建昌县第二高级中学学年高三上学期月月考数学考试含答案
高三第二次月考数学(理科)试卷(含答案与解析)
sin x x ;②cos x x ;③co |s |x x ;④2x x 的图像(部分)如图:=;AB CB CD CE△2,22BF=,求ABCcos120AD CDAD︒=sin602x x g'(x)=lnx+1+2x﹣3x2=A CB CD CE=.AB CB CD CE∠=∠是O的切线,∴CBF2=FA FC FB x x=,∴28∴.…高三上学期第二次月考数学(理科)试卷解析1.【分析】根据集合子集和真子集的定义确定集合M即可.【解答】解:因为{1,2,3}⊆M⊊{1,2,3,4,5,6},所以集合M中至少含有元素1,2,3.且M≠{1,2,3,4,5,6},所以M={1,2,3},{1,2,3,4},{1,2,3,5},},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6}.共7个.2.【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.3.【分析】先根据扇形面积公式S=lr,求出r=2,再根据求出α.【解答】解:设扇形的半径为r,中心角为α,根据扇形面积公式S=lr得6=,∴r=2,又扇形弧长公式l=r•α,∴.4.【分析】求出函数f(x)的定义域,根据复合函数单调性的判断方法求出函数f(x)的减区间,由题意知区间E为f(x)减区间的子集,据此可得答案.【解答】解:给定区间E,对任意x1,x2∈E,当x1<x2时,总有f(x1)<f(x2),函数是增函数.由x2﹣2x﹣3>0解得x<﹣1或x>3,所以函数f(x)的定义域为(﹣∞,﹣1)∪(3,+∞),因为y=递减函数,而t=x2﹣2x﹣3在(﹣∞,﹣1)上递减,在(3,+∞)上递增,所以函数f(x)的减区间为(﹣∞,﹣1),增区间为(3,+∞),由题意知,函数f(x)在区间E上单调递增,则E⊆(﹣∞,﹣1),而(﹣3,﹣1)⊆(﹣∞,﹣1),5.【分析】由条件利用正弦定理可得sinBcosC+sinCcosB=sinAsinA,再由两角和的正弦公式、诱导公式求得sinA=1,可得A=,由此可得△ABC的形状.【解答】解:△ABC的内角A,B,C所对的边分别为a,b,c,∵bcosC+ccosB=asinA,则由正弦定理可得sinBcosC+sinCcosB=sinAsinA,即sin(B+C)=sinAsinA,可得sinA=1,故A=,故三角形为直角三角形,6.【分析】利用指数函数和对数函数的单调性求解.【解答】解:∵a=2>20=1,0=logπ1<b=logπ3<logππ=1,c=log2sin<log21=0,∴a>b>C.7.【分析】A,命题的逆否命题,既要交换条件、结论,又要否定条件及结论;B,sin(θ+2kπ)=,不能推出θ=;C,p∧q为假命题,则p,q有一个为假命题即可;D,命题的否定先换量词,再否定结论.【解答】解:对于A,命题的逆否命题,既要交换条件、结论,又要否定条件及结论,所以‘命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题为:“若方程x2+x﹣m=0无实数根,则m≤0”,故正确;对于B,“”⇒“”但sin(θ+2kπ)=,不能推出θ=,故正确;对于C,p∧q为假命题,则p,q有一个为假命题即可,故错误;对于D,命题的否定先换量词,再否定结论,故正确.8.【分析】由题意画出图象,由图求出∠CDB和∠ADB的值,设CD=h,由条件在直角三角形求出边AD.BD,由余弦定理列出方程求出CD的值.【解答】解:由题意画出图象:则∠CDB=30°,∠ADB=90°+60°=150°,且AB=84,设CD=h,则在RT△ADC中,AD=CD=h,在RT△BDC中,BD===,在△ABD中,由余弦定理得,AB2=AD2+BD2﹣2•AD•BD•cos∠ADB,则,化简得,7h2=842,解得h=(米),9.【分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【解答】解:根据①y=x•sinx为偶函数,它的图象关于y轴对称,故第一个图象即是;根据②y=x•cosx为奇函数,它的图象关于原点对称,它在(0,)上的值为正数,在(,π)上的值为负数,故第三个图象满足;根据③y=x•|cosx|为奇函数,当x>0时,f(x)≥0,故第四个图象满足;④y=x•2x,为非奇非偶函数,故它的图象没有对称性,故第2个图象满足,10.【分析】先根据两角和差的正弦公式,化简f(x),再根据图象的平移求出g(x),最后根据定积分计算即可.【解答】解:∵f(x)=sinx﹣cosx=2sin(x﹣),又y=g(x)的图象是由函数f(x)的图象向左平移个单位而得到的,∴g(x)=2sin[(x+)﹣]=2sinx,∴函数y=g(x)的图象与直线x=0,x=,x轴围成的封闭图形的面积S=∫2sinxdx=﹣2cosx|=﹣2(cos﹣cos0)=3.11.【分析】由于f(x)定义在(﹣1,1)上的偶函数,且在区间(﹣1,0)上单调递增,可得f(x)在(0,1)上是减函数.而锐角三角形中,任意一个角的正弦要大于另外角的余弦,由此对题中各个选项依此加以判断,可得本题的答案.【解答】解:对于A,由于不能确定sinA.sinB的大小,故不能确定f(sinA)与f(sinB)的大小,可得A不正确;对于B,∵A,B,C是锐角三角形△ABC的三个内角,∴A+B>,得A>﹣B注意到不等式的两边都是锐角,两边取正弦,得sinA>sin(﹣B),即sinA>cosB∵f(x)定义在(﹣1,1)上的偶函数,且在区间(﹣1,0)上单调递增∴f(x)在(0,1)上是减函数由sinA>cosB,可得f(sinA)<f(cosB),故B不正确对于C,∵A,B,C是锐角三角形△ABC的三个内角,∴B+C>,得C>﹣B注意到不等式的两边都是锐角,两边取余弦,得cosC<cos(﹣B),即cosC<sinB∵f(x)在(0,1)上是减函数由cosC<sinB,可得f(cosC)>f(sinB),得C正确;对于D,由对B的证明可得f(sinC)<f(cosB),故D不正确12.【分析】由x+y2e y﹣a=0成立,解得y2e y=a﹣x,根据题意可得:a﹣1≥(﹣1)2e﹣1,且a﹣0≤12×e1,解出并且验证等号是否成立即可得出.【解答】解:由x+y2e y﹣a=0成立,解得y2e y=a﹣x,∴对任意的x∈[0,1],总存在唯一的y∈[﹣1,1],使得x+y2e y﹣a=0成立,∴a﹣1≥(﹣1)2e﹣1,且a﹣0≤12×e1,解得≤a≤e,其中a=1+时,y存在两个不同的实数,因此舍去,a的取值范围是.13.【分析】由已知函数定义域求得y=f(x)的定义域,再结合分母不为0得答案.【解答】解:∵y=f(x+2)的定义域为(0,2),即0<x<2,∴2<x+2<4,即y=f(x)的定义域为(2,4),由,得2<x<4.∴函数y=的定义域为(2,4).14.【分析】把所给的条件平方,再利用二倍角公式求得sin2α 的值.【解答】解:∵已知sinα+cosα=,平方可得1+2sinαcosα=1+sin2α=,解得sin2α=﹣,15.【分析】作出函数f (x )=的图象,依题意,可得4m ﹣m 2<m (m >0),解之即可.【解答】解:当m >0时,函数f (x )=的图象如下:∵x >m 时,f (x )=x 2﹣2mx+4m=(x ﹣m )2+4m ﹣m 2>4m ﹣m 2,∴y 要使得关于x 的方程f (x )=b 有三个不同的根, 必须4m ﹣m 2<m (m >0),即m 2>3m (m >0),解得m >3,∴m 的取值范围是(3,+∞),故答案为:(3)+∞,.16.【分析】由已知式子和正弦定理可得B=,再由余弦定理可得ac ≤16,即可求得a+c 的最大值.【解答】解:∵在△ABC 中=,∴(2a ﹣c )cosB=bcosC ,∴(2sinA ﹣sinC )cosB=sinBcosC ,∴2sinAcosB=sinCcosB+sinBcosC=sin (B+C )=sinA , 约掉sinA 可得cosB=,即B=, 由余弦定理可得16=a 2+c 2﹣2accosB=a 2+c 2﹣ac ≥2ac ﹣ac ,∴ac ≤16,当且仅当a=c 时取等号,∴16=a 2+c 2﹣ac=(a+c )2﹣3ac ,可得:(a+c )2=16+3ac ≤64,解得a+c ≤8,当且仅当a=c 时取等号.17.【分析】(1)先根据两角和与差的正弦和余弦公式将函数f (x )展开再整理,可将函数化简为y=Asin (wx+ρ)的形式,根据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先根据x的范围求出2x﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.cos120?AD CDAD︒=sin60221.【分析】(I)根据极值点的信息,我们要用导数法,所以先求导,则的极值点,则有从而求得结果.II f x[1+f′x0x[1+(III)将a=﹣1代入,方程,可转化为b=xlnx+x2﹣x3,x>0上有解,只要求得函数g(x)=xlnx+x2﹣x3的值域即可.22+--[3(32)(+2)]a x ax a x ax x g'(x)=lnx+1+2x﹣3x2A CB CD CE=AB CB CD CE=.是O的切线,∴CBF∠=∠BCF△中,FAB FBC∠=∠⎧⎨2FA FC FB=28x x=,∴∴.…【分析】(1)利用cos2θ+sin2θ=1,即可曲线C1的参数方程化为普通方程,进而利用即可化为极坐标方程,同理可得曲线C2的直角坐标方程;(2)由点M1.M2的极坐标可得直角坐标:M1(0,1),M2(2,0),可得直线M1M2的方程为,此直线经过圆心,可得线段PQ是圆x2+(y﹣1)2=1的一条直径,可得得OA⊥OB,A,B是椭圆上的两点,在极坐标下,设,代入椭圆的方程即可证明.2x【分析】(1)函数f(x)=|x﹣3|+|x+4|,不等式f(x)≥f(4)即|x﹣3|+|x+4|≥9.可得①,或②,或③.分别求得①、②、③的解集,再取并集,即得所求.。
建昌县二中2018-2019学年高三上学期11月月考数学试卷含答案
