2018年高考数学一轮复习专题08指数与指数函数教学案文
【配套K12】2018年高考数学一轮复习第二章函数导数及其应用课时达标8指数与指数函数理
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标8指数与指数函数 理[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.一、选择题1.(2017·云南昆明模拟)设a =22.5,b =2.50,c =⎝ ⎛⎭⎪⎫12 2.5,则a ,b ,c 的大小关系是( C )A .a >c >bB .c >a >bC .a >b >cD .b >a >c解析:b =2.50=1,c =⎝ ⎛⎭⎪⎫12 2.5=2-2.5,则2-2.5<1<22.5,即c <b <a .2.(2017·河南洛阳模拟)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( B )解析:|f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32.又|f (x )|≥0,故选B . 3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析:由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9.可知C 正确,故选C .4.(2017·山西太原模拟)函数y =2x-2-x是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减解析:令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C ,D .又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数,故选A .5.(2017·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( C )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析:原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x .∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2,故选C .6.(2017·山东济宁模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2cD .2a+2c<2解析:作出函数f (x )=|2x-1|的图象,如图.∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a<1.∴f (a )=|2a-1|=1-2a<1, ∴f (c )<1,∴0<c <1, ∴1<2c<2,∴f (c )=|2c-1|=2c-1, 又∵f (a )>f (c ),∴1-2a>2c-1, ∴2a+2c<2,故选D . 二、填空题7.(2017·吉林长春模拟)已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是(0,1).解析:因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增,所以1a>1,解得0<a <1.8.(2017·山东济南模拟)若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =14.解析:因为g (x )在[0,+∞)上为增函数, 则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上单调递增,最小值为1a=m ,最大值为a 2=4,解得a =2,m =12,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上单调递减,最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116,综上知a =14.9.(2017·山东济宁月考)已知函数f (x )=(a -2)a x(a >0,且a ≠1),若对任意x 1,x 2∈R ,f x 1-f x 2x 1-x 2>0,则a 的取值范围是(0,1)∪(2,+∞).解析:当0<a <1时,a -2<0,y =a x单调递减,所以f (x )单调递增;当1<a <2时,a -2<0,y =a x单调递增,所以f (x )单调递减;当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增.又由题意知f (x )单调递增,故a 的取值范围是(0,1)∪(2,+∞).三、解答题10.化简:(1)a 3b 23ab 2a 14b 124a -13 b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278-23 +(0.002)-12 -10(5-2)-1+(2-3)0. 解析:(1)原式=a 3b 2a 13b 23 12ab 2a -13 b 13=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1. (2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭⎪⎫-82723 +50012 -10(5+2)+1=49+105-105-20+1 =-1679.11.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.解析:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3=a ⎝ ⎛⎭⎪⎫x -2a 2+3-4a,∵f (x )有最大值,∴g (x )应有最小值,且g (x )min =3-4a (a >0),∴f (x )max =⎝ ⎛⎭⎪⎫133-4a =3,∴3-4a =-1,∴a =1.12.已知定义域为R 的函数f (x )=-2x+b2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解析:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得b =1,所以f (x )=-2x+12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t2-1)等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得⎩⎨⎧t ⎪⎪⎪⎭⎬⎫t >1或t <-13.。
2018年指数与指数函数高三第一轮复习讲义
2018《高三第一轮复习课:指数与指数函数》咸丰一中数学组:青华高考要求:(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
重点难点:对分数指数幂含义的理解,学会根式与分数指数幂的互化掌握有理指数幂的运算性质; 指数函数的性质的理解与应用,能将讨论复杂函数的单调性、奇偶性问题转化为讨论比较简单的函数的有关问题.知识梳理1.根式的概念 (1)根式如果一个数的n 次方等于a ( n >1且n ∈N *),那么这个数叫做a 的n 次方根.也就是,若x n =a ,则x 叫做___________,其中n >1且n ∈N *.式子na 叫做_______,这里n 叫做_________,a 叫做__________. (2)根式的性质①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号________表示.②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数的正的n 次方根用符号________表示,负的n 次方根用符号________表示.正负两个n 次方根可以合写成________(a >0).负数没有偶次方根______(_____(0)||(_____(0)n n n a a a n a ⎧⎪=≥⎧⎨=⎨⎪<⎩⎩为奇数)为偶数);)nn a =__________(a n a . 00n =2.有理数指数幂 (1)幂的有关概念①正整数指数幂:∈⋅⋅⋅=n a a a a n(ΛN *).n 个②零指数幂:)0(10≠=a a ③负整数指数幂:∈=-p aa p p (1Q a ≠0,).④正分数指数幂:a nm =n m a (a >0,m 、n 都是正整数,n >1). ⑤负分数指数幂:m na-=nm a1=nma1(a >0,m 、n 都是正整数,n >1)⑥0的正分数指数幂等于_________,0的负分数指数幂___________.(2)有理指数幂的运算性质①a r a s =________(a >0,r ,s ∈Q ). ②(a r )s =________(a >0,r ,s ∈Q ). ③(ab )r =________(a >0,b >0,r ∈Q ). (注)上述性质对r 、∈s R 均适用。
高三 一轮复习 指数及指数函数 教案
指数与指数函数1.根式的性质(1)(n a )n =a .(2)当n 为奇数时n a n =a ;当n 为偶数时n a n =⎩⎪⎨⎪⎧a (a ≥0),-a (a <0). 2.有理数指数幂(1)幂的有关概念:①正分数指数幂:a m n=n a m (a >0,m ,n ∈N *,且n >1). ②负分数指数幂:a -m n =1a m n=1n a m (a >0,m ,n ∈N *,且n >1). ③0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质:①a r a s =a r +s (a >0,r ,s ∈Q );②(a r )s =a rs (a >0,r ,s ∈Q );③(ab )r =a r b r (a >0,b >0,r ∈Q ).3.指数函数的图像与性质y =a x a >1 0<a <1 图像定义域R 值域 (0,+∞)性质 过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[试一试]1.化简[(-2)6]12-(-1)0的结果为________.2.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________.1.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(a 2x +b ·a x +c ≤0)的指数方程或不等式,常借助换元法解决.2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论.[练一练]1.函数y =1-⎝⎛⎭⎫12x 的定义域为________.2.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.考点一指数幂的化简与求值 求值与化简:(1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫214-12-(0.01)0.5; (2)56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12; (3)(a 23·b -1)-12·a -12·b 136a ·b 5[类题通法]指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.考点二指数函数的图像及应用[典例] (1)(2013·苏锡常镇一调)已知过点O 的直线与函数y =3x 的图像交于A ,B 两点,点A 在线段OB 上,过点A 作y 轴的平行线交函数y =9x 的图像于点C ,当BC ∥x 轴时,点A 的横坐标是________.