->⎩对(2,)x a ∈++∞恒成立, (i )设1()ln 2H x x x =-,11'()2H x x =-22x x-=, 令'()0H x >,得02x <<,()H x 递增;令'()0H x <,得2x >,()H x 递减. ∴max ()(2)ln 21H x h ==-.当022a <+<,即20a -<<时,4ln 21a >-,∴ln 214a ->, ∵0a <,∴ln 21(,0)4a -∈. 故当ln 21(,0)4a -∈时,1ln 42x x a -<对(2,)x a ∈++∞恒成立. 当22a +≥,即0a ≥时,()H x 在(2,)a ++∞上递减,∴1()(2)ln(2)12H x H a a a <+=+--. ∵111(ln(2)1)'0222a a a +--=-≤+,∴(2)(0)ln 210H a H +≤=-< 故当0a ≥时,1ln 42x x a -<对(2,)x a ∈++∞恒成立.(ii )若2(2)()0x x a +->对(2,)x a ∈++∞恒成立,则22a a +≥,∴[]1,2a ∈-.由(i )及(ii )得,ln 21(,2]4a -∈. 故存在实数(2,)a ∈-+∞,使得3()42g x x a <+对(2,)x a ∈++∞恒成立,且a 的取值范围为ln 21(,2]4-. 21.【2018届湖北省稳派教育高三上学期第二次联考】已知函数()12x f x e kx k +=-- (其中e 是自然对数的底数,k∈R).(1)讨论函数()f x 的单调性;(2)当函数()f x 有两个零点12,x x 时,证明: 122x x +>-. 【解析】(1)解:∵()12x f x e kx k +=--,∴.①当时,令()0f x '=,解得1ln x k =-+,∴当(),1lnx k∈-∞-+时,,单调递减;当()1ln,x k∈-++∞时,,单调递增.②当时,恒成立,∴函数在R上单调递增.综上,当时,在(),1ln k-∞-+上单调递减,在()1ln,k-++∞上单调递增. 当时,在R上单调递增.(2)证明:当时,由(1)知函数单调递增,不存在两个零点.所以.设函数的两个零点为,则,设,解得,所以()12+1ln41t tx xt++=-,要证,只需证,设设单调递增, 所以,所以在区间上单调递增,所以,故.22.【208届辽宁省沈阳高中三年级教学质量监测(三)】已知()xf x e =与()g x ax b =+的图象交于()()1122,,,P x y Q x y 两点.(Ⅰ)求函数()()()h x f x g x =-的最小值;(Ⅱ)且PQ 的中点为()00,M x y ,求证: ()00f x a y <<. 【解析】(Ⅰ)()xh x e ax b =--,求导得()xh x e a '=-当0a ≤时, ()0h x '>, ()h x 在R 上为增函数,不满足有两个零点,故不合题意; 所以0a >,令()0h x '=,解得ln x a =,并且有()(),ln ,0x a h x -∞'∈<; ()()ln ,,0x a h x ∈+∞>', 故()()ln min ln ln ln ah x h a ea ab a b a a ==--=--.()F t ∴在()0,+∞为增函数,故()()00F t F >=, 21tt e e t -∴<成立; 要证112t t e e t -+<,只需证明112t t e t e -<+,令()112t t e tG t e -=-+,求导()()()()()()22222411210212121t t t t ttte e e eG t e e e -+--=-==<+++',()G t ∴在()0,+∞为减函数,故()()00G t G <=, 21t t e e t -∴<成立; 所以2112tt t e e e t -+<<, 0t >成立, ()00f x a y ∴<<成立.。

2018届高三数学每天一练半小时第20练 导数中的易错题 Word版含答案

2018届高三数学每天一练半小时第20练 导数中的易错题 Word版含答案

一、选择题.如果′()是二次函数,且′()的图象开口向上,顶点坐标为(,),那么曲线=()上任意一点的切线的倾斜角α的取值范围是().(,] .[,).(,] .[,π).(·福建福州三中月考)已知点()在函数()=的图象上,则过点的曲线:=()的切线方程是().--=.-+=.--=或-+=.--=或-+=.(·兰州诊断)在直角坐标系中,设是曲线:=(>)上任意一点,是曲线在点处的切线,且交坐标轴于,两点,则以下结论正确的是().△的面积为定值.△的面积有最小值.△的面积有最大值.△的面积的取值范围是[].若函数()=-在其定义域内的一个子区间(-,+)内不是单调函数,则实数的取值范围是().[,+∞) .[,).[) .[,).若函数=-+在()内有极小值,则实数的取值范围是().<< .<<.<< .>或<.已知函数()=+++ (>)的极大值点和极小值点都在区间(-)内,则实数的取值范围是() .(] .().[,) .(,).如果函数()=-满足:对于任意的,∈[],都有()-()≤恒成立,则的取值范围是() .[-,].[-,].(-∞,-]∪[,+∞).(-∞,-]∪[,+∞).(·景德镇质检)已知()=++-(>),若()≥ 在[,+∞)上恒成立,则的取值范围是() .(,+∞) .[,+∞).(,+∞) .[,+∞)二、填空题.若函数()=+存在与直线-=平行的切线,则实数的取值范围是..函数()=-,∈[,],若∀,∈[,],≠,<,则实数的取值范围是..若函数()=+恰有个单调区间,则的取值范围为..已知函数()=(>),若()为上的单调函数,则实数的取值范围是.答案精析.[根据已知可得′()≥,即曲线=()上任意一点的切线的斜率=α≥,结合正切函数的图象,可知α∈[,),故选.].[由于点()在函数()=的图象上,则=,即=,所以′=.若点为切点,则切线斜率为,若点不是切点,设切点坐标为(),则切线的斜率为=.由两点的斜率公式,得=(≠),即有--=,解得=(舍去)或=-.综上,切线的斜率为=或=×=,则过点的曲线:=()的切线方程为-=(-)或-=(-),即--=或-+=.故选.].[由题意,得=.设点(,)(>),=,′=-,因此切线的斜率=-,切线方程为-=-(-).当=时,=+=;当=时,=+=,因此△==为定值.故选.].[∵()=-(>),。

2018届高三数学每天一练半小时(48)不等式综合练(含答案)

2018届高三数学每天一练半小时(48)不等式综合练(含答案)

1.已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q 等于( ) A .[2,3] B .(-∞,-1]∪[3,+∞) C .(2,3]D .(-∞,-1]∪(3,+∞)2.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,由点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( ) A .2 2 B .2 3 C .4 2D .4 33.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值0B .最小值0C .最大值-4D .最小值-44.对于实数x ,规定[x ]表示不大于x 的最大整数,那么使不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ) A .(32,152)B .[2,8]C .[2,8)D .[2,7)5.(2016·潍坊联考)已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n的最小值为( )A .4 2B .8C .9D .12二、填空题6.(2016·山西大学附中检测)已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2a -b的最小值为________.7.(2017·宁德质检)设P 是不等式组⎩⎪⎨⎪⎧y ≥0,x -2y ≥-1,x +y ≤3表示的平面区域内的任意一点,向量m =(1,1),n =(2,1).若OP →=λm +μn (λ,μ∈R ),则μ的最大值为________.8.(2015·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x的最小值为________. 三、解答题9.(2016·福建长乐二中等五校期中联考)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x-1 450(万元).通过市场分析,若每件售价为500元时,该厂一年内生产的商品能全部销售完. (1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?10.(2016·海口一模)已知函数f (x )=x +m x+2(m 为实常数).(1)若函数f (x )图象上动点P 到定点Q (0,2)的距离的最小值为2,求实数m 的值; (2)若函数y =f (x )在区间[2,+∞)上是增函数,试用函数单调性的定义求实数m 的取值范围;(3)设m <0,若不等式f (x )≤kx 在x ∈[12,1]时有解,求k 的取值范围.答案精析1.C [依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3],故选C.] 2.D [由|OA →|=|OB →|=OA →·OB →=2知〈OA →,OB →〉=π3.设OA →=(2,0),OB →=(1,3), OP →=(x ,y ),则⎩⎨⎧x =2λ+μ,y =3μ,解得⎩⎪⎨⎪⎧μ=y 3,λ=12⎝⎛⎭⎪⎫x -y 3.由|λ|+|μ|≤1得|3x -y |+|2y |≤2 3. 作出可行域,如图所示.则所求面积S =2×12×4×3=4 3.]3.C [∵x <0,∴f (x )=-[(-x )+1?-x ?]-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时取等号.]4.C [由4[x ]2-36[x ]+45<0得32<[x ]<152,又因为[x ]表示不大于x 的最大整数,所以2≤x <8.故选C.]5.C [易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n=(2m +n )(2m +1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n 的最小值为9.] 6.2 2解析 由函数f (x )=|lg x |,a >b >0,f (a )=f (b ),可知a >1>b >0,所以lg a =-lg b ,b =1a ,a -b =a -1a >0,则a 2+b2a -b=a 2+(1a)2a -1a=a -1a +2a -1a ≥22(当且仅当a -1a =2a -1a,即a =2+62时,等号成立).7.3解析 设P 的坐标为(x ,y ),因为OP →=λm +μn ,所以⎩⎪⎨⎪⎧x =λ+2μ,y =λ+μ,解得μ=x -y .题中不等式组表示的可行域是如图所示的阴影部分, 由图可知,当目标函数μ=x -y 过点G (3,0)时,μ取得最大值3-0=3. 8. 2解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 9.解 (1)当0<x <80,x ∈N *时,L (x )=500×1 000x 10 000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N *时,L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-(x +10 000x),∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250?0<x <80,x ∈N *?,1 200-(x +10 000x)??x ≥80,x ∈N *?.(2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950,∴当x =60时,L (x )取得最大值L (60)=950. 当x ≥80,x ∈N *时,L (x )=1 200-(x +10 000x)≤1 200-2x ·10 000x=1 200-200=1 000,∴当x =10 000x,即x =100时,L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. 10.解 (1)设P (x ,y ),则y =x +mx+2,PQ 2=x 2+(y -2)2=x 2+(x +mx )2=2x 2+m 2x2+2m ≥22|m |+2m =2,当m >0时,解得m =2-1; 当m <0时,解得m =-2-1. 所以m =2-1或m =-2-1.(2)由题意知,任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 2)-f (x 1)=x 2+mx 2+2-(x 1+m x 1+2)=(x 2-x 1)·x 1x 2-mx 1x 2>0. 因为x 2-x 1>0,x 1x 2>0, 所以x 1x 2-m >0,即m <x 1x 2. 由x 2>x 1≥2,得x 1x 2>4,所以m ≤4. 所以m 的取值范围是(-∞,4]. (3)由f (x )≤kx ,得x +m x+2≤kx . 因为x ∈[12,1],所以k ≥m x 2+2x+1.令t =1x,则t ∈[1,2],所以k ≥mt 2+2t +1.令g (t )=mt 2+2t +1,t ∈[1,2],于是,要使原不等式在x ∈[12,1]时有解,当且仅当k ≥[g (t )]min (t ∈[1,2]).因为m <0,所以g (t )=m (t +1m )2+1-1m的图象开口向下,对称轴为直线t =-1m>0.因为t ∈[1,2],所以当0<-1m ≤32,即m ≤-23时,g (t )min =g (2)=4m +5;当-1m >32,即-23<m <0时,g (t )min =g (1)=m +3.综上,当m ≤-23时,k ∈[4m +5,+∞);当-23<m <0时,k ∈[m +3,+∞).。

2018届高考数学二轮复习 第一部分 层级三 30分的拉分题 压轴专题(三)第21题解答题“函数、导数与不等式”

2018届高考数学二轮复习 第一部分 层级三 30分的拉分题 压轴专题(三)第21题解答题“函数、导数与不等式”

x (0, a)
a
( a,+∞)
f′(x)

0

a1-ln a
f(x)
2
所以函数 f(x)的单调递减区间是(0, a),Байду номын сангаас调递增区间是( a, +∞).
函数 f(x)在 x= a处取得极小值 f( a)=a1-2ln a,无极大值. 综上可知,当 a≤0 时,函数 f(x)的单调递增区间为(0,+∞), 函数 f(x)既无极大值也无极小值; 当 a>0 时,函数 f(x)的单调递减区间是(0, a),单调递增区间 为( a,+∞),函数 f(x)有极小值a1-2ln a,无极大值.
解答题的热点题型有: (1) 利 用 导 数 研 究 函 数
的单调性、极值、最值; (2) 利 用 导 数 证 明 不 等
式或探讨方程根; (3) 利 用 导 数 求 解 参 数
的范围或值.
[常考题点逐一突破]
利用分类讨论思想探究函数性质 [典例] (2017·张掖诊断)设函数f(x)=x22-aln x. (1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)求函数f(x)的单调区间和极值. [解] (1)当a=1时,f(x)=x22-ln x, 则f′(x)=x-1x,所以f′(1)=0,又f(1)=12, 所以曲线y=f(x)在点(1,f(1))处的切线方程为y=12.
所以 f a+b b>f(1),即1-aa++bbb+lna+b b>0,化简得a+1 b<ln a+b b, a· b
lna+b b<ab等价于 lna+b b-ab=ln1+ab-ab<0,
令 g(x)=ln(1+x)-x(x∈(0,+∞)),

2018届高三数学每天一练半小时:第17练 导数的概念及其运算含答案

2018届高三数学每天一练半小时:第17练 导数的概念及其运算含答案

一、选择题1.若函数y =f (x )在x =a 处的导数为A ,则li m Δx →0f (a +Δx )-f (a -Δx )Δx为( )A .AB .2A C.A2D .02.(2016·云南统一检测)函数f (x )=ln x -2xx在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=03.曲线y =ax cos x +16在x =π2处的切线与直线y =x +1平行,则实数a 的值为( )A .-2πB.2πC.π2D .-π24.下面四个图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)等于( )A.13 B .-23C.73D .-13或535.(2016·南昌二中模拟)设点P 是曲线y =x 3-3x +23上的任意一点,则P 点处切线倾斜角α的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫5π6,πB.⎣⎢⎡⎭⎪⎫2π3,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π D.⎝ ⎛⎦⎥⎤π2,5π66.(2016·昆明模拟)设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 015(x )等于( )A .sin xB .-sin xC .cos xD .-cos x7.(2017·长沙调研)曲线y =13x 3+x 在点⎝ ⎛⎭⎪⎫1,43处的切线与坐标轴围成的三角形面积为( ) A.29 B.19 C.13D.238.若函数f (x )=cos x +2xf ′⎝ ⎛⎭⎪⎫π6,则f ⎝ ⎛⎭⎪⎫-π3与f ⎝ ⎛⎭⎪⎫π3的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3B .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π3 C .f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π3 D .不确定二、填空题9.(2016·太原一模)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是____________. 10.已知函数f (x )=-f ′(0)e x+2x ,点P 为曲线y =f (x )在点(0,f (0))处的切线l 上的一点,点Q 在曲线y =e x上,则|PQ |的最小值为________.11.(2016·黄冈模拟)已知函数f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. 12.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·…·x 2 015=________.答案精析1.B [由于Δy =f (a +Δx )-f (a -Δx ), 其改变量对应2Δx , 所以0()()lim x f a x f a x x ∆→+∆--∆∆=0()()2lim2x f a x f a x x∆→+∆--∆∆=2f ′(a )=2A ,故选B.]2.C [f ′(x )=1-ln xx2,则f ′(1)=1,故函数f (x )在点(1,-2)处的切线方程为y -(-2)=x -1,即x -y -3=0.]3.A [设y =f (x )=ax cos x +16,则f ′(x )=a cos x -ax sin x ,又因为曲线y =ax cos x +16在x =π2处的切线与直线y =x +1平行,所以f ′(π2)=-a π2=1⇒a =-2π,故选A.]4.D [∵f ′(x )=x 2+2ax +a 2-1, ∴f ′(x )的图象开口向上,则②④排除. 若f ′(x )的图象为①,此时a =0,f (-1)=53;若f ′(x )的图象为③,此时a 2-1=0,又对称轴x =-a >0, ∴a =-1,∴f (-1)=-13.]5.C [因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π.]6.D [∵f 0(x )=sin x ,f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,…,∴f n (x )=f n +4(x ),故f 2 012(x )=f 0(x )=sin x , ∴f 2 015(x )=f 3(x )=-cos x ,故选D.]7.B [y ′=f ′(x )=x 2+1,在点⎝ ⎛⎭⎪⎫1,43处的切线斜率k =f ′(1)=2,所以切线方程为y -43=2(x -1),即y =2x -23,与坐标轴的交点坐标为⎝ ⎛⎭⎪⎫0,-23,⎝ ⎛⎭⎪⎫13,0,所以三角形的面积为12×13×⎪⎪⎪⎪⎪⎪-23=19,故选B.]8.C [依题意得f ′(x )=-sin x +2f ′⎝ ⎛⎭⎪⎫π6, ∴f ′⎝ ⎛⎭⎪⎫π6=-sin π6+2f ′⎝ ⎛⎭⎪⎫π6,f ′⎝ ⎛⎭⎪⎫π6=12,f ′(x )=-sin x +1,∵当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )>0,∴f (x )=cos x +x 在⎝ ⎛⎭⎪⎫-π2,π2上是增函数, 又-π2<-π3<π3<π2,∴f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π3.] 9.y =2e x -e解析 ∵f (x )=x e x ,∴f (1)=e ,f ′(x )=e x +x e x,∴f ′(1)=2e ,∴f (x )的图象在点(1,f (1))处的切线方程为y -e =2e(x -1),即y =2e x -e. 10. 2解析 由f ′(x )=-f ′(0)e x+2,令x =0可得f ′(0)=-f ′(0)e 0+2,即f ′(0)=1,所以f (x )=-e x+2x ,所以切线的斜率k =f ′(0)=1,又f (0)=-1,故切线方程为y +1=x -0,即x -y -1=0.由题意可知与直线x -y -1=0平行且与曲线y =e x相切的切点到直线x -y -1=0的距离即为所求.设切点为Q (t ,e t),则k 1=e t=1,故t =0,即Q (0,1),该点到直线x -y -1=0的距离为d =22=2,故答案为 2.11.-120解析 f ′(x )=(x -1)(x -2)(x -3)(x -4)(x -5)+x [(x -1)(x -2)(x -3)·(x -4)(x -5)]′,∴f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120. 12.12 016解析 y ′=(n +1)x n,y ′|x =1=n +1, 切线方程为y -1=(n +1)(x -1), 令y =0,得x n =nn +1,则x 1·x 2·x 3·…·x 2 015=12×23×34×…×2 0152 016=12 016.。