建昌县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A. B. C. D. 2. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A. B.C.D.3. 已知i为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限4. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x5.已知,,那么夹角的余弦值( )A.B.C .﹣2D.﹣6. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( ) A.B.C .D.7. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .48. 已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A. B.C .πD .2π班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a10.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 11.已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)12.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定二、填空题13.已知一个算法,其流程图如图,则输出结果是 .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .15.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等. 16.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.18.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为.三、解答题19.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.20.在等比数列{a n}中,a1a2a3=27,a2+a4=30试求:(1)a1和公比q;(2)前6项的和S6.21.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.22.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值.23.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);(单位:元),求X的分布列及数学期望.24.已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.建昌县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】考点:三视图.2.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.3.【答案】A【解析】解:==1+i,其对应的点为(1,1),故选:A.4.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.5.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.6.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.7.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.8.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x 2+y 2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB =﹣,k OA =,∴tan ∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x 2+y 2=4在区域D 内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a ,b 的是值,然后借助不等式区域求解面积是解决本题的关键.9. 【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴c <a <b . 故选C10.【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系111.【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.12.【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)==86,则<,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.二、填空题13.【答案】5.【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.14.【答案】4.【解析】解:∵sinA,sinB,sinC依次成等比数列,∴sin2B=sinAsinC,由正弦定理可得:b2=ac,∵c=2a,可得:b=a,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC=acsinB==4.故答案为:4.15.【答案】316.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误,故正确答案①②③④答案:①②③④17.【答案】12【解析】考点:分层抽样18.【答案】3π.【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr2=3π故答案为:3π【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.20.【答案】【解析】解:(1)在等比数列{a n }中,由已知可得:…(3分)解得:或…(6分)(2)∵∴当时,.…(10分)当时,…(14分)【点评】本题主要考查了利用等比数列的通项公式求解等比数列的基本量,及等比数列的求和公式的应用,解题的关键是熟练应用公式.21.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.22.【答案】【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.化为:x2+y2﹣4x﹣4y+6=0.(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.圆心C(2,2),半径r=.|OP|==2.∴线段OP的最大值为2+=3.最小值为2﹣=.23.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X24.【答案】【解析】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.。
建昌县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
建昌县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设复数z 满足(1﹣i )z=2i ,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i2. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条3. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )A.2) B.2: C.1: D(1 4. 若复数z 满足i 1i z =--,则在复平面内,z 所对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =6. 已知命题:()(0xp f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >. 则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 7. 若直线L :047)1()12(=--+++m y m x m 圆C :25)2()1(22=-+-y x 交于B A ,两点,则弦长||AB 的最小值为( )A .58B .54C .52D .5 8.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P的坐标满足不等式x 2+y 2≤2的概率为( )A. B. C. D.9. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心 11.下面是关于复数的四个命题:p 1:|z|=2,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________p 2:z 2=2i ,p 3:z 的共轭复数为﹣1+i , p 4:z 的虚部为1. 其中真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 412.已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( ) A .y=﹣x+4 B .y=x C .y=x+4D .y=﹣x二、填空题13.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).14.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.15.已知函数f (x )=,若f (f (0))=4a ,则实数a= .16.用“<”或“>”号填空:30.8 30.7.17.已知||=1,||=2,与的夹角为,那么|+||﹣|= .18.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)三、解答题19.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.20.已知函数f (x )=log 2(x ﹣3), (1)求f (51)﹣f (6)的值; (2)若f (x )≤0,求x 的取值范围.21.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.22.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.23.已知在△ABC 中,A (2,4),B (﹣1,﹣2),C (4,3),BC 边上的高为AD .(1)求证:AB ⊥AC ;(2)求向量.24.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .建昌县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.2.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.3.【答案】D【解析】考点:1、抛物线的定义; 2、抛物线的简单性质.【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 4. 【答案】B 【解析】 5. 【答案】B【解析】试题分析:对于A ,xy e =为增函数,y x =-为减函数,故xy e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.6. 【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.7. 【答案】B 【解析】试题分析:直线:L ()()0472=-++-+y x y x m ,直线过定点⎩⎨⎧=-+=-+04072y x y x ,解得定点()1,3,当点(3,1)是弦中点时,此时弦长AB 最小,圆心与定点的距离()()5123122=-+-=d ,弦长545252=-=AB ,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.1111]8. 【答案】D【解析】解:作出不等式组对应的平面区域如图, 则对应的区域为△AOB ,由,解得,即B (4,﹣4),由,解得,即A (,),直线2x+y ﹣4=0与x 轴的交点坐标为(2,0),则△OAB 的面积S==,点P 的坐标满足不等式x 2+y 2≤2区域面积S=,则由几何概型的概率公式得点P 的坐标满足不等式x 2+y 2≤2的概率为=,故选:D【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据几何概型的概率公式进行求解.9.【答案】A【解析】解:∵复数z满足(1+i)z=2i,∴z===1+i,它在复平面内对应点的坐标为(1,1),故选A.10.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