(2)已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有________个[类题通法]指数函数图像的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.[针对训练]1.(2013·徐州摸底)已知直线y =a 与函数f (x )=2x 及g (x )=3·2x 的图像分别相交于A ,B 两点,则A ,B 两点之间的距离为________.2.方程2x =2-x 的解的个数是________.考点三 指数函数的性质及应用[典例] 已知f (x )=a a 2-1(a x -a -x )(a >0,且a ≠1). (1)判断f (x )的奇偶性;(2)讨论f (x )的单调性.在本例条件下,当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围.[类题通法]利用指数函数的性质解决问题的方法求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.[针对训练]已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.(3)若f (x )的值域是(0,+∞),求a 的值.[课堂练通考点]1.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于________.2.已知f(x)=3x-b(2≤x≤4,b为常数)的图像经过点(2,1),则f(x)的值域是________.3.函数y=8-23-x(x≥0)的值域是________.4.已知正数a满足a2-2a-3=0,函数f(x)=a x,若实数m,n满足f(m)>f(n),则m,n的大小关系为________.5.函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,则a 的值为________.[课下提升考能]第Ⅰ组:全员必做题1.(2013·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图像恒过点A ,则A 点的坐标为________.2.函数y =⎝⎛⎭⎫13x 2 的值域是________.3.(2014·南京二模)如图,过原点O 的直线与函数y =2x 的图像交于A ,B 两点,过点B 作y 轴的垂线交函数y =4x 的图像于点C ,若AC 平行于y 轴,则点A 的坐标是________.4.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系为________.。
(完整word版)高三数学一轮复习指数与指数函数教案
浙江省衢州市仲尼中学高三数学一轮复习教案:指数与指数函数教材分析:本节在根式的基础上将指数概念扩充到有理指数幂,并给出了有理指数幂的运算性质 在利用根式的运算性质对根式的化简过程,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在学生掌握了有理指数幂的运算性质后,进一步将其推广到实数范围内,但无须进行严格的推证,由此让学生体会发现规律,并由特殊推广到一般的研究方法. 学情分析:学生基础较为薄弱,大部分学生知道运算性质,但是运用却不灵活。
关键是对知识理解的不够透彻。
只有在理解的基础上,通过运算,才能使学生熟练掌握本节知识。
教学目的:1.理解分数指数幂的概念.2.掌握有理指数幂的运算性质.3.会对根式、分数指数幂进行互化. 教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解. 教学过程: 一、知识梳理:1.根式的定义2.根式的运算性质:①当n 为任意正整数时,(n a )n=a.②当n 为奇数时,nna =a ;当n 为偶数时,nna =|a|=⎩⎨⎧<-≥)0()0(a a a a .⑶根式的基本性质:n m npmp a a =,(a ≥0) 用语言叙述上面三个公式:⑴非负实数a 的n 次方根的n 次幂是它本身.⑵n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.⑶若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变. 3.引例:当a >0时 ①5102552510)(a a a a===②3124334312)(a a a a === ③32333232)(a a a ==④21221)(a a a ==上述推导过程主要利用了根式的运算性质,整数指数幂运算性质(2).因此,我们可以得出正分数指数幂的意义.4.正数的正分数指数幂的意义n m nm a a= (a >0,m ,n ∈N *,且n >1)要注意两点:一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定. 规定:(1)nm nm aa1=- (a >0,m ,n ∈N *,且n >1)(2)0的正分数指数幂等于0. (3)0的负分数指数幂无意义.规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a >0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质.5.有理指数幂的运算性质: a r ·a s =a r +s (a r )s =a rs(a >0,r ,s ∈Q )(a ·b )r =a r ·b r(a >0,b >0,r ∈Q )二、讲解例题:例1求值:4332132)8116(,)41(,100,8---. 解:422)2(8232332332====⨯827)32()32()8116(6422)2()41(1011010)10(1003)43(4436)3()2(3231)21(221221===========--⨯--⨯------⨯--课内练习求下列各式的值: (1)2523(2)2732(3)(4936)23(4)(425)23-(5)432981⨯(6)23×35.1×612解:(1)23223)5(25==53=125 (2)233323323)3(27⨯===32=9(3)34321676)76()76(])76[()4936(33323223223=====⨯(4)125852)52()25()25(])25[()425(333323223223======-⨯--(5)41324432442123244213224432)33(3333])3[(3981⨯=⨯=⨯=⨯=⨯⨯⨯=66141324143333)3()3(=⨯=⨯(6)23×35.1×612=2×321×(23)31×(3×22)61=2×321×331×231×361×231=(2×231-×231)×(321×331×361)=231311+-×3613121++=2×3=6要求:学生板演练习,做完后老师讲评.例2计算下列各式:433225)12525)(2();0()1(÷->a aa a分析:(1)题把根式化成分数指数幂的形式,再计算 (2)题先把根式化成分数指数幂的最简形式,然后计算 解:课内练习:用分数指数幂表示下列各式:65653221223212322)1(a a a a a a a a a ===•=•--.555555555555)55(5)12525)(2(412545125412341324123413241233243-=-=-=÷-÷=÷-=÷---(1)32x (2)43)(b a +(a+b>0) (3)32)(n m - (4)4)(n m -(m>n) (5)56q p ⋅(p>0) (6)mm 3解:(1) 3232x x = (2) 4343)()(b a b a +=+ (3) 3232)()(n m n m -=-(4) 244)()(n m n m -=-=(m-n)2 (5) 2532526215656)()0(q p q p q p p q p ⋅==⋅=⋅φ (6)252133m mm m m =⋅=-要求:学生板演练习,做完后老师讲评.三、小结本节课要求大家理解分数指数幂的意义,掌握分数指数幂与根式的互化,熟练运用有理指数幂的运算性质. 四、课后作业:1.用分数指数幂表示下列分式(其中各式字母均为正数)(C)(1)43a a ⋅(2)a a a (3)322b a ab +(4)4233)(b a +解:(1)43a a ⋅=12741314131a aa a ==⋅+(2) a a a =[a ·(a ·a 21)21]21=a 21·a 41·a 81=a 87814121a =++(3)322b a ab +=(ab 2+a 2b )31(4)4233)(b a +=(a 3+b 3)42=(a 3+b 3)212.求下列各式的值:(C) (1)|2|21(2)(4964)21-(3)1000043-(4)(27125)32-解:(1)12121=(112)21=11212⨯=11(2)(4964)21-=(2278)21-=(78))21(2-⨯·(78)-1=87(3)1000043-=(104)43-=10)43(4-⨯=10-3=0.001(4) (27125)32-=(3335)32-=[(35)3] 32-=(35))32(3-⨯=(35)-2=259._______5则.25,45已知).2(;)12(3256)71(027.0.)1(计算:(B).320143231===-+-+----y x y x4.化简: (A) (1)3327-a a÷31638a a -÷313--a a ;(2).11111333233++-++----a a a a a a a a 解:(1)原式=312327)(-•aa ÷2131638)(a a•-÷323432312)(--÷÷=aa a a =1.(2)原式=)1()1()1(11)(1)(1)31(1)1(313231313131331312313313231+----+=++-++----a a a a a a a a a a a a a 31a ==3a.板书设计指数幂的概念与性质1.正分数指数幂意义 例题一: 例题二:a nm =n ma (a >0,m ,n ∈N*,n >1)2.规定 (1)anm -=nm a1(a >0,m ,n ∈N *,n >1),。
高考数学一轮总复习第8讲指数与指数函数课件文新课标
(2)函数 y=x|a|x(0<a<1)的图象的大致形状是( )
【解析】(1)由 f(2)=4,得 a-2=4,所以 a=21, f(x)=(21)-|x|=2|x|, f(-2)=2|-2|=22>21=f(1).
(2)函数的定义域为{x|x∈R,x≠0}, 且 y=x|xa|x=-ax axx>x0< 0 . 当 x>0 时,函数是一个指数函数,其底数满足 0<a<1, 所以函数递减; 当 x<0 时,函数的图象与 y=ax(0<a<1)的图象(x<0 的 部分)关于 x 轴对称,呈递增趋势,所以应选 D.
2.复合函数的值域可采用换元法,结合中间变量的范 围求函数的值域;复合函数 y=f(x)的单调性要根据 y=au,u =f(x)两函数在相应区间上的单调性确定,遵循“同增异减” 的规律.
素材2
(1)设函数 f(x)=a-|x|(a>0 且 a≠1),若 f(2)=4,则 a=
1 2
,
f(-2)与 f(1)的大小关系是 f(-2)>f(1) ;
三 指数函数的性质及应用
【例 3】(2011·上海卷)已知 f(x)=a×2x+b×3x,其中常 数 a、b 满足 ab≠0.
(1)若 ab>0,判断函数 f(x)的单调性; (2)若 ab<0,求 f(x+1)>f(x)时的 x 的取值范围.
【解析】(1)当 a>0,b>0 时,因为 a×2x,b×3x 都单调递 增,所以函数 f(x)单调递增;
3 (2)原式=
a23·a-32÷
a-73·a133
=3 a0÷ a2=1a.