高考数学专题《利用导数研究不等式恒成立问题 》

高考数学专题《利用导数研究不等式恒成立问题 》

第04讲利用导数研究不等式恒成立问题(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:分离变量法高频考点二:分类讨论法高频考点三:等价转化法第四部分:高考真题感悟第五部分:第04讲利用导数研究不等式恒成立问题(精练)1、分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 步骤:①分类参数(注意分类参数时自变量x 的取值范围是否影响不等式的方向)②转化:若()a f x >)对x D ∈恒成立,则只需max ()a f x >;若()a f x <对x D ∈恒成立,则只需min ()a f x <.③求最值.2、分类讨论法如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(0a >,0∆<或0a <,0∆<)求解.3、等价转化法当遇到()()f x g x ≥型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数()()()F x f x g x =-或者“右减左”的函数()()()H x g x f x =-,进而只需满足min ()0F x ≥,或者max ()0H x ≤,将比较法的思想融入函数中,转化为求解函数的最值的问题.1.(2022·全国·高二)设a 为正实数,函数322()34f x x ax a =-+,若(,2)x a a ∀∈,()0f x <,则a 的取值范围是( ) A .[2,)+∞B .(2,)+∞C .(0,2]D .2(0,)32.(2022·全国·高二)若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是( ) A .27a <-B .25a >-C .29a ≥D .29a >3.(2022·全国·高二)已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是( )A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-高频考点一:分离变量法1.(2022·全国·高三专题练习)设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞2.(2022·内蒙古乌兰察布·高二期末(文))已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,3.(2022·全国·高三专题练习)已知对(0,)x ∀∈+∞,不等式ln 1ax x ≥-恒成立,则实数a 的最小值是( ) A .eB .2eC .21e D .1e4.(2022·河南·高二阶段练习(理))已知当0x >时,()21e 1x x a x -≤--恒成立,则实数a 的取值范围是( ) A .(],e 1-∞-B .(],1-∞C .(]2,e 1--D .(],2-∞- 5.(2022·湖南·临澧县第一中学高二阶段练习)已知函数()ln af x x x=+(a 为常数) (1)讨论函数()f x 的单调性; (2)不等式()1f x ≥在2(]0,x ∈上恒成立,求实数a 的取值范围.6.(2022·重庆市育才中学高二阶段练习)已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.7.(2022·四川省泸县第一中学高二阶段练习(理))已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围.8.(2022·河南·三模(文))已知函数()e x f x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-. (1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.高频考点二:分类讨论法1.(2022·广西柳州·三模(文))已知函数()ln f x ax x =-. (1)讨论函数()f x 的单调性;(2)若1x =为函数()f x 的极值点,当[)e,x ∞∈+,不等式()()()1e x f x x m x -+≤-恒成立,求实数m 的取值范围.2.(2022·陕西西安·二模(文))已知函数()()1ln f x a x a x=+∈R . (1)当1a =时,求函数()f x 的单调减区间;(2)若不等式()f x x ≥对(]0,1x ∈恒成立,求实数a 的取值范围.3.(2022·河南·高二阶段练习(文))已知曲线()ln f x m x =+在1x =处的切线方程为()y h x =,且210e f ⎛⎫= ⎪⎝⎭.(1)求()h x 的解析式;(2)若0x ≥时,不等式()20e x ax h x --≥恒成立,求实数a 的取值范围.4.(2022·全国·高三专题练习)已知函数()e xf x =,曲线()y f x =在点()00,x y 处的切线为()yg x =.(1)证明:对于x R ∀∈,()()f x g x ≥; (2)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.5.(2022·四川·树德中学高三开学考试(文))已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围.6.(2022·贵州黔东南·一模(文))已知函数()22ln f x x a x =-.(1)讨论()f x 的单调性;(2)当x >1时,()1f x >恒成立,求a 的取值范围.高频考点三:等价转化法1.(2022·河南·民权县第一高级中学高三阶段练习(文))已知函数()1ln f x a x x=+,()()1e 1,x g x x mx a m x=+--∈R .(1)讨论f (x )的单调性;(2)当a =1时,若不等式()()f x g x ≤恒成立,求m 的取值范围.2.(2022·江苏·高二课时练习)已知函数()ln f x ax x =+,()()220g x a x a =>.若()()f x g x ≤对一切正实数x 都成立,求实数a 的取值范围.3.(2022·全国·高三专题练习)已知函数()()2ln f x x a x =+,()2g x ax x =+.(1)当0a =时,求函数()f x 的最小值;(2)当0a ≤时,若对任意1≥x 都有()()f x g x ≥成立,求实数a 的取值范围.4.(2022·江西·南昌市实验中学高二阶段练习(理))已知函数()2ln f x x a x =+,()2g x x x =+.(1)若()y f x =在点()()1,1M f 处的切线方程为30x y b -+=,求实数a 、b 的值; (2)若对任意1x >,都有()()f x g x ≤成立,求实数a 的取值范围.5.(2022·山东日照·高三期末)已知函数()ln f x x ax b =-+,中,a b ∈R . (1)当0a >时,求()f x 的单调区间;(2)若[]()1,0,2,ln 1a b x kx x x ϕ=∈=--,对任意实数[]()()1,e ,x f x x ϕ∈≥恒成立,求2k b -的最大值.高频考点四:最值法1.(2022·重庆市朝阳中学高二阶段练习)已知函数321()22f x x x x m =--+,其中.m R ∈(1)若函数()f x 的极小值为0,求实数m 的值; (2)当[1,2]x ∈-时,1()2f x 恒成立,求实数m 的取值范围.2.(2022·重庆市长寿中学校高二阶段练习)已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值3.(2022·江西·模拟预测(文))已知函数()222(0)e xmx x f x m +-=>.(1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.4.(2022·河南·高二阶段练习(文))已知函数()32f x x ax bx c =+++在23x =-与1x =处都取得极值.(1)求a ,b 的值;(2)若对任意[]1,2x ∈-,不等式()23f x c <恒成立,求实数c 的取值范围.5.(2022·全国·高三专题练习)已知函数()()()221n l 0f x ax a x a x=-+->. (1)讨论函数()f x 的单调性;(2)若对[]2,3a ∀∈,[]12,1,2x x ∀∈,不等式()()12ln 2m f x f x +>-恒成立,求实数m 的取值范围.6.(2022·全国·高三专题练习)已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.1.(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2.(2020·海南·高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.4.(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.一、单选题1.(2022·河南南阳·高二期末(文))若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A .[1,)+∞ B .(1,)+∞C .[2,)+∞D .(,2)-∞-2.(2022·全国·高二)函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( ) A .(0,+∞)B .(-∞,0)C .4,3⎛-+∞⎫ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭3.(2022·全国·高三阶段练习(理))已知()xae f x x x=-,()0,x ∈+∞,且1x ∀,()20,x ∈+∞,且12x x <,()()12210f x f x x x -<恒成立,则a 的取值范围是( )A .12,e ∞-⎛⎤- ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .(2,e ⎤-∞⎦D .13,e ⎛⎫+∞ ⎪⎝⎭4.(2022·全国·高二)已知函数()()e 10xx a f ax =--≠在[]1,2上是减函数,则实数a 的取值范围是( )A .21,e ⎛⎤-∞ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤⎥⎝⎦D .211,e e ⎡⎤⎢⎥⎣⎦5.(2022·重庆市清华中学校高二阶段练习)已知函数()()31e 1x f x x kx =--+,若对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()()()11222112x f x x f x x f x x f x +>+,则实数k 的取值范围是( ) A .e ,3∞⎛⎫- ⎪⎝⎭B .e ,3⎛⎤-∞ ⎥⎝⎦C .1,3⎛⎫-∞ ⎪⎝⎭D .1,3⎛⎤-∞ ⎥⎝⎦6.(2022·山西临汾·二模(理))已知函数22,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩,若()0f x ≥恒成立.则a 的取值范围为( ) A .[0,1]B .[0,2e]C .[1,2]D .[2,2e]7.(2022·浙江·义乌市商城学校高二阶段练习)已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为( ) A .1-B .2-C .1D .28.(2022·宁夏中卫·一模(理))已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e为自然对数的底数,若关于x 的不等式()20f x ax x x--+≤恒成立,则实数a 的取值范围为( ) A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭二、填空题9.(2022·全国·高二课时练习)当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.10.(2022·上海交大附中高二阶段练习)已知()2ln f x x ax a =-+,若对任意1≥x ,都有()0f x ≤,则实数a 的取值范围是______.11.(2022·江苏省石庄高级中学高二阶段练习)已知函数()ln xf x x=.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.12.(2022·河南·民权县第一高级中学高三阶段练习(文))设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________. 三、解答题13.(2022·福建省厦门集美中学高二阶段练习)已知函数()ln f x x x =, (1)求过点(0,1)-的函数()f x 的切线方程(2)若对任意0x >,都有ln()x ax x a ≥-成立,求正数a 的取值范围.14.(2022·四川·成都外国语学校高二阶段练习(文))已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值.15.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知函数()()e ln 1xf x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.16.(2022·四川达州·二模(文))已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.。

【高考理数】利用导数解决不等式问题(解析版)

【高考理数】利用导数解决不等式问题(解析版)