高三数学上学期第二次月考试卷.doc
高三数学上学期第二次月考试卷一、填空题:(4分×12=48分)1、函数y=sinx·cos(x+4π)+cosx·sin(x+4π)的周期是 。
2、设集合A ={5,log 2(x +3)},B ={x ,y },若A∩B ={2},则A ∪B = 。
3、设等比数列{n a }的公比为q =12,且)(lim 1231-∞→+++n n a a a ,则1a = 。
4、等差数列{n a }中,,n m a m a n ==,则m n a += 。
5、已知P (-1,-5),向量a ={2,3},若PQ =3a ,则Q 的坐标 。
6、a ∈R ,若关于x 的方程2210ax x -+=至多有一个实根,则a 取值为 。
7、若123n a n =++++,111(1)(1)(1)23n b n=---(n ∈N ), 则2lim nn n b a ⋅∞→= 。
8、已知x ∈(-2π,0),cosx=54,则2tg x = 。
9、函数2()48f x x x =-+,x ∈[1,a],若它的最大值为()f a ,则实数a 的取值范围 。
10、若直线2320x y a ++=与2(1)820ax a y a --++=平行,则实数a = 。
11、已知()f x 是定义在R 上的奇函数,且(2)()f x f x +=,当x ∈[0,1]时,()21xf x =-,则12(log 24)f = 。
12、数列{n a }是首项为1a ,前n 项和为n s 的等差数列。
将n a a S n n ⋅+=21整理为11122n n s a a n =+后,可知点111(,)1s P a , 222(,)2sP a ))(,(N n n S a P n n n ∈都在直线 11122y x a =+上。
类似的若{n a }是首项为1a ,公比为q 的等比数列(q≠1),则点在直线P 1(a 1,s 1), P 2(a 2,s 2),…, P n (a n ,s n )… (n ∈N)在直线 上。
高三上学期第二次月考数学(理科)试卷(含答案与解析)
A B=(6.函数A.B.C.D.,>><<a b c d00)[2)∞,.若等差数列{}n a的前1++b b1032n,则数列.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列.51)12n﹣)函数1212n n -++-7221n n +-+422222n +++-2633PD BD a a a PB a==3254a a 是352=4a ∴⨯111,2,422n n n q q a -+>∴=∴==依题意,数列{}n b 为等差数列,公差1d =)12n n a +=不等式2log (n n T n ∈*N2n n λ-∴≤91)31n -=+(Ⅰ)2||x a -≤()2f x ≤的解集为(Ⅱ)()f x f +0x ∃∈R ,使得即0()f x +)(,)1+∞.高三上学期第二次月考数学试卷(理科)解析1.【分析】根据所给的两个集合,整理两个集合,写出两个集合的最简形式,再求出两个集合的交集.【解答】解:∵集合A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈R|x2﹣3x>0}={x∈R|x<0或x>3}∴A∩B={4,5,6}.2.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数==为纯虚数,∴a﹣1=0,1+a≠0,解得a=1.3.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==12×=6,则有f(﹣2)+f(log212)=3+6=9.4.【分析】由条件利用任意角的三角函数的定义求得sinα 和cosα的值,再利用诱导公式进行化简所给的式子,可得结果.【解答】解:∵角α的终边上有一点P(1,3),∴x=1,y=3,r=|OP|=,∴sinα==,cosα==,则===1,5.【分析】由已知,根据等差数列的性质,把转化为求解.【解答】解:.6.【分析】利用函数的奇偶性、单调性、特殊值,借助排除法能求出结果.【解答】解:∵y=xsinx+cosx,设f(x)=xsinx+cosx,则f(﹣x)=(﹣x)sin(﹣x)+cos(﹣x)=xsinx+cosx=f(x),∴y=xsinx+cosx是偶函数,故排除D.当x=0时,y=0+cos0=1,故排除C和D;∵y′=xcosx,∴x>0开始时,函数是增函数,由此排除B.7.【分析】利用特例法,判断选项即可.【解答】解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C.D不正确;=﹣3,=﹣∴A不正确,B正确解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.8.【分析】已知2a+3b=6,求的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而=,9.【分析】利用基本不等式的性质即可得出.【解答】解:实数满足,∴a,b>0,∴≥2,化为:ab,当且仅当b=2a=.则ab的最小值为.10.【分析】将原不等式整理成关于x的二次不等式,结合二次函数的图象与性质解决即可,注意对二次项系数分类讨论【解答】解:不等式ax2+2ax﹣4<2x2+4x,可化为(a﹣2)x2+2(a﹣2)x﹣4<0,当a﹣2=0,即a=2时,恒成立,合题意.当a﹣2≠0时,要使不等式恒成立,需,解得﹣2<a<2.所以a的取值范围为(﹣2,2].11.【分析】由S n=n2,可得a1=1,a2=3.可得等差数列{a n}的公差d=2.可得a n.可得=n+,令f(x)=x+(x≥1),利用导数研究其单调性即可得出.【解答】解:由S n=n2,可得a1=1,1+a2=22,解得a2=3.∴等差数列{a n}的公差d=3﹣1=2.∴a n=1+2(n﹣1)=2n﹣1.∴==n+,令f(x)=x+(x≥1),f′(x)=1﹣=,当1≤x<2时,f′(x)<0,函数f(x)单调递减;当x时,f′(x)<0,函数f(x)单调递增.∴n=3或4时,n+取得最小值7.12.【分析】由已知得a1+a2+…+a n=n(2n+1)=S n,求出S n后,利用当n≥2时,a n=S n﹣S n﹣1,即可求得通项a n,最后利用裂项法,即可求和.【解答】解:由已知得,∴a1+a2+…+a n=n(2n+1)=S n当n≥2时,a n=S n﹣S n﹣1=4n﹣1,验证知当n=1时也成立,∴a n=4n﹣1,∴,∴∴=+()+…+()=1﹣=.13.【分析】作出不等式组对应的平面区域,则z=(x﹣1)2+y2的几何意义为动点P(x,y)到定点(1,0)的距离的平方,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:则z=(x﹣1)2+y2的几何意义为动点P(x,y)到定点(1,0)的距离的平方,过点A(1,0)作AB垂直直线x+y﹣3=0,则|AB|的距离最小,则圆心A到直线x+y﹣3=0的距离d=,此时z=d2=2,14.【分析】把已知等式两边同时除以2n+1,可得数列{}是以1为首项,以为公差的等差数列,再由等差数列的通项公式求得答案.【解答】解:由a n+1=2a n+3•2n,得,即,又,∴数列{}是以1为首项,以为公差的等差数列,则,∴.15.【分析】根据题意,分析图乙,可得其第k行有k个数,则前k行共有个数,第k行最后的一个数为k2,从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列;进而由442<2015<452,可得2015出现在第45行,又由第45行第一个数为442+1=1937,由等差数列的性质,可得该行第40个数为2015,由前44行的数字数目,相加可得答案.【解答】解:分析图乙,可得①第k行有k个数,则前k行共有个数,②第k行最后的一个数为k2,③从第三行开始,以下每一行的数,从左到右都是公差为2的等差数列,又由442=1936,452=2025,则442<2015<452,则2015出现在第45行,第45行第一个数为442+1=1937,这行中第=40个数为2015,前44行共有=990个数,则2015为第990+40=1030个数.16.【分析】对4个选项,分别进行判断,即可判断命题的真假.【解答】解:①常数均为0的数列是等差数列,不是等比数列,故不正确;②在△ABC中,若sin2A+sin2B=sin2C,则a2+b2=c2,所以△ABC为直角三角形,正确;③因为三角形是锐角三角形,所以A+B>即:>A>﹣B>0,所以sinA>cosB,同理sinB>cosA,所以tanAtanB=>1,正确;的前项和,则此数列的通项n n n111n n17.【分析】(1)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinC=2sinA,即可得解=2.的通项公式;n(2)由(1)得b n=,利用错位相减法可求得T n=5﹣.f x)函数()1212n n -++-7221n n +-+422222n +++-2633PD BD a a a PB a==2320.【分析】(1)利用的等差中项,求出公比,可求数列{a n }的通项公式;数列{b n }为等差数列,公差d=1,可求数列{b n }的通项公式;(2)不等式nlog 2(T n +4)﹣λb n +7≥3n 化为n 2﹣n+7≥λ(n+1),可得对一切n ∈N *恒成立,利用不等式,即可得出结论.3254a a 是352=4a ∴⨯111,2,422n n n q q a -+>∴=∴==依题意,数列{}n b 为等差数列,公差1d =)12n n a +=不等式2log (n n T n ∈*N …2n n λ-∴≤91)31n -=+ 22.【分析】(1)直线l 的参数方程为(t 为参数),消去参数t 化为普通方程可得,进而得到倾斜角.由曲线C 的极坐标方程得到:ρ2=2ρcos (θ﹣),利用ρ2=x 2+y 2,即可化为直角坐标方程.2242223.【分析】(Ⅰ)若不等式f (x )≤2的解集为[0,4],可得,即可求实数a 的值;2(Ⅰ)2||x a -≤()2f x ≤的解集为[0,4],⎧⎨⎩(Ⅱ)()f x f +0x ∃∈R ,使得即0()f x +)(,)1+∞。
