初中数学知识点框架详完整版
(完整版)初中数学知识点框架图
第一部分《数与式》知识点2a a π⎧⎪⎧⎪⎨⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:有效数字、平方根与算术平方根、立方根、非负式子(,单项式:系数与次数分类多项式整式数与式()01;;(),();();1;mm n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧+-=-⎪⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫== ⎪⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎩⎡≥⎤⎧==⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩第二部分《方程与不等式》知识点2⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义与解:一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法二元一次方程(组)简单的三元一次方程组:方程简单的二元二次方程组:定义与判别式(△=b -4ac)一元二次方程解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):分式方程解法:去分母化为整方程与不等式 1.2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)4.数字问题:(数位变化)类型 5.图形问题:(周长与面积(等积变换))6.销售问题:(利润与利率)方程的应用7.储蓄问题:(利息、本息和、利息税)8.分配与方案问题:线段图示法:常用方法列表法:直观模型法:1.2.3.4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎪⎪⎪⎪⎩一般不等式解法一元一次不等式条件不等式解法解法:(借助数轴)不等式与不等式不等式(组)不等式与方程一元一次不等式组应用不等式与函数最佳方案问题5.最后一个分配问题第三部分《函数与图象》知识点O x x ⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩①各象限内点的特点:x 轴:纵坐标y=0;②坐标轴上点的特点y 轴:横坐标x=0.③平行于轴,y 轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于轴对称(x 相同,y 相反)⑤对称点的坐标关于y 轴对称(x 相反,y 相同)关于原点对称(x ,y 都相反)正比例函数:y=kx(k ≠0)(一点求解析式)函数表达式一次函数函数11221212112212.,.1.k k b b k k ⎧⎧⎪⎨⎨⎩⎪⎩==-g 一、三象限角平分线:y=x 二、四象限角平分线:y=-x 一次函数:y=kx+b(k ≠0)(两点求解析式)增减性:y=kx 与y=kx+b 增减性一样,k >0时,x 增大y 增大;k <0,x 增大y 减小平移性:y=kx+b 可由y=kx 上下平移而来;若y=k x+b 与y=k x+b 平行,则≠垂直性: 若y=k x+b 与y=k x+b 垂直,则求交点:00(0)(00y y x x x k y k x k k k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=⎧⎨⎩(联立函数表达式解方程组)正负性:观察图像>与<时,的取值范围(图像在轴上方或下方时,的取值范围)表达式:≠一点求解析式)①区域性:>时,图像在一、三象限;<时,图像在二、四象限.k >0在每个象限内,y 随x 的增大而减小;②增减性反比例函数性质k <0在每个象限内,y 随x 的增大而减小.③恒值性:(图形面积与值有关)④对称性:既是221212,(0),(),(0),()(),(0)y ax bx c a y a x k h a y a x x x x a x x x ⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎧++≠⎪-+≠⎨⎪--≠⎩轴对称图形,又是中心对称图形.求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:=其中表达式②顶点式:=其中(k,h)为抛物线顶点坐标;③交点式:=其中,、是函数图象与轴交点的横坐标;性质二次函数2220042444242a a b a a x y x y a x y x y b ac b a a b ac b b ac b a a a ⎧⎨⎩---最小值最大值①开口方向与大小:a >0向上,a <0向下;越大,开口越小;越小,开口越小.②对称性:对称轴直线x=->,在对称轴左侧,增大减小;在对称轴右侧,增大增大;③增减性<,在对称轴左侧,增大增大;在对称轴右侧,增大减小;④顶点坐标:(-,)⑤最值:当a >0时,x=-,y =;a <0时,x=-,y =22.44c a x y a c b b ac a b a b c ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩-++-+示意图:画示意图五要素(开口方向、顶点、对称轴、与、交点坐标)与:开口方向确定a 的符号,抛物线与y 轴交点纵坐标确定c 的值;的符号:b 的符号由a 与对称轴位置有关:左同右异.符号判断Δ=:Δ>0与x 轴有两个交点;Δ=0与x 轴有两个交点;Δ<0与x 轴无交点:当x=1时,y=a+b+c 的值.:当x=-1时,y=a-b+c 的值...⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩①求函数表达式:②求交点坐标:函数应用③求围成的图形的面积(巧设坐标):④比较函数的大小第四部分《图形与几何》知识要点0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:, ;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行000000000R 130cos30tan 302cos 45tan 4512210cos60,tan 3022R .t ααααααα⎧⎪⎪⎪⎧===⎪⎪⎪⎪⎪⎪⎪⎨===⎨⎪⎪⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩的对边的邻边的对边定义:在tABC 中,sin =,cos =,tan =斜边斜边的邻边sin ,三角函数特殊三角函数值sin45;sin6应用:要构造△,才能使用三角函数1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩g g 相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r(距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩g 于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R+r ),内含(d <R-r )圆和圆的位置关系相切:外切(d=R+r ),内切(d=R-r )相交:R-r <d <R+r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:第五部分《图形的变化》知识点⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平 移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋 转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩g 