二 指数函数的图象及应用
高考数学一轮复习第二章函数导数及其应用第8讲指数与指数函数精选教案理
第8讲指数与指数函数1.根式(1)根式的概念(2)两个重要公式①na n=⎩⎨⎧!!!a###(n为奇数),|a|=⎩⎪⎨⎪⎧!!!a###(a≥0),!!!-a###(a<0)(n为偶数);②(na )n=__a __(注意:a 必须使na 有意义). 2.有理数的指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -mn =!!! 1a n###=!!! 1 ###(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于__0__,0的负分数指数幂__无意义__. (2)有理数指数幂的性质 ①a r a s=__ar +s__(a >0,r ,s ∈Q );②(a r )s =__a rs__(a >0,r ,s ∈Q ); ③(ab )r=__a r b r__(a >0,b >0,r ∈Q ). 3.指数函数的图象与性质1.思维辨析(在括号内打“√”或“×”). (1)na n与(na )n 都等于a (n ∈N *).( × ) (2)2a·2b=2a b .( × )(3)函数y =3·2x与y =2x +1都不是指数函数.( √ )(4)若a m<a n(a >0且a ≠1),则m <n .( × ) (5)函数y =2-x在R 上为单调减函数.( √ ) 解析 (1)错误.当n 为偶数,a <0时,na 不成立.(2)错误.2a ·2b =2a +b≠2ab.(3)正确.两个函数均不符合指数函数的定义. (4)错误.当a >1时,m <n ;而当0<a <1时,m >n .(5)正确.y =2-x=⎝ ⎛⎭⎪⎫12x ,根据指数函数的性质可知函数在R 上为减函数.2.函数f (x )=1-2x的定义域是( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析 ∵1-2x≥0,∴2x≤1,∴x ≤0. 3.已知函数f (x )=4+a x -1的图象恒过定点P ,则点P 的坐标是( A )A .(1,5)B .(1,4)C .(0,4)D .(4,0)解析 当x =1时,f (x )=5.4.不等式2x 2-x <4的解集为__{x |-1<x <2}__.解析 不等式2x 2-x <4可化为2x 2-x <22,由指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.5.若函数y =(a 2-1)x在(-∞,+∞)上为减函数,则实数a解析 由题意知0<a 2-1<1,即1<a 2<2,得-2<a <-1或1<a < 2.一 指数幂的化简与求值指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.【例1】 计算:(1)3a 92 a -3÷3a -73a 13;(2)(0.027) -13 -⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912 -(2-1)0;(3)已知m 12 +m -12=4,求m 32 -m -32m 12 -m -12 .解析 (1)原式=(a 92 a -32 )13 ÷(a -73 a 133 )12 =(a 3)13 ÷(a 2)12 =a ÷a =1.(2)原式=⎝ ⎛⎭⎪⎫271 000-13 -72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45.(3)∵m 12 +m -12 =4,∴m +m -1+2=16,∴m +m -1=14, ∴m 32 -m -32 m 12 -m -12 =(m 12 -m -12 )(m +m -1+1)m 12 -m -12=m +m -1+1=14+1=15.二 指数函数的图象及应用指数函数图象的画法及应用(1)画指数函数y =a x(a >0,a ≠1)的图象,应抓住三个关键点(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a 和一条渐近线y =0.(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换,得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. 【例2】 (1)函数y =a x-1a(a >0,且a ≠1)的图象可能是( D )(2)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是__[-1,1]__.解析 (1)函数y =a x-1a(a >0,且a ≠1)的图象必过点(-1,0),故选D .(2)曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].三 指数函数的性质及应用指数函数性质问题的类型及解题思路(1)比较指数幂大小问题.常利用指数函数的单调性及中间值(0或1).(2)简单的指数不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.【例3】 已知函数f (x )=e x -e -x(x ∈R ,且e 为自然对数的底数). (1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解析 (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.∵f (x )的定义域为R ,且f (-x )=e -x-e x=-f (x ),∴f (x )是奇函数.(2)存在,由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立⇔x 2-t 2≥t -x 对一切x ∈R 都成立⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12,∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.1.(2018·山东德州一模)已知a =⎝ ⎛⎭⎪⎫3525 ,b =⎝ ⎛⎭⎪⎫2535 ,c =⎝ ⎛⎭⎪⎫2525 ,则( D ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析 ∵y =⎝ ⎛⎭⎪⎫25x为减函数,∴b <c ,又∵y =x 25 在(0,+∞)上为增函数,∴a >c ,∴b <c <a ,故选D .2.(2018·北京模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)=( A )A .1B .aC .2D .a 2解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0,又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A .3.函数y =4x+2x +1+1的值域为( B )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)解析 令2x=t (t >0),则函数y =4x+2x +1+1可化为y =t 2+2t +1=(t +1)2(t >0).∵函数y =(t +1)2在(0,+∞)上递增,∴y >1.∴所求值域为(1,+∞),故选B .4.函数f (x )=a x+log a (x +1)(a >0,且a ≠1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( B )A .14 B .12 C .2D .4解析 ∵在[0,1]上y =a x与y =log a (x +1)具有相同的单调性,∴f (x )=a x+log a (x +1)在[0,1]上单调,∴f (0)+f (1)=a ,即a 0+log a 1+a 1+log a 2=a ,化简得1+log a 2=0,解得a =12.易错点 忽视对含参底数的讨论错因分析:对数函数、指数函数的底数含字母参数时,要分底数大于1和大于0小于1讨论.【例1】 已知函数f (x )=|a -1|a 2-9(a x -a -x)(a >0且a ≠1)在R 上为增函数,求a 的取值范围.解析 ①当a >1时,a x 在R 上为增函数,y =a -x =⎝ ⎛⎭⎪⎫1a x 在R 上为减函数,∴y =a x -a-x为增函数.∵f (x )为增函数,∴|a -1|a 2-9>0,解得a >3或a <-3,又∵a >1,∴a >3.②当0<a <1时,y =a x 在R 上为减函数,y =a -x在R 上为增函数, ∴y =a x-a -x在R 上为减函数.∵f (x )为增函数,∴|a -1|a 2-9<0,解得-3<a <1或1<a <3.又∵0<a <1,∴此时0<a <1.综上,a 的取值范围为(0,1)∪(3,+∞).【跟踪训练1】 (2018·东北三校联考)若关于x 的方程|a x-1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是( D )A .(0,1)∪(1,+∞)B .(0,1)C .(1,+∞)D .⎝ ⎛⎭⎪⎫0,12 解析 方程|a x-1|=2a (a >0,且a ≠1)有两个实数根转化为函数y =|a x-1|与y =2a 有两个交点.①当0<a <1时,如图①,∴0<2a <1,即0<a <12;②当a >1时,如图②, 而y =2a >1不符合要求.∴0<a <12.课时达标 第8讲[解密考纲]本考点主要考查指数的运算、指数函数的图象与性质、简单的复合函数的单调性等,通常以选择题、填空题的形式呈现,题目难度中等或中等偏上.一、选择题1.(2016·全国卷Ⅲ)已知a =243 ,b =425 ,c =2513 ,则( A ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析 因为a =243 =1613 ,b =425 =1615 ,c =2513 ,且幂函数y =x 13 在R 上单调递增,指数函数y =16x在R 上单调递增,所以b <a <c .2.(2018·河南洛阳模拟)已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( B )解析 |f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,易知函数y =|f (x )|的图象的分段点是x =1, 且过点(1,0),(0,1),⎝ ⎛⎭⎪⎫-1,32,故选B .3.已知f (x )=3x -b(2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( C )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)解析 由f (x )过定点(2,1)可知b =2,因为f (x )=3x -2在[2,4]上是增函数,f (x )min =f (2)=1,f (x )max =f (4)=9,故选C .4.