建昌县第二中学2018-2019学年高三上学期11月月考数学试卷含答案
建昌县第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.72. 如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.3. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是( )A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f(x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④4. 若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c 的等差中项,则=( )A .4B .3C .2D .15. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值6. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 7. 如果定义在R 上的函数)(x f 满足:对于任意21x x ≠,都有)()(2211x f x x f x +)()(1221x f x x f x +>,则称)(x f 为“H 函数”.给出下列函数:①13++-=x x y ;②)cos sin (23x x x y --=;③1+=x e y ;④⎩⎨⎧=≠=00||ln x x x y ,其中“H 函数”的个数是( )A .4B .3C .2D .18. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π9. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 10.下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=11.已知函数y=f (x )的周期为2,当x ∈[﹣1,1]时 f (x )=x 2,那么函数y=f (x )的图象与函数y=|lgx|的图象的交点共有( )A .10个B .9个C .8个D .1个12.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣3二、填空题13.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .14.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 15.设函数f (x )=则函数y=f (x )与y=的交点个数是 .16.不等式()2110ax a x +++≥恒成立,则实数的值是__________. 17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 18.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .三、解答题19.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059 1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.20.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;(2)求函数[()]f f x 的解析式并确定其定义域.21.已知函数f (x )=Asin (ωx+φ)(x ∈R ,A >0,ω>0,0<φ<)图象如图,P 是图象的最高点,Q 为图象与x 轴的交点,O 为原点.且|OQ|=2,|OP|=,|PQ|=.(Ⅰ)求函数y=f (x )的解析式;(Ⅱ)将函数y=f (x )图象向右平移1个单位后得到函数y=g (x )的图象,当x ∈[0,2]时,求函数h (x )=f (x )•g (x )的最大值.22.已知数列{a n }中,a 1=1,且a n +a n+1=2n , (1)求数列{a n }的通项公式;(2)若数列{a n }的前n 项和S n ,求S 2n .23.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f =(1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;24.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?建昌县第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.2.【答案】D.第Ⅱ卷(共110分)3.【答案】D【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f(x);图象②④恒在x轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h(x)和Φ(x),又图象②过定点(0,1),其对应函数只能是h(x),那图象④对应Φ(x),图象③对应函数g(x).故选:D.【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.4.【答案】C【解析】解:由题意可知,,∴===.故选C.【点评】本题考查数列的性质应用,难度不大,解题时要多一份细心.5.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.6.【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式.7.【答案】C【解析】∵1122()()x f x x f x +)()(1221x f x x f x +>, ∴1212()[()()]0x x f x f x -->,∴)(x f 在R 上单调递增.①231y x '=-+, 3(,)3x ∈-∞,0y '<,不符合条件; ②32(cos +sin )=322sin()04y x x x π'=--+>,符合条件;③0x y e '=>,符合条件;④()f x 在(,0)-∞单调递减,不符合条件; 综上所述,其中“H 函数”是②③. 8. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 9. 【答案】B 【解析】10.【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R . B .实数是复数,实数能比较大小.C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确. 故选:C .11.【答案】A【解析】解:作出两个函数的图象如上∵函数y=f (x )的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f (x )在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.12.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.二、填空题13.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.14.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.15.【答案】4.【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4.故答案为:4.16.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2(1)40a a a >⎧⎨∆=+-≤⎩,即20(1)0a a >⎧⎨-≤⎩,解得1a =.1考点:不等式的恒成立问题.17.【答案】 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒==a b +=考点:指对数式运算 18.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;∴判断框中的条件为i <6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题三、解答题19.【答案】【解析】解:(1)设抽取x 人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A ,B ,在40:59岁之间为a ,b ,c ,随机选取2人的情况有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ), (a ,b ),(a ,c ),(b ,c ),共10种,年龄都在40:59岁之间的有(a ,b ),(a ,c ),(b ,c ),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.20.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【解析】试题解析:(1)设()(0)f x kx b k =+>,111]由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,5,k b =⎧⎨=⎩∴()5f x x =+,[]3,2x ∈-.(2)(())(5)10f f x f x x =+=+,{}3x ∈-.考点:待定系数法. 21.【答案】【解析】解:(Ⅰ)由余弦定理得cos ∠POQ==,…∴sin ∠POQ=,得P 点坐标为(,1),∴A=1, =4(2﹣),∴ω=. …由f ()=sin (+φ)=1 可得 φ=,∴y=f (x ) 的解析式为 f (x )=sin (x+).…(Ⅱ)根据函数y=Asin (ωx+∅)的图象变换规律求得 g (x )=sin x ,…h (x )=f (x )g (x )=sin (x+) sinx=+sinxcosx=+sin=sin(﹣)+.…当x∈[0,2]时,∈[﹣,],∴当,即x=1时,h max(x)=.…【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求函数的解析式,函数y=Asin(ωx+∅)的图象变换规律,正弦函数的定义域和值域,属于中档题.22.【答案】【解析】解:(1)∵a1=1,且a n+a n+1=2n,∴当n≥2时,.∴a n+1﹣a n﹣1=2n﹣1,当n=1,2,3时,a1+a2=2,a2+a3=22,.解得a2=1,a3=3,a4=5.当n为偶数2k(k∈N*)时,a2k=(a2k﹣a2k﹣2)+(a2k﹣2﹣a2k﹣4)+…+(a6﹣a4)+(a4﹣a2)+a2=22k﹣2+22k﹣4+…+24+22+1==.当n为奇数时,,∴,∴(k∈N*).(2)S2n=(a2+a4+…+a2n)+(a1+a3+…+a2n﹣1)=(a2+a4+…+a2n)+[(2﹣a2)+(23﹣a4)+…+(a2n﹣1﹣a2n)]=2+23+…+22n﹣1==.【点评】本题考查了等比数列的通项公式及其前n项和公式、“累加求和”,考查了分类讨论思想方法,考查了推理能力与计算能力,属于中档题.23.【答案】(1)1a =,()f x 为奇函数;(2)详见解析。