行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=, 相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩ 则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩第六部分《统计与概率》知识要点21(x x n →⎧⎨⎩→⎧⎪→⎨⎪→⎩⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩=-普查:总体与个体(研究对象中心词)两查抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数加权平均数三数众数(可能不止一个)中位数(排序、定位)方差:s 统计与概率三差222122)()()(n x x x x n n n ⎧⎡⎤+-++-⎪⎣⎦⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎧⎨⎪⎨⎩⎪⎩L 一组数据整体被扩大倍,平均数扩大倍,方差扩大倍);(一组数据整体被增加m ,平均数增加m ,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)必然事件:(概率为1)确定事件事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(两率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩试验值,多次试验后频率会接近理论概率)比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)初中数学常考知识点I、代数部分:一、数与式:1、实数:1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题)2)科学记数法表示一个数(选择题第二题)3)实数的运算法则:混合运算(计算题)4)实数非负性应用:代数式求值(选择、填空)2、代数式:代数式化简求值(解答题)3、整式:1)整式的概念和简单运算、化简求值(解答题)2)利用提公因式法、公式法进行因式分解(选择填空必考题)4、分式:化简求值、计算(解答题)、分式求取值范围(一般为填空题)(易错点:分母不为0)5、二次根式:求取值范围、化简运算(填空、解答题)二、方程与不等式:1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)4、一元二次方程根的判别式三、函数及其图像1、平面直角坐标系与函数1)函数自变量取值范围,并会求函数值;2)坐标系内点的特征;3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)2、一次函数(解答题)1)理解正比例函数、一次函数的意义、会画图像2)理解一次函数的性质3)会求解析式、与坐标轴交点、求与其他函数交点4)解决实际问题3、反比例函数(解答题)1)反比例函数的图像、意义、性质(两支,中心对称性、分类讨论)2)求解析式,与其他函数的交点、解决有关问题(如取值范围、面积问题)4、二次函数(必考解答题)1)图像、性质(开口、对称性、顶点坐标、对称轴、与坐标轴交点等)2)解析式的求解、与一元二次方程综合(根与交点、判别式)3)解决实际问题4)与其他函数综合应用、求交点5)与特殊几何图形综合、动点问题(解答题)II、空间与图形一、图形的认识1、立体图形、视图和展开图(选择题)1)几何体的三视图,几何体原型相互推倒2)几何体的展开图,立体模型相互推倒2、线段、射线、直线(解答题)1)垂直平分线、线段中点性质及应用2)结合图形判断、证明线段之间的等量、和差、大小关系3)线段长度的求解4)两点间线段最短(解决路径最短问题)3、角与角分线(解答题)1)角与角之间的数量关系2)角分线的性质与判定(辅助线添加)4、相交线与平行线1)余角、补角2)垂直平分线性质应用3)平分线性质与判定5、三角形1)三角形内角和、外角、三边关系(选择题)2)三角形角分线、高线、中线、中位线性质应用(辅助线)3)三角形全等性质、判定、融入四边形证明(必考解答题)4)三角形运动、折叠、旋转、平移(全等变换)、拼接(探究问题)6、等腰三角形与直角三角形1)等腰三角形的性质与判定、直角三角形的性质、勾股定理及逆定理2)等腰三角形、直角三角形与四边形或圆的综合3)锐角三角函数、特殊角三角函数、解直角三角形(解答题)4)等腰、直角、等腰直角三角形与函数综合形成的代几综合题(压轴题必考)7、多边形:内角和公式、外角和定理(选择题)8、四边形(解答题)1)平行四边形的性质、判定、结合相似、全等证明2)特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用(动点问题、面积问题及相关函数解析式问题)3)梯形:一般梯形及等腰、直角梯形的性质、与平行四边形知识结合,四边形计算题,辅助线的添加等9、圆(必考解答题)1)圆的有关概念、性质2)圆周角、圆心角之间的相互联系3)掌握并会利用垂径定理、弧长公式、扇形面积公式,圆锥侧面面积、全面积公式解决问题4)圆中的位置关系:要会判断:点与圆、直线与圆、圆与圆(重点是圆与圆位置关系)5)重点:圆的证明计算题(圆的相关性质与几何图形综合)二、图形与变换1、轴对称:会判断轴对称图形、能用轴对称的知识解决简单问题2、平移:会运用平移的性质、会画出平移后的图形、能用平移的知识解决简单问题3、旋转:理解旋转的性质(全等变换),会应用旋转的性质解决问题(全等证明),会判断中心对称图形4、相似:会用比例的基本性质解题、利用三角形相似的性质证明角相等、应用相似比求解线段长度(解答题)III、统计与概率一、相关概念的理解与应用:平均数、中位数、众数、方差等(选择题)二、能利用各种统计图解决实际问题(必考,解答题)三、会用列举法(包括图表、树状图法)计算简单事件发生的概率(解答题,填空题)。
(完整版)初中数学知识点归纳总结(精华版)
第一章有理数考点一、实数的概念及分类(3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:7, 3 2π,+8,sin60o 。
3第二章整式的加减考点一、整式的有关概念(3 分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如-41a 2b ,这3种表示就是错误的,应写成-13a 2b 。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3-5a3b 2c 是6 次单项式。
考点二、多项式(11 分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6 分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1 的整式方程叫做一元一次方程,其中方程ax +b =(0 x为未知数,a ≠ 0)叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章图形的初步认识考点一、直线、射线和线段(3 分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
数学初一知识点框架总结