2020题型一 利用导数解决不等式的恒成立与能成立问题 【题型要点】已知不等式f (x ,λ)≥0(λ为实参数)对任意的x ∈D 恒成立,求参数λ的取值范围.利用导数解决这个问题的常用思想方法如下:(1)分离参数法:第一步,将原不等式f (x ,λ)≥0(x ∈D ,λ为实参数)分离,使不等式的一边是参数,另一边不含参数,即化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式;第二步,利用导数求出函数f 2(x )(x ∈D )的最大(小)值;第三步,解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min 从而求出参数λ的取值范围. (2)函数思想法:第一步,将不等式转化为某含参数的函数的最值问题; 第二步,利用导数求出该函数的极值(最值); 第三步,构建不等式求解.【例1】已知函数f (x )=x 4+ax 3+2x 2+b (x ∈R ),其中a ,b ∈R . (1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围;(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,1]上恒成立,求b 的取值范围. 【解】 (1)f ′(x )=4x 3+3ax 2+4x =x (4x 2+3ax +4). 当a =-103时,f ′(x )=x (4x 2-10x +4)=2x (2x -1)(x -2).令f ′(x )=0,解得x 1=0,x 2=12,x 3=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,2)内是减函数.(2)f ′(x )=x (4x 2+3ax +4),显然x =0不是方程4x 2+3ax +4=0的根. 为使f (x )仅在x =0处有极值,必须4x 2+3ax +4≥0成立,即有Δ=9a 2-64≤0. 解此不等式,得-83≤a ≤83.这时,f (0)=b 是唯一极值.因此满足条件的a 的取值范围是[-83,83]. (3)解:由条件a ∈[-2,2],可知Δ=9a 2-64<0,从而4x 2+3ax +4>0恒成立. 当x <0时,f ′(x )<0;当x >0时,f ′(x )>0.因此函数f (x )在[-1,1]上的最大值是f (1)与f (-1)两者中的较大者.为使对任意的a ∈[-2,2],不等式f (x )≤1在[-1,1]上恒成立,当且仅当⎩⎪⎨⎪⎧f (1)≤1f (-1)≤1,即⎩⎪⎨⎪⎧b ≤-2-a b ≤-2+a在a ∈[-2,2]上恒成立.所以b ≤-4,因此满足条件的b 的取值范围是(-∞,-4].题组训练一 利用导数解决不等式的恒成立与能成立问题 已知函数f (x )=e x -1+ax ,a ∈R . (1)讨论函数f (x )的单调区间;(2)若∈x ∈[1,+∞),f (x )+ln x ≥a +1恒成立,求a 的取值范围. 【解析】 (1)f ′(x )=e x -1+a ,(∈)当a ≥0时,f ′(x )>0,函数f (x )在R 上单调递增; (∈)当a <0时,令f ′(x )=0,则x =ln(-a )+1, 当f ′(x )>0,即x >ln(-a )+1时,函数f (x )单调递增; 当f ′(x )<0,即x <ln(-a )+1时,函数f (x )单调递减.综上,当a ≥0时,函数f (x )在R 上单调递增;当a <0时,函数f (x )的单调递增区间是(ln(-a )+1,+∞),单调递减区间是(-∞,ln(-a )+1).(2)令a =-1,由(1)可知,函数f (x )=e x -1-x 的最小值为f (1)=0,所以e x -1-x ≥0,即e x -1≥x .f (x )+ln x ≥a +1恒成立与f (x )+ln x -a -1≥0恒成立等价,令g (x )=f (x )+ln x -a -1,即g (x )=e x -1+a (x -1)+ln x -1(x ≥1),则g ′(x )=e x -1+1x +a ,∈当a ≥-2时,g ′(x )=e x -1+1x +a ≥x +1x+a ≥2x ·1x +a =a +2≥0(或令φ(x )=e x -1+1x, 则φ′(x )=e x -1-1x 2在[1,+∞)上递增,∈φ′(x )≥φ′(1)=0,∈φ(x )在[1,+∞)上递增,∈φ(x )≥φ(1)=2,∈g ′(x )≥0)∈g (x )在区间[1,+∞)上单调递增, ∈g (x )≥g (1)=0,∈f (x )+ln x ≥a +1恒成立, ∈当a <-2时,令h (x )=ex -1+1x +a ,则h ′(x )=e x -1-1x 2=x 2e x -1-1x 2, 当x ≥1时,h ′(x )≥0,函数h (x )单调递增. 又h (1)=2+a <0, h (1-a )=e 1-a -1+11-a +a ≥1-a +11-a +a =1+11-a>0,∈存在x 0∈(1,1-a ),使得h (x 0)=0,故当x ∈(1,x 0)时,h (x )<h (x 0)=0,即g ′(x )<0,故函数g (x )在(1,x 0)上单调递减;当x ∈(x 0,+∞)时,h (x )>h (x 0)=0,即g ′(x )>0,故函数g (x )在(x 0,+∞)上单调递增.∈g (x )min =g (x 0)<g (1)=0,即∈x ∈[1,+∞),f (x )+ln x ≥a +1不恒成立,综上所述,a的取值范围是[-2,+∞).题型二利用导数证明与函数有关的不等式【题型要点】用导数证明不等式的方法(1)利用单调性:若f(x)在[a,b]上是增函数,则∈∈x∈[a,b],则f(a)≤f(x)≤f(b);∈对∈x1,x2∈[a,b],且x1<x2,则f(x1)<f(x2).对于减函数有类似结论.(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对∈x∈D,有f(x)≤M(或f(x)≥m).(3)证明f(x)<g(x),可构造函数F(x)=f(x)-g(x),证明F(x)<0.【例2】已知函数f(x)=(ln x-k-1)x(k∈R).(1)当x>1时,求f(x)的单调区间和极值;(2)若对于任意x∈[e,e2],都有f(x)<4ln x成立,求k的取值范围;(3)若x1≠x2,且f(x1)=f(x2),证明:x1x2<e2k.(1)【解析】f′(x)=1x·x+ln x-k-1=ln x-k,∈当k≤0时,因为x>1,所以f′(x)=ln x-k>0,函数f(x)的单调递增区间是(1,+∞),无单调递减区间,无极值;∈当k>0时,令ln x-k=0,解得x=e k,当1<x<e k时,f′(x)<0;当x>e k时,f′(x)>0.所以函数f(x)的单调递减区间是(1,e k),单调递增区间是(e k,+∞),在区间(1,+∞)上的极小值为f(e k)=(k-k-1)e k=-e k,无极大值.(2)【解析】由题意,f(x)-4ln x<0,即问题转化为(x-4)ln x-(k+1)x<0对于x∈[e,e2]恒成立.即k +1>(x -4)ln xx 对x ∈[e ,e 2]恒成立.令g (x )=(x -4)ln x x ,则g ′(x )=4ln x +x -4x 2,令t (x )=4ln x +x -4,x ∈[e ,e 2],则t ′(x )=4x +1>0,所以t (x )在区间[e ,e 2]上单调递增, 故t ()x min =t (e)=e -4+4=e>0,故g ′(x )>0, 所以g (x )在区间[e ,e 2]上单调递增, 函数g ()x max =g (e 2)=2-8e2.要使k +1>(x -4)ln xx 对于x ∈[e ,e 2]恒成立,只要k +1>g ()x max ,所以k +1>2-8e2,即实数k 的取值范围为⎪⎭⎫ ⎝⎛+∞-,812e (3)[证明] 因为f (x )=f (x 2),由(1)知,函数f (x )在区间(0,e k )上单调递减, 在区间(e k ,+∞)上单调递增,且f (e k +1)=0. 不妨设x 1<x 2,则0<x 1<e k <x 2<e k +1, 要证x 1x 2<e 2k ,只要证x 2<e 2k x 1,即证e k<x 2<e 2k x 1. 因为f (x )在区间(e k ,+∞)上单调递增,所以f (x 2)<f ⎪⎪⎭⎫⎝⎛12x e k .又f (x )=f (x 2),即证f (x 1)<f ⎪⎪⎭⎫⎝⎛12x e k ,构造函数h (x )=f (x )-f ⎪⎪⎭⎫⎝⎛12x e k=(ln x -k -1)x -⎪⎪⎭⎫ ⎝⎛--1ln 2k x e k e 2kx ,即h (x )=x ln x -(k +1)x +e 2k ⎪⎭⎫⎝⎛--x k xx 1ln ,x ∈(0,e k ).h ′(x )=ln x +1-(k +1)+e 2k ⎪⎭⎫⎝⎛-+-221ln 1x k x x =(ln x -k )(x 2-e 2k )x 2,因为x ∈(0,e k ),所以ln x -k <0,x 2<e 2k ,即h ′(x )>0,所以函数h (x )在区间(0,e k )上单调递增,故h (x )<h (e k ),而h (e k )=f (e k )-f ⎪⎪⎭⎫ ⎝⎛k k e e2=0,故h (x )<0,所以f (x 1)<f ⎪⎪⎭⎫ ⎝⎛12x e k ,即f (x 2)=f (x 1)<f ⎪⎪⎭⎫⎝⎛12x e k ,所以x 1x 2<e 2k 成立.题组训练二 利用导数证明与函数有关的不等式 已知函数f (x )=ln x +ax(a >0).(1)若函数f (x )有零点,求实数a 的取值范围; (2)证明:当a ≥2e时,f (x )>e -x .(1)【解】 方法一 函数f (x )=ln x +ax 的定义域为(0,+∞).由f (x )=ln x +a x ,得f ′(x )=1x -a x 2=x -ax2.因为a >0,则当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 当x =a 时,f (x )min =ln a +1. 当ln a +1≤0,即0<a ≤1e时,又f (1)=ln 1+a =a >0,则函数f (x )有零点.所以实数a 的取值范围为⎥⎦⎤⎝⎛e1,0方法二 函数f (x )=ln x +a x 的定义域为(0,+∞).由f (x )=ln x +ax =0,得a =-x ln x .令g (x )=-x ln x ,则g ′(x )=-(ln x +1).当x ∈⎪⎭⎫ ⎝⎛e 1,0时,g ′(x )>0;当x ∈⎪⎭⎫ ⎝⎛+∞,1e时,g ′(x )<0.所以函数g (x )在⎪⎭⎫ ⎝⎛e 1,0上单调递增,在⎪⎭⎫ ⎝⎛+∞,1e上单调递减.故当x =1e 时,函数g (x )取得最大值g ⎪⎭⎫⎝⎛e 1=-1e ln 1e =1e.因为函数f (x )=ln x +a x 有零点,则0<a ≤1e,所以实数a 的取值范围为⎥⎦⎤ ⎝⎛e1,0.(2)【证明】 要证明当a ≥2e 时,f (x )>e -x ,即证明当x >0,a ≥2e 时,ln x +a x >e -x ,即x ln x +a >x e -x .令h (x )=x ln x +a ,则h ′(x )=ln x +1. 当0<x <1e 时,h ′(x )<0;当x >1e时,h ′(x )>0.所以函数h (x )在⎪⎭⎫ ⎝⎛e 1,0上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e上单调递增.当x =1e 时,h (x )min =-1e +a .于是,当a ≥2e 时,h (x )≥-1e +a ≥1e.∈令φ(x )=x e -x ,则φ′(x )=e -x -x e -x =e -x (1-x ). 当0<x <1时,φ′(x )>0;当x >1时,φ′(x )<0.所以函数φ(x )在()0,1上单调递增,在(1,+∞)上单调递减. 当x =1时,φ(x )max =φ(1)=1e .于是,当x >0时,φ(x )≤1e.∈显然,不等式∈∈中的等号不能同时成立. 故当a ≥2e时,f (x )>e -x .题型三 用赋值法证明与正整数有关的不等式 【题型要点】(1)利用导数研究的正整数不等式一般都与题目给出的函数不等式有关,如本例中给出的函数f (x )在a =12,x ≥1时,有不等式12⎪⎭⎫ ⎝⎛-x x 1≥ln x ,根据函数的定义域,这个不等式当然对一切大于等于1的数成立,这样根据所证不等式的特点,给定x 以适当的数值即可证明正整数不等式.凡涉及从1到n 的整数的不等式,而且不等式中含有ln n 的问题,一般都是通过赋值使之产生ln n +1n ,ln n n -1等使问题获得解决的,如证明12+23+…+nn +1<n +ln 2-ln(n +2)时,就是通过变换n n +1=1-1n +1,进而通过不等式x >ln(1+x )(x >0),得1n >ln ⎪⎭⎫ ⎝⎛+n 11=ln(n +1)-ln n .(2)证明正整数不等式时,要把这些正整数放在正实数的范围内,通过构造正实数的不等式进行证明,而不能直接构造正整数的函数,因为这样的函数不是可导函数,使用导数就是错误的.【例3】已知函数f (x )=ax +bx +c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1.(1)用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)上恒成立,求a 的取值范围; (3)证明:1+12+13+…+1n >ln(n +1)+n2(n +1)(n ≥1).【解析】 (1)f ′(x )=a -bx 2,则有⎩⎪⎨⎪⎧f (1)=a +b +c =0,f ′(1)=a -b =1,解得⎩⎪⎨⎪⎧b =a -1c =1-2a .(2)由(1)知f (x )=ax +a -1x+1-2a .令g (x )=f (x )-ln x =ax +a -1x +1-2a -ln x ,x ∈[1,+∞),则g (1)=0,g ′(x )=a -a -1x 2-1x=ax 2-x -(a -1)x 2=21)1(xa a x x a ⎪⎭⎫ ⎝⎛---(∈)当0<a <12时,1-a a>1.若1<x <1-aa ,则g ′(x )<0,g (x )是减函数,所以g (x )<g (1)=0,即f (x )<ln x 故f (x )≥ln x 在[1,+∞)上不恒成立. (∈)当a ≥12时,1-a a≤1,若x >1,则g ′(x )>0,g (x )是增函数,所以g (x )>g (1)=0,即f (x )>ln x , 故当x ≥1时,f (x )≥ln x .综上所述,所求a 的取值范围为⎪⎭⎫⎢⎣⎡+∞,21(3)证法一:由(2)知当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎪⎭⎫ ⎝⎛-x x 1≥ln x (x ≥1),且当x >1时,12⎪⎭⎫ ⎝⎛-x x 1>ln x .令x =k +1k ,且ln k +1k <12⎪⎭⎫⎝⎛+-+11k k k k =12⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+11111k k , 即ln(k +1)-ln k <12⎪⎭⎫ ⎝⎛++111k k ,k =1,2,3,…,n .将上述n 个不等式依次相加得ln(n +1)<12+⎪⎭⎫ ⎝⎛+⋅⋅⋅++n 13121+12(n +1),整理得1+12+13+…1n >ln(n +1)+n2(n +1).证法二:用数学归纳法证明.∈当n =1时,左边=1, 右边=ln 2+14<1,不等式成立.∈假设n =k 时,不等式成立,就是 1+12+13+…+1k >ln(k +1)+k 2(k +1). 那么1+12+13+…+1k +1k +1>ln(k +1)+k 2(k +1)+1k +1=ln(k +1)+k +22(k +1).由(2)知当a ≥12时,有f (x )≥ln x (x ≥1).令a =12,有f (x )=12⎪⎭⎫ ⎝⎛-x x 1≥ln x (x ≥1).令x =k +2k +1,得12⎪⎭⎫⎝⎛++-++2112k k k k ≥ln k +2k +1=ln(k +2)-ln(k +1). ∈ln(k +1)+k +22(k +1)≥ln(k +2)+k +12(k +2).∈1+12+13+…+1k +1k +1>ln(k +2)+k +12(k +2).这就是说,当n =k +1时,不等式也成立, 根据∈和∈,可知不等式对任何n ∈N *都成立. 题组训练三 用赋值法证明与正整数有关的不等式 设函数f (x )=e x -ax -1,对∈x ∈R ,f (x )≥0恒成立. (1)求a 的取值集合;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).【解析】 (1)f (x )=e x -ax -1,f ′(x )=e x -a ,∈当a ≤0时,f ′(x )>0,f (x )在x ∈R 上单调递增,又f (0)=0,所以当x ∈(-∞,0),f (x )<0,不合题意,舍去;∈当a >0时,x ∈(-∞,ln a ),f ′(x )<0,f (x )单调递减,x ∈(ln a ,+∞),f ′(x )>0,f (x )单调递增,f (x )min =f (ln a )=a -a ln a -1,则需a -a ln a -1≥0恒成立.令g (a )=a -a ln a -1,g ′(a )=-ln a ,当a ∈(0,1)时,g ′(a )>0,g (a )单调递增,当a ∈(1,+∞)时,g ′(a )<0,g (a )单调递减,而g (1)=0,所以a -a ln a -1≤0恒成立.所以a 的取值集合为{1}.(2)由(1)可得e x -x -1>0(x >0),x >ln(x +1)(x >0),令x =1n ,则1n >ln ⎪⎭⎫⎝⎛+11n =ln n +1n =ln(n +1)-ln n , 所以1+12+13+…+1n>(ln 2-ln 1)+(ln 3-ln 2)+…+(ln(n +1)-ln n )=ln(n +1)(n ∈N *).题型四 构造函数法在解题中的应用【例4】 已知函数f (x )=e x -3x +3a (e 为自然对数的底数,a ∈R ). (1)求f (x )的单调区间与极值;(2)求证:当a >ln 3e ,且x >0时,e x x >32x +1x -3a .【解析】 (1)由f (x )=e x -3x +3a ,知f ′(x )=e x -3. 令f ′(x )=0,得x =ln 3,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f f (x )在x =ln 3处取得极小值,极小值为f (ln 3)=3(1-ln 3+a ). (2)证明:待证不等式等价于e x >32x 2-3ax +1,设g (x )=e x -32x 2+3ax -1,于是g ′(x )=e x -3x +3a . 由(1)及a >ln 3e=ln 3-1知,g ′(x )的最小值为g ′(ln 3)=3(1-ln 3+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 3e =ln 3-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),g (x )>0. 即e x>32x 2-3ax +1,故e x x >32x +1x-3a .题组训练四1.构造函数解不等式已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)【解析】 因为f (x +2)为偶函数,所以f (x +2)的图象关于x =0对称,所以f (x )的图象关于x =2对称.所以f (0)=f (4)=1.设g (x )=f (x )e x (x ∈R ),则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x .又f ′(x )<f (x ),所以g ′(x )<0(x ∈R ),所以函数g (x )在定义域上单调递减. 因为f (x )<e x ∈f (x )e x <1,而g (0)=f (0)e 0=1,所以f (x )<e x ∈g (x )<g (0),所以x >0.故选B. 【答案】 B2.构造函数证明不等式设函数f (x )=ax 2ln x +b (x -1)(x >0),曲线y =f (x )过点(e ,e 2-e +1),且在点(1,0)处的切线方程为y =0.(1)求a ,b 的值;(2)证明:当x ≥1时,f (x )≥(x -1)2;(3)若当x ≥1时,f (x )≥m (x -1)2恒成立,求实数m 的取值范围.【解】 (1)函数f (x )=ax 2ln x +b (x -1)(x >0),可得f ′(x )=2a ln x +ax +b ,因为f ′(1)=a +b =0,f (e)=a e 2+b (e -1)=a (e 2-e +1)=e 2-e +1,所以a =1,b =-1.(2)证明:f (x )=x 2ln x -x +1, 设g (x )=x 2ln x +x -x 2(x ≥1),g ′(x )=2x ln x -x +1,(g ′(x ))′=2ln x +1>0,所以g ′(x )在[0,+∞)上单调递增,所以g ′(x )≥g ′(1)=0,所以g (x )在[0,+∞)上单调递增, 所以g (x )≥g (1)=0,所以f (x )≥(x -1)2.(6分) (3)设h (x )=x 2ln x -x -m (x -1)2+1, h ′(x )=2x ln x +x -2m (x -1)-1,由(2)中知x 2ln x ≥(x -1)2+x -1=x (x -1), 所以x ln x ≥x -1,所以h ′(x )≥3(x -1)-2m (x -1), ∈当3-2m ≥0即m ≤32时,h ′(x )≥0,所以h (x )在[1,+∞)单调递增,所以h (x )≥h (1)=0,成立. ∈当3-2m <0即m >32时,h ′(x )=2x ln x +(1-2m )(x -1), (h ′(x ))′=2ln x +3-2m ,令(h ′(x ))′=0,得x 0=e 2m -32>1,当x ∈[1,x 0)时,h ′(x )<h ′(1)=0,所以h (x )在[1,x 0)上单调递减,所以h (x )<h (1)=0,不成立.综上,m ≤32.3.构造函数解决数列问题设函数f (x )=x 2-ln(x +1),证明:对任意的正整数n 不等式f (1)+f ⎪⎭⎫ ⎝⎛21+f ⎪⎭⎫ ⎝⎛31+…+f ⎪⎭⎫⎝⎛n 1<1+123+133+…+1n 3成立. 【证明】 从数列的角度考虑左边的通项为f ⎪⎭⎫⎝⎛n 1,右边的通项为1n 3,若能证明⎪⎭⎫ ⎝⎛n f 1<1n3,则不等式获证,为此构造函数F (x )=f (x )-x 3=x 2-ln(x +1)-x 3, 则F ′(x )=-3x 2+2x -1x +1=-3x 3+x 2-2x +1x +1=-3x 3+(x -1)2x +1,显然当x ∈[0,+∞)时,F ′(x )<0,所以函数F (x )在[0,+∞)上是单调减函数, 又F (0)=0,所以当x ∈[0,+∞)时,恒有F (x )<F (0)=0, 即x 2-ln(x +1)<x 3恒成立. 所以x ∈[0,+∞)时,f (x )<x 3, 取x =1k,则有f ⎪⎭⎫⎝⎛k 1<1k 3,所以f (1)<1,f ⎪⎭⎫ ⎝⎛21<123,…,f ⎪⎭⎫ ⎝⎛n 1<1n 3,于是对任意的正整数n ,不等式f (1)+f ⎪⎭⎫ ⎝⎛21+f ⎪⎭⎫⎝⎛31+…+f ⎪⎭⎫⎝⎛n 1<1+123+133+…+1n 3成立. 【专题训练】1.已知函数f (x )=ax 2+2x -ln(x +1)(a 为常数). (1)当a =-1时,求函数f (x )的单调区间;(2)当x ∈[0,+∞)时,不等式f (x )≤x 恒成立,求实数的取值范围.【解析】 (1)函数的定义域为(-1,+∞),当a =-1时,f (x )=-x 2+2x -ln(x +1), ∈f ′(x )=-2x +2-1x +1=1-2x 2x +1,由f ′(x )>0得,-22<x <22, 由f ′(x )<0得,-1<x <22或x >22, ∈函数f (x )的单调增区间为⎪⎪⎭⎫ ⎝⎛-22,22,单调减区间为⎪⎪⎭⎫ ⎝⎛--22,1和⎪⎪⎭⎫ ⎝⎛+∞,22(2)当x ∈[0,+∞)时,f (x )≤x 恒成立, 令g (x )=f (x )-x =ax 2+x -ln(x +1), 问题转换为x ∈[0,+∞)时,g (x )max ≤0. ∈g ′(x )=2ax +1-11+x =x [2ax +(2a +1)]x +1, ∈当a =0时,g ′(x )=xx +1≥0,∈g (x )在x ∈[0,+∞)上单调递增, 此时g (x )无最大值,故a =0不合题意.∈当a >0时,令g ′(x )=0解得,x 1=0,x 2=-(2a +1)2a<0,此时g (x )在x ∈[0,+∞)上单调递增,此时无最大值,故a >0不合题意. ∈当a <0时,令g ′(x )=0解得,x 1=0,x 2=-(2a +1)2a,当-12<a <0时,x 2=-(2a +1)2a>0,而g (x )在[0,x 2)上单调递增,在[x 2,+∞)上单调递减,∈g (x )max =g (x 2)=a -14a -ln ⎪⎭⎫⎝⎛-a 21 =a -14a+ln(-2a ),令φ(x )=x -14x +ln(-2x ),x ∈⎪⎭⎫⎝⎛-0,21,则φ′(x )=1+14x 2+1x =(2x +1)24x 2>0,∈φ(x )在x ∈⎪⎭⎫⎝⎛-0,21上单调递增, 又φ⎪⎭⎫⎝⎛-81e =-1e 8+e 34-3ln 2,当e≈2.71时,e 3≈19.9,∈φ(x )在x ∈⎪⎭⎫⎝⎛-0,21上小于或等于不恒成立, 即g (x )max ≤0不恒成立, 故-12<a <0不合题意.当a ≤-12时,x 2=-(2a +1)2a ≤0,而此时g (x )在x ∈[0,+∞)上单调递减, ∈g (x )max =g (0)=0,符合题意.综上可知,实数的取值范围是⎥⎦⎤ ⎝⎛-∞-21,2.已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0, f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-a x a x 22. ∈0<a <2时,2a>1, 当x ∈(0,1)或x ∈⎪⎪⎭⎫⎝⎛+∞,2a 时,f ′(x )>0,f (x )单调递增, 当x ∈⎪⎪⎭⎫⎝⎛a 2,1时,f ′(x )<0,f (x )单调递减. ∈a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. ∈a >2时,0<2a<1,当x ∈⎪⎪⎭⎫⎝⎛a 2,0或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 当x ∈⎪⎪⎭⎫⎝⎛1,2a 时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎪⎪⎭⎫⎝⎛a 2,1内单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,2a 内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎪⎪⎭⎫⎝⎛a 2,0内单调递增, 在⎪⎪⎭⎫⎝⎛1,2a 内单调递减,在(1,+∞)内单调递增. (2)证明:由(1)知,a =1时,f (x )-f ′(x )=x -ln x +2x -1x 2-⎪⎭⎫ ⎝⎛+--322211x x x=x -ln x +3x +1x 2-2x3-1,x ∈[1,2].设g (x )=x -ln x ,h (x )=3x +1x 2-2x3-1,x ∈[1,2],则f (x )-f ′(x )=g (x )+h (x ).由g ′(x )=x -1x≥0, 可得g (x )≥g (1)=1,当且仅当x =1时取得等号,又h ′(x )=-3x 2-2x +6x 4.设φ(x )=-3x 2-2x +6,则φ(x )在x ∈[1,2]单调递减.因为φ(1)=1,φ(2)=-10,所以∈x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )=1,h (2)=12,可得h (x )≥h (2)=12,当且仅当x =2时取得等号.所以f (x )-f ′(x )>g (1)+h (2)=32.即f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.3.已知函数f (x )=x +a ln x (a ∈R ).(1)若曲线y =f (x )在点(1,f (1))处与直线y =3x -2相切,求a 的值;(2)若函数g (x )=f (x )-kx 2有两个零点x 1,x 2,试判断g ′⎪⎭⎫⎝⎛+221x x 的符号,并证明.【解析】 (1)f ′(x )=1+ax,又f ′(1)=3,所以a =2.(2)当a >0时,g ′⎪⎭⎫⎝⎛+221x x <0;当a <0时,g ′⎪⎭⎫⎝⎛+221x x >0,证明如下: 函数g (x )的定义域是(0,+∞).若a =0,则g (x )=f (x )-kx 2=x -kx 2. 令g (x )=0,则x -kx 2=0.又据题设分析知,k ≠0,所以x 1=0,x 2=1k.又g (x )有两个零点,且都大于0,所以a =0不成立.据题设知⎩⎪⎨⎪⎧g (x 1)=x 1+a ln x 1-kx 21=0,g (x 2)=x 2+a ln x 2-kx 22=0.不妨设x 1>x 2,x 1x 2=t ,t >1. 所以x 1-x 2+a (ln x 1-ln x 2)=k (x 1-x 2)(x 1+x 2).所以1+a (ln x 1-ln x 2)x 1-x 2=k (x 1+x 2).又g ′(x )=1+a x -2kx ,所以g ′⎪⎭⎫⎝⎛+221x x =1+2a x 1+x 2-k (x 1+x 2)=1+2a x 1+x 2-1-a (ln x 1-ln x 2)x 1-x 2=a ⎪⎪⎭⎫⎝⎛---+212121ln ln 2x x x x x x =a x 2⎪⎭⎫ ⎝⎛--+i t t t ln 12=a x 2·1t -1()⎥⎦⎤⎢⎣⎡-+-t t t ln 112 引入h (t )=2(t -1)t +1-ln t (t >1),21 则h ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0. 所以h (t )在(0,+∞)上单调递减. 而h (1)=0,所以当t >1时,h (t )<0.易知x 2>0,1t -1>0,所以当a >0时,g ′⎪⎭⎫ ⎝⎛+221x x <0; 当a <0时,g ′⎪⎭⎫⎝⎛+221x x >0.。

专题12 利用导数研究不等式恒成立问题(解析版)

专题12 利用导数研究不等式恒成立问题(解析版)