建昌县高中2019-2020学年上学期高三数学10月月考试题
建昌县高中2019-2020学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=--表示C .不经过原点的直线都可以用方程1x y a b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示 2. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ;③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α;其中正确命题的序号是( )A .①②③④B .①②③C .②④D .①③3. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称函数)(x f 为“H 函数”.给出下列函数:①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.4. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .()B .(,]C .()D .(]5. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( )A .28B .36C .45D .1206. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .137. 已知AC ⊥BC ,AC=BC ,D 满足=t +(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .8. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[] 9. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自然数为( ) A .11 B .12 C .13D .1410.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与。
建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是()cm3A .πB .2πC .3πD .4π2. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.3. 设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b >D .33a b >4. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是()A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]5. 曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A . e 2B .2e 2C .e 2D . e 26. 数列1,3,6,10,…的一个通项公式是( )A .B .C .D .21n a n n =-+(1)2n n n a -=(1)2n n n a +=21n a n =+7. 方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分8. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)9. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =可以为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B. C. D.10.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C.反向平行D.既不平行也不垂直11.定义某种运算S=a⊗b,运算原理如图所示,则式子+的值为()A.4B.8C.10D.1312.已知双曲线的方程为﹣=1,则双曲线的离心率为()A.B.C.或D.或二、填空题13.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)= . 14.椭圆+=1上的点到直线l:x﹣2y﹣12=0的最大距离为 .15.若圆与双曲线C:的渐近线相切,则_____;双曲线C的渐近线方程是所示的框图,输入,则输出的数等于17.已知实数a >b ,当a 、b 满足 条件时,不等式<成立.18.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .三、解答题19.已知{a n }为等比数列,a 1=1,a 6=243.S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35.(1)求{a n }和{B n }的通项公式;(2)设T n =a 1b 1+a 2b 2+…+a n b n ,求T n . 20.(本小题满分12分)已知函数().()2ln f x ax bx x =+-,a b ∈R (1)当时,求函数在上的最大值和最小值;1,3a b =-=()f x 1,22⎡⎤⎢⎥⎣⎦(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求0a =b (]0,e x ∈e ()f x 出的值;若不存在,说明理由;b21.已知椭圆C : +=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.22.【淮安市淮海中学2018届高三上第一次调研】已知函数.()133x x af x b+-+=+(1)当时,求满足的的取值;1a b ==()3xf x =x (2)若函数是定义在上的奇函数()f x R ①存在,不等式有解,求的取值范围;t R ∈()()2222f t t f t k -<-k ②若函数满足,若对任意,不等式恒成立,()g x ()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦x R ∈()()211g x m g x ≥⋅-求实数的最大值.m 23.(本题满分14分)已知函数.x a x x f ln )(2-=(1)若在上是单调递减函数,求实数的取值范围;)(x f ]5,3[a(2)记,并设是函数的两个极值点,若,x b x a x f x g )1(2ln )2()()(--++=)(,2121x x x x <)(x g 27≥b 求的最小值.)()(21x g x g -24.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点.(Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ;(Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.2.【答案】D.【解析】3.【答案】D【解析】考点:不等式的恒等变换.4.【答案】D【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,∴单调间区间为[a,+∞)又∵f(x)在区间[1,2]上是减函数,∴a≤1∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,∵g(x)=在区间[1,2]上是减函数,∴﹣a>2,或﹣a<1,即a<﹣2,或a>﹣1,综上得a ∈(﹣∞,﹣2)∪(﹣1,1],故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围. 5. 【答案】D【解析】解析:依题意得y ′=e x ,因此曲线y=e x 在点A (2,e 2)处的切线的斜率等于e 2,相应的切线方程是y ﹣e 2=e 2(x ﹣2),当x=0时,y=﹣e 2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:S=×e 2×1=.故选D . 6. 【答案】C 【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C .1n =2n =(1)2n n n a +=121,3a a ==考点:数列的通项公式.7. 【答案】C 【解析】解:x=两边平方,可变为3y 2﹣x 2=1(x ≥0),表示的曲线为双曲线的一部分;故选C .【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想. 8. 【答案】C【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者,∵a n =﹣n+p ,∴{a n }是递减数列,∵b n =2n ﹣5,∴{b n }是递增数列,∵c 8>c n (n ≠8),∴c 8是c n 的最大者,则n=1,2,3,…7,8时,c n 递增,n=8,9,10,…时,c n 递减,∴n=1,2,3,…7时,2n ﹣5<﹣n+p 总成立,当n=7时,27﹣5<﹣7+p ,∴p >11,n=9,10,11,…时,2n ﹣5>﹣n+p 总成立,当n=9时,29﹣5>﹣9+p ,成立,∴p <25,而c 8=a 8或c 8=b 8,若a 8≤b 8,即23≥p ﹣8,∴p ≤16,则c 8=a 8=p ﹣8,∴p ﹣8>b 7=27﹣5,∴p >12,故12<p ≤16,若a 8>b 8,即p ﹣8>28﹣5,∴p >16,∴c 8=b 8=23,那么c 8>c 9=a 9,即8>p ﹣9,∴p <17,故16<p <17,综上,12<p <17.故选:C . 9. 【答案】A 【解析】试题分析:,为奇函()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=gg ()cos y g x x ∴=数,排除B ,D ,令时,故选A. 10.1x =0y >考点:1、函数的图象及性质;2、选择题“特殊值”法.10.【答案】D【解析】解:如图所示,△ABC 中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.11.【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.12.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.二、填空题13.【答案】 4 .【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).14.【答案】 4 .【解析】解:由题意,设P(4cosθ,2sinθ)则P到直线的距离为d==,当sin(θ﹣)=1时,d取得最大值为4,故答案为:4.15.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,16.【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。