数学初一知识点框架总结一、数与代数1.1 整数1.1.1 整数的概念1.1.2 整数的加法和减法1.1.3 整数的乘法和除法1.1.4 整数的应用1.2 分数1.2.1 分数的概念1.2.2 分数的加法和减法1.2.3 分数的乘法和除法1.2.4 分数的应用1.3 整式与方程1.3.1 整式的概念1.3.2 整式的加法和减法1.3.3 整式的乘法1.3.4 一元一次方程1.4 数学建模1.4.1 实际问题与代数关系1.4.2 代数式和方程的建模二、几何2.1 图形与尺规2.1.1 点、线、面的基本概念2.1.2 角的概念和性质2.1.3 三角形的分类和性质2.1.4 四边形的性质2.1.5 圆的基本性质2.2 几何图形的计算2.2.1 长方形、正方形、三角形和圆的计算2.2.2 图形的相似2.3 空间与体积2.3.1 点、直线、平面的位置关系2.3.2 空间图形的计算2.3.3 空间几何体的体积计算三、数据与概率3.1 数据的收集和整理3.1.1 调查和统计3.1.2 数据的整理和处理3.1.3 数据的图示3.2 概率的基本概念3.2.1 随机事件和概率3.2.2 概率的计算3.2.3 概率的应用四、函数4.1 函数的概念和性质4.1.1 函数的代数模型4.1.2 函数的图像和性质4.1.3 函数的应用4.2 线性函数4.2.1 线性函数的概念和性质4.2.2 线性函数的图像和性质4.2.3 线性函数的应用四、思考题1. 小明有一条长为5米、宽为3米的长方形地毯,现在要铺在一个长为7米、宽为4米的房间里,问这条地毯是否能够完全铺开?2. 一块图画出一长方形地铺地毯的平面图,知道长方形地面积是42平方米,长是8米,请你算出宽是多少?3. 小明的三角形玩具房子图经放大80倍后才能够计算出三角形的两条边与桌面的夹角分别是57度和48度,请你算算原三角形的两边之和是多少?4. 有一个球形水库,已知水库中水的深度为18米,请依据所知的条件计算水库的半径。
(完整版)初中数学知识点结构图
初中数学知识结构图1.有理数(正数与负数)2.数轴6.有理数的概念 3.相反数4.绝对值5.有理数从大到小比较7.有理数的加法、加法运算律17.有理数8.有理数的减法9.有理数的加减混和运算10.有理数的乘法、乘法运算16.有理数的运算11.有理数的除法、倒数12.有理数的乘方21.代数式13.有理数的混和运算22、列代数式14.科学记数法、近似数与有效数字23、代数式的值15.用计算器进行简单的数的运算18.单项式27、整式的加减20、整式的概念19、多项式24、合并同类项25、去括号与添括号26、整式的加减法28、等式及其基本性质29、方程和方程的解、解方程32、一元一次方程30、一元一次方程及其解法31、一元一次方程的应用初35、二元一次方程组的解法中36、相关概念及性质数39、二元一次方程组37、三元一次方程组及其解法举例学数38、一次方程组的应用. 与43、一元一次不等式40、一元一次不等式及其解法代45、一元一次不等式41、不等式的解集数和一元一次不等44、一元一次不等式组42、不等式和它的基本性质式组46、同底数幂的乘法、单项式的乘法47、幂的乘法、积的乘方51、整式的乘法48、单项式与多项式相乘49、多项式的乘法56、整式的乘除50、平方差与完全平方根52、多项式乘以单项式55、整式的除法53、单项式除以单项式54、同底数幂的除法57、提取61、方法58、运用公式法63、因式分解59、分组分解法62、意义60、其他分解法66、含字母系数的65、分式的乘除法——64、分式的乘除运算一元一次方程69、可化为一元一次方程的分式方程及其应用67、分式方程解法、72、分式70、分式的意义和性质阵根71、分式的加减法68分式方程的应用73、平方根与立方根75、数的开方74、实数86、二次根式的意义76、最简二次根式79、二次根式的乘除法77、二次根式的除法87、二次根式78、二次根式的加减法82、二次根式的加减法80、二次根式的加减法81、同类二次根式85、二次根式的混合运算83、二次根式的混合运算84、有理化因式93、一元二次方程的解法98、一元二次方程的意义数100、二元二次方程组与102、一元二次方程99、一元二次方程组的根与系数的关系代94、分式方程的解法数97、可化为一元二次方程的分式方程式和无理方程96、分式方程、无理方程的应用101、一元二次方程的应用103、一次函数与一元一次不等式106、一次函数104、一次函数图像的图像和性质105、正比例函数的图像和性质108、二次函数——107二次函数的有关概念113、函数及其图像109、平面直角坐标系110、函数初111、函数的图像中112、反比例函数数114、线段学116、线段、角115、角117、相交线、对顶角、邻角、补角120、相交线118、垂线、点到直线的距离119、同位角、内错角、同旁内角126、相交、平行123、平行线121、平行线概念及性质122、平行线的判定124、空间直线、平面的位置关系空125、命题、公理、定理间129、与三角形有关的边与134、全等三角形图135、等腰三角形形138、三角形133、直角三角形——132、勾股定理131、与三角形有关的角——130、三角形的内角136、轴对称137、基本作图139、平行四边形的概念及其性质140、平行四边形的判定144、平行四边形141、矩形的概念、性质和判定149、多边形142、菱形的概念、性质和判定151、四边形150、中心对称143、正方形的概念、性质和判定145、梯形的相关概念148、梯形146、等腰梯形的概念、性质和判定147、三角形、梯形的中位线156、比例线段158、相似图形157、相似多边形152、相似三角形的相关概念155、相似三角形153、三角形相似的判定154、相似三角形的性质159、解直角三角形161、解直角三角形160、解直角三角形的应163、解直角三角形162、锐角三角形164、圆的有关概念及对称性165、点和圆的位置关系166、过不在同一直线上三点的圆空172、圆的有关性质167、三角形的外接圆间168、垂径定理及其逆定理与169、圆心角、弧、弦、弦心距初图170、圆周角定理中形171、圆内接四边形及其性质数173.直线和圆的位置关系学185、圆174.切线的判定和性质177.直线和圆的位置关系175.三角形的内切圆176. *切线长定理179.正多边形和圆——178.正多边形的有关计算180.圆周长、弧长183.弧长和扇形的面积181.圆、扇形、弓形的面积182.圆柱和圆锥的侧面展开图、侧面积184.圆和圆的位置关系186.几何体、几何图形187.平均数188.众数和中位数191.统计初步189.级差、方差、标准差195.统计与概率190.频数、频率、频率分布直方图192.概率初步——概率计算。
(完整版)初中数学各章节详细知识点
各章节知识点七年级上册
第一章《有理数》
1.正数与负数的概念
2.正数与负数的实际意义
3.有理数的概念
4.数轴的概念
5.相反数的概念
6.绝对值的概念
7.有理数的大小比较
8.有理数的加法法则(6分)
9.有理数的减法法则
10.有理数的乘法法则
11.有理数的运算律
12.有理数的除法法则
13.有理数的混合运算法则(6分)
14.有理数的乘方相关概念(乘方、幂、底数、指数)
15.有理数的乘方法则
16.科学记数法(3分)
17.近似数(有效数字)
第二章《整式的加减》
1.单项式及其相关概念(单项式、系数、次数)
2.多项式及其相关概念(多项式、项、常数项、次数)
3.整式
4.同类项的概念
5.合并同类项的法则
6.去括号法则
7.整式加减的运算法则(6分)
第三章《一元一次方程》
1.方程的概念
2.一元一次方程的概念
第 1 页共10 页。
初中数学知识点全面总结(完整版)
初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
初中数学所有知识点(详细)
初中数学知识点1、一元二次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初中数学知识点总结完整版
初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0 相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0 相乘得0。
③乘积为1 的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0 不能作除数。
乘方:求N 个相同因数A 的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N 叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X 的平方等于A,那么这个正数X 就叫做A 的算术平方根。