专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x )或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.【解析】法一:构造函数法设g (x )=x e 2x -ax -ln x -1(x >0),对任意的x >0,f (x )≤x e 2x 恒成立,等价于g (x )≥0在(0,+∞)上恒成立,则只需g (x )min ≥0即可.因为g ′(x )=(2x +1)e 2x -a -1x ,令h (x )=(2x +1)e 2x -a -1x (x >0),则h ′(x )=4(x +1)e 2x +1x2>0,所以h (x )=g ′(x )在(0,+∞)上单调递增,因为当x ―→0时,h (x )―→-∞,当x ―→+∞时,h (x )―→+∞,所以h (x )=g ′(x )在(0,+∞)上存在唯一的零点x 0,满足(2x 0+1)e2x 0-a -1x 0=0,所以a =(2x 0+1)e2x 0-1x 0,且g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0e2x 0-ax 0-ln x 0-1=-2x 20e2x 0-ln x 0,则由g (x )min ≥0,得2x 20e2x 0+ln x 0≤0,此时0<x 0<1,e2x 0≤-ln x 02x 20,所以2x 0+ln(2x 0)≤ln(-ln x 0)+(-ln x 0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x>0,所以函数S (x )在(0,+∞)上单调递增,因为S (2x 0)≤S (-ln x 0),所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2].法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x在(0,+∞)上恒成立.令m (x )=e 2x-ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln x x 2,再令g (x )=2x 2e 2x +ln x (x >0),则′(x )=4(x 2+x )e 2x +1x>0,所以g (x )在(0,+∞)上单调递增,因为=e 8-2ln 2<0,g (1)=2e 2>0,所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0,所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0,所以ln 2+2ln x 0+2x 0=ln(-ln x 0),即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0),设s (x )=ln x +x (x >0),则s ′(x )=1x+1>0,所以函数s (x )在(0,+∞)上单调递增,因为s (2x 0)=s (-ln x 0),所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2].典例2.设函数f (x )=ln x +k x ,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【解析】(1)由条件得f ′(x )=1x -k x2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,∴f ′(e)=0,即1e -k e 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -e x2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e ,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增.当x =e 时,f (x )取得极小值,且f (e)=ln e +e e=2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立,设h (x )=f (x )-x =ln x +k x-x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -k x2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x +14恒成立,∴k ≥14.故k 的取值范围是14,+典例3.已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x ex ,对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】(1)由题设知f ′(x )=x 2+x a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈12,2,∃x 2∈12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在12,2上单调递增,∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-x e x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈12,2时,g (x )max =g (1)=1e .由8+a ≤1e ,得a ≤1e-8,∴实数a ∞,1e -8.典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1,所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0.(2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈13,12,所以-6x +1∈[-3,-2],所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ).因为a <0,所以当x ∈[1,2]时,g ′(x )<0,所以g (x )在[1,2]上单调递减,故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3,即g (x )在[1,2]上的值域为-3,-32a -12.因为对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),所以[0,1]⊆-3,-32a -12,所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是()A .27a <-B .25a >-C .29a ≥D .29a >【解析】43322()4,()4124(3)f x x x f x x x x x '=-=-=-,当3x <时,()0f x '<,当3x >时,()0f x '>,()f x 的递减区间是(,3)-∞,递增区间是(3,)+∞,所以3,()x f x =取得极小值,也是最小值,min ()(3)27f x f ==-,不等式4342x x a ->-对任意实数x 都成立,所以272,29a a ->->.故选:D.2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-【解析】函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0≤f x ,当[]1,2x ∈时,()0≤f x 即220ax x a -+≤,即为()221a x x +≤,可化为()212x a x ≤+令()22()1x g x x +=,则()()22'22221)22((12(212))x x x x g x x x -++-++==当[]1,2x ∈时,'()0g x <,单调递减.因此()min 2224()(2)152g x g ⨯==+=,所以min 4()5a g x ≤=故实数a 的取值范围是4,5⎛⎤-∞ ⎥⎝⎦,故选B 3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞【解析】()()()26824f x x x x x '=-+=--,当()0,2x ∈时,()0f x '>,()f x 单调递增,当()2,3x ∈时,()0f x '<,()f x 单调递减,所以()f x 在()0,3上的最大值是()24f =.()111x g x x x-'=-=,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,3x ∈时,()0g x '>,()g x 单调递增,所以()g x 在()0,3上的最小值是()11g =,若1x ∀,()20,3x ∈,()()12g x k f x +≥恒成立,则()()max min g x k f x +≥⎡⎤⎣⎦,即14k +≥,所以3k ≥,所以实数k 的取值范围是[)3,+∞.故选:D .4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+【解析】设()()()23ln 11=-+>-f x x x x ,则()321211-'=-=++x f x x x ,当102x <<时,()0f x '<,()f x 单调递减,当112x <<时,()0f x '>,()f x 单调递增,()003ln10=-=f ,()123ln 20=-<f ,不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立可转化为对任意[]0,1x ∈时()()max 231+≥a f x ,所以()2310+≥a ,解得13a ≥-.故选:C.5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是()A .(],1-∞-B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦【解析】因为不等式sin x x ax -≥,对[]0,x π∈恒成立,当0x =时,显然成立,当(0,]x π∈,sin 1xa x ≤-恒成立,令()sin 1x f x x =-,则()2cos sin x x xf x x -'=,令()cos sin g x x x x =-,则()sin 0g x x x '=-≤在(0,]π上成立,所以()g x 在(0,]π上递减,则()()00g x g <=,所以()0f x '<在(0,]π上成立,所以()f x 在(0,]π上递减,所以()()min 1f x f π==-,所以1a ≤-,故选:A 6.若关于x 的不等式()()22e 222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为()A .1,e ⎡-+∞⎫⎪⎢⎣⎭B .()1,-+∞C .[)1,-+∞D .[)2,-+∞【解析】依题意,()()()22e 221ln 1x a x x a x -+->-+-,则()()222e ln e 21ln 1x x a x a x --+>-+-(*).令()2ln g t t a t =+(1)t >,则(*)式即为()()2e 1x g g x ->-.又2e 11x x ->->在()2,+∞上恒成立,故只需()g t 在()1,+∞上单调递增,则()20ag t t '=+≥在()1,+∞上恒成立,即2a t ≥-在()1,+∞上恒成立,解得2a ≥-.故选:D.7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为()A .[)1,+∞B .[)2,+∞C .[]1,2D .()1,+∞【解析】由题意,函数()2sin f x x x =+的定义域为R ,其满足()()f x f x -=-,所以函数()f x 为奇函数,且()2cos 0f x x =+>',所以函数()f x 为R 上的增函数,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则ln (1)a f x f x ⎛⎫+≥ ⎪⎝⎭对(]0,2x ∈恒成立,即ln 1a x x+≥对(]0,2x ∈恒成立,即ln a x x x ≥-对(]0,2x ∈恒成立,设()(]ln 0,2,h x x x x x ∈=-,可得()ln h x x '=-,当01x <<时,()0h x '>;当12x <≤时,()0h x '<,所以()h x 在(0,1)上单调递增,在(1,2]单调递减,所以()max (1)1h x h ==,所以1a ≥,即实数a 的取值范围为[1,)+∞.故选:A.8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦【解析】由题设,可知:,()0x ∈+∞,问题转化为2(ln 1)x a x -≥在,()0x ∈+∞上恒成立,令ln 1()x f x x -=,则22ln ()x f x x-'=,当20e x <<时()0f x '>,即()f x 递增;当2e x >时()0f x '<,即()f x 递减;所以2max 21()(e )e f x f ==,故22e a ≥.故选:B 9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1【解析】因为31()3g x x =单调递增,120x x >>,所以12()()0g x g x >>,即12()()0g x g x ->,原不等式恒成立可化为122211())((())x m f x x f g x mg x x -->恒成立,即120x x >>时,111222()()()()mg x x f x mg x x f x ->-恒成立,即函数3())ln ((3)m xf x x x x h x mg x ==--在(0,)+∞上为增函数,所以2ln 10()mx h x x '--≥=在(0,)+∞上恒成立,即2ln 1x m x +≥,令2ln )1(k x x x +=,则32l (n )1x k x x '+=-,当120e x -<<时,()0k x '>,()k x 单调递增,当12e x ->时,()0k x '<,()k x 单调递减,故当12e x -=时,函数2ln )1(k x x x +=的最大值为e2,即e2m ≥恒成立,由m ∈Z 知,整数m 的最小值为2.故选:A二、多选题10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是()A .-B .CD .【解析】因为函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,当0x <时,22x ax +≥恒成立,即2a x x ≥+恒成立,因为2x x +≤-2x x =,即x =时取等号,所以a ≥-.当0x =时,00e ≥恒成立.当0x >时,x e ax ≥恒成立,即xe a x ≤恒成立,设()x e g x x =,()()221xx x e x xe e g x x x --'==,()0,1x ∈,()0g x '<,()g x 为减函数,()1,x ∈+∞,()0g x '>,()g x 为增函数,所以()()min 1g x g e ==,所以a e ≤,综上所述:a e -≤≤.故选:ABC 11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4【解析】()x f x e a '=-,令()0f x '=,得ln x a =,当ln x a <时,()0f x '<,当ln x a >时,()0f x '>,所以函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.所以ln x a =时,函数取得最小值ln 1a a a -+,因为()0f x >恒成立,所以ln 10a a a -+>恒成立,且a +∈N ,可得实数a 的所有可能取值1,2,3,故选:ABC.12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6eB .(2eC .(2e +D .2e【解析】因为()()3253153222x x f x x x x +-+===-+++,所以()f x 在[)0,∞+上单调递增,所以对[0,)x ∀∈+∞,()()102f x f ≥=;()()42e x g x x =-,所以()()()'2e 42e 21e x x x g x x x =-+-=-,当1x >时,()'0g x <;当01x <<时,()'0g x >,函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,∴()max ()12e g x g ==;因为0t >,任意[)12,0,x x ∈+∞,不等式()()()()2221e e t g x t f x +≤+恒成立,即()()221e 2e e 2t t +⋅≤+,整理得224e 3e 0t t --≥,解得(2e t ≤或(2e t ≥,所以正数t 的取值范围为()2e,⎡+∞⎣;6e 与(2e 均在区间()2⎡+∞⎣内,(2e +与2e 均不在区间()2e,⎡+∞⎣内;故选:AB .13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为()A .B .1-C .1D【解析】设1ln (1)y x x x =-->,则110y x '=->,所以1ln y x x =--在(1,)+∞上单调递增,所以1ln 0x x -->,所以ln 1,(1,)x x x <-∈+∞,∴0ln 1x x <<-,∴110ln 1x x >>-.又11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,所以()f x 在(1,)+∞上单调递增,所以()21()1e 0x f x a x -=--≥'对(1,)x ∀∈+∞恒成立,即211e x xa --≥恒成立.令111(),()e e x x x xg x g x ---='=,当1x >时,()0g x '<,故()(1)1g x g <=,∴211a -≥,解得a ≥或a ≤a 的值可以为AD.三、填空题14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________.【解析】由2()2ln f x x x a =--,得()21(1)2()2x x f x x x x-+'=-=,又函数()f x 的定义域为(0,)+∞,令()01f x x =⇒=',当01x <<时,()0f x '<,函数()f x 单调递减;当1x >时,()0f x '>,函数()f x 单调递增;故1x =是函数()f x 的极小值点,也是最小值点,且(1)1f a =-,要使()0f x ≥恒成立,需10a -≥,则1a ≤.15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.【解析】根据题意,当(]0,1x ∈时,分离参数a ,得23143a x x x ≥--恒成立.令1t x=,∴1t ≥时,2343t t a t --≥恒成立.令()2343t t g t t =--,则()()()2189911t t t t g t '=--=-++,当1t ≥时,()0g t '<,∴函数()g t 在[)1,+∞上是减函数.则()()16g t g ≤=-,∴6a ≥-.∴实数a 的取值范围是[)6-+∞,.16.已知函数()2f x x a =+,(ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.【解析】由()ln 2g x x x =-,可得()112'2x g x x x-=-=,当122x ⎡⎤∈⎢⎥⎣⎦,()'0g x ≤,所以()g x 在122⎡⎤⎢⎥⎣⎦,单调递减,()min ()2ln24g x g ∴==-,()2f x x a =+ ,()f x ∴在122⎡⎤⎢⎥⎣⎦上单调递增,()max ()24f x f a ∴==+, 对任意的12122x x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,4ln24a ∴+≤-,ln28a ∴≤-17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.【解析】设()()ln 1f x x x =-+,则()11x x f e e x -=--,故()()1x f e mf x ->对一切正数x 都成立,()()110011x f x x x x '=-=>>++,故()f x 在()0,∞+上单调递增,()()0ln 010f x -+=>,()()1x f e m f x -∴<恒成立,由()1x h x e x =--,()1xh x e '=-在()0,∞+上恒大于零,所以()h x 在()0,∞+上单调递增,所以()()00h x h >=,1x e x ∴->在()0,∞+上恒成立,()()1xf e f x ∴->,()()11x f e f x -∴>,1m ∴≤.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.【解析】(1)由题意可知:()()´2214f x x a x a =-++,且()f x 有极值,则()´0f x =有两个不同的实数根,故()()224116410a a a ∆=+-=->,解得:1a ≠,即()(),11,a ∈-∞⋃(2)由于0x ≥,()0f x >恒成立,则()0240f a =>,即0a >,由于()()()()´221422f x x a x a x x a =-++=--,则①当01a <<时,()f x 在2x a =处取得极大值、在2x =处取得极小值,当02x a £<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x a ≥时,()()422803min f x f a ==->,解得:121a >;②当1a =时,()0f x ¢³,即()f x 在[)0,+∞上单调递增,且()0240f =>,则()()00f x f ³>恒成立;③当1a >时,()f x 在2x =处取得极大值、在2x a =处取得极小值,当02x ≤<时,()f x 为增函数,因为()00f >,所以()f x 恒大于0,当2x ≥时,()()3243min 24240f x f a a a a ==-++>,解得36a -<<,综上所述,a 的取值范围是1216a <<.19.已知函数()ln 32af x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围.【解析】(1)函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x-'=-=①当0a >时,令()0f x '>,可得12x >,此时函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭②当0a <时,令()0f x '>,可得102x <<,此时函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭综上所述:当0a >时,函数()f x 的增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0a <时,函数()f x 的增区间为10,2⎛⎫⎪⎝⎭,减区间为1,2⎛⎫+∞ ⎪⎝⎭(2)()310xf x x +-≥在[)1,x ∞∈+恒成立,则2ln 12aax x x -≥在[)1,x ∞∈+恒成立,即21ln 12a x x x ⎛⎫-≥ ⎪⎝⎭在[)1,x ∞∈+恒成立。

【大师特稿】2018届高三数学每天一练半小时(91套 含答案532页)

【大师特稿】2018届高三数学每天一练半小时(91套 含答案532页)