(2018·山西太原模拟)函数y =2x -2-x是( A ) A .奇函数,在区间(0,+∞)上单调递增 B .奇函数,在区间(0,+∞)上单调递减 C .偶函数,在区间(-∞,0)上单调递增 D .偶函数,在区间(-∞,0)上单调递减解析 令f (x )=2x -2-x ,则f (-x )=2-x -2x=-f (x ),所以函数f (x )是奇函数,排除C 项,D 项.又函数y =-2-x,y =2x 均是R 上的增函数,故y =2x -2-x在R 上为增函数,故选A .5.(2018·浙江丽水模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是( C )A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)解析 原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x .∵函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数,∴⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2, 当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m <2,解得-1<m <2,故选C .6.(2018·山东济宁模拟)已知函数f (x )=|2x-1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( D )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a<2cD .2a+2c<2解析 作出函数f (x )=|2x-1|的图象,如图,∵a <b <c ,且f (a )>f (c )>f (b ), 结合图象知0<f (a )<1,a <0,c >0, ∴0<2a<1.∴f (a )=|2a -1|=1-2a<1, ∴f (c )<1,∴0<c <1,∴1<2c<2, ∴f (c )=|2c -1|=2c-1, 又∵f (a )>f (c ),∴1-2a >2c-1, ∴2a +2c<2,故选D . 二、填空题7.已知函数f (x )=a -x(a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是__(0,1)__.解析 因为f (x )=a -x=⎝ ⎛⎭⎪⎫1ax ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增,所以1a>1,解得0<a <1.8.已知函数y =a 2x +2a x-1(a >1)在区间[-1,1]上的最大值是14,则a =__3__.解析 y =a 2x +2a x -1(a >1),令a x =t ,则y =t 2+2t -1⎝ ⎛⎭⎪⎫1a≤t ≤a ,此二次函数图象开口向上,对称轴为t =-1,又a >1,所以当t =a ,即x =1时取最大值,所以a 2+2a -1=14, 解得a =3.9.(2018·皖南八校联考)对于给定的函数f (x )=a x-a -x(x ∈R ,a >0,a ≠1),下面给出五个命题,其中真命题是__①③④__(只需写出所有真命题的编号).①函数f (x )的图象关于原点对称; ②函数f (x )在R 上不具有单调性; ③函数f (|x |)的图象关于y 轴对称; ④当0<a <1时,函数f (|x |)的最大值是0; ⑤当a >1时,函数f (|x |)的最大值是0.解析 ∵f (-x )=-f (x ),∴f (x )为奇函数,f (x )的图象关于原点对称,①真;当a >1时,f (x )在R 上为增函数,当0<a <1时,f (x )在R 上为减函数,②假;y =f (|x |)是偶函数,其图象关于y 轴对称,③真;当0<a <1时,y =f (|x |)在(-∞,0)上为增函数,在[0,+∞)上为减函数,∴当x =0时,y =f (|x |)取最大值为0,④真;当a >1时,f (|x |)在(-∞,0)上为减函数,在[0,+∞)上为增函数,∴当x =0时,y =f (|x |)取最小值为0,⑤假.综上,真命题是①③④.三、解答题10.化简:(1)a 3b 23ab 2(a 14 b 12 )4a -13 b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278 -23+(0.002)-12-10(5-2)-1+(2-3)0. 解析 (1)原式=(a 3b 2a 13b 23 ) 12ab 2a -13 b 13=a 32 +16 +13 -1·b 1+13 -2-13 =ab -1.(2)原式=⎝ ⎛⎭⎪⎫-278-23 +⎝ ⎛⎭⎪⎫1500-12 -105-2+1 =⎝ ⎛⎭⎪⎫-82723 +50012 -10(5+2)+1=49+105-105-20+1=-1679. 11.已知函数f (x )=⎝ ⎛⎭⎪⎫13a x 2-4x +3. (1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t 在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3=a ⎝ ⎛⎭⎪⎫x -2a 2+3-4a,∵f (x )有最大值,∴g (x )应有最小值,且g (x )min =3-4a(a >0), ∴f (x )max =⎝ ⎛⎭⎪⎫133-4a =3,∴3-4a =-1,∴a =1. 12.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0.解析 (1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1,所以f (x )=-2x +12x +1+a. 又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)由(1)知f (x )=-2x+12x +1+2=-12+12x +1. 由上式易知f (x )在(-∞,+∞)上为减函数.又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得解集为t ⎪⎪⎪⎭⎬⎫t >1或t <-13.精美句子1、善思则能“从无字句处读书”。
高考数学一轮复习第8讲指数与指数函数学案 理
第8讲指数与指数函数
考试
说明
1、了解指数函数模型的实际背景。
2。
理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算、
3、理解指数函数概念及其单调性,掌握指数函数图像通过的特别点。
会画底数2,3,10, ,
的
指数函数的图像。
4。
体会指数函数是一类重要的函数模型。
考情
分析
考点
考查方向考例
指数幂的运算根式化简、指数幂运算
指数函数的图像指数函数图像的判断
指数函数的性质指数函数性质的应用
【重温教材】必修1第48页至第61页
【相关知识点回顾】完成练习册第19【知识聚焦】
【知识回顾反馈练习】完成练习册第20页【对点演练】
【探究点一】指数幂的化简与求值:【练习册】020页例1及变式题
【探究点二】指数函数的图像及应用:【练习册】020页例2及变式题
【探究点三】指数函数的性质及应用:【练习册】021页例3,例4,例5及变式题及强化演练
1。
设x,y,z为正数,且2x=3y=5z,则( )
A。
2x<3y<5z B、5z<2x<3y C、3y<5z〈2x D、3y<2x<5z
2、已知x,y∈R,且x〉y〉0,则( )
—
1
y
>0 B、sin x-sin y>0 C。
\f(1,2)x-错误!y<0D、。
高三数学第一轮复习 指数与指数函数教案 文
指数与指数函数一、知识梳理:1、分数指数幂与无理指数幂(1)、如果,那么x就叫做a的n次方根,其中n>1,且;当n是正奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,当n是偶数时,正数的n次方根有两个,这两个是互为相反数,负数没有偶次方程,0的任何次方根都是0(2)、叫根式,n叫根指数,a叫被方数。
在有意义的前提下,=,当n为奇数时,=a ;当n是偶数时,=| a |(3)、规定正数的正分数指数幂的意义是= (a>0,m,n1),正数的负分数指数幂的意义为= (a>0,m,n1),0的正分数指数幂是0,0的负分数指数幂没有意义。
(4)、一般地,无理数指数幂(a>0,k是无理数),是一个确定的实数。
2、指数幂的运算性质= (a>0,r,s)==3、指数数函数及性质(1)指数函数的定义:(2)、指数函数的图象及性质图象的性质主要指①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。
指数函数不具有奇偶性与周期性,从而,指数函数最为重要的性质是单调性,对单调性的考查,一方面是利用自变量的大小比较函数值的大小,反映在题目上就上比较大小,另一方面是利用函数值的大小比较自变量的大小,反映在题目上就是解不等式。
二、题型探究[探究一]、根式、指数幂的运算例1:计算:(1).40.062 5+254-(π)0-3278;(2).a1.5·a-1.5·(a-5)0.5·(a0.5)3(a>0).解析:(1)原式=0.5+52-1-32=12.(2)原式=a1.5-1.5-2.5+1.5=a-1=1 a .[探究二]、利用指数函数的单调性比较大小 例2:已知,试用“<”或“>”填入下列空格: ; ( ; ( ; ; ( ([探究三]、利用指数函数的单调性解方程不等式问题 例3:解关于x 的不等式[探究四]、考察指数函数的图象的变换例4:已知函数 存在实数a, b(a<b) ,满足, 的取值范围。
高三一轮复习课件:指数与指数函数教学材料
对于任意的 x1, x2[0, 1], 且 x1<x2, g(x1)-g(x2)=(2x1-4x1)-(2x2-4x2) =(2x1-2x2)-(2x1-2x2)(2x1+2x2)
=(2x1-2x2)(1-2x1-2x2) ∵0≤x1<x2≤1, ∴2x1-2x2<0 且 1-2x1-2x2<0. ∴ g(x1)-g(x2) =(2x1-2x2)(1-2x1-2x2)>0.
4.若关于 x 的方程 2a2x-2-7ax-1+3=0 有一个根是 x=2, 求 a 的值 并求方程其余的根.
a=
1 2
时,
方程的另一根为 x=1-log23; a=3时, x=1-log32 .
5.已知 2x=
a+
1 a
(a>1),
求
x2-1 x- x2-1
的值.
解: 以 x+ x2-1、 x- x2-1 为根构造方程: t2-2xt+1=0,
∵ y=e-x 是 R 上的减函数, ∴ y=-e-x 是 R 上的增函数.