②如果一个数X 的平方等于A,那么这个数X 就叫做A 的平方根。
③一个正数有2 个平方根/0 的平方根为0/负数没有平方根。
④求一个数A 的平方根运算,叫做开平方,其中A 叫做被开方数。
立方根:①如果一个数X 的立方等于A,那么这个数X 就叫做A 的立方根。
初中数学知识点框架
初中数学知识点框架
一、数与式
1.自然数、整数、有理数和无理数的概念
2.分数与小数的相互转化
3.整数运算(加、减、乘、除)
4.有理数运算(加、减、乘、除)
5.代数式与算式的关系
6.一元一次方程与算术问题的关系
二、代数与函数
1.代数式的基本性质(合并同类项、移项、化简)
2.解一元一次方程及其应用
3.线性函数的概念与表示
4.二元一次方程组与算术问题的关系
5.比例与比例方程
三、图形与变换
1.点、线、面的基本概念
2.二维图形的性质与分类(三角形、四边形、多边形、圆)
3.二维图形的周长与面积计算
4.二维图形的相似与全等
5.二维图形的对称与轴对称变换
6.二维图形的平移、旋转与翻转变换
7.空间图形的性质与分类
8.空间图形的表面积与体积计算
四、数据与概率
1.数据的收集与整理(频数表、频率表、直方图、折线图)
2.平均数、中位数、众数的概念与计算
3.数据的变异程度(极差、方差、标准差)
4.概率的基本概念(试验、样本空间、事件、概率值)
5.基本概率规则(加法原理、乘法原理)
6.用排列组合计算概率
以上是初中数学的基本知识点框架,每个知识点都有具体的学习内容和方法,可以根据学习进度逐步深入了解和掌握。
在学习过程中,也可以通过做题加深理解和应用。
希望对你的数学学习有所帮助!。
初中数学知识点梳理(详细版)
初中数学知识点梳理(详细版)第一单元数与式第1讲实数知识点一:实数的概念及分类关键点拨及对应举例1.实数(1)按定义分(2)按正、负性分正有理数有理数 0 有限小数或正实数负有理数无限循环小数实数 0实数正无理数负实数无理数无限不循环小数负无理数(1)0既不属于正数,也不属于负数.(2)无理数的几种常见形式判断:①含π的式子;②构造型:如3.010010001…(每两个1之间多个0)就是一个无限不循环小数;③开方开不尽的数:如,;④三角函数型:如sin60°,tan25°.(3)失分点警示:开得尽方的含根号的数属于有理数,如=2,=-3,它们都属于有理数.知识点二:实数的相关概念2.数轴(1)三要素:原点、正方向、单位长度(2)特征:实数与数轴上的点一一对应;数轴右边的点表示的数总比左边的点表示的数大例:数轴上-2.5表示的点到原点的距离是2.5.3.相反数(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到原点的距离相等a的相反数为-a,特别的0的绝对值是0.例:3的相反数是-3,-1的相反数是1.4.绝对值(1)几何意义:数轴上表示的点到原点的距离(2)运算性质:|a|= a (a≥0); |a-b|= a-b(a≥b)-a(a<0).b-a(a<b)(3)非负性:|a|≥0,若|a|+b2=0,则a=b=0.(1)若|x|=a(a≥0),则x=±a.(2)对绝对值等于它本身的数是非负数.例:5的绝对值是5;|-2|=2;绝对值等于3的是±3;|1-|=-1.5.倒数(1)概念:乘积为1的两个数互为倒数.a的倒数为1/a(a≠0)(2)代数意义:ab=1a,b互为倒数例:-2的倒数是-1/2;倒数等于它本身的数有±1.知识点三:科学记数法、近似数6.科学记数法(1)形式:a×10n,其中1≤|a|<10,n为整数(2)确定n的方法:对于数位较多的大数,n等于原数的整数为减去1;对于小数,写成a×10-n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)例:21000用科学记数法表示为2.1×104;19万用科学记数法表示为1.9×105;0.0007用科学记数法表示知识点一:代数式及相关概念关键点拨及对应举例1.代数式(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式.(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值.求代数式的值常运用整体代入法计算.例:a-b=3,则3b-3a=-9.为7×10-4.7.近似数(1)定义:一个与实际数值很接近的数.(2)精确度:由四舍五入到哪一位,就说这个近似数精确到哪一位.例:3.14159精确到百分位是3.14;精确到0.001是3.142.知识点四:实数的大小比较8.实数的大小比较(1)数轴比较法:数轴上的两个数,右边的数总比左边的数大.(2)性质比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小.(3)作差比较法:a-b>0a>b;a-b=0a=b;a-b<0a<b.(4)平方法:a>b≥0a2>b2.例:把1,-2,0,-2.3按从大到小的顺序排列结果为___1>0>-2>-2.3_.知识点五:实数的运算9. 常见运算乘方几个相同因数的积; 负数的偶(奇)次方为正(负)例:(1)计算:1-2-6=_-7__;(-2)2=___4__;3-1=_1/3_;π0=__1__;(2)64的平方根是_±8__,算术平方根是__8_,立方根是__4__.失分点警示:类似“的算术平方根”计算错误. 例:相互对比填一填:16的算术平方根是 4___,的算术平方根是___2__.零次幂a0=_1_(a≠0)负指数幂a-p=1/a p(a≠0,p为整数)平方根、算术平方根若x2=a(a≥0),则x=a.其中a是算术平方根.立方根若x3=a,则x=3a.10.混合运算先乘方、开方,再乘除,最后加减;同级运算,从左向右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号一次进行.计算时,可以结合运算律,使问题简单化2.整式(单项式、多项式)(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.(3)整式:单项式和多项式统称为整式.(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.例:(1)下列式子:①-2a2;②3a-5b;③x/2;④2/x;⑤7a2;⑥7x2+8x3y;⑦2017.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤.(2)多项式7m5n-11mn2+1是六次三项式,常数项是__1 .知识点二:整式的运算3.整式的加减运算(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(2)去括号法则: 若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.(3)整式的加减运算法则:先去括号,再合并同类项.失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.例:-2(3a-2b-1)=-6a+4b+2.4.幂运算法则(1)同底数幂的乘法:a m·a n=a m+n;(2)幂的乘方:(a m)n=a mn;(3)积的乘方:(ab)n=a n·b n;(4)同底数幂的除法:a m÷a n=a m-n(a≠0).其中m,n都在整数(1)计算时,注意观察,善于运用它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.5.整式的乘除运算(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.(2)单项式×多项式: m(a+b)=ma+mb.(3)多项式×多项式: (m+n)(a+b)=ma+mb+na+nb.(4)单项式÷单项式:将系数、同底数幂分别相除.(5)多项式÷单项式:①多项式的每一项除以单项式;②商相加.失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.