一、选择题1.(2016·山东乳山一中月考)设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( ) A .A ⊆BB .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}2.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x <y ,x +y ∈A },则集合B 的子集个数是( ) A .4 B .15 C .8D .163.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为( )A .[-1,0]B .(-1,0)C .(-∞,-1)∪[0,1)D .(-∞,-1]∪(0,1)4.(2016·厦门模拟)设集合A ={(x ,y )|x 24+y 216=1},B ={(x ,y )|y =3x},则A ∩B 的子集的个数是( ) A .1 B .2 C .3D .45.已知集合A ={x |y =ln(1-2x )},B ={x |x 2≤x },则∁(A ∪B )(A ∩B )等于( ) A .(-∞,0)B.⎝ ⎛⎦⎥⎤-12,1 C .(-∞,0)∪⎣⎢⎡⎦⎥⎤12,1 D.⎝ ⎛⎦⎥⎤-12,0 6.设集合P ={m |-1<m ≤0},Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是( ) A .PQ B .P QC .P =QD .P ∩Q =∅7.设集合A ={x |x 2+2x -3>0},B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是( ) A .(0,34)B .[34,43)C .[34,+∞)D .(1,+∞)8.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ).若A={1,2},B ={x |(x 2+ax )·(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )等于( ) A .1 B .3 C .5 D .7二、填空题9.(2017·成都月考)已知集合M ={x |x >x 2},N ={y |y =4x2,x ∈M },则M ∩N =__________________.10.若集合A ={x |-1<x ≤2},B ={x |(x -a )(x -a +1)≥0},且A ∩B =A ,则实数a 的取值范围是______________________.11.已知集合A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B ={x |3<x ≤4},则a +b 的值为________.12.设S 是实数集R 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集;②若S 为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆R的任意集合T也是封闭集.其中真命题是________.(写出所有真命题的序号)答案精析1.D [因为1∈A 但1∉B ,所以A 不对;因为A ∩B ={2,3},所以B 不对;因为A ∪B ={1,2,3,4},所以C 不对;经检验,D 是正确的,故选D.]2.D [当x =1时,y =2或3或4,当x =2时,y =3.故集合B ={(1,2),(1,3),(1,4),(2,3)},因此集合B 中有4个元素,其子集个数为16.故选D.]3.D [因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1], 所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1),选D.]4.D [由于函数y =3x的图象经过点(0,1),且(0,1)在椭圆x 24+y 216=1内,所以函数y =3x的图象与椭圆x 24+y 216=1有两个交点,从而A ∩B 中有2个元素,故A ∩B 的子集的个数是4,故选D.]5.C [∵集合A ={x |y =ln(1-2x )}={x |1-2x >0}={x |x <12},B ={x |x 2≤x }={x |0≤x ≤1},∴A ∪B ={x |x ≤1},A ∩B ={x |0≤x <12},∴∁(A ∪B )(A ∩B )=(-∞,0)∪⎣⎢⎡⎦⎥⎤12,1,故选C.] 6.C [Q ={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},对m 分类: ①为m =0时,-4<0恒成立;②当m <0时,需Δ=(4m )2-4×m ×(-4)<0,解得-1<m <0. 综合①②知-1<m ≤0.故选C.]7.B [A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1图象的对称轴为直线x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43.]8.B [因为C (A )=2,A *B =1,所以C (B )=1或C (B )=3.由x 2+ax =0,得x 1=0,x 2=-a .关于x 的方程x 2+ax +2=0,当Δ=0,即a =±22时,易知C (B )=3,符合题意;当Δ>0,即a <-22或a >22时,易知0,-a 均不是方程x 2+ax +2=0的根,故C (B )=4,不符合题意;当Δ<0,即-22<a <22时,方程x 2+ax +2=0无实数解,当a =0时,B ={0},C (B )=1,符合题意,当-22<a <0或0<a <22时,C (B )=2,不符合题意.所以S ={0,-22,22}.故C (S )=3.] 9.{x |12<x <1}解析 对于集合M ,由x >x 2, 解得0<x <1,∴M ={x |0<x <1}, ∵0<x <1,∴1<4x<4,∴12<4x 2<2,∴N ={y |12<y <2},∴M ∩N ={x |12<x <1}.10.(-∞,-1]∪[3,+∞) 解析 化简B ={x |x ≥a 或x ≤a -1}, 又A ∩B =A ,所以A ⊆B . 由数轴知a ≤-1或a -1≥2, 即a ≤-1或a ≥3.所以a 的取值范围是(-∞,-1]∪[3,+∞). 11.-7解析 由已知得A ={x |x <-1或x >3},∵A ∪B =R ,A ∩B ={x |3<x ≤4},∴B ={x |-1≤x ≤4}, 即方程x 2+ax +b =0的两根为x 1=-1,x 2=4. ∴a =-3,b =-4,∴a +b =-7. 12.①②解析 ①正确,任取x ,y ∈S ,设x =a 1+b 13,y =a 2+b 23(a 1,b 1,a 2,b 2∈Z ),则x +y =(a 1+a 2)+(b 1+b 2)3,其中a 1+a 2∈Z ,b 1+b 2∈Z .即x +y ∈S .同理x -y ∈S ,xy ∈S .②正确,当x =y 时,0∈S .③错误,当S ={0}时,是封闭集,但不是无限集.④错误,设S ={0}⊆T ={0,1},显然T 不是封闭集.因此正确命题为①②.一、选择题1.(2016·衡阳五校联考)命题“若x ≥a 2+b 2,则x ≥2ab ”的逆命题是( ) A .若x <a 2+b 2,则x <2ab B .若x ≥a 2+b 2,则x <2ab C .若x <2ab ,则x <a 2+b2D .若x ≥2ab ,则x ≥a 2+b 22.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题是“若x ≠4,则x 2-3x -4≠0” B .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题 C .“x =4”是“x 2-3x -4=0”的充分条件D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 3.(2016·淄博期中)“x (x -5)<0成立”是“|x -1|<4成立”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.直线x -y +m =0与圆x 2+y 2-2x -1=0相交的一个充分不必要条件是( ) A .-3<m <1 B .-4<m <2 C .0<m <1D .m <15.(2016·广东阳东广雅中学期中)设p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增;q :m >43,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .以上都不对6.甲:x ≠2或y ≠3;乙:x +y ≠5,则( ) A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件7.设命题p :2x -1≤1,命题q :(x -a )[x -(a +1)]≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是( ) A .(0,2) B .[0,12]C .[-2,0]D .(-2,0)8.(2016·大庆期中)给出下列命题:①若等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的既不充分也不必要条件; ②“x ≠1”是“x 2≠1”的必要不充分条件;③若函数y =lg(x 2+ax +1)的值域为R ,则实数a 的取值范围是-2<a <2; ④“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充要条件. 其中真命题的个数是( ) A .1 B .2 C .3 D .4二、填空题9.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)10.(2017·益阳联考)命题p :“若a ≥b ,则a +b >2 015且a >-b ”的逆否命题是 ________________________________________________________________________. 11.若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________. 12.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0成立”的必要不充分条件,则实数m 的取值范围为________________.答案精析 1.D2.B [逆否命题,条件、结论均否定,并交换,所以命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故A 正确;命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,由Δ=1+4m ≥0,解得m ≥-14,是假命题,故B 错误;x =4时,x 2-3x -4=0,是充分条件,故C 正确;命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故D 正确.故选B.]3.A [∵x (x -5)<0⇒0<x <5,|x -1|<4⇒-3<x <5,∴“x (x -5)<0成立”⇒“|x -1|<4成立”,反之,则不一定成立, ∴“x (x -5)<0成立”是“|x -1|<4成立”的充分而不必要条件.故选A.] 4.C [圆方程化为(x -1)2+y 2=2,圆心(1,0)到直线x -y +m =0的距离d =|1+m |2,当直线与圆相交时,|1+m |2<2,即-3<m <1,因为{m |0<m <1}{m |-3<m <1},所以0<m <1是直线与圆相交的一个充分不必要条件.故选C.]5.C [∵f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,∴f ′(x )=3x 2-4x +m , 即3x 2-4x +m ≥0在R 上恒成立,∴Δ=16-12m ≤0,即m ≥43.∵p :f (x )=x 3-2x 2+mx +1在(-∞,+∞)上单调递增,q :m >43,∴根据充分必要条件的定义可判断:p 是q 的必要不充分条件,故选C.]6.B [“甲⇒乙”的逆否命题为“若x +y =5,则x =2且y =3”显然不正确,而“乙⇒甲”的逆否命题为“若x =2且y =3,则x +y =5”是真命题,因此甲是乙的必要不充分条件.] 7.B [解不等式2x -1≤1,得12≤x ≤1,故满足命题p 的集合P =[12,1].解不等式(x -a )[x -(a +1)]≤0,得a ≤x ≤a +1,故满足命题q 的集合Q =[a ,a +1].又q 是p 的必要不充分条件,则P 是Q 的真子集,即a ≤12且a +1≥1,解得0≤a ≤12,故实数a 的取值范围是[0,12].]8.B [若首项为负,则公比q >1时,数列为递减数列,a n +1<a n (n ∈N *),当a n +1>a n (n ∈N *)时,包含首项为正,公比q >1和首项为负,公比0<q <1两种情况,故①正确;“x ≠1”时,“x 2≠1”在x =-1时不成立,“x 2≠1”时,“x ≠1”一定成立,故②正确;函数y =lg(x2+ax +1)的值域为R ,则x 2+ax +1=0的Δ=a 2-4≥0,解得a ≥2或a ≤-2,故③错误;“a =1”时,“函数y =cos 2x -sin 2x =cos 2x 的最小正周期为π”,但“函数y =cos 2ax -sin 2ax 的最小正周期为π”时,“a =±1”,故“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的充分不必要条件,故④错误.故选B.] 9.①③解析 ①命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,则a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题. 10.若a +b ≤2 015或a ≤-b ,则a <b 11.m >9解析 方程x 2-mx +2m =0对应二次函数f (x )=x 2-mx +2m ,若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,则f (3)<0,解得m >9,即方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9. 12.{m |m ≥1或m ≤-7}解析 由命题p 中的不等式(x -m )2>3(x -m )变形,得(x -m )(x -m -3)>0,解得x >m +3或x <m ;由命题q 中的不等式x 2+3x -4<0变形,得(x -1)·(x +4)<0,解得-4<x <1,因为命题p 是命题q 的必要不充分条件,所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1.所以m 的取值范围为{m |m ≥1或m ≤-7}.一、选择题1.(2015·浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 02.(2016·肇庆统测)设a ,b ,c 是非零向量,已知命题p :若a·b =0,则a ⊥b ;命题q : 若a ∥b ,b ∥c ,则a ∥c .则下列命题中假命题是( ) A .p ∧q B .p ∨qC .(綈p )∨qD .(綈p )∨(綈q )3.若“∃x ∈[12,2],使得2x 2-λx +1<0成立”是假命题,则实数λ的取值范围为( )A .(-∞,22]B .[22,3]C .[-22,3]D .λ=34.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若“p 且q ”为真命题,则( ) A .a =1或a ≤-2 B .a ≤-2或1≤a ≤2 C .a ≥1D .-2≤a ≤15.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是假命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是假命题.其中正确的命题是( ) A .②③ B .②④ C .③④D .①②③6.(2016·临夏期中)下列结论错误的是( )A .命题“若p ,则q ”与命题“若綈q ,则綈p ”互为逆否命题B .命题p :∀x ∈[0,1],e x ≥1,命题q :∃x ∈R ,x 2+x +1<0,则p ∨q 为真 C .若p ∨q 为假命题,则p ,q 均为假命题 D .“若am 2<bm 2,则a <b ”的逆命题为真命题7.(2016·葫芦岛期中)已知命题P :不等式lg[x (1-x )+1]>0的解集为{x |0<x <1};命题Q :在△ABC 中,“A >B ”是“cos 2⎝ ⎛⎭⎪⎫A 2+π4<cos 2⎝ ⎛⎭⎪⎫B 2+π4”成立的必要不充分条件,则( )A .P 真Q 假B .P ∧Q 为真C .P ∨Q 为假D .P 假Q 真8.(2016·怀仁期中)已知命题p :∀x ∈[-1,2],函数f (x )=x 2-x 的值大于0.若p ∨q 是真命题,则命题q 可以是( ) A .∃x ∈(-1,1),使得cos x <12B .“-3<m <0”是“函数f (x )=x +log 2x +m 在区间⎝ ⎛⎭⎪⎫12,2上有零点”的必要不充分条件 C .直线x =π6是曲线f (x )=3sin 2x +cos 2x 的一条对称轴D .若x ∈(0,2),则在曲线f (x )=e x(x -2)上任意一点处的切线的斜率不小于-1 二、填空题9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________________. 10.给出以下命题:①∀x ∈R ,|x |>x ;②∃α∈R ,sin 3α=3sin α;③∀x ∈R ,x >sin x ; ④∃x ∈(0,+∞),(12)x <(13)x,其中正确命题的序号有________.11.(2017·石家庄质检)已知命题p :x 2-3x -4≤0,命题q :x 2-6x +9-m 2≤0,若綈q是綈p的充分不必要条件,则实数m的取值范围是________________.12.设命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax在x∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,则实数a 的取值范围为__________.答案精析1.D [由全称命题与特称命题之间的互化关系知选D.]2.D [对于命题p ,由平面向量数量积a·b =0易得a ⊥b ,则命题p 为真命题;对于命题q ,∵a ,b ,c 为非零向量,则q 为真命题,故(綈p )∨(綈q )为假命题,故选D.]3.A [设命题p :∃x ∈[12,2],使得2x 2-λx +1<0,由于命题p 为假命题,所以綈p 为真命题,即∀x ∈[12,2],2x 2-λx +1≥0为真命题,即λ≤2x 2+1x =2x +1x 在区间[12,2]上恒成立,所以只需满足λ≤(2x +1x )min (x ∈[12,2])即可,2x +1x ≥22x ·1x=22,当且仅当2x =1x ,即x =22∈[12,2]时等号成立,所以λ≤22,故选A.]4.A [命题p :∀x ∈[1,2],x 2-a ≥0真,则a ≤1. 命题q :∃x ∈R ,x 2+2ax +2-a =0真, 则Δ=4a 2-4(2-a )≥0,a ≥1或a ≤-2, 又p 且q 为真命题, 所以a =1或a ≤-2.故选A.] 5.A [∵52>1,∴命题p 是假命题,又∵x 2+x +1=(x +12)2+34≥34>0,∴命题q 是真命题,由命题真假的真值表可以判断②③正确.]6.D [命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,所以命题“若p ,则q ”与命题“若綈q ,则綈p ”互为逆否命题,故A 正确;命题p :∀x ∈[0,1],e x≥1,为真命题,命题q :∃x ∈R ,x 2+x +1<0,为假命题,则p ∨q 为真,故B 正确;若p ∨q 为假命题,则p ,q 均为假命题,故C 正确;“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,而当m 2=0时,由a <b ,得am 2=bm 2,所以“若am 2<bm 2,则a <b ”的逆命题为假命题,故D 不正确.]7.A [由命题P :不等式lg[x (1-x )+1]>0,可知x (1-x )+1>1, ∴0<x <1,即不等式的解集为{x |0<x <1},∴命题P 为真命题. 由命题Q 知,若cos 2⎝ ⎛⎭⎪⎫A 2+π4<cos 2⎝ ⎛⎭⎪⎫B 2+π4, 即sin A >sin B ,∴A >B ;反之,在三角形中,若A >B , 则必有sin A >sin B ,即cos 2⎝ ⎛⎭⎪⎫A 2+π4<cos 2⎝ ⎛⎭⎪⎫B 2+π4成立,∴命题Q 为假命题.故选A.] 8.C [对于命题p :函数f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,则函数f (x )在⎣⎢⎡⎭⎪⎫-1,12上单调递减,在⎝ ⎛⎦⎥⎤12,2上单调递增,∴当x =12时,取得最小值,f ⎝ ⎛⎭⎪⎫12=-14<0,因此命题p 是假命题.若p ∨q 是真命题,则命题q 必须是真命题.∀x ∈(-1,1),cos x ∈(cos 1,1],而cos 1>cos π3=12,因此A 是假命题;函数f (x )=x +log 2x +m 在区间⎝ ⎛⎭⎪⎫12,2上单调递增,若函数f (x )在此区间上有零点,则f ⎝ ⎛⎭⎪⎫12·f (2)=⎝ ⎛⎭⎪⎫12-1+m (2+1+m )<0,解得-3<m <12,因此“-3<m <0”是“函数f (x )=x +log 2x +m 在区间⎝ ⎛⎭⎪⎫12,2上有零点”的充分不必要条件,因此B 是假命题;f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6,当x =π6时,sin ⎝ ⎛⎭⎪⎫2×π6+π6=sin π2=1,因此直线x =π6是曲线f (x )的一条对称轴,是真命题;曲线f (x )=e x(x -2),f ′(x )=e x+e x(x -2)=e x(x -1),当x ∈(0,2)时,f ′(x )>f ′(0)=-1,因此D 是假命题.]9.∃x 0∈(0,+∞),x 0≤x 0+1解析 因为p 是綈p 的否定,所以只需将全称命题变为特称命题,再对结论否定即可. 10.②解析 当x ≥0时,|x |=x ,①错;当α=0时,sin 3α=3sin α,②正确;当x =-π2时,x <sin x ,③错;根据指数函数的图象可以判断,当x ∈(0,+∞)时,(12)x >(13)x ,④错.故正确命题的序号只有②. 11.{m |m ≤-4或m ≥4}解析 ∵綈q 是綈p 的充分不必要条件, ∴p 是q 的充分不必要条件, ∴{x |x 2-3x -x |x 2-6x +9-m 2≤0}, ∴{x |-1≤xx |(x +m -3)(x -m -3)≤0}.当-m +3=m +3,即m =0时,不合题意. 当-m +3>m +3,即m <0时,有 {x |-1≤xx |m +3≤x ≤-m +3},此时⎩⎪⎨⎪⎧m +3≤-1,-m +3≥4,(两等号不能同时取得)解得m ≤-4.当-m +3<m +3,即m >0时,有 {x |-1≤xx |-m +3≤x ≤m +3},此时⎩⎪⎨⎪⎧-m +3≤-1,m +3≥4,(两等号不能同时取得)解得m ≥4.综上,实数m 的取值范围是{m |m ≤-4或m ≥4}. 12.[1,2]解析 对于命题p :Δ<0且a >0,故a >2;对于命题q :a >2x -2x+1在x ∈(-∞,-1)上恒成立,又函数y =2x -2x +1为增函数,所以2x -2x+1<1,故a ≥1,命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,等价于p ,q 一真一假.故1≤a ≤2.一、选择题1.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或42.已知集合A ={-1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m 组成的集合是( )A .{-1,0,2}B .{-12,0,1}C .{-1,2}D .{-1,0,12}3.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)4.(2017·烟台质检)已知命题p :∃x ∈R ,mx 2+2≤0;q :∀x ∈R ,x 2-2mx +1>0.若p ∨q 为假命题,则实数m 的取值范围是( ) A .[1,+∞) B .(-∞,-1] C .(-∞,-2]D .[-1,1]5.下列说法不正确的是( )A .命题“∃x 0∈R ,x 20-x 0-1<0”的否定是“∀x ∈R ,x 2-x -1≥0” B .命题“若x >0且y >0,则x +y >0”的否命题是假命题C .命题“∃a ∈R ,使方程2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2”和命题“函数f (x )= log 2(ax -1)在[1,2]上单调递增”都为真D .△ABC 中,A 是最大角,则sin 2B +sin 2C <sin 2A 是△ABC 为钝角三角形的充要条件 6.满足条件{1,2}M ⊆{1,2,3,4,5}的集合M 的个数是( )A .3B .6C .7D .87.下列有关命题的说法中错误的是( ) A .若“p 或q ”为假命题,则p ,q 均为假命题 B .“x =1”是“x ≥1”的充分不必要条件 C .“cos x =12”的必要不充分条件是“x =π3”D .若命题p :“∃x 0∈R ,x 20≥0”,则命题綈p 为“∀x ∈R ,x 2<0”8.已知命题p :函数f (x )=2ax 2-x -1(a ≠0)在(0,1)内恰有一个零点;命题q :函数y =x 2-a 在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)二、填空题9.(2016·江西赣州十二县(市)期中联考)设集合M ={-1,0,1},N ={a ,a 2},若M ∩N =N ,则a 的值是________.10.已知命题p :关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解;命题q :f (x )=log 2(x2-2mx +12)在x ∈[1,+∞)上单调递增.若“綈p ”为真命题,“p ∨q ”为真命题,则实数m 的取值范围为____________.11.已知全集为U =R ,集合M ={x |x +a ≥0},N ={x |log 2(x -1)<1},若M ∩(∁U N )={x |x =1或x ≥3},则a 的取值范围是________.12.(2016·安阳月考)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )∧s (x )为假,r (x )∨s (x )为真,那么实数m 的取值范围为________________.