又∵ y=ex 是 R 上的增函数, ∴ y=ex -e-x 是 R 上的增函数.
∴ f(x) 的反函数 f-1(x) 也是 R 上的增函数.
综上所述, f-1(x) 是奇函数, 且是 R 上的增函数.
课堂练习
1.若函数y=ax+b-1 (a>0, a1) 图象经过第二、三、四象限, 则 一定有( C )
∴ g(x1)>g(x2). 故函数 g(x) 在 [0, 1] 上单调递减.
6.已知函数 f(x)=3x 且 f-1(18)=a+2, g(x)=3ax-4x 的定义域为 [0, 1]. (1)求 g(x) 的解析式; (2)求 g(x) 的单调区间, 确定其增减 性并用定义证明; (3)求 g(x) 的值域. 解: (3)∵g(x) 在 [0, 1] 上单调递减,
2018年高三一轮复习教学课件-指数与指数函数
a6
=a2.
规律方法
(1)指数幂的运算首先将根式、分数指数幂
统一为分数指数幂,以便利用法则计算,但应注意:
①必须同底数幂相乘,指数才能相加;②运算的先后
顺序.(2)当底数是负数时,先确定符号,再把底数化为
正数.(3)运算结果不能同时含有根号和分数指数,也不
能既有分母又含有负指数.
【训练 1】 (1)化简:
1 位长度得到,A 项显然错误;当 a>1 时,0<a<1,平移距 1 离小于 1,所以 B 项错误;当 0<a<1 时,a>1,平移距离 大于 1,所以 C 项错误,故选 D.
(2) 设2 014a=2 015b=y,如图所示,由 函数图象,可得若y>1,则有a>b>0; 若 y = 1,则有 a= b= 0 ;若 0< y < 1 ,则 有 a < b < 0. 故①②⑤可能成立,而③④ 答案 (1)D . (2)B 不可能成立
第5讲
指数与指数函数
最新考纲
1.了解指数函数模型的实际背景; 2.理解
有理指数幂的含义,了解实数指数幂的意义,掌握 幂的运算; 3.理解指数函数的概念及其单调性, 掌握 指数函数图象通过的特殊点, 会画底数为 2, 3, 10, 1 1 4.体会指数函数是一类重要 2, 3的指数函数的图象; 的函数模型.
a3[(a3)3-(2b3)3] (2) 原 式 = 1 2 (a· a3)2
1 1 1 1 (a3)2+a3· (2b3)+(2b3)2 5
1
1
1
a3-2b3 ÷ a
1
1
×
1 1 a 1 1 2 = a ( a × = a 3 - 2 b 3 )× 1 3 ×a×a 3 1 1 1 3 1 1 a3-2b3 a6 (a2· a3)5
2018年高三一轮复习《指数与指数函数》导学案
一轮复习学案指数与指数函数☆学习目标:1.掌握指数函数的图象和性质;2.掌握指数形式的复合函数的图像、定义域、值域, 单调性、奇偶性.重点:指数函数的图象及性质的简单应用.☻基础热身:(1).如果函数2()(31)x x f x a a a =--(0a >且1a ≠)在区间[)0,+∞上是增函数,那么实数a 的取值范围为( ).A 20,3⎛⎤ ⎥⎝⎦ .B ⎫⎪⎪⎣⎭ .C (0 .D 3,2⎡⎫+∞⎪⎢⎣⎭. (2).设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( ) .A )0,(-∞ .B ),0(+∞.C )3log ,(a -∞ .D ),3(l o g +∞a . (3).设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( ) .A (01), .B (12), .C (23), .D (34),. ☻知识梳理:1.指数函数的定义:函数 叫做指数函数.2.指数函数的图象和性质:☆ 案例分析:例1.(1)设0x >,且1x x a b <<(0a >,0b >),则a 与b 的关系是( ) .A 1b a << .B 1a b << .C 1b a << .D 1a b <<(2) 若函数m y x +=+-12的图象不经过第一象限,则m 的取值范围是( ).A 2-≤m .B 2-≥m .C 1-≤m .D 1-≥m 例2. 已知22x x +≤214x -⎛⎫ ⎪⎝⎭, 求函数22x x y -=-的值域.例3. 设函数f(x)=lg 1243x xa ++⋅,其中a ∈R,如果当x ∈(–∞,1)时,f(x)有意义,求a 的取值范围例4. 已知311()12x f x x a ⎛⎫=+⋅ ⎪-⎝⎭(0a >,且1a ≠). (1)求()f x 的定义域;(2)讨论()f x 的奇偶性;(3)求a 的范围,使()0f x >在定义域恒成立.例5. 已知函数2()1x x f x a x -=++(1)a >,求证: (1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根参考答案基础热身:(1).B; (2).C; (3).B. 例1. (1)A; (2).A例2.]22,22[22161161----例3. )0,43(- 例4.(1)),0()0,(+∞⋃-∞; (2) 奇函数; (3)1>a 例5 证明:(1)设121x x -<<, 则1212121222()()11x x x x f x f x a a x x ---=+--++ 121212121212223()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++, ∵121x x -<<,∴110x +>,210x +>,120x x -<, ∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x x a a <,∴120x x a a -<, ∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; 另法:∵1a >,(1,)x ∈-+∞ ∴223()()ln 01(1)x x x f x a a a x x -''=+=+>++∴函数()f x 在(1,)-+∞上为增函数; (2)假设0x 是方程()0f x =的负数根,且01x ≠-,则000201x x a x -+=+, 即00000023(1)31111x x x a x x x --+===-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+, 而由1a >知01x a < ∴①式不成立; 当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,而0x a > ∴①式不成立 综上所述,方程()0f x =没有负数根。
高三数学一轮复习精品教案1:指数与指数函数教学设计
2.4指数与指数函数1.根式的性质 (1)(na )n =a .(2)当n 为奇数时na n =a ; 当n 为偶数时na n=⎩⎪⎨⎪⎧a a ≥0,-a a <0.2.有理数指数幂 (1)幂的有关概念:①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质: ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图像与性质1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图像和性质跟a 的取值有关,要特别注意区分a >1或0<a <1. 『试一试』1.化简『(-2)6』12-(-1)0的结果为________.『答案』72.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 『解析』由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. 『答案』(-2,-1)∪(1,2)1.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(a 2x +b ·a x +c ≤0)的指数方程或不等式,常借助换元法解决.2.指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按0<a <1和a >1进行分类讨论. 『练一练』 1.函数y =1-⎝⎛⎭⎫12x 的定义域为________.『答案』『0,+∞)2.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是『0,2』,则实数a =________. 『解析』当a >1时,f (x )=a x -1在『0,2』上为增函数, 则a 2-1=2,∴a =± 3.又∵a >1,∴a = 3. 当0<a <1时,f (x )=a x -1在『0,2』上为减函数又∵f(0)=0≠2,∴0<a<1不成立.综上可知,a = 3.『答案』3求值与化简:(1)⎝⎛⎭⎫2350+2-2·⎝⎛⎭⎫214-12-(0.01)0.5;(2)56a13·b-2·(-3a-12b-1)÷(4a23·b-3)12;(3)a23·b-1-12·a-12·b136a·b5『解析』(1)原式=1+14×1249⎛⎫⎪⎝⎭-121100⎛⎫⎪⎝⎭=1+14×23-110=1+16-110=1615.(2)原式=-52a16-b-3÷(4a23·b-3)12=-54a16-b-3÷(a13b32-)=-54a-12-·b23-.=-54·1ab3=-5ab4ab2.(3)原式=111133221566·a b a ba b--=a-111326---·b115236-+.『备课札记』『类题通法』指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.『典例』 (1)(2013·苏锡常镇一调)已知过点O 的直线与函数y =3x 的图像交于A ,B 两点,点A 在线段OB 上,过点A 作y 轴的平行线交函数y =9x 的图像于点C ,当BC ∥x 轴时,点A 的横坐标是________. (2)已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式: ①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b . 