例:(2a-1)(b+2)=2ab+4a-b-2.(6)乘法公式平方差公式:(a+b)(a-b)=a2-b2. 注意乘法公式的逆向运用及其变形公式的运用完全平方公式:(a±b)2=a2±2ab+b2. 变形公式:a2+b2=(a±b)2∓2ab,ab=【(a+b)2-(a2+b2)】 /26.混合运算注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算.例:(a-1)2-(a+3)(a-3)-10=_-2a__.知识点五:因式分解7.因式分解(1)定义:把一个多项式化成几个整式的积的形式.(2)常用方法:①提公因式法:ma+mb+mc=m(a+b+c).②公式法:a2-b2=(a+b)(a-b);a2±2ab+b2=(a±b)2.(3)一般步骤:①若有公因式,必先提公因式;②提公因式后,看是否能用公式法分解;③检查各因式能否继续分解.(1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;(2) 因式分解与整式的乘法互为逆运算.知识点一:分式的相关概念关键点拨及对应举例1.分式的概念(1)分式:形如BA(A,B是整式,且B中含有字母,B≠0)的式子.(2)最简分式:分子和分母没有公因式的分式.在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母. 例:下列分式:①;②; ③;④2221xx+-,其中是分式是②③④;最简分式③.2.分式的意义(1)无意义的条件:当B=0时,分式BA无意义;(2)有意义的条件:当B≠0时,分式BA有意义;(3)值为零的条件:当A=0,B≠0时,分式BA=0.失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.例:当211xx--的值为0时,则x=-1.3.基本性质( 1 ) 基本性质:A A CB B C⋅=⋅A CB C÷=÷(C≠0).(2)由基本性质可推理出变号法则为:()AA AB B B---==-;A A AB B B--==-.由分式的基本性质可将分式进行化简:例:化简:22121xx x-++=11xx-+.知识点三:分式的运算4.分式的约分和通分(1)约分(可化简分式):把分式的分子和分母中的公因式约去,即babmam=;(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即bcbdbcacdcba,,⇒分式通分的关键步骤是找出分式的最简公分母,然后根据分式的性质通分.例:分式21x x+和()11x x-的最简公分母为()21x x-.5.分式的加减法(1)同分母:分母不变,分子相加减.即ac±bc=a±bc;(2)异分母:先通分,变为同分母的分式,再加减.即ab±cd=ad±bcbd.例:111xx x+--=-1.2112.111aa a a+=+--6.分式的乘除法(1)乘法:ab·cd=acbd; (2)除法:a cb d÷=adbc;(3)乘方:nab⎛⎫⎪⎝⎭=nnab(n为正整数).例:2a bb a⋅=12;21x xy÷=2y;332x⎛⎫- ⎪⎝⎭=3278x-.7.分式的混合运算(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.知识点一:二次根式关键点拨及对应举例1.有关概念(1)二次根式的概念:形如a(a≥0)的式子.(2)二次根式有意义的条件:被开方数大于或等于0.(3)最简二次根式:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中不含能开得尽方的因数或因式失分点警示:当判断分式、二次根式组成的复合代数式有意义的条件时,注意确保各部分都有意义,即分母不为0,被开方数大于等于0等.例:若代数式11x-有意义,则x的取值范围是x>1.2.二次根式的性质(1)双重非负性:①被开方数是非负数,即a≥0;②二次根式的值是非负数,即a≥0.注意:初中阶段学过的非负数有:绝对值、偶幂、算式平方根、二次根式.利用二次根式的双重非负性解题:(1)值非负:当多个非负数的和为0时,可得各个非负数均为0.如1a++1b-=0,则a=-1,b=1.(2)被开方数非负:当互为相反数的两个数同时出现在二次根式的被开方数下时,可得这一对相反数的数均为0.如已知b=1a-+1a-,则a=1,b=0.(2)两个重要性质:①(a)2=a(a≥0);②a2=|a|=()()a aa a⎧≥⎪⎨-<⎪⎩;(3)积的算术平方根:ab=a·b(a≥0,b≥0);(4)商的算术平方根:ab=ab(a≥0,b>0).例:计算:23.14=3.14;()22-=2;24=;=2 ;442939==知识点二:二次根式的运算3.二次根式的加减法先将各根式化为最简二次根式,再合并被开方数相同的二次根式.例:计算:2832-+=32.4.二次根式的乘除法(1)乘法:a·b=ab(a≥0,b≥0);注意:将运算结果化为最简二次根式.例:计算:3223⋅=1;323222==4.(2)除法:ab=ab(a≥0,b>0).5.二次根式的混合运算运算顺序与实数的运算顺序相同,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去括号).运算时,注意观察,有时运用乘法公式会使运算简便.例:计算:(2+1)(2 -1)= 1 .知识点一:方程及其相关概念关键点拨及对应举例1.等式的基本性质(1)性质1:等式两边加或减同一个数或同一个整式,所得结果仍是等式.即若a=b,则a±c=b±c .(2)性质2:等式两边同乘(或除)同一个数(除数不能为0),所得结果仍是等式.即若a=b,则ac=bc,a bc c=(c≠0).(3)性质3:(对称性)若a=b,则b=a.(4)性质4:(传递性)若a=b,b=c,则a=c.失分点警示:在等式的两边同除以一个数时,这个数必须不为0.例:判断正误.(1)若a=b,则a/c=b/c.(×)(2)若a/c=b/c,则a=b.(√)2.关于方程的基本概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,且等式两边都是整式的方程.(2)二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程.(3)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.(4)二元一次方程组的解:二元一次方程组的两个方程的公共解.在运用一元一次方程的定义解题时,注意一次项系数不等于0.例:若(a-2)|a1|0x a-+=是关于x的一元一次方程,则a的值为0.知识点二:解一元一次方程和二元一次方程组3.解一元一次方程的步骤(1)去分母:方程两边同乘分母的最小公倍数,不要漏乘常数项;(2)去括号:括号外若为负号,去括号后括号内各项均要变号;(3)移项:移项要变号;(4)合并同类项:把方程化成ax=-b(a≠0);(5)系数化为1:方程两边同除以系数a,得到方程的解x=-b/a.失分点警示:方程去分母时,应该将分子用括号括起来,然后再去括号,防止出现变号错误.4.二元一次方程组的解法思路:消元,将二元一次方程转化为一元一次方程. 已知方程组,求相关代数式的值时,需注意观察,有时不需解出方程组,利用整体思想解决解方程组. 例:已知2923x yx y-=⎧⎨-=⎩则x-y的值为x-y=4.方法:(1)代入消元法:从一个方程中求出某一个未知数的表达式,再把“它”代入另一个方程,进行求解;(2) 加减消元法:把两个方程的两边分别相加或相减消去一个未知数的方法.知识点三:一次方程(组)的实际应用5.列方程(组) 解应用题的一般步骤(1)审题:审清题意,分清题中的已知量、未知量;(2)设未知数;(3)列方程(组):找出等量关系,列方程(组);(4)解方程(组);(5)检验:检验所解答案是否正确或是否满足符合题意;(6)作答:规范作答,注意单位名称.(1)设未知数时,一般求什么设什么,但有时为了方便,也可间接设未知数.如题目中涉及到比值,可以设每一份为x.