答案精析1.A [①当a =0时,1=0显然不成立;②当a ≠0时,由Δ=a 2-4a =0,得a =4或a =0(舍).综上可知a =4.选A.]2.A [由A ∩B =B ,得B ⊆A .若B =∅,则m =0.若B ={-1},得-m -1=0, 解得m =-1.若B ={12},则12m -1=0,解得m =2.综上,m 的取值集合是{-1,0,2}.]3.C [由P ∪M =P ,得M ⊆P .又∵P ={x |x 2≤1}={x |-1≤x ≤1},∴-1≤a ≤1.故选C.] 4.A [∵p ∨q 为假,∴p ,q 都是假命题.由p :∃x ∈R ,mx 2+2≤0为假命题, 得∀x ∈R ,mx 2+2>0,∴m ≥0. 由q :∀x ∈R ,x 2-2mx +1>0为假, 得∃x ∈R ,x 2-2mx +1≤0. ∴Δ=(-2m )2-4≥0,得m 2≥1, ∴m ≤-1或m ≥1.∴m ≥1.]5.C [因为2x 2+x +a =0的两根x 1,x 2满足x 1<1<x 2的充要条件是2+1+a <0,所以a <-3,当a <-3时,函数f (x )=log 2(ax -1)在[1,2]上无意义.故选C.]6.C [M 中含三个元素的个数为3,M 中含四个元素的个数也是3,M 中含5个元素的个数只有1个,因此符合题意的共7个.]7.C [对于A ,根据真值表知正确;对于B ,由于x =1可以推出x ≥1,但x ≥1不一定能推出x =1,故正确;对于D ,由特称命题的否定形式知正确;对于C ,“x =π3”应为“cos x=12”的充分不必要条件.] 8.C [若命题p 为真,则⎩⎪⎨⎪⎧1+8a ≥0,f ?0?·f ?1?=-1·?2a -2?<0,得a >1.若命题q 为真,则2-a <0,得a >2, 故由p 且綈q 为真命题,得1<a ≤2.] 9.-1解析 因为集合M ={-1,0,1},N ={a ,a 2},M ∩N =N ,又a 2≥0,所以当a 2=0时,a =0,此时N ={0,0},不符合集合元素的互异性,故a ≠0;当a 2=1时,a =±1,a =1时,N ={1,1},不符合集合元素的互异性,故a ≠1,a =-1时,此时N ={-1,1},符合题意.故a =-1. 10.(-1,34)解析 根据题意,关于x 的方程x 2-mx -2=0在x ∈[0,1]上有解,可得1-m -2≥0,从而求得m ≤-1;f (x )=log 2(x 2-2mx +12)在x ∈[1,+∞)上单调递增,可得⎩⎪⎨⎪⎧m ≤1,1-2m +12>0,解得m <34.根据“綈p ”为真命题,“p ∨q ”为真命题,可知p 假q 真,所以实数m 的取值范围为(-1,34).11.{-1}解析 因为x +a ≥0, 所以M ={x |x ≥-a }.又log 2(x -1)<1,所以0<x -1<2, 所以1<x <3, 所以N ={x |1<x <3}. 所以∁U N ={x |x ≤1或x ≥3}.又因为M ∩(∁U N )={x |x =1或x ≥3},所以a =-1. 12.(-∞,-2]∪[-2,2)解析 ∵sin x +cos x =2sin(x +π4)≥-2,∴当r (x )是真命题时,m <- 2.当s (x )为真命题时,x 2+mx +1>0恒成立,有Δ=m 2-4<0,∴-2<m <2. ∵r (x )∧s (x )为假,r (x )∨s (x )为真, ∴r (x )与s (x )一真一假,∴当r (x )为真,s (x )为假时,m <-2,同时m ≤-2或m ≥2,即m ≤-2; 当r (x )为假,s (x )为真时,m ≥-2,且-2<m <2,即-2≤m <2. 综上,实数m 的取值范围是m ≤-2或-2≤m <2.一、选择题1.全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的集合为( )A .{x |x <-1或x >2}B .{x |-1≤x ≤2}C .{x |x ≤1}D .{x |0≤x ≤1}2.(2016·石家庄模拟)定义A ×B ={z |z =xy ,x ∈A 且y ∈B },若A ={x |-1<x <2},B ={-1,2},则A ×B 等于( ) A .{x |-1<x <2} B .{-1,2} C .{x |-2<x <2}D .{x |-2<x <4}3.“sin α=12”是“α=30°”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2016·郑州模拟)已知命题p :∀x ∈R,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( ) A .p ∧q B .(綈p )∧q C .p ∧(綈q )D .(綈p )∧(綈q )5.(2017·广东七校联考)下列有关命题的说法正确的是( ) A .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” B .“x =-1”是“x 2-5x -6=0”的必要不充分条件 C .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题D .命题“∃x 0∈R 使得x 20+x 0+1<0”的否定是“∀x ∈R ,均有x 2+x +1<0”6.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的必要不充分条件是( ) A .a <0 B .a >0 C .a <-1D .a <27.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x +1<0,B ={x ||x -1|<a },则“a =1”是“A ∩B ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知命题p :∃x 0∈R ,mx 20+1≤0,命题q :∀x ∈R ,x 2+mx +1>0.若p ∨q 为假命题,则实数m 的取值范围为( ) A .[-2,2] B .(-∞,-2],[2,+∞) C .(-∞,-2] D .[2,+∞)二、填空题9.设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是____________.10.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是____________. 11.已知下列命题:①命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1<3x ”;②已知p ,q 为两个命题,若“p ∨q ”为假命题,则“(綈p )∧(綈q )”为真命题; ③“a >2”是“a >5”的充分不必要条件;④“若xy =0,则x =0且y =0”的逆否命题为真命题. 其中所有真命题的序号是________.12.已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若满足∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________________.答案精析1.D [阴影部分表示的集合是A ∩B .依题意知,A ={x |0≤x ≤2},B ={y |-1≤y ≤1}, ∴A ∩B ={x |0≤x ≤1},故选D.]2.D [∵A ={x |-1<x <2},B ={-1,2},z =xy ,x ∈A 且y ∈B ,∴-2<z <4, ∴A ×B ={x |-2<x <4}.故选D.]3.B [若α=30°,可得sin α=12;若sin α=12,可以举特殊例子,α=150°时,sin 150°=12,∴“sin α=12”是“α=30°”的必要不充分条件,故选B.]4.B [因为当x =-1时,2-1>3-1,所以命题p :∀x ∈R,2x <3x 为假命题,则綈p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0.所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :∃x 0∈R ,x 30=1-x 20为真命题,则(綈p )∧q 为真命题,故选B.]5.C [命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,A 不正确;由x 2-5x -6=0,解得x =-1或6,因此“x =-1”是“x 2-5x -6=0”的充分不必要条件,B 不正确;命题“若x =y ,则sin x =sin y ”为真命题,其逆否命题为真命题,C 正确;命题“∃x 0∈R 使得x 20+x 0+1<0”的否定是“∀x ∈R ,均有x 2+x +1≥0”,D 不正确.综上可得只有C 正确.]6.D [“一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根”的等价条件是⎩⎪⎨⎪⎧22-4a >0,1a<0,所以a <0. 当a <0时,必有a <2,故选D.]7.A [由题意得A ={x |-1<x <1},B ={x |1-a <x <a +1}. ①当a =1时,B ={x |0<x <2},则A ∩B ={x |0<x <1}≠∅成立,即充分性成立.②若a =12,则A ∩B ={x |-1<x <1}∩⎩⎨⎧⎭⎬⎫x ⎪⎪ 12<x <32=⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <1≠∅,故必要性不成立. 综合得“a =1”是“A ∩B ≠∅”的充分不必要条件,故选A.]8.D [由p :∃x 0∈R ,mx 20+1≤0,可得m <0,由q :∀x ∈R ,x 2+mx +1>0,可得Δ=m 2-4<0,解得-2<m <2,因为p ∨q 为假命题,所以p 与q 都是假命题,若p 是假命题,则有m ≥0;若q 是假命题,则有m ≤-2或m ≥2,故符合条件的实数m 的取值范围为m ≥2.故选D.] 9.{a |a ≤0或a ≥6}解析 |x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,又B ={x |1<x <5},A ∩B =∅, 故a +1≤1或a -1≥5,即a ≤0或a ≥6. 10.[0,12]解析 由p :|4x -3|≤1,得12≤x ≤1,由q :x 2-(2a +1)x +a (a +1)≤0, 得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件, ∴q 是p 的必要不充分条件, 即由命题p 成立能推出命题q 成立, 但由命题q 成立不能推出命题p 成立. ∴[12,1]⊆[a ,a +1]且[12,1]≠[a ,a +1]. ∴a ≤12且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是[0,12].11.②解析 命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ”,故①错;“p ∨q ”为假命题说明p 假q 假,则(綈p )∧(綈q )为真命题,故②正确;a >5⇒a >2,但a >2⇒/ a >5,故“a >2”是“a >5”的必要不充分条件,故③错;因为“若xy =0,则x =0或y =0”,所以原命题为假命题,故其逆否命题也为假命题,故④错. 12.(-4,0)解析 f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则必须有抛物线开口向下,即m <0. 又∵当x ≥1时,g (x )≥0; 当x <1时,g (x )<0. ∴当x ≥1时,f (x )<0.f (x )=0有两根x 1=2m ,x 2=-m -3. 当x 1>x 2,即m >-1时,则x 1<1, 即m <12,∴-1<m <0;当x 1<x 2,即m <-1时,则x 2<1,即m >-4,∴-4<m <-1;当x 1=x 2,即m =-1时,x 1=x 2=-2<1. 综上可知,m 的取值范围为-4<m <0.一、选择题1.(2016·四川成都七中期末)下列对应f :A →B 是从集合A 到集合B 的函数的是( ) A .A ={x |x >0},B ={y |y ≥0},f :y =1xB .A ={x |x ≥0},B ={y |y >0},f :y =x 2C .A ={x |x 是三角形},B ={y |y 是圆},f :每一个三角形对应它的外切圆D .A ={x |x 是圆},B ={y |y 是三角形},f :每一个圆对应它的外切三角形 2.函数f (x )=4-xx -1+log 4(x +1)的定义域是( ) A .(0,1)∪(1,4] B .[-1,1)∪(1,4] C .(-1,4)D .(-1,1)∪(1,4]3.若函数y =f (x )的定义域是[-2,4],则函数g (x )=f (x +1)+f (-x )的定义域是( ) A .[-2,4] B .[-3,2) C .[-3,2]D .[-4,3]4.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B.74C.43 D .-435.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,f (x +2),x <2,则f ⎝⎛⎭⎫log 218等于( ) A .3 B .8 C .9D .126.若函数f (x )满足关系式f (x )+2f ⎝⎛⎭⎫1x =3x ,则f (2)的值为( ) A .1 B .-1 C .-32D.327.(2016·福建泉州南安三中期中)已知函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a 的值域是[0,2],则实数a 的取值范围是( ) A .(0,1] B .[1,3] C .[1,2]D .[3,2]8.设函数y =f (x )在R 上有定义,对于任一给定的正数p ,定义函数f p (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤p ,p ,f (x )>p ,则称函数f p (x )为f (x )的“p 界函数”,若给定函数f (x )=x 2-2x -1,p =2,则下列结论不成立的是( )A .f p [f (0)]=f [f p (0)]B .f p [f (1)]=f [f p (1)]C .f p [f p (2)]=f [f (2)]D .f p [f p (3)]=f [f (3)]二、填空题9.定义在R 上的函数f (x )满足f (x -1)=2f (x ),若当0≤x ≤1时,f (x )=x (1-x ),则当1≤x ≤2时,f (x )=________________.10.如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆的半径为x ,则此框架围成的面积y 与x 的关系式的定义域是____________.11.已知函数f (x )=⎩⎪⎨⎪⎧-log 2x ?(x >0),1-x 2?(x ≤0),则不等式f (x )>0的解集为________.12.已知函数f(x)=1-x2,函数g(x)=2a cos π3x-3a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是________.答案精析1.A [选项A 中对于集合A 中的任意一个大于零的数,取倒数之后在集合B 中都有唯一的元素与之相对应,故A 正确;选项B 中,集合A 的元素0在集合B 中没有对应元素;选项C 中两个集合不是数集,不能构成函数,只能构成从集合A 到集合B 的映射,故C 错误;选项D 中的集合也不是数集,故不能构成从集合A 到集合B 的函数.] 2.D [要使函数有意义须满足⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,x +1>0,解得x ∈(-1,1)∪(1,4],故选D.]3.C [由已知可得⎩⎪⎨⎪⎧-2≤x +1≤4,-2≤-x ≤4,解得⎩⎪⎨⎪⎧-3≤x ≤3,-4≤x ≤2,即-3≤x ≤2,故选C.]4.B [令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.]5.B [f ⎝⎛⎭⎫log 218=f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=f (1+2)=f (3)=23=8.故选B.] 6.B [令x =2,得f (2)+2f ⎝⎛⎭⎫12=6,① 令x =12,得f ⎝⎛⎭⎫12+2f (2)=32,② 由①②得f (2)=-1.]7.B [∵函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1, -1≤x <0,x 3-3x +2,0≤x ≤a的图象如图所示.∵函数f (x )的值域是[0,2],∴1∈[0,a ],即a ≥1.又由当y =2时,x 3-3x =0,x =3(0,-3舍去),∴a ≤3,∴a 的取值范围是[1,3]. 故选B.]8.B [给定函数f (x )=x 2-2x -1,p =2, 则f (1)=-2,f p (1)=-2,所以f [f p (1)]=f (-2)=7,f p [f (1)]=f p (-2)=2, 所以f p [f (1)]≠f [f p (1)],故选B.] 9.12(x -1)(2-x ) 解析 ∵f (x -1)=2f (x ),∴f (x )=12f (x -1).∵1≤x ≤2,∴0≤x -1≤1. 又当0≤x ≤1时,f (x )=x (1-x ),∴f (x -1)=(x -1)[1-(x -1)]=(x -1)(2-x ), ∴f (x )=12f (x -1)=12(x -1)(2-x ).10.⎝⎛⎭⎫0,1π+2解析 由题意知AB =2x ,CD =πx , 因此AD =1-2x -πx2.框架面积y =2x ×1-2x -πx 2+πx 22=-π+42x 2+x .因为⎩⎪⎨⎪⎧2x >0,1-2x -πx 2>0,所以0<x <1π+2.11.(-1,1)解析 当x >0时,-log 2x >0=log 21,解得0<x <1; 当x ≤0时,1-x 2>0,解得-1<x ≤0, 所以不等式f (x )>0的解集为(-1,1). 12.[12,2]解析 当x ∈[0,1]时,f (x )=1-x 2的值域是[0,1],g (x )=2a cos π3x -3a +2(a >0)的值域是[2-2a,2-a ],为使存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,需[0,1]∩[2-2a,2-a ]≠∅.由[0,1]∩[2-2a,2-a ]=∅,得1<-2a +2或2-a <0,解得a <12或a >2.所以,若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是12≤a ≤2.一、选择题1.下列函数中,在区间(0,1]上是增函数且最大值为-1的为( ) A .y =-x 2 B .y =⎝⎛⎭⎫12xC .y =-1xD .y =2x2.(2016·黑龙江牡丹江一中期中)函数y =3x 2-3x +2,x ∈[-1,2]的值域是( ) A .R B.⎣⎢⎡⎦⎥⎤143,729 C .[9,243]D .[3,+∞)3.(2016·铁岭月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则( ) A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23 B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫134.(2016·广东佛山顺德一中等六校联考)函数y =x 2-x +2在[a ,+∞)上单调递增是函数y =a x 为单调递增函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.(2016·陕西西藏民族学院附中期末)若函数f (x )=⎩⎪⎨⎪⎧x 2+12ax -2,x ≤1,a x -a ,x >1在(0,+∞)上是增函数,则a 的取值范围是( ) A .(1,2]B .[1,2)C .[1,2]D .(1,+∞)6.(2016·天津河西区一模)函数f (x )=ln(x 2-2x -3)的单调递减区间为( ) A .(-∞,1) B .(1,+∞) C .(-∞,-1)D .(3,+∞)7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)8.(2015·湖北)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( ) A .sgn[g (x )]=sgn x B .sgn[g (x )]=-sgn x C .sgn[g (x )]=sgn[f (x )] D .sgn[g (x )]=-sgn[f (x )]二、填空题9.y =-x 2+2|x |+3的单调增区间为________________.10.(2017·日照调研)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.11.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0.当x ∈[-2,2]时不等式f (x +a )≥f (2a -x )恒成立,则实数a 的最小值是________.12.对于函数f (x ),若存在区间A =[m ,n ],使得{y |y =f (x ),x ∈A }=A ,则称函数f (x )为“同域函数”,区间A 为函数f (x )的一个“同域区间”.给出下列四个函数: ①f (x )=cos π2x ;②f (x )=x 2-1;③f (x )=|2x -1|;④f (x )=log 2(x -1).存在“同域区间”的“同域函数”的序号是__________.(请写出所有正确结论的序号)答案精析1.C [y =-x 2在区间(0,1]上是减函数,不满足条件;y =⎝⎛⎭⎫12x在区间(0,1]上是减函数,不满足条件;y =-1x 在区间(0,1]上是增函数,最大值为y =-1,满足条件;y =2x 在区间(0,1]上是增函数,最大值为y =2,不满足条件,故选C.] 2.B [令t =x 2-3x +2,∵x ∈[-1,2], ∴t =x 2-3x +2=⎝⎛⎭⎫x -322-14∈⎣⎡⎦⎤-14,6. 又y =3t 在⎣⎡⎦⎤-14,6上单调递增, 则y =3t⎝⎛⎭⎫-14≤t ≤6∈⎣⎢⎡⎦⎥⎤143,729.∴函数y =3x 2-3x +2,x ∈[-1,2]的值域是⎣⎢⎡⎦⎥⎤143,729.]3.B [由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12, 又13<12<23<1, ∴f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫12>f ⎝⎛⎭⎫23, 即f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23.]4.B [函数y =x 2-x +2图象的对称轴为直线x =12,且开口向上,在⎣⎡⎭⎫12,+∞上单调递增,由已知y =x 2-x +2在[a ,+∞)上单调递增,则a ≥12,推不出y =a x 是递增函数.反之,y =a x 单调递增,则a >1,显然y =x 2-x +2在[a ,+∞)上单调递增,故选B.]5.A [由f (x )=x 2+12ax -2在(0,1]上递增,则有-a4≤0,即a ≥0,再由f (x )=a x -a 在(1,+∞)上递增,则a >1,再由增函数的定义,得1+12a -2≤a 1-a ,解得a ≤2,则有1<a ≤2.故选A.]6.C [要使函数有意义,则x 2-2x -3>0,即x >3或x <-1.设t =x 2-2x -3,则当x >3时,函数t =x 2-2x -3单调递增;当x <-1时,函数t =x 2-2x -3单调递减.∵函数y =ln t 在定义域上为单调递增函数,∴根据复合函数的单调性之间的关系可知:当x >3时,函数f (x )单调递增,即函数f (x )的递增区间为(3,+∞);当x <-1时,函数f (x )单调递减,即函数f (x )的递减区间为(-∞,-1).故选C.]7.C [f (x )=⎩⎪⎨⎪⎧x 2+4x =(x +2)2-4,x ≥0,4x -x 2=-(x -2)2+4,x <0, 由f (x )的图象可知f (x )在(-∞,+∞)上是增函数,由f (2-a 2)>f (a ),得2-a 2>a , 即a 2+a -2<0,解得-2<a <1.]8.B [因为a >1,所以当x >0时,x <ax ,因为f (x )是R 上的增函数,所以f (x )<f (ax ),所以g (x )=f (x )-f (ax )<0,sgn[g (x )]=-1=-sgn x ;同理可得当x <0时,g (x )=f (x )-f (ax )>0,sgn[g (x )]=1=-sgn x ;当x =0时,g (x )=0,sgn[g (x )]=0=-sgn x 也成立.故B 正确.] 9.(-∞,-1],[0,1] 解析 由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4; 当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 10.2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值f (0)=2.故函数f (x )的最大值为2. 11.4解析 当x ≤0时,f (x )=x 2-4x +3,对称轴为直线x =2,故在区间内递减,f (x )≥f (0)=3; 当x >0时,f (x )=-x 2-2x +3,对称轴为直线x =-1,故在区间内递减,f (x )<f (0)=3. 可知函数f (x )在整个区间内递减.∴当x ∈[-2,2]时不等式f (x +a )≥f (2a -x )恒成立, ∴x +a ≤2a -x ,∴2x ≤a ,∴a ≥4. 12.①②③解析 当x ∈[0,1]时,cos π2x ∈[0,1],①正确;当x ∈[-1,0]时,x 2-1∈[-1,0],②正确;当x ∈[0,1]时,|2x -1|∈[0,1],③正确;因为y =log 2(x -1)为单调递增函数,所以要为“同域区间”,需满足方程log 2(x -1)=x 有两个根,由图象可知y =x 与y =log 2(x -1)没有交点,④错误.一、选择题1.(2016·江西赣州于都实验中学大考三)若奇函数f (x )=3sin x +c 的定义域是[a ,b ], 则a +b +c 等于( ) A .3 B .-3 C .0D .无法计算2.设f (x )是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f (2 014)+f (2 015)等于( )A .3B .2C .1D .03.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )。