其中不可能成立的关系式有________个『解析』 (1)设A (x 0,3x 0),由AC 平行于y 轴,则C (x 0,9x 0).又因为BC 平行于x 轴,则B (2x 0,9x 0).因为O ,A ,B 三点共线,所以x 0·9x 0=2x 0·3x 0,得3x 0=2,所以x 0=log 32. (2)函数y 1=⎝⎛⎭⎫12x 与y 2=⎝⎛⎭⎫13x 的图像如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b 得,a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不可能成立. 『答案』 (1)log 32 (2)2『备课札记』 『类题通法』指数函数图像的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解.『针对训练』1.(2013·徐州摸底)已知直线y=a与函数f(x)=2x及g(x)=3·2x的图像分别相交于A,B两点,则A,B两点之间的距离为________.『解析』由题意知A,B两点之间的距离与a无关,即为定值.不妨设a=3,则由3·2x=3知x B=0.由2x=3知x A=log23,故AB=x A-x B=log23.『答案』log232.方程2x=2-x的解的个数是________.『解析』方程的解可看作函数y=2x和y=2-x的图像交点的横坐标,分别作出这两个函数图像(如图).由图像得只有一个交点,因此该方程只有一个解.『答案』1『典例』已知f(x)=aa2-1(a x-a-x)(a>0,且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性.『解析』(1)函数f(x)的定义域为R,关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.(2)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a-x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.『解析』由(2)知f(x)在R上是增函数,所以在区间『-1,1』上为增函数.所以f (-1)≤f (x )≤f (1). 所以f (x )min =f (-1)=aa 2-1(a-1-a )=a a 2-1·1-a 2a=-1. 所以要使f (x )≥b 在『-1,1』上恒成立,则只需b ≤-1. 故b 的取值范围是(-∞,-1』.『备课札记』 『类题通法』利用指数函数的性质解决问题的方法求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决. 『针对训练』已知函数f (x )=⎝⎛⎭⎫13ax 2-4x +3. (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值. (3)若f (x )的值域是(0,+∞),求a 的值. 『解析』(1)当a =-1时,f (x )=⎝⎛⎭⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减, 所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,f (x )=⎝⎛⎭⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1. (3)由指数函数的性质知, 要使y =⎝⎛⎭⎫13g (x )的值域为(0,+∞). 应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ). 故a 的值为0.『课堂练通考点』1.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于________. 『解析』由f (a )=3得2a +2-a =3, 两边平方得22a +2-2a+2=9,即22a +2-2a=7,故f (2a )=7.『答案』72.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图像经过点(2,1),则f (x )的值域是________. 『解析』由f (x )过定点(2,1)可知b =2,因f (x )=3x -2在『2,4』上是增函数,f min (x )=f (2)=1,f max (x )=f (4)=9. 『答案』『1,9』3.函数y =8-23-x (x ≥0)的值域是________. 『解析』∵x ≥0,∴-x ≤0,∴3-x ≤3, ∴23-x ≤23=8,∴8-23-x ≥0,∴函数y =8-23-x 的值域为『0,+∞). 『答案』『0,+∞)4.已知正数a 满足a 2-2a -3=0,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.『解析』∵a 2-2a -3=0,∴a =3或a =-1(舍). 函数f (x )=a x 在R 上递增,由f (m )>f (n ),得m >n . 『答案』m >n5.函数f (x )=a x (a >0,且a ≠1)在区间『1,2』上的最大值比最小值大a 2,则a 的值为________.『解析』当a >1时,f (x )=a x 为增函数,在x ∈『1,2』上, f (x )最大=f (2)=a 2,f (x )最小=f (1)=a . ∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函数,在x ∈『1,2』上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.『答案』12或32。
高三数学教案 指数与指数函数
指数与指数函数一.基础知识 1.幂的有关概念(1)正整数指数幂)(*∈⋅⋅⋅⋅=N n a a a a a n n个(2)零指数幂)0(10≠=a a(3)负整数指数幂()10,n n a a n N a-*=≠∈(4)正分数指数幂()0,,,1m nm na a a m n N n *=>∈>;(5)负分数指数幂()10,,,1m nm nmnaa m n N n a a-*==>∈>(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,sr rs a a a r s Q =>∈ ()()()30,0,rr r ab a b a b r Q =>>∈3.根式的内容(1)根式的定义:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
(2)根式的性质: ①当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa a a a n n②负数没有偶次方根, ③零的任何次方根都是零4指数函数y=a x名称 指数函数一般形式 y =a x (a>0且a≠1)定义域 (-∞,+ ∞) 值域 (0,+ ∞)过定点 (0,1) 图象单调性 a> 1,在(-∞,+ ∞)上为增函数0<a<1, 在(-∞,+∞)上为减函数值分布 当时且0,1>>x a y>1 当时且0,10><<x a 0<y<1时且0,1<>x a 0<y<1 时且0,10<<<x a y>15.记住常见指数函数的图形及相互关系二、题型剖析1.指数化简和运算 例1.计算下列各式①30312)26()03.1(2323)661()41(-⋅--+++-②)0,0()21(24833323323134>>⨯-÷++⋅-b a a ab aab b b a a 思维分析:式子中既有分数指数、又有根式,可先把根式化成分数指数幂,再根据幂的运算性质进行计算。
2018届高三数学复习函数第五节指数与指数函数课件文
方法技巧
(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是 否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般 是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到 的.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指 数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结 合求解.
判断下列结论的正误(正确的打“√”,错误的打“×”)
n n (1) 与( )nn都等于 a(n∈N*). (×) a a
n n (2)当n∈N*时,( )3 总有意义. (×)
m (3)分数指数幂 a 可以理解为 个a相乘. (×) n
m n
(4)函数y=3· 2x与y=2x+1都不是指数函数. (√)
考点突破
考点一 指数幂的化简与求值
典例1 化简下列各式 : 1
3 -2 (1) 2 +2 × 5
0
2 3
1 2
1 2 0.5 -(0.01) ; 2 4
1 2
5 3 -2 -3 2 b-1)÷(4 · (2) (-a 3 a ·b · a 3 b) 2 ; 6
变式2-3 若将本例(2)改为直线y=2a与函数y=|ax-1|(a>0且a≠1)的图象 有两个公共点,求a的取值范围. 解析 y=|ax-1|的图象是由y=ax的图象先向下平移1个单位,再将x轴下方 的图象沿x轴翻折到x轴上方得到的. 当a>1时,如图1,两图象只有一个交点,不合题意; 当0<a<1时,如图2,要使两个图象有两个交点,则0<2a<1,得到0<a< .