(2)列方程(组)时,注意抓住题目中的关键词语,如共是、等于、大(多)多少、小(少)多少、几倍、几分之几等.6.常见题型及关系式(1)利润问题:售价=标价×折扣,销售额=售价×销量,利润=售价-进价,利润率=利润/进价×100%.(2)利息问题:利息=本金×利率×期数,本息和=本金+利息.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间. ①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:a.同地不同时出发:前者走的路程=追者走的路程;b.同时不同地出发:前者走的路程+两地间距离=追者走的路程.知识点一:一元二次方程及其解法关键点拨及对应举例1.一元二次方程的相关概念(1)定义:只含有一个未知数,且未知数的最高次数是 2 的整式方程.(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.例:方程20aax+=是关于x的一元二次方程,则方程的根为-1.2.一元二次方程的解法(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.( 3 )公式法:一元二次方程 ax2+bx+c=0的求根公式为x=242b b aca-±-(b2-4ac≥0).(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.解一元二次方程时,注意观察,先特殊后一般,即先考虑能否用直接开平方法和因式分解法,不能用这两种方法解时,再用公式法.例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.知识点二:一元二次方程根的判别式及根与系数的关系3.根的判别式(1)当Δ=24b ac->0时,原方程有两个不相等的实数根.(2)当Δ=24b ac-=0时,原方程有两个相等的实数根.(3)当Δ=24b ac-<0时,原方程没有实数根.例:方程2210x x+-=的判别式等于8,故该方程有两个不相等的实数根;方程2230x x++=的判别式等于-8,故该方程没有实数根.*4.根与系数的关(1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)与一元二次方程两根相关代数式的常见变形:系有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解. (x1+1)(x2+1)=x1x2+(x1+x2)+1,x12+x22=(x1+x2)2-2x1x2,12121211x xx x x x++=等.失分点警示在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.知识点三:一元二次方程的应用4.列一元二次方程解应用题(1)解题步骤:①审题;②设未知数;③列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义. (2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;②利润问题:利润=售价-成本;利润率=利润/成本×100%;③传播、比赛问题:④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.知识点一:分式方程及其解法关键点拨及对应举例1.定义分母中含有未知数的方程叫做分式方程.例:在下列方程中,①210x+=;②4x y+=-;③11xx=-,其中是分式方程的是③.2.解分式方程基本思路:分式方程整式方程例:将方程12211x x+=--转化为整式方程可得:1-2=2(x-1).解法步骤:(1)去分母,将分式方程化为整式方程;(2)解所得的整式方程;(3) 检验:把所求得的x的值代入最简公分母中,若最简公分母为0,则应舍去.3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程101x=-有增根,则增根为1.知识点二:分式方程的应用方程两边同乘以最简公分母约去分母4.列分式方程解应用题的一般步骤 (1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答. 在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.知识点一:不等式及其基本性质 关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子. (2)不等式的解:使不等式成立的未知数的值. (3)不等式的解集:使不等式成立的未知数的取值范围. 例:“a 与b 的差不大于1”用不等式表示为a -b ≤1.2.不等式的基本性质 性质1:若a >b,则 a ±c >b ±c ; 性质2:若a >b,c >0,则ac >bc ,a c >bc ;性质3:若a >b,c <0,则ac <bc ,a c <bc .牢记不等式性质3,注意变号. 如:在不等式-2x >4中,若将不等式两边同时除以-2,可得x <2.知识点二 :一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230m mx ++>是关于x的一元一次不等式,则m 的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x ≥a x >a x ≤a x <a知识点三 :一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a 的解集是x >-1,则a 的取值范围是a <1.6.解法 先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型 假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b ≤⎧⎨≤⎩x ≤a 小小取小 x a x b ≥⎧⎨≤⎩ a ≤x ≤b大小,小大中间找 x ax b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y) M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123Oy 2)间的距离为|y 1-y 2|.知识点二:函 数4.函数的相关概念 (1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称x 是自变量,y 是x 的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义. 失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35x x +-中自变量的取值范围是x ≥-3且x ≠5.5.函数的图象 (1)分析实际问题判断函数图象的方法: ①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化; ③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: ①设时间为t (或线段长为x ),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y 随x 的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y 值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x 轴的线段.知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数. (2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b/k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.