高三总复习数学检测题 利用导数研究不等式问题

高三总复习数学检测题 利用导数研究不等式问题

利用导数研究不等式问题1.(2021·铁岭二模)设函数f (x )=a (x -1)-ln x .(1)若f (x )≥0,求a ;(2)当x >1时,f (x )>x ln x 1-x,求a 的取值范围. 解:(1)f (x )定义域为(0,+∞),f ′(x )=a -1x. 因为f (x )≥0,f (1)=0,故f ′(1)=0,所以a =1.此时f ′(x )=1-1x,当0<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增,所以f (x )≥f (1)=0.综上,a =1.(2)x >1时,f (x )>x ln x 1-x等价于a (x -1)2+ln x >0.① 若a ≥0,①式成立.若a <0,由(1)可知ln x <x -1,所以a (x -1)2+ln x <a (x -1)2+x -1.当x >1-1a>1时,a (x -1)2+x -1<0.①不成立. 综上,a 的取值范围为[0,+∞).2.(2021·莆田二模)设函数f (x )=2e x +a cos x ,a ∈R .(1)若f (x )在⎝⎛⎭⎫0,π2上存在零点,求实数a 的取值范围; (2)证明:当a ∈[1,2]时,f (x )≥2x +3.解:(1)设g (x )=2e x ,h (x )=a cos x ,因为当x ∈⎝⎛⎭⎫0,π2时,g (x )为增函数, 当a ≥0时,0≤h (x )≤a,2<g (x )<2e π2,所以f (x )在⎝⎛⎭⎫0,π2上恒大于零,所以f (x )在⎝⎛⎭⎫0,π2上不存在零点,不符合题意; 当a <0时,h (x )在⎝⎛⎭⎫0,π2上为增函数, 易知f (x )在⎝⎛⎭⎫0,π2上为增函数,所以f (x )在⎝⎛⎭⎫0,π2上若有零点,则仅有1个, 所以f (0)f ⎝⎛⎭⎫π2<0,即(2+a )·2e π2<0,解得a <-2,所以实数a 的取值范围为(-∞,-2). (2)证明:设G (x )=f (x )-2x -3=2e x +a cos x -2x -3,则G ′(x )=2e x -a sin x -2,G ′(0)=0,由G ″(x )=2e x -a cos x 知,当a ∈[1,2]时,G ″(x )≥0,所以G ′(x )在⎝⎛⎭⎫0,π2上单调递增,G ′(x )>0在⎝⎛⎭⎫0,π2上恒成立,所以G (x )在⎝⎛⎭⎫0,π2上单调递增,而G (0)=2+a -3=a -1,因为a ∈[1,2],所以G (0)≥0,所以G (x )≥0恒成立,所以当a ∈[1,2]时,f (x )≥2x +3.3.已知函数f (x )=12x 2-a ln x (a ∈R ). (1)若f (x )在x =2时取得极值,求a 的值;(2)求f (x )的单调区间;(3)若a =-1,求证:当x >1时,f (x )<23x 3. 解:(1)f ′(x )=x -a x ,因为x =2是一个极值点,所以2-a 2=0,则a =4. 此时f ′(x )=x -4x =(x +2)(x -2)x, 因为f (x )的定义域是(0,+∞),所以当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0.所以当a =4时,x =2是一个极小值点,故a =4满足题意.(2)因为f ′(x )=x -a x =x 2-a x, 所以当a ≤0时,f ′(x )>0,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=(x +a )(x -a )x, 所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(3)证明:当a =-1时,f (x )=12x 2+ln x .设g (x )=23x 3-12x 2-ln x ,x >1, 则g ′(x )=2x 2-x -1x. 因为当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0, 所以g (x )在(1,+∞)上为增函数,所以g (x )>g (1)=16>0. 所以当x >1时,12x 2+ln x <23x 3,即f (x )<23x 3. 4.已知函数f (x )=ln x +2ax (a ∈R ).(1)讨论f (x )的单调性;(2)若函数f (x )有两个不同的零点x 1,x 2,求证:x 1·x 2>e 2.解:(1)函数f (x )=ln x +2ax 的定义域为(0,+∞),f ′(x )=1x +2a =2ax +1x. 当a ≥0时,f ′(x )>0恒成立,即函数f (x )的单调递增区间为(0,+∞),无单调递减区间;当a <0时,由f ′(x )>0,得0<x <-12a ,由f ′(x )<0,得x >-12a,所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,-12a ,单调递减区间为⎝⎛⎭⎫-12a ,+∞. 综上,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在⎝⎛⎭⎫0,-12a 上单调递,在⎝⎛⎭⎫-12a ,+∞上单调递. (2)证明:由f (x )=ln x +2ax 有两个不同的零点x 1,x 2,不妨设x 1>x 2>0,则ln x 1+2ax 1=0,ln x 2+2ax 2=0,两式相加,得ln x 1+ln x 2=-2a (x 1+x 2),两式相减,得ln x 1-ln x 2=-2a (x 1-x 2),于是有ln x 1+ln x 2=x 1+x 2x 1-x 2ln x 1x 2=x 1x 2+1x 1x 2-1ln x 1x 2, ln x 1x 2-2=x 1x 2+1x 1x 2-1ln x 1x 2-2=x 1x 2+1x 1x 2-1⎝ ⎛⎭⎪⎫ln x 1x 2-2·x 1x 2-1x 1x 2+1, 令x 1x 2=t ,即t >1,则ln x 1x 2-2=t +1t -1⎝ ⎛⎭⎪⎫ln t -2·t -1t +1,令函数φ(t )=ln t -2(t -1)t +1(t >1),则φ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,即有φ(t )在(1,+∞)上是增函数, 于是得φ(t )>φ(1)=0,即ln t -2(t -1)t +1>0,而t +1t -1>0,从而得ln x 1x 2-2=t +1t -1⎝⎛⎭⎪⎫ln t -2·t -1t +1>0,所以ln x 1x 2>2,即x 1·x 2>e 2, 所以原不等式成立.5.已知函数f (x )=ln x +a x-1(a ∈R ). (1)当a =1时,求函数f (x )的最小值;(2)讨论函数f (x )的单调性;(3)当n ∈N *时,证明:ln 2 2+ln 232+ln 243+…+ln 2n +1n >n 2n +4. 解:(1)当a =1时,f (x )=ln x +1x -1,定义域为(0,+∞),f ′(x )=1x -1x 2=x -1x 2,令f ′(x )>0,解得x >1,所以函数f (x )在区间(1,+∞)上单调递增,令f ′(x )<0,解得0<x <1,所以函数f (x )在区间(0,1)上单调递减,所以f (x )min =f (1)=0.(2)函数f (x )=ln x +a x -1,定义域为(0,+∞),f ′(x )=1x -a x 2=x -a x 2, 当a ≤0时,f ′(x )>0,函数f (x )在区间(0,+∞)上单调递增;当a >0时,令f ′(x )>0,解得x >a ,所以函数f (x )在区间(a ,+∞)上单调递增;令f ′(x )<0,解得0<x <a ,所以函数f (x )在区间(0,a )上单调递减.(3)证明:由(1)知当a =1时,f (x )=ln x +1x -1≥f (1)=0,所以ln x ≥1-1x,即当x ≥1时,ln 2x ≥⎝⎛⎭⎫1-1x 2.令x =n +1n ,则ln 2n +1n ≥⎝ ⎛⎭⎪⎫1n +12>1n +1·1n +2=1n +1-1n +2, 所以ln 22+ln 232+ln 243+…+ln 2n +1n >12-13+13-14+…+1n +1-1n +2=12-1n +2=n 2n +4.。

2018届高三数学每天一练半小时:第22练利用导数研究函数零点问题含答案

2018届高三数学每天一练半小时:第22练利用导数研究函数零点问题含答案

训练目标(1)利用导数处理与函数零点有关的题型;(2)解题步骤的规范训练.
训练题型(1)利用导数讨论零点的个数;(2)利用导数证明零点的唯一性;(3)根据零点个数借助导数求参数范围.
解题策略(1)注重数形结合;(2)借助零点存在性定理处理零点的存在性问题;结合单调性处理零点的唯一性问题;(3)注意参变量分离。

1.设a>1,函数f(x)=(1+x2)e x-a.
(1)求f(x)的单调区间;
(2)证明:f(x)在(-∞,+∞)上仅有一个零点.
2.函数f(x)=错误!x3-kx,其中实数k为常数.
(1)当k=4时,求函数的单调区间;
(2)若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.
3.(2017·贵阳调研)已知函数f(x)=错误!(a<0).
(1)当a=-1时,求函数f(x)的极值;
(2)若函数F(x)=f(x)+1没有零点,求实数a的取值范围.
4。

设函数f(x)=(x+a)ln x,g(x)=x2
e x
. 已知曲线y=f(x) 在点(1,
f(1))处的切线与直线2x-y=0平行.
(1)求a的值;
(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由.
5.已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R。

(1)求函数f(x)的单调区间;
(2)当a〈1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.。

(部编版)2020届高三数学第21练利用导数研究不等式问题练习32

(部编版)2020届高三数学第21练利用导数研究不等式问题练习32

第21练 利用导数研究不等式问题1.已知函数f (x )=x 2-ax -a ln x (a ∈R ).(1)若函数f (x )在x =1处取得极值,求a 的值;(2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116.2.(2016·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.3.(2016·山西四校联考)已知f (x )=ln x -x +a +1.(1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围;(2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12成立.4.已知函数f (x )=(2-a )ln x +1x+2ax . (1)当a <0时,讨论f (x )的单调性;(2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.5.(2017·福州质检)设函数f (x )=e x -ax -1.(1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;(2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.答案精析1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1.(2)证明 由(1)知,f (x )=x 2-x -ln x ,令g (x )=f (x )-⎝ ⎛⎭⎪⎫-x 33+5x 22-4x +116 =x 33-3x 22+3x -ln x -116, 由g ′(x )=x 2-3x +3-1x =x 3-1x -3(x -1)=(x -1)3x(x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0),由h ′(x )=2x 2-ax +1x(x >0), 若h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1, 由h ′(1)=h ′⎝ ⎛⎭⎪⎫12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x(x >0). 由h ′(x )<0,解得x ∈⎝ ⎛⎭⎪⎫12,1, 即h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1, ∴a =3.(2)由题意知x 2-ax ≥ln x (x >0),∴a ≤x -ln x x(x >0). 令φ(x )=x -ln x x(x >0), 则φ′(x )=x 2+ln x -1x 2, ∵y =x 2+ln x -1在(0,+∞)上是增函数,且x =1时,y =0.∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0,即φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,∴φ(x )min =φ(1)=1,故a ≤1.即实数a 的取值范围为(-∞,1].3.(1)解 原题即为存在x >0,使得ln x -x +a +1≥0,∴a ≥-ln x +x -1,令g (x )=-ln x +x -1,则g ′(x )=-1x +1=x -1x. 令g ′(x )=0,解得x =1.∵当0<x <1时,g ′(x )<0,g (x )为减函数,当x >1时,g ′(x )>0,g (x )为增函数,∴g (x )min =g (1)=0,a ≥g (1)=0.故a 的取值范围是[0,+∞).(2)证明 原不等式可化为12x 2+ax -x ln x -a -12>0(x >1,a ≥0). 令G (x )=12x 2+ax -x ln x -a -12,则G (1)=0. 由(1)可知x -ln x -1>0,则G ′(x )=x +a -ln x -1≥x -ln x -1>0,∴G (x )在(1,+∞)上单调递增,∴G (x )>G (1)=0成立,∴12x 2+ax -x ln x -a -12>0成立, 即12x 2+ax -a >x ln x +12成立. 4.解 (1)求导可得f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2, 令f ′(x )=0,得x 1=12,x 2=-1a, 当a =-2时,f ′(x )≤0,函数f (x )在定义域(0,+∞)内单调递减;当-2<a <0时,在区间(0,12),(-1a ,+∞)上f ′(x )<0,f (x )单调递减,在区间(12,-1a)上f ′(x )>0,f (x )单调递增;当a <-2时,在区间(0,-1a ),(12,+∞)上f ′(x )<0,f (x )单调递减,在区间(-1a ,12)上f ′(x )>0,f (x )单调递增.(2)由(1)知当a ∈(-3,-2)时,函数f (x )在区间[1,3]上单调递减,所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13+6a . 问题等价于:对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -(2-a )ln 3-13-6a 成立,即am >23-4a , 因为a <0,所以m <23a-4, 因为a ∈(-3,-2),所以只需m ≤(23a-4)min , 所以实数m 的取值范围为(-∞,-133]. 5.证明 (1)由a >0及f ′(x )=e x -a 可得,函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1,则g ′(a )=-ln a ,故当a ∈(0,1)时,g ′(a )>0;当a ∈(1,+∞)时,g ′(a )<0,从而可知g (a )在(0,1)上单调递增,在(1,+∞)上单调递减,且g (1)=0,故g (a )≤0.(2)由(1)可知,当a =1时,总有f (x )=e x -x -1≥0,当且仅当x =0时等号成立,即当x >0时,总有e x >x +1.于是,可得(x +1)n +1<(e x )n +1=e (n +1)x . 令x +1=1n +1,即x =-n n +1,可得⎝ ⎛⎭⎪⎫1n +1n +1<e -n ; 令x +1=2n +1,即x =-n -1n +1,可得⎝ ⎛⎭⎪⎫2n +1n +1<e -(n -1); 令x +1=3n +1,即x =-n -2n +1,可得⎝ ⎛⎭⎪⎫3n +1n +1<e -(n -2); …令x +1=nn +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1. 对以上各式求和可得:⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1 =e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1<1. 故对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.。

高三数学每天一练半小时(18)用导数研究函数的单调性(含答案)

高三数学每天一练半小时(18)用导数研究函数的单调性(含答案)

训练目标 (1)函数的单调性与导数的关系;(2)函数单调性的应用.训练题型(1)求函数单调区间;(2)利用函数单调性求参数值;(3)利用函数单调性比较函数值大小.解题策略 (1)函数的单调性可通过解不等式f ′(x )>0或f ′(x )<0判断;(2)若f (x )在区间D 上是增函数,则f ′(x )≥0在D 上恒成立;(3)已知条件中含f (x )的不等式,可构造函数,利用单调性求解.一、选择题1.函数f (x )=ln x -x 2的单调减区间是( ) A .(-∞,22] B .(0,22] C .[1,+∞) D .[22,+∞) 2.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )3.“a >1”是“函数f (x )=ax +cos x 在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 4.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B.⎝ ⎛⎭⎪⎫12,34 C.⎣⎢⎡⎭⎪⎫34,+∞ D.⎝ ⎛⎭⎪⎫0,125.(·临沂月考)已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题6.已知函数f (x )=kx 3+3(k -1)x 2-k 2+1(k >0),(1)若函数f (x )的单调递减区间是(0,4),则实数k 的值为____________;(2)若在(0,4)上为减函数,则实数k 的取值范围是____________.7.已知函数y =-13x 3+bx 2-(2b +3)x +2-b 在R 上不是单调减函数,则b 的取值范围是________________.8.(·兰州一模)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是______________________.9.已知函数f (x )=13x 3+x 2+ax ,若g (x )=1e x ,对任意x 1∈[12,2],存在x 2∈[12,2],使f ′(x 1)≤g (x 2)成立,则实数a 的取值范围是______________.三、解答题10.已知函数f (x )=ln x -a x,g (x )=f (x )+ax -6ln x ,其中a ∈R .(1)当a =1时,判断函数f (x )的单调性;(2)若g (x )在其定义域内为增函数,求正实数a 的取值范围.答案精析1.D [由题意知,函数f (x )=ln x -x 2的定义域为(0,+∞),求导可得f ′(x )=1x-2x =1-2x 2x ,令f ′(x )=1-2x 2x ≤0,可得x ≥22.故选D.] 2.B [在(-1,0)上,f ′(x )单调递增,所以f (x )图象的切线斜率呈递增趋势;在(0,1)上,f ′(x )单调递减,所以f (x )图象的切线斜率呈递减趋势,故选B.]3.A [若函数f (x )=ax +cos x 在R 上单调递增,则f ′(x )=a -sin x ≥0在R 上恒成立, ∴a ≥sin x ,∵-1≤sin x ≤1,∴a ≥1,则“a >1”是“函数f (x )=ax +cos x 在R 上单调递增”的充分不必要条件,故选A.]4.C [f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x ,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0, 即⎩⎪⎨⎪⎧ (-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.] 5.A [因为xf ′(x )≤-f (x ),f (x )≥0,所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0, 则函数f (x )x 在(0,+∞)上单调递减.由于0<a <b ,则f (a )a ≥f (b )b,即af (b )≤bf (a ).] 6.(1)13 (2)⎝ ⎛⎦⎥⎤0,13 解析 (1)f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13. (2)由f ′(x )=3kx 2+6(k -1)x ,由题意知f ′(4)≤0,解得k ≤13.又k >0,故0<k ≤13. 7.(-∞,-1)∪(3,+∞)解析 y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立,所以Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,所以-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3.8.(-∞,2ln 2-2]解析 因为f (x )=x 2-e x -ax ,所以f ′(x )=2x -e x -a ,因为函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,所以f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,所以当x =ln 2时,g (x )取得最大值,g (x )max =g (ln 2)=2ln 2-2,所以a ≤2ln 2-2.9.(-∞,e e -8] 解析 求导可得f ′(x )=x 2+2x +a =(x +1)2+a -1⇒f ′(x )在[12,2]上是增函数⇒f ′(x )max =f ′(2)=8+a ,由g (x )=1e x 在[12,2]上是减函数⇒g (x )max =g (12)=1e,又原命题等价于f ′(x )max ≤g (x )max ⇒8+a ≤1e ⇒a ∈(-∞,e e-8]. 10.解 (1)由f (x )=ln x -a x 得定义域为(0,+∞),f ′(x )=x +a x 2, 当a =1时,f ′(x )=x +1x 2>0在(0,+∞)上恒成立, 所以函数f (x )在(0,+∞)上单调递增.(2)由已知得,g ′(x )=ax 2-5x +a x 2, 因为g (x )在其定义域内为增函数,所以∀x ∈(0,+∞),g ′(x )≥0,即ax 2-5x +a ≥0,即a ≥5x x 2+1, 而5x x 2+1≤5x 2x =52,当且仅当x =1时,等号成立,所以a ≥52.。