辽宁省葫芦岛市建昌第二中学2021-2022学年高三数学文月考试卷含解析
辽宁省葫芦岛市建昌第二中学2021-2022学年高三数学文月考试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知直线⊥平面,直线平面,给出下列命题: ①∥②⊥∥③∥⊥④⊥∥其中正确命题的序号是( )A .①②③ B.②③④ C.①③ D.②④参考答案:C2. 某校数学复习考有位同学参加﹐评分后校方将此位同学依总分由高到低排序如下﹕前人为组﹐次人为组﹐再次人为组﹐最后人为组﹒校方进一步逐题分析同学答题情形﹐将各组在填充第一题(考排列组合)和填充第二题 (考空间概念)的答对率列表如下﹕ 组 组 组 组A .第一题答错的同学﹐不可能属于组B .从第二题答错的同学中随机抽出一人﹐此人属于组的机率大于C .全体同学第一题的答对率比全体同学第二题的答对率低15%D .从组同学中随机抽出一人﹐此人第一﹑二题都答对的机率不可能大于﹒参考答案:D3. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =x 2,值域为(1,4)的“同族函数”共有( )A 、7个B 、8个C 、9个D 、10个参考答案: C由题意,问题的关键在于确定函数定义域的个数:函数解析式为,值域为,那么定义域内的元素可为,则定义域可为下列的9种:,,因此“同族函数”有9个.4. 已知f (x )=Asin (ωx+φ)(A >0,ω>0,0<φ<π),函数f (x )的图象如图所示,则f (2016π)的值为( )A .B .﹣C .D .﹣参考答案:A【考点】由y=Asin (ωx+φ)的部分图象确定其解析式.【分析】由图象的顶点坐标求出A ,由周期求出ω,通过图象经过(,0),求出φ,从而得到f(x )的解析式,利用诱导公式及特殊角的三角函数值即可计算求值. 【解答】解:由函数的图象可得A=2,T==4×(﹣)=4π,解得ω=.又图象经过(,0),0=2sin (×+φ),0<φ<π,φ=,故f (x )的解析式为f (x )=2sin (x+), 所以:f (2016π)=2sin (×2016π+)=.故选:A .【点评】本题主要考查由函数y=Asin (ωx+φ)的部分图象求函数的解析式,考查了诱导公式及特殊角的三角函数值在三角函数化简求值中的应用,注意函数的周期的求法,考查计算能力,属于中档题.5. 公比为2的等比数列{an)的各项都是正数,且=16,则a6等于A.1 B.2 C.4 D.8参考答案:B【知识点】等比数列及等比数列前n项和D3由题意可得a72=a4a10=16,又数列的各项都是正数,故a7=4,故a6==2【思路点拨】由题意结合等比数列的性质可得a7=4,由通项公式可得a6.6. 设向量15,45,若t是实数,且,则的最小值为………….( )A. B. C. D.参考答案:D7. 一个几何体的正视图和侧视图都是边长为1的正方形,则这个几何体的俯视图一定不是()参考答案:B略8. 设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为 ( )A.(1,1+) B.(1+,+∞) C.(1,3) D.(3,+∞)参考答案:A解:作出不等式组所表示的平面区域如图所示作L:x+my=0,向可行域内平移,越向上,则Z的值越大,从而可得当直线L过B时Z最大而联立x+y=1,与y=mx可得点B(),代入可得9. 已知为的外心,动点满足,则的轨迹一定过的A.内心B.垂心C.重心D.边的中点参考答案:C略10. 函数的图象大致为( )参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分 11. (几何证明选讲选做题)如图所示,圆的直径,为圆周上一点,,过作圆的切线,过作的垂线,垂足为,则参考答案:12. 向量与满足,,且,则.参考答案:13. 函数,程序框图如图所示,若输出的结果,则判断框中可以填入的关于的判断条件是.参考答案:14. 已知点是抛物线:上的不同的三点,为坐标原点,直线,且抛物线的准线方程为.(1) 求抛物线的方程; (2) 若的重心在直线上, 求的面积取值范围.参考答案:略15. 已知椭圆 与双曲线 有公共的左、右焦点F 1,F 2,它们在第一象限交于点P ,其离心率分别为,以F 1,F 2为直径的圆恰好过点P ,则.参考答案:216.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.参考答案:18所求人数为,故答案为18. 17. 将正奇数按右表的方式进行排列,记表示第行第列的数,若,则的值为 .参考答案:三、 解答题:本大题共5小题,共72分。
建昌县第二高级中学2018-2019学年高三上学期12月月考数学试卷
建昌县第二高级中学2018-2019学年高三上学期12月月考数学试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A.B.C.D.2.某几何体的三视图如图所示,则该几何体的表面积为()A.12π+15 B.13π+12 C.18π+12 D.21π+153.设i是虚数单位,若z=cosθ+isinθ且对应的点位于复平面的第二象限,则θ位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. C. D.5.设等差数列{a n}的前n项和为S n,已知S4=﹣2,S5=0,则S6=()A.0 B.1 C.2 D.36.棱长为2的正方体的8个顶点都在球O的表面上,则球O的表面积为()10A.π4B.π6C.π8D.π7.复数Z=(i为虚数单位)在复平面内对应点的坐标是()A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)8. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)9. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 10.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形二、填空题11.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .12.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.13.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.14.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 15.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .16.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 三、解答题17.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.19.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.ABCDP20.已知函数上为增函数,且θ∈(0,π),,m ∈R .(1)求θ的值;(2)当m=0时,求函数f (x )的单调区间和极值;(3)若在上至少存在一个x 0,使得f (x 0)>g (x 0)成立,求m 的取值范围.21.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小;(Ⅱ)如果cosB=,b=2,求a 的值.22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.建昌县第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)一、选择题1.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.2.【答案】C【解析】解:由三视图知几何体为半个圆锥,圆锥的底面圆半径为1,高为2,∴圆锥的母线长为5,∴几何体的表面积S=×π×42+×π×4×5+×8×3=18π+12.故选:C.3.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.4.【答案】D【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t <f (b )<1,t <f (c )<1,由f (a )+f (b )>f (c ),可得 2t ≥1,解得1>t ≥.综上可得,≤t ≤2,故实数t 的取值范围是[,2],故选D .【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.5. 【答案】D 【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.6. 【答案】B 【解析】考点:球与几何体 7. 【答案】A 【解析】解:复数Z===(1+2i )(1﹣i )=3+i 在复平面内对应点的坐标是(3,1).故选:A .【点评】本题考查了复数的运算法则、几何意义,属于基础题.8. 【答案】A解析:抛物线C :y x 82的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .9. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.10.【答案】D【解析】解:∵sinC+sin (B ﹣A )=sin2A , ∴sin (A+B )+sin (B ﹣A )=sin2A , ∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,∴2cosAsinB=sin2A=2sinAcosA , ∴2cosA (sinA ﹣sinB )=0, ∴cosA=0,或sinA=sinB ,∴A=,或a=b ,∴△ABC 为等腰三角形或直角三角形 故选:D . 