例:当k =1时,函数y=kx +k -1是正比例函数,2.一次函数的性质 k ,b 符号 K >0, b >0 K >0, b <0 K >0,b=0 k <0, b >0 k <0, b <0 k <0, b =0 (1)一次函数y=kx+b 中,k 确定了倾斜方向和倾斜程度,b 确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法. 例:已知函数y =-2x +b ,大致 图象 经过象限 一、二、三 一、三、四 一、三 一、二、四 二、三、四二、四 图象性质y 随x 的增大而增大 y 随x 的增大而减小函数值y随x的增大而减小(填“增大”或“减小”).3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎪⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标. 例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x >4时,y的值为负数.7.一次函数与方程组二元一次方程组的解⇔两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定y=k2x+by=k1x+b。
初中数学知识结构体系
初中数学知识结构体系七年级数学上册第一章理数:1.1 正数和负数1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方第二章整式的加减:2.1 整式2.2 整式的加减第三章一元一次方程:3.1 从算式到方程3.2 解一元一次方程(一)--合并同类项与移向3.3 解一元一次方程(二)--去括号与去分母3.4 实际问题与一元一次方程第四章图形初步认识:4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制造长方形状的包装纸盒七年级数学下册:第五章相交线与平行线5.2 平行线及其判定5.3 平行线的性质第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组8.1 二元一次方程组8.2 消元--二元一次方程组的解法8.3 实际问题与二元一次方程组8.4 三元一次方程组解法举例第九章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章数据的收集整理与描述10.1 统计调查10.3 课题学习从数据谈节水八年级数学上册:第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第十三章实数13.1 平方根13.2 立方根13.3 实数第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案第十五章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八年级数学下册:第十六章分式16.1 分式16.2 分式的运算16.3 分式方程第十七章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第十八章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第十九章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习重心第二十章数据的分析20.1 数据的代表20.2 数据的波动20.3课题学习体质健康测试中的数据分析九年级数学上册:第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减21.4 阅读与思考海伦-秦九韶公式第二十二章一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程22.3 实际问题与一元二次方程第二十三章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率九年级数学下册:第二十六章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程26.3 实际问题与二次函数第二十七章相似27.1 图形的相似27.2 相似三角形27.3 位似第二十八章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第二十九章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型。
初中数学知识点框架(详)
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数一、数实数1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。
2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是06.根式运算())0,0(0,0>≥=≥≥=⨯b a b a ba b a ab b a.实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
有理数知识概念 1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.有理数要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
(完整版)初中数学知识点框架图
2.工程(效)问题:
3. 增长率问题:(增长率与负增长率)
8.分配与方案问题:
1.线段图示法:
常用方法2.列表法:
3.直观模型法:
解法:(借助数轴)
4.最佳方案问题
5.最后一个分配问题
第三部分《函数与图象》知识点
3平行于x轴,y轴的线段长度的求法(大坐标减小坐标)
4不共线的几点围成的多边形的面积求法(割补法)
完全平方公式:(a b)2a22ab b2
乘法运算
混合运算:
单项式
多项式
多项式;多项式多项式
单项式
括号优先
分式的定义:分母中含可变字母
分式分式有意义的条件:分母不为零
分式值为零的条件:分子为零,分母不为零 分式的性质:a冬卫;a2(通分与约分的根据)
b b m b b m
通分、约分,加、减、乘、除
分式的运算和“+治先化简再求值(整式与分式的通分、符号变化) 简求 整体代换求值
x
1区域性:k>0时,图像在一、三象限;k<0时,图像在二、四象限.
k>0在每个象限内,y随x的增大而减小;
2增减性
反比例函数 性质k<0在每个象限内,y随x的增大而减小.
3恒值性:(图形面积与k值有关)
4 对称性:既是轴对称图形,又是中心对称图形.
求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)
定义与解:
元一次方程 解法步骤:去分母、去括号、移项、合并同类项、系数化为1.
应用:确定类型、找出关键量、数量关系
定义与解:
解法:代入消元法、加减消元法
简单的三元一次方程组:
简单的二元二次方程组:
初中数学知识框架总结pdf
以下是初中数学的主要知识框架总结:
1.数与代数
-有理数:正数、负数、数轴、相反数、绝对值、有理数的运算。
-整式:单项式、多项式、整式的加减乘除运算。
-分式:分式的定义、基本性质、约分、通分、分式的加减乘除运算。
-二次根式:二次根式的化简、运算。
-方程与不等式:一元一次方程、二元一次方程组、一元二次方程、不等式及其解法。
2.几何
-几何基础:线段、射线、直线、角、平行线、三角形、四边形。
-三角形:三角形的性质、全等三角形、相似三角形。
-四边形:平行四边形、矩形、菱形、正方形的性质和判定。
-圆:圆的定义、圆的性质、圆周角、弧长和扇形面积。
3.函数
-函数基础:变量、函数的概念、函数的表示方法。
-一次函数:一次函数的图像、性质及其应用。
-反比例函数:反比例函数的图像、性质及其应用。