【加练半小时】高考数学全国理专题复习21专题3导数与积分word版含答案

【加练半小时】高考数学全国理专题复习21专题3导数与积分word版含答案

训练目标(1)导数知识的细化、深入、稳固提升;(2)解题过程的细节训练.训练题型(1)导数和函数的极值;(2)利用导数求参数范围;(3)导数的综合应用.解题策略(1)注意f′(x0)=0是x=x0为极值点的必需不充足条件;(2)已知单一性求参数范围要注意考证f′(x)=0的状况.一、选择题1.假如f′(x)是二次函数,且f′(x)的图象张口向上,极点坐标为(1,3),那么曲线y=f(x)上随意一点的切线的倾斜角α的取值范围是()A.(0,πB.[ππ3]3,)2π2ππC.(,3]D.[,π)232.(2015福·建福州三中月考)已知点A(1,2)在函数f(x)=ax3的图象上,则过点A的曲线C:y=f(x)的切线方程是()A.6x-y-4=0B.x-4y+7=0C.6x-y-4=0或x-4y+7=0 D.6x-y-4=0或3x-2y+1=03.(2015·州诊疗兰)在直角坐标系xOy中,设P是曲线C:xy=1(x>0)上随意一点,l是曲线C在点P处的切线,且l交坐标轴于A,B两点,则以下结论正确的选项是()A.△OAB的面积为定值2B.△OAB的面积有最小值3C.△OAB的面积有最大值4D.△OAB的面积的取值范围是[3,4]4.若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单一函数,则实数k的取值范围是()3 A.[1,+∞)B.[1,2)C.[1,2)D.[3,2)25.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是()A.1<a<2B.1<a<4 C.2<a<4D.a>4或a<132的极大值点和极小值点都在区间(-1,1)内,则实数a6.已知函数f(x)=x+ax+x+2(a>0)的取值范围是()A.(0,2]B.(0, 2)C.[3,2)D.(3,2)7.已知函数f(x)=ax 3-3x2+1,若f(x)存在独一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)a-2+2-2a(a>0),若f(x)≥2lnx在[1,+∞)上8.(2015景·德镇第二次质检)已知f(x)=ax+x恒建立,则a的取值范围是()A.(1,+∞)B.[1,+∞) C.(2,+∞)D.[2,+∞)二、填空题9.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是________________.ππππfx2-fx110.函数f(x)=ax-cosx,x∈[,,x∈[,≠x,x2-x1<0,则实数a 43],若?x1243],x12的取值范围是________.11.若函数f(x)=ax 3+x恰有3个单一区间,则a的取值范围为________.xe12.已知函数f(x)=1+ax2(a>0),若f(x)为R上的单一函数,则实数a的取值范围是________.答案分析1.B2.D[因为点A(1,2)在函数f(x)=ax3的图象上,则a=2,即y=2x3,所以y′=6x2.若点A为切点,则切线斜率为6,若点A不是切点,设切点坐标为(m,2m3),则切线的斜率为k=6m2. 2m3-2221由两点的斜率公式,得m-1=6m(m≠1),即有2m-m-1=0,解得m=1(舍去)或m=-2.13综上,切线的斜率为k=6或k=6×4=2,则过点A的曲线C:y=f(x)的切线方程为y-2=36(x -1)或y-2=2(x-1),即6x-y-4=0或3x-2y+1=0.应选D.]3.A [由题意,得1>0),y0=111 y=.设点P(x0,y0)(x0,y′=-2,所以切线的斜率k=-2,x x0x x01122切线方程为y-y0=-x02(x -x0).当x=0时,y=y0+x0=x0;当y=0时,x=x0y0+x0=2x0,S△OAB =1所以2xy=2为定值.应选A.] 4.B7.C[当a=0时,f(x)=-3x2+1有两个零点,不合题意,故a≠0,f′(x)=3ax2-6x=3x(ax-2),2令f′(x)=0,得x1=0,x2=a.若a>0,由三次函数图象知f(x)有负数零点,不合题意,故a<0.2由三次函数图象及f(0)=1>0知,f(a)>0,23222即a×(a)-3×(a)+1>0,化简得a-4>0,又a<0,所以a<-2.应选C.]8.B9.(-∞,2-1)∪(2-1,2)e e310.(-∞,-2]11.(-∞,0)分析由f(x)=ax3+x,得f′(x)=3ax2+1.若a≥0,则f′(x)>0恒建立,此时f(x)在(-∞,+∞)上为增函数,不知足题意;若a<0,由f′(x)>0得--1<x<-1,由f′(x)<0,得x<-3a3a1111-3a或x>-3a,即故当a<0时,f(x)的单一递加区间为(--3a,-3a),单一1 1递减区间为(-∞,--3a),( -3a,+∞),知足题意.12.(0,1]。

2018年高考理数考前20天终极冲刺攻略: 导数与其他知识的综合问题 含答案

2018年高考理数考前20天终极冲刺攻略: 导数与其他知识的综合问题 含答案

核心考点解读——导数与其他知识的综合问题(解答题)利用导数研究不等式问题(II)利用导数研究方程根的问题(II)利用导数研究恒成立、存在性问题(II)利用导数解决实际问题(最优化问题)(II)1.涉及本单元知识的考题,一般在解答题中结合函数的图象进行分类讨论,作为压轴题进行考查.2.从考查难度来看,本单元的考点综合性比较高,试题难度相对较大,高考中通常利用函数的求导法则和导数的运算性质,考查函数的的基本性质等,同时要结合其他知识进行考查,如数列、不等式等.3.从考查热点来看,利用导数研究函数的综合问题是高考命题的热点,也是难点.注意分类讨论思想、数形结合思想的综合应用.1.利用导数研究不等式问题利用导数方法研究不等式问题,主要的技巧是灵活构造函数,通过函数的性质解决不等式问题,通常要利用函数的单调性以及函数的最值.函数的单调性是研究不等式问题的有利武器之一,构造函数后,要重视对函数单调性的应用.同时要注意分类讨论思想的应用.2.利用导数研究方程的根的问题当函数具有极值点时,在这个极值点左、右两侧,函数的单调性是不同的,可以结合函数图象的变化趋势确定方程的根的情况.如果函数在定义域内有唯一的极大(小)值点,那么该极大(小)值点就是最大(小)值点,当最大(小)值点大于(小于)零且左、右两侧均出现小于(大于)0的函数值时,函数就出现两个零点,也就是说方程就有两个不同的实数根;若只出现一侧的函数值符号相反,则说明函数有一个零点,方程只有一个实数根.利用导数研究方程的根,要结合函数的极值点进行考查,同时注意函数单调性的变化趋势.3.利用导数研究恒成立问题、存在性问题,通常采用分类讨论思想或分离参变量的方法,通过函数的单调性研究函数的最值,利用最值去研究恒成立问题、存在性问题,此类问题最后都化归为与函数最值有关的问题.4.利用导数解决实际问题(最优化问题)(1)生活中常遇到求利润最大,用料最省,效率最高等实际问题,这些问题通常称为最优化问题.(2)利用导数解决生活中的最优化问题的一般步骤:5.导数与其他知识的综合应用最后都要化归为利用导数研究函数的单调性、极值以及最值问题,因此要熟练掌握利用导数研究函数性质的一般方法,并能够进行延伸、拓展.1.(2017高考新课标Ⅰ,理21)已知函数2()e (2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.2.(2017高考新课标III ,理21)已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L ,求m 的最小值.3.(2016高考新课标I ,理21)已知函数2()(2)e (1)xf x x a x =-+-有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 4.(2016高考新课标II ,理21)(1)讨论函数()2e 2x x f x x -=+的单调性,并证明当x >0时,(2)e 20xx x -++>; (2)证明:当[0,1)a ∈ 时,函数2e =(0)x ax a g x x x-->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.5. (2015高考新课标Ⅱ,理21)设函数2()e mx f x x mx =+-. (1)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(2)若对于任意12,[1,1]x x ∈-,都有12|()()|e 1f x f x -≤-,求m 的取值范围.1.已知函数错误!未找到引用源。

2018届高三数学每天一练半小时:第19练 导数的极值与最值含答案

2018届高三数学每天一练半小时:第19练 导数的极值与最值含答案

一、选择题1.设函数f (x )=13x 3-x +m 的极大值为1,则函数f (x )的极小值为( )A .-13B .-1 C.13D .12.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ).若x =-1为函数f (x )e x的一个极值点,则下列图象不可能为y =f (x )图象的是( )3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b的值为( ) A .-23B .-2C .-2或-23D .2或-234.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎪⎫-3,-12内单调递增;②函数y =f (x )在区间⎝ ⎛⎭⎪⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是( ) A .①② B .②③ C .③④⑤D .③5.已知二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ),f ′(x )>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为( )A .1B .2C .-1D .-26.(2016·河北保定一中模拟)已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈[1,2]时,f (x )≥g (x )恒成立,则a 的取值范围为( ) A .a ≥11 B .a ≤11 C .a ≥418D .a ≤4187.(2016·唐山一模)直线y =a 分别与曲线y =2(x +1),y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324D.328.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B .(0,12)C .(0,1)D .(0,+∞)二、填空题9.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________________.10.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________________.11.(2017·郑州调研)已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.12.(2015·四川)已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =f (x 1)-f (x 2)x 1-x 2,n =g (x 1)-g (x 2)x 1-x 2,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有________.(写出所有真命题的序号)答案精析1.A [求导可得f ′(x )=x 2-1,由f ′(x )=0得x 1=-1,x 2=1,又因为函数在区间(-∞,-1)上单调递增,在区间(-1,1)上单调递减,在区间(1,+∞)上单调递增,所以函数f (x )在x =-1处取得极大值,且f (-1)=1,即m =13,函数f (x )在x =1处取得极小值,且f (1)=13×13-1+13=-13,故选A.]2.D [因为[f (x )e x ]′=f ′(x )e x +f (x )·(e x )′=[f (x )+f ′(x )]e x,又因为x =-1为函数f (x )e x的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0.]3.A [由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.]4.D [当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,①错;当x ∈⎝ ⎛⎭⎪⎫-12,2时,f ′(x )>0,f (x )单调递增,当x ∈(2,3)时,f ′(x )<0,f (x )单调递减,②错;当x ∈(4,5)时,f ′(x )>0,f (x )单调递增,③正确;当x =2时,函数y =f (x )有极大值,④错;当x =-12时,函数y=f (x )无极值,⑤错.故选D.]5.B [∵f ′(x )=2ax +b ,∴f ′(0)=b >0.由题意知⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0a >0,∴ac ≥b 24,∴c >0,∴f ?1?f ′?0?=a +b +c b ≥b +2ac b ≥2bb=2,当且仅当a =c 时“=”成立.] 6.A [f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1.∵x ∈[1,2],∴a ≥9x +3x 2-1x3.令1x =t ,则当t ∈[12,1]时,a ≥9t +3t 2-t 3. 令h (t )=9t +3t 2-t 3,则h ′(t )=9+6t -3t 2=-3(t -1)2+12. ∴h ′(t )在[12,1]上是增函数.∴h ′(x )min =h ′(12)=-34+12>0.∴h (t )在[12,1]上是增函数.∴a ≥h (1)=11,故选A.]7.D [令2(x +1)=a ,解得x =a2-1.设方程x +ln x =a 的根为t (x >0,t >0),即t +ln t=a ,则|AB |=|t -a 2+1|=|t -t +ln t2+1|=|t 2-ln t 2+1|.设g (t )=t 2-ln t2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.]8.B [函数f (x )=x (ln x -ax )(x >0),则f ′(x )=ln x -ax +x (1x-a )=ln x -2ax +1.令f ′(x )=ln x -2ax +1=0,得ln x =2ax -1.函数f (x )=x (ln x -ax )有两个极值点,等价于f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点.在同一个坐标系中作出它们的图象(如图).当a =12时,直线y =2ax -1与y =ln x 的图象相切,由图可知,当0<a <12时,y =ln x 与y =2ax -1的图象有两个交点,则实数a 的取值范围是(0,12).]9.(-∞,-1)∪(2,+∞) 解析 f ′(x )=3x 2+6ax +3(a +2), 令f ′(x )=0,即x 2+2ax +a +2=0. 因为f (x )既有极大值又有极小值,所以f ′(x )=0有两个不相等的实数根. 所以Δ=4a 2-4(a +2)>0, 所以a >2或a <-1. 10.(0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0,得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 11.-13解析 f ′(x )=-3x 2+2ax ,根据已知2a 3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9. [f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13. 12.①④解析 设A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 1,g (x 1)),D (x 2,g (x 2)),对于①从y =2x的图象可看出,m =k AB >0恒成立,故①正确;对于②直线CD 的斜率可为负,即n <0,故②不正确; 对于③由m =n ,得f (x 1)-f (x 2)=g (x 1)-g (x 2), 即f (x 1)-g (x 1)=f (x 2)-g (x 2), 令h (x )=f (x )-g (x )=2x-x 2-ax ,则h ′(x )=2xln 2-2x -a ,由h ′(x )=0,得2xln 2=2x +a ,结合图象知,当a 很小时,该方程无解,∴函数h (x )不一定有极值点,就不一定存在x 1,x 2,使f (x 1)-g (x 1)=f (x 2)-g (x 2), 即不一定存在x 1,x 2使得m =n ,故③不正确; 对于④由m =-n ,得f (x 1)-f (x 2)=g (x 2)-g (x 1),即f(x1)+g(x1)=f(x2)+g(x2),令F(x)=f(x)+g(x)=2x+x2+ax,则F′(x)=2x ln 2+2x+a,由F′(x)=0,得2x ln 2=-2x-a,结合如图所示图象可知,该方程有解,即F(x)必有极值点,∴存在x1,x2使F(x1)=F(x2),使m=-n.故④正确.综上可知①④正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

训练目标 (1)利用导数处理与不等式有关的题型;(2)解题步骤的规范训练.
训练题型
(1)利用导数证明不等式;(2)利用导数解决不等式恒成立问题及存在性问题;
(3)利用导数证明与数列有关的不等式.
解题策略
(1)构造与所证不等式相关的函数;(2)利用导数求出函数的单调性或者最值再
证明不等式;(3)处理恒成立问题注意参变量分离. 1.已知函数f (x )=x 2-ax -a ln x (a ∈R ).
(1)若函数f (x )在x =1处取得极值,求a 的值;
(2)在(1)的条件下,求证:f (x )≥-x 33+5x 2
2-4x +116
.
2.(2016·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是⎝ ⎛⎭
⎪⎫12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.
3.(2016·山西四校联考)已知f (x )=ln x -x +a +1.
(1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围;
(2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12
成立.
4.已知函数f (x )=(2-a )ln x +1x
+2ax . (1)当a <0时,讨论f (x )的单调性;
(2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.
5.(2017·福州质检)设函数f (x )=e x -ax -1.
(1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;
(2)求证:对任意的正整数n ,都有1
n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.
答案精析
1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1.
(2)证明 由(1)知,f (x )=x 2-x -ln x ,
令g (x )=f (x )-⎝ ⎛⎭⎪⎫-x 33+5x 22
-4x +116 =x 33-3x 22+3x -ln x -116
, 由g ′(x )=x 2-3x +3-1x =x 3-1x -3(x -1)=(x -1)3x
(x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116
成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0),
由h ′(x )=2x 2-ax +1x
(x >0), 若h (x )的单调减区间是⎝ ⎛⎭
⎪⎫12,1, 由h ′(1)=h ′⎝ ⎛⎭
⎪⎫12=0,解得a =3, 而当a =3时,h ′(x )=2x 2
-3x +1x =(2x -1)(x -1)x
(x >0). 由h ′(x )<0,解得x ∈⎝ ⎛⎭
⎪⎫12,1, 即h (x )的单调减区间是⎝ ⎛⎭
⎪⎫12,1, ∴a =3.
(2)由题意知x 2-ax ≥ln x (x >0),
∴a ≤x -ln x x
(x >0). 令φ(x )=x -ln x x
(x >0), 则φ′(x )=x 2+ln x -1x 2
, ∵y =x 2
+ln x -1在(0,+∞)上是增函数,且x =1时,y =0.
∴当x ∈(0,1)时,φ′(x )<0;
当x ∈(1,+∞)时,φ′(x )>0,
即φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,
∴φ(x )min =φ(1)=1,故a ≤1.
即实数a 的取值范围为(-∞,1].
3.(1)解 原题即为存在x >0,
使得ln x -x +a +1≥0,
∴a ≥-ln x +x -1,
令g (x )=-ln x +x -1,
则g ′(x )=-1x +1=x -1x
. 令g ′(x )=0,解得x =1.
∵当0<x <1时,g ′(x )<0,g (x )为减函数,
当x >1时,g ′(x )>0,g (x )为增函数,
∴g (x )min =g (1)=0,a ≥g (1)=0.
故a 的取值范围是[0,+∞).
(2)证明 原不等式可化为12x 2+ax -x ln x -a -12
>0(x >1,a ≥0). 令G (x )=12x 2+ax -x ln x -a -12
,则G (1)=0. 由(1)可知x -ln x -1>0,
则G ′(x )=x +a -ln x -1≥x -ln x -1>0,
∴G (x )在(1,+∞)上单调递增,
∴G (x )>G (1)=0成立,
∴12x 2+ax -x ln x -a -12
>0成立, 即12x 2+ax -a >x ln x +12
成立. 4.解 (1)求导可得f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2, 令f ′(x )=0,得x 1=12,x 2=-1a
, 当a =-2时,f ′(x )≤0,函数f (x )在定义域(0,+∞)内单调递减;
当-2<a <0时,在区间(0,12),(-1a ,+∞)上f ′(x )<0,f (x )单调递减,在区间(12,-1a
)上f ′(x )>0,f (x )单调递增;
当a <-2时,在区间(0,-1a ),(12,+∞)上f ′(x )<0,f (x )单调递减,在区间(-1a ,12
)上f ′(x )>0,f (x )单调递增.
(2)由(1)知当a ∈(-3,-2)时,函数f (x )在区间[1,3]上单调递减,
所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13
+6a . 问题等价于:对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -(2-a )ln 3-13
-6a 成立,即am >23
-4a , 因为a <0,所以m <23a
-4, 因为a ∈(-3,-2),
所以只需m ≤(23a
-4)min , 所以实数m 的取值范围为(-∞,-133
]. 5.证明 (1)由a >0及f ′(x )=e x -a 可得,函数f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增,
故函数f (x )的最小值为g (a )=f (ln a )=e ln a -a ln a -1=a -a ln a -1,则g ′(a )=-ln a , 故当a ∈(0,1)时,g ′(a )>0;
当a ∈(1,+∞)时,g ′(a )<0,
从而可知g (a )在(0,1)上单调递增,
在(1,+∞)上单调递减,且g (1)=0,故g (a )≤0.
(2)由(1)可知,当a =1时,总有f (x )=e x -x -1≥0,
当且仅当x =0时等号成立,即当x >0时,总有e x >x +1.
于是,可得(x +1)
n +1<(e x )n +1=e (n +1)x . 令x +1=
1n +1,即x =-n n +1,可得⎝ ⎛⎭⎪⎫1n +1n +1<e -n ; 令x +1=
2n +1,即x =-n -1n +1,可得⎝ ⎛⎭⎪⎫2n +1n +1<e -(n -1); 令x +1=
3n +1,即x =-n -2n +1,可得⎝ ⎛⎭⎪⎫3n +1n +1<e -(n -2); …
令x +1=n
n +1,即x =-1n +1,可得⎝ ⎛⎭⎪⎫n n +1n +1<e -1. 对以上各式求和可得:
⎝ ⎛⎭⎪⎫1n +1n +1+⎝ ⎛⎭⎪⎫2n +1n +1+⎝ ⎛⎭⎪⎫3n +1n +1+…+⎝ ⎛⎭
⎪⎫n n +1n +1<e -n +e -(n -1)+e -(n -2)+…+e -1 =e -n (1-e n )1-e =e -n -11-e =1-e -n e -1<1e -1
<1. 故对任意的正整数n ,都有1
n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.。

相关文档
最新文档