1 2
10 52
《专题08指数与指数函数》重难点突破与专题训练
《专题08指数与指数函数》重难点突破一、知识结构思维导图二、学法指导与考点梳理 重难点一根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:(na )n=a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.重难点二分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q.重难点三指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图象与性质三、重难点题型突破重难点突破1 指数与指数运算 1.a a n n =)(;2.⎩⎨⎧<-≥==0.0,||a a a a a a n n3.正分数指数幂:规定:a m n =a >0,m ,n ∈N *,且n >1)4.负分数指数幂:规定:a -m n =1a m n =1(a >0,m ,n ∈N *,且n >1)5.幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈R ). (2)(a r )s =a rs (a >0,r ,s ∈R ). (3)(ab )r =a r b r (a >0,b >0,r ∈R ). 例1.(1)计算( )A .B .C .D .(2).若10x =3,10y =4,则10x-y =__________. (3).若,则___ ___.225x x -+=88x x -+=【变式训练】.计算:(1); (2).重难点突破2 指数函数的图像与性质 例2.求下列函数的定义域和值域:(1)y =1-3x;(2)y =⎝ ⎛⎭⎪⎫12x 2-2x -3;(3)y =4x +2x +1+2.例3.(1)函数图象一定过点() A.(0,1) B.(0,3) C.(1,0) D.(3,0) (2). 如图①,②,③,④,根据图象可得a 、b 、c 、d 与1的大小关系为()A. a <b <1<c <dB. b <a <1<d <cC. 1<a <b <c <dD. a <b <1<d <c【变式训练】.(1)已知0.70.8a =,0.90.8b =,0.81.2c =,则a 、b 、c 的大小关系是()A.a b c >>B.c a b >>C.b a c >>D.c b a >>1420110.2542216--⎛⎫⎛⎫⨯--÷- ⎪ ⎪⎝⎭⎝⎭220.53327492()()(0.008)8925---+⨯2(01)x y a a a =+>≠且(2).函数()1xxa y a x=>的图象的大致形状是() A . B .C .D .重难点突破3 指数函数的单调性与最值(比较大小) 例4. 比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).【变式训练】.(1)设0<a <1,则使不等式222135x x x x a a >-+-+成立的x 的集合是________.(2).设.1084y =,0.728y =,3434y =,则()A .312y y y >>B .213y y y >>C .132y y y >>D .123y y y >>重难点突破4 指数型复合函数的应用例5.已知函数22313x x y --⎛⎫= ⎪⎝⎭,求其单调区间及值域【变式训练】.已知函数11()442x x f x λ-=-+(12x -≤≤). (1)若32λ=,求函数()f x 的值域; (2)若方程()0f x =有解,求实数λ的取值范围.课堂定时训练(45分钟)1.已知在同一坐标系下,指数函数和的图象如图,则下列关系中正确的是()A .B .C .D .2.函数的图象是()A .B .C .D .3.已知,,,则下列不等式正确的是() A .B .C .D .4.若函数(且)的图象恒过定点,则,______.5.已知f (x )是定义在R 上的偶函数,且.若当时,,则________.6.设函数,则满足的的取值范围是___. x y a =xy b=1a b <<1b a <<1a b >>1b a >>3x m y a n -=+-0a >1a ≠(3,2)m =n =()()42f x f x +=-,0[]3x ∈-()6x f x -=()2020f =31,1()2,1xx x f x x -<⎧=⎨≥⎩()(())2f a f f a =a7.设函数且,.(1)求的解析式;(2)画出的图象(不写过程)并求值域.8.已知函数,为常数,且函数的图象过点.(1)求的值;(2)若,且,求满足条件的的值.9.设函数()(0,1)x x f x a a a a -=->≠.(1)若11221()32f a a -=+=,求22a a -+的值.(2)若3(1)2f =,求函数()f x 的解析式; (3)在(2)的条件下,设22()2()x x g x a a mf x -=+-,()g x 在[1,)+∞上的最小值为1-,求m .《专题08指数与指数函数》重难点突破 答案解析一、知识结构思维导图⎩⎨⎧≥<+=0,20,)(x x b ax x f x 3)2(=-f )1()1(f f =-)(x f )(x f ()12axf x ⎛⎫= ⎪⎝⎭a ()1,2-a ()42xg x -=-()()g x f x =x二、学法指导与考点梳理 重难点一根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:(na )n=a (a 使na 有意义);当n 为奇数时,na n =a ,当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.重难点二分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q.重难点三指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图象与性质三、重难点题型突破重难点突破1 指数与指数运算 1.a a n n =)(;2.⎩⎨⎧<-≥==0.0,||a a a a a a n n3.正分数指数幂:规定:a m n=a >0,m ,n ∈N *,且n >1) 4.负分数指数幂:规定:a -m n =1a m n =1(a >0,m ,n ∈N *,且n >1)5.幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈R ). (2)(a r )s =a rs (a >0,r ,s ∈R ). (3)(ab )r =a r b r (a >0,b >0,r ∈R ). 例1.(1)计算( )A .B .C .D .【答案】B【解析】.(2).若10x =3,10y =4,则10x-y =__________. 【答案】34【解析】因为103,104xy==,所以10310104x x yy -==,应填答案34.(3).若,则___ ___. 【答案】110 【解析】.【变式训练】.计算:225x x -+=88x x -+=(1); (2).【答案】(1)19;(2)-4.【解析】(1)原式===.(2)原式=-4重难点突破2 指数函数的图像与性质 例2.求下列函数的定义域和值域: (1)y =1-3x ;(2)y =⎝ ⎛⎭⎪⎫12x 2-2x -3;(3)y =4x +2x +1+2.【解析】(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1,所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)定义域为R .∵x 2-2x -3=(x -1)2-4≥-4,∴⎝ ⎛⎭⎪⎫12x 2-2x -3≤⎝ ⎛⎭⎪⎫12-4=16. 又∵⎝ ⎛⎭⎪⎫12x 2-2x -3>0,∴函数y =⎝ ⎛⎭⎪⎫12x 2-2x -3的值域为(0,16].(3)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R .因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞).例3.(1)函数图象一定过点() A.(0,1) B.(0,3) C.(1,0) D.(3,0) 【答案】B【解析】根据指数函数的图像和性质,当时,,所以此函数图像142110.2542216--⎛⎫⎛⎫⨯--÷- ⎪ ⎪⎝⎭⎝⎭220.53327492()()(0.008)8925---+⨯14421242444⎛⎫-⨯- ⎪⎝⎭=⨯--=--222(01)x y a a a =+>≠且0x =3y =一定过点.故选B. (2). 如图①,②,③,④,根据图象可得a 、b 、c 、d 与1的大小关系为()A. a <b <1<c <dB. b <a <1<d <cC. 1<a <b <c <dD. a <b <1<d <c 【答案】B【解析】由图,直线x=1与四条曲线的交点坐标从下往上依次是(1,b ),(1,a ),(1,d ),(1,c ),故有b <a <1<d <c ,故选B.【变式训练】.(1)已知0.70.8a =,0.90.8b =,0.81.2c =,则a 、b 、c 的大小关系是()A.a b c >>B.c a b >>C.b a c >>D.c b a >>【答案】B【解析】根据指数函数的性质可知,函数0.8x y =为单调递减函数,所以00.70.910.80.80.8=>>,即1a b >> 因为 1.2x y =为单调递增函数,所以0.80.211 1.2>=,即1c > 综上可知, c a b >>0,3()故选B(2).函数()1xxa y a x=>的图象的大致形状是() A . B .C .D .【答案】C【解析】当0x >时,x y a =,当0x <时,x y a =-,因1a >,所以x y a =为()0,∞+上的增函数,x y a =-为(),0-∞上的减函数,故选C.重难点突破3 指数函数的单调性与最值(比较大小) 例4. 比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).【解析】(1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x 在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x 的两个函数值,因为函数y =0.6x 在R 上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5. (3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1. (4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3; 当0<a <1时,y =a x 在R 上是减函数,故a 1.1<a 0.3.【变式训练】.(1)设0<a <1,则使不等式222135x x x x a a >-+-+成立的x 的集合是________.【答案】(-∞,4)【解析】01,x a y a <<∴=为减函数,222135xx x x a a-+-+>,222135x x x x ∴-+<-+,解得4x <,故使条件成立的x 的集合为(),4-∞,故答案为(),4-∞.(2).设.1084y =,0.728y =,3434y =,则() A .312y y y >> B .213y y y >> C .132y y y >> D .123y y y >>【答案】B 【解析】()20.80.81.16224y ===,()0.70.73 2.12822y ===,()332 1.5443422y ===.因为 2.1 1.6 1.5222>>,故213y y y >>. 故选:B重难点突破4 指数型复合函数的应用例5.已知函数22313x x y --⎛⎫= ⎪⎝⎭,求其单调区间及值域【答案】函数的单调增区间是(),1-∞减区间是()1,+∞;值域是(]0,81。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08 指数与指数函数1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象;4.体会指数函数是一类重要的函数模型.1.根式的性质 (1)(na )n=a .(2)当n 为奇数时na n=a . 当n 为偶数时na n={ aa -a a.2.有理数指数幂 (1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n 个 (n ∈N *). ②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1ap (a ≠0,p ∈N *).