【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和易错题.二、填空题11.【答案】25 【解析】考点:分层抽样方法. 12.【答案】714⎛⎤ ⎥⎝⎦,【解析】13.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 14.【答案】[]1,1- 【解析】考点:函数的定义域. 15.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 16.【答案】1 【解析】 试题分析:()()()()2213111222=-+--+-=m AB ,解得:1=m ,故填:1.考点:空间向量的坐标运算三、解答题17.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,410{610a a -≥∴-≥,得14a ≥; 若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立, 410{610a a -≤∴-≤,得16a ≤, 综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭; ⑶由题意得,()()min max 2f x g x +≥, ()max 128g x g π⎛⎫== ⎪⎝⎭, ()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥, 由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f <,则不合题意;当0a >时,由()'0f x =,得12x a =或1x =-(舍去), 当102x a <<时,()'0f x <,()f x 单调递减, 当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增, a Z ∈,2a ∴为偶数, 又()172ln248h =-<,()174ln488h =->, 24a ∴≥,故整数a 的最小值为2。
辽宁省葫芦岛市建昌县高级中学2025届高三数学上学期9月月考试题文
辽宁省葫芦岛市建昌县高级中学2025届高三数学上学期9月月考试题文满分:150分 时间:120分钟一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合2{20}A x Z x x =∈-≤,集合{1,0,1}B =-,那么A B ⋃等于( ) A. {1}- B. {1,0,1,2}- C. {0,1,2} D. {0,1}2、复数12ii 1iz -=++,则z =( )A .0B C .1 D3、已知命题0:R p x ∃∈,使得0sin x =;命题:q 在ABC △中,若A B >,则sin sin A B >,下列推断正确的是( )A. q 为假B. p q ∨为假C. p q ∧为假D.p 为真4、若3sin cos 0αα+=,则21cos sin 2αα+的值为( ) A.103B.53C.23D.2-5、在ABC △中,若230a b A ===︒,,则B 等于( ) A .30︒ B .30150︒︒或C .60︒D .60120︒︒或6、若向量,a b 的夹角为π3,且2,1a b ==,则向量2a b +与向量a 的夹角为( ) A .π6 B .π3 C.2π3 D .5π67、在ABC △中,内角,,A B C 的对边分别为,,a b c ,若2cos a b C =,且sin 2sin a A c B =,则ABC △是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .直角三角形 8、设函数π()sin(2)3f x x =+,则下列结论正确的是( )A .()f x 的图象关于直线π3x =对称 B .()f x 的图象关于点π(,0)4对称C .把()f x 的图象向左平移π12个单位,得到一个偶函数的图象 D .()f x 的最小正周期为π,且在π[0,]6上为增函数9、若π1sin 63α⎛⎫-= ⎪⎝⎭, 则2πcos 23α⎛⎫+= ⎪⎝⎭( )A.79-B.13-C.13D.7910、函数()sin()(0,0)f x A x A ωϕω=+>>的部分图象如图所示,则11π()24f 的值为( )A .62-B .32-C .22-D .1-11、函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的单调递增区间是( )A.0,8π⎡⎤⎢⎥⎣⎦B.,82ππ⎡⎤⎢⎥⎣⎦C.30,8π⎡⎤⎢⎥⎣⎦D.3,82ππ⎡⎤⎢⎥⎣⎦ 12、已知函数()y f x =对随意的ππ(,)22x ∈-满意'()cos ()sin 0f x x f x x ⋅+> (其中'()f x 是函数()f x 的导函数),则下列不等式成立的是( ) A.ππ2()()34f f -<-B.ππ2()()34f f <C.π(0)2()3f f >D.π(0)2()4f f >二、填空题:本题共4小题,每小题5分,共20分. 13、曲线()x f x xe =在点(0,(0))f 处的切线方程为 . 14、若,则__________. 15、设当时,函数取得最大值,则__________.16、在中,内角所对的边分别是,有下列命题:①若,则;②若,则为等边三角形; ③若,则为等腰三角形;④若,则为钝角三角形;⑤存在使得成立.其中正确的命题为__________.(写出全部正确命题的序号).三、解答题:本题共6个小题,70分.解答应写出文字说明,证明过程或演算步骤. 17、(10分)已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边过点.(1)求的值; (2)若角满意,求.18、(12分)四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求角C 和边BD ; (2)求四边形ABCD 的面积.19.(12分)ABC △的内角,,A B C 的对边分别为,,a b c ,已知cos cos cos cos 2ca B Cb A C +=.(1)求C ∠;(2)若7,5c a b =+=,求ABC △的面积.20、(12分)已知函数π()sin(2)cos(2)2sin cos 36f x x x x x π=+++- (1).求函数()f x 的最小正周期及对称轴方程; (2).将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在⎥⎦⎤⎢⎣⎡2,0π上的值域.21、(12分)已知在中,角的对边分别为,且.(1)求的值; (2)若,求的取值范围.22、(12分)已知函数)(23sin )(R a x ax x f ∈-=,若对)(,2,0x f x ⎥⎦⎤⎢⎣⎡∈π的最大值为23-π (1)求实数a 的值;(2)探讨)(x f 在()π,0内的零点个数.建昌中学2024-2025学年度上学期9月月考高三数学(文)答案 满分:150分 时间:120分钟1-5 BDCAD 6-10 ABCAD 11-12 CA 13、y x = 14、2 15、 5516、①②④17、(10分)答案:(1)由角的终边过点,得,所以.(2)由角的终边过点,得,由,得.由,得,所以或.18、(12分)解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.19、(12分)答案:(1)由题意得:1sin cos cos sin cos cos sin 2A B C B A C C+= 所以1sin()cos sin 2A B C C +=sin()sin 0A B C +=≠ 1πcos (0,π),23C C C ∴=∈∴=(2)由题知2275a b ab a b ⎧+-=⎨+=⎩6ab ∴=133sin 22ABC S ab C ∆∴==20、(12分)答案:(1). ()1331sin 2cos 2cos 2sin 2sin 22222f x x x x x x =++-- ()313cos 2sin 22cos 2sin 222f x x x x x ⎛⎫=-=- ⎪ ⎪⎝⎭2cos 2cos sin 2sin 2cos 2666x x x πππ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭所以函数()f x 的最小正周期为π 令2,6x k k Z ππ+=∈,得函数()f x 的对称轴方程为,122k x k Z ππ=-+∈ (2).将函数()y f x =的图象向左平移12π个单位后所得图象的解析式为2cos 22cos 21263y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为20π≤≤x ,则6533πππ≤+≤x , 所以213cos 23≤⎪⎭⎫ ⎝⎛+≤-πx 所以函数()y g x =在⎥⎦⎤⎢⎣⎡2,0π上的值域为[]1,3-。
建昌县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
建昌县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )A .{﹣2}B .{2}C .{﹣2,2}D .∅2. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4 D .2 3. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( ) A .64π B .16π C .12π D .4π4. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )A .∀x ∈R ,2x 2﹣1<0B .∀x ∈R ,2x 2﹣1≤0C .∃x ∈R ,2x 2﹣1≤0D .∃x ∈R ,2x 2﹣1>05.平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )A. B. C .4D .126. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱7. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 已知函数f (x )是定义在R 上的奇函数,若f (x )=,则关于x 的方程f (x )+a=0(0<a <1)的所有根之和为( )A .1﹣()aB .()a ﹣1C .1﹣2aD .2a ﹣19. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 10.在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .011.已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是( )A .(0,)B .(0,]C .(,]D .[,1)12.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .2二、填空题13.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”) 14.数列{a n }是等差数列,a 4=7,S 7= .15.计算sin43°cos13°﹣cos43°sin13°的值为 .16.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.17.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数①f (x )=3x+1 ②f (x )=()x+1③f (x )=x 2+1 ④f (x )=其中是“H 函数”的有 (填序号)18.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .三、解答题19.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;20.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5A B两班中各随机抽5名学生进行抽查,其成绩记录如下:x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.21.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.2220142015CBA5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.23.如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于椭圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,(Ⅰ)求C1、C2的方程;(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若,求直线AB的方程.24.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.建昌县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13., 无.14.4915..16.B17.①④18..三、解答题19.20.21.22.23.24.。
辽宁省建昌高中2022-2O11学年度高三数学第三次月考 理
2022—2022学年-----高三第三次月考理科数学试卷一、选择题(本大题共12小题,每小题5分,满分60分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量(sin ,cos )a x x =,(sin cos ,sin cos )b x x x x =+- ()x R ∈,若a b ⊥,则的取值集合为( )A k ππ{|,K Z}28x x =+∈ B π{|k π,k Z}8x x =+∈C k ππ{|,k Z}24x x =+∈ D π{|k π,k Z}4x x =+∈ 2为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位3.对于平面α和共面的直线,,n m 下列命题中真命题是 A 若αα//,,n n m m 则⊥⊥ B 若n m n m //,//,//则ααC 若n m n m //,//,则αα⊂D 若α与n m ,所成的角相等,则n m // 4如图1,△ABC为正三角形,AA 'BB 'CC 'CC 'AA '32BB 'CC 'A B C '''三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 A 2a π B273a π C2113a π D 25a π28y x =轴的距离是4,则点 6C116922=+y x 7:=+y x l 2322)1,2(-M 522=+y x 52=+y x 052=++y x 052=--y x 250x y ++=1922=+y x 6π[]1,2.-A []2,1.-B C [)2,1-.D [)2,2-F B FB 23312+512+1F 2F 22221(0,0)x y a b a b -=>>P 212PF FF =2F 1PF 340x y ±=350x y ±=430x y ±=540x y ±=22221(0,0)x y a b a b -=>>3x 224y x=422=+y x 21,A A 22221(0)x y a b a b +=>>1B 2B ABC∆A C AC BC sin 2sin ,3,5===)42sin(π-A 22()(sin cos )2cos (0)f x x x x ωωωω=++>23πω()y g x =()y f x =2π()y g x =()012222>>=+b a b y a x x 1F 2F 21PF PF ⋅⎪⎪⎭⎫⎝⎛26,2A 12,F F 12e =l MC CN l PB ACE3()0,2()0,0≠≠+=m k m kx y 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②若a3=3,则m可以取3个不同的值;
③若m= ,则数列{an}是周期为5的周期数列.
其中正确命题的序号是.
15.不等式 的解集为R,则实数m的范围是
ﻪ.
16.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.
17.如图是正方体的平面展开图,则在这个正方体中① 与 平行;② 与 是异面直线;
5.已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有( )
A.2对B.3对ﻩC.4对D.5对
6.已知双曲线的方程为 ﹣ =1,则双曲线的离心率为( )
A. ﻩB. C. 或 D. 或
7.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f(log35)=( )
A. ﻩB.﹣ ﻩC.4D.
8.记集合T={0,1,2,3,4,5,6,7,8,9},M= ,将M中的元素按从大到小排列,则第2013个数是( )ﻩﻩ
A. B. ﻩ
C. ﻩD. ﻩﻩ
9.已知f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),当0<x<2时,f(x)=1﹣log2(x+1),则当0<x<4时,不等式(x﹣2)f(x)>0的解集是( )
22.(本小题满分13分)
如图,已知椭圆 的上、下顶点分别为 ,点 在椭圆上,且异于点 ,直线
与直线 分别交于点 ,
(1)设直线 的斜率分别为 ,求证: 为定值;
(2)求线段 的长的最小值;
(3)当点 运动时,以 为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力任意 ,均有 成立,则称
函数 为“ 函数”.给出下列函数:
① ;② ;③ ;④
.其中函数是“ 函数”的个数为( )
A.1B.2C.3D.4
【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.
A. ﻩB. C. D.
12.已知点P(1,﹣ ),则它的极坐标是( )ﻩﻩ
A. B. C. D.
二、填空题
13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.
14.若数列{an}满足:存在正整数T,对于任意的正整数n,都有an+T=an成立,则称数列{an}为周期为T的周期数列.已知数列{an}满足:a1>=m(m>a ),an+1= ,现给出以下三个命题:
21.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。学生甲三轮考试通过的概率分别为 , , ,且各轮考核通过与否相互独立。
(1)求甲通过该高校自主招生考试的概率;
(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。记学生甲得到教育基金的金额为 ,求 的分布列和数学期望。
A.(0,1)∪(2,3)ﻩB.(0,1)∪(3,4)C.(1,2)∪(3,4)ﻩD.(1,2)∪(2,3)
10.函数 是( )ﻩ
A.最小正周期为2π的奇函数ﻩB.最小正周期为π的奇函数ﻩ
C.最小正周期为2π的偶函数ﻩD.最小正周期为π的偶函数ﻩ
ﻩ
11.已知双曲线 (a>0,b>0)的右焦点F,直线x= 与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是( )ﻩ
(Ⅰ)求m的值;
(Ⅱ)求点P的坐标.
20.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).
A.ex+1B.ex﹣1ﻩC.e﹣x+1ﻩD.e﹣x﹣1
2.点A是椭圆 上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若 ,则该椭圆的离心率为( )
A. ﻩB. C. D.
3.实数a=0.2 ,b=log 0.2,c= 的大小关系正确的是( )ﻩﻩﻩ
A.a<c<bﻩB.a<b<cC.b<a<cD.b<c<a
建昌县第二高级中学学年高三上学期月月考数学考试含答案
———————————————————————————————— 作者:
———————————————————————————————— 日期:
建昌县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )
③ 与 成 角;④ 与 是异面直线.
以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).
18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数 ,若曲线 ( 为自然对数的底数)上存在点 使得 ,则实数 的取值范围为__________.
三、解答题
19.已知F1,F2分别是椭圆 =1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,且|PF1|=4,PF1⊥PF2.
(Ⅰ)计算平均值μ与标准差σ;
(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?
参考数据:P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.
23.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB= AB=2,沿ED折成四棱锥A﹣BCDE,使AC= .