④正分数指数幂:a m n=na m (a >0,m 、n ∈N *,且n >1). ⑤负分数指数幂:a -m n=1a m n=1na m(a >0,m 、n ∈N *,且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①a r a s=ar +s(a >0,r 、s ∈Q );②(a r )s =a rs(a >0,r 、s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ).3.指数函数的图象与性质高频考点一 指数幂的运算例1、化简:(1)a3b23ab214b 1213-b 13(a>0,b>0);(2)()2113227()0.002102).8----+-+【感悟提升】(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【方法规律】(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.【变式探究】 (1)[(0.06415)-2.5]23-3338-π0=_______________________________. (2)(14)12·4ab -1--12=________.【答案】 (1)0 (2)85高频考点二 指数函数的图象及应用例2、(1)函数f (x )=1-e |x |的图象大致是( )(2)若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 【解析】 (1)f (x )=1-e |x |是偶函数,图象关于y 轴对称, 又e |x |≥1,∴f (x )的值域为(-∞,0], 因此排除B 、C 、D ,只有A 满足.(2)曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].【答案】 (1)A (2)[-1,1]【方法规律】(1)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(2)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.【变式探究】 (1)定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x的图象是( )(2)方程2x=2-x 的解的个数是________.【答案】 (1)A (2)1高频考点三 指数函数的图象和性质 例3、(1)下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62 C .0.8-0.1>1.250.2D .1.70.3<0.93.1(2)设a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则a ,b ,c 的大小关系是________.【答案】 (1)B (2)a>c>bD 中,∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B.(2)∵y=⎝ ⎛⎭⎪⎫25x 为减函数, ∴⎝ ⎛⎭⎪⎫2535<⎝ ⎛⎭⎪⎫2525即b<c , 又a c =⎝ ⎛⎭⎪⎫3525⎝ ⎛⎭⎪⎫2525=⎝ ⎛⎭⎪⎫3225>⎝ ⎛⎭⎪⎫320=1, ∴a>c,故a>c>b.【变式探究】设函数f(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x<0,x ,x≥0,若f(a)<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)【答案】 C【解析】 当a<0时,不等式f(a)<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a<8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为a<1,所以0≤a<1.故a 的取值范围是(-3,1),故选C.高频考点四、和指数函数有关的复合函数的性质例4、设函数f(x)=kax -a -x(a>0且a≠1)是定义域为R 的奇函数. (1)若f(1)>0,试求不等式f(x2+2x)+f(x -4)>0的解集;(2)若f(1)=32,且g(x)=a2x +a -2x -4f(x),求g(x)在[1,+∞)上的最小值.解 因为f(x)是定义域为R 的奇函数,所以f(0)=0,所以k -1=0,即k =1,f(x)=ax -a -x. (1)因为f(1)>0,所以a -1a >0,又a>0且a≠1,所以a>1.因为f′(x)=axlna +a -xlna =(ax +a -x)lna>0,所以f(x)在R 上为增函数,原不等式可化为f(x2+2x)>f(4-x), 所以x2+2x>4-x ,即x2+3x -4>0, 所以x>1或x<-4.即g(x)在x=log2(1+2)时取得最小值-2.【感悟提升】指数函数的性质及应用问题解题策略(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a的取值范围,并在必要时进行分类讨论.(3)解决指数函数的综合问题时,要把指数函数的概念和性质同函数的其他性质(如奇偶性、周期性)相结合,同时要特别注意底数不确定时,对底数的分类讨论.【变式探究】(1)已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.(2)如果函数y=a2x+2ax-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则a的值为( )A.13B.1C.3 D.13或3【答案】(1)(-∞,4] (2)D当0<a<1时,因为x∈[-1,1],所以t∈[a,1a ],又函数y =(t +1)2-2在[a ,1a ]上单调递增,则ymax =(1a +1)2-2=14,解得a =13(负值舍去).综上知a =3或a =13.高频考点五、换元法在和指数函数有关的复合函数中的应用例5、(1)函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x +1在区间[-3,2]上的值域是________. (2)函数f(x)=⎝ ⎛⎭⎪⎫12221-++x x 的单调减区间为________________________________.【解析】 (1)因为x∈[-3,2],所以若令t =⎝ ⎛⎭⎪⎫12x ,则t∈⎣⎢⎡⎦⎥⎤14,8, 故y =t2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,ymin =34;当t =8时,ymax =57.故所求函数值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 (1)⎣⎢⎡⎦⎥⎤34,57 (2)(-∞,1] 【特别提醒】(1)解决和指数函数有关的复合函数的单调性或值域问题时,要熟练掌握指数函数的单调性,搞清复合函数的结构,利用换元法转化为基本初等函数的单调性或值域问题;(2)换元过程中要注意“元”的取值范围的变化. 【方法与技巧】1.通过指数函数图象比较底数大小的问题,可以先通过令x =1得到底数的值,再进行比较. 2.指数函数y =ax (a>0,a≠1)的性质和a 的取值有关,一定要分清a>1与0<a<1. 3.对与复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.1.【2016高考新课标3理数】已知432a =,254b =,1325c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 【2015高考天津,理7】已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b << (C )c a b << (D )c b a << 【答案】C【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xfx =-,所以221lo g lo g 330.521(lo g 3)lo g 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 52log 5214,2(0)210b fc fm f ==-====-=所以c a b <<,故选C.【2015高考山东,理10】设函数()31,1,2,1xx x f x x -<⎧=⎨≥⎩则满足()()()2f a ff a =的a 取值范围是( ) (A )2,13⎡⎤⎢⎥⎣⎦ (B )[]0,1 (C )2,3⎡⎫+∞⎪⎢⎣⎭(D )[)1,+∞ 【答案】C(2014·福建卷)若函数y =log a x (a >0,且a ≠1)的图像如图11所示,则下列函数图像正确的是( )图11A BC D【答案】B(2014·江西卷)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R).若f [g (1)]=1,则a =( ) A .1 B .2 C .3 D .-1 【答案】A【解析】g (1)=a -1,由f [g (1)]=1,得5|a -1|=1,所以|a -1|=0,故a =1.(2014·辽宁卷)已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a 【答案】C【解析】因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .(2014·山东卷)设集合A ={x ||x -1|<2},B ={y |y =2x,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4) 【答案】C【解析】根据已知得,集合A ={x |-1<x <3},B ={y |1≤y ≤4},所以A ∩B ={x |1≤x <3}.故选C.(2014·山东卷)已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 3【答案】D【解析】因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D. (2014·陕西卷)下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x【答案】B(2014·陕西卷)已知4a=2,lg x =a ,则x =________. 【答案】10【解析】由4a=2,得a =12,代入lg x =a ,得lg x =12,那么x =1012 =10.(2013·安徽卷)已知一元二次不等式f(x)<0的解集为x⎪⎪⎪ )x<-1或x>12,则f(10x)>0的解集为( )A .{x|x<-1或x>-lg 2}B .{x|-1<x<-lg 2}C .{x|x>-lg 2}D .{x|x<-lg 2} 【答案】D【解析】根据已知可得不等式f(x)>0的解是-1<x<12,故-1<10x <12,解得x<-lg 2.(2013·湖南卷)设函数f(x)=a x+b x-c x,其中c>a>0,c>b>0.(1)记集合M ={(a ,b ,c)|a ,b ,c 不能构成一个三角形的三条边长,且a =b},则(a ,b ,c)∈M 所对应的f(x)的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)-∞,1),f(x)>0;,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC 为钝角三角形,则,2),使f(x)=0.【答案】(1){x|0<x≤1} (2)①②③【解析】(1)因a =b ,所以函数f(x)=2a x-c x,又因a ,b ,c 不能构成一个三角形,且c>a>0,c>b>0,故a +b =2a<c ,令f(x)=2a x-c x=0,即f(x)=c x⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫a c x -1=0,故可知⎝ ⎛⎭⎪⎫a c x =12,又0<a c <12,结合指数函数性质可知0<x≤1,即取值集合为{x|0<x≤1}.对于③,因f(1)=a +b -c>0,f(2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,,2),使f(x)=0,故③正确.故填①②③.(2013·浙江卷)已知x ,y 为正实数,则( ) A .2lg x +lg y=2lg x+2lg yB .2lg(x +y)=2lg x·2lg yC .2lg x·lg y =2lg x +2lg y D .2lg(xy)=2lg x·2lg y【答案】D【解析】∵lg(xy)=lg x +lg y ,∴2lg(xy)=2lg x +lg y=2lgx 2lgy,故选择D 。