-二次函数:二次函数的图像、性质及其应用。
以上是初中数学的主要知识框架,每个知识点都有相应的公式、定理和概念需要掌握。
在学习过程中,要注重理解和应用,通过练习题和实际
问题来巩固所学知识。
同时,数学学科的逻辑性较强,需要逐步建立起知识之间的联系和推导过程,这样才能更好地掌握初中数学的整体知识框架。
初中数学知识点框架
初中数学知识点框架一、整数的运算与性质1.整数的定义与表示方法2.整数的相加、相减运算法则3.整数的乘法与除法运算法则4.整数的混合运算5.整数的性质(封闭性、交换律、结合律等)6.整数的应用(温度计算、负数的解释等)二、分数的运算与性质1.分数的定义与表示方法2.分数的相加、相减运算法则3.分数的乘法与除法运算法则4.分数的混合运算5.分数的比较与排序6.分数的化简与增加7.分数的应用(比例、百分比等)三、平方根与立方根1.平方根的定义与性质2.求解平方根的方法3.平方根的应用(面积、边长等)4.立方根的定义与性质5.求解立方根的方法6.立方根的应用(体积、边长等)四、代数运算1.代数式的定义与基本性质2.代数式的加减法则3.代数式的乘法运算法则4.代数式的混合运算5.代数式的因式分解与求值五、一次函数与二次函数1.一次函数的定义与性质2.一次函数的图像与表示3.一次函数的斜率与截距4.一次函数的方程与不等式5.一次函数的应用(速度与距离问题等)6.二次函数的定义与性质7.二次函数的图像与表示8.二次函数的顶点与轴对称9.二次函数的方程与不等式10.二次函数的应用(抛物线、最值问题等)六、几何图形的性质1.直角三角形、等腰三角形、等边三角形2.钝角三角形、锐角三角形3.同位角、内错角、镜面角等角的性质4.平行线与转角线的性质5.等腰梯形、等边梯形、矩形、正方形的性质6.圆的周长与面积的计算7.角平分线、垂直平分线的性质七、概率与统计1.事件的概念与表示2.概率的计算方法3.事件的相互关系(互斥事件、独立事件等)4.统计与表格的读取5.统计图的绘制与分析八、平面坐标系1.平面坐标系的概念与表示2.座标点的确定与表示3.直角坐标系与极坐标系的转换4.坐标系中的距离与中点5.斜率的计算与性质九、数列与函数1.数列的定义与性质2.等差数列的通项与前n项和3.等比数列的通项与前n项和4.函数的概念与表示5.函数的性质与分类6.函数的图像与变化规律以上为初中数学的知识点框架,涵盖了整数、分数、代数运算、几何图形、概率统计、函数等多个知识领域。
七年级数学知识点框架形式
七年级数学知识点框架形式一、数的分类自然数、整数、有理数、无理数、实数、虚数、复数。
二、数的运算1.加法:符号、运算法则、和的性质。
2.减法:符号、运算法则、差的性质。
3.乘法:符号、运算法则、积的性质。
4.除法:符号、运算法则、商的性质。
5.混合运算:带括号的混合运算,整式的乘法运算和除法运算。
三、代数式的基本概念含有字母的数学式子就叫代数式。
四、等式1.等式的基本概念:相等的代数式构成的式子叫等式。
2.等式成立的条件:等式两边的值相等。
3.等式的性质:等式左右两边交换位置,等式仍然成立。
五、因数分解一个正整数能表示成几个较小正整数的乘积的形式叫做因数分解。
因数分解的方法有质因数分解和简单因数分解。
六、分式1.分式的基本概念:含有分数形式的式子就叫做分式。
2.分式的化简:化简完全分式、加减分数的化简。
3.分式的运算:分式的加减、分式的乘除法运算。
七、整式只包含有整数和整数幂次的代数式叫做整式。
整式的基本运算:加减、乘积。
八、方程与不等式1.方程:含有未知数的等式叫做方程。
2.解方程:方程的解法有各种方法。
3.不等式:带有不等号的式子。
4.解不等式:不等式的解法和方程有区别。
九、图形的初步认识1.图形的分类:平面图形和立体图形。
2.平面图形:点、线、角、三角形和四边形等。
3.立体图形:正方体、长方体、立方体、平行六面体等。
十、坐标系坐标系是平面内确定一个点位置的体系。
笛卡尔平面直角坐标系的基本概念与用法,图形在坐标系中的位置,图形的坐标求解。
十一、数据的收集、整理和统计1.数据的收集:数据分类、调查方法。
2.数据的整理:数据对象、数据表格、数据统计。
3.数据的统计:数据的中心趋势和离散趋势的度量,直方图、饼状图、折线图等的绘制和使用。
初中数学知识点框架(详)
)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数一、数实数1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记作a 。
0的算术平方根为0;从定义可知,只有当a ≥0时,a 才有算术平方根。
2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是06.根式运算())0,0(0,0>≥=≥≥=⨯b a b a ba b a ab b a.实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
有理数知识概念 1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.有理数要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
初中数学知识点总结大框架
初中数学知识点总结大框架一、数与代数1. 有理数- 整数与分数- 正数、负数和零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值- 有理数的科学计数法2. 整数的性质- 素数与合数- 奇数与偶数- 公约数与公倍数- 最大公约数和最小公倍数- 质因数分解3. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算- 因式分解4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 解一元一次不等式- 用方程或不等式解决实际问题5. 二元一次方程组- 方程组的解法:代入法、消元法- 线性方程组的应用6. 函数的初步认识- 函数的概念- 函数的表示方法:表格、图形、解析式- 线性函数与一次函数- 函数的性质:定义域、值域、单调性、增减性二、几何1. 平面图形- 点、线、面的基本性质- 角的概念与分类:邻角、对角、同位角等- 直线与射线- 角的度量与比较- 三角形的基本性质与分类- 四边形的基本性质与分类- 圆的基本性质:圆心、半径、直径、弦、弧、切线2. 图形的变换- 平移:平移的定义与作图- 旋转:旋转的定义与作图- 轴对称:轴对称图形与作图- 相似与全等:相似图形与全等图形的判定3. 面积与体积- 平行四边形、三角形与梯形的面积公式- 圆、扇形与弓形的面积公式- 长方体、正方体、圆柱、圆锥的体积公式- 表面积的计算4. 解析几何- 坐标系的基本概念- 点的位置由坐标确定- 距离公式与中点公式- 直线方程的几种形式- 圆的方程三、统计与概率1. 统计- 统计的基本概念:总体、样本、个体- 数据的收集与整理:频数、频率、直方图- 平均数、中位数、众数的计算与意义- 方差与标准差的计算与意义2. 概率- 概率的基本概念- 随机事件的概率- 概率的计算公式- 条件概率与独立事件四、综合应用题1. 数列的基本概念与简单计算2. 实际问题的数学建模3. 运用所学知识解决综合性问题以上是初中数学知识点的总结大框架,每个部分都包含了初中阶段数学课程的核心内容。
中学数学框架
中学数学框架中学数学框架主要分为三个部分:代数、几何和数学分析。
一、代数部分1. 数与式:包括实数、有理数、无理数、代数式、整式、分式等。
2. 方程与不等式:包括一元一次方程、一元二次方程、二元一次方程组、一元一次不等式(组)等。
3. 函数及其图象:包括正比例函数、一次函数、反比例函数、二次函数等。
4. 数据的收集、整理与描述:包括概率、统计图等。
二、几何部分1. 图形认识初步:包括立体图形和平面图形的认识,线段、角、相交线、平行线等。
2. 三角形:包括三角形的有关概念,三角形的边和角,多边形及其内角和等。
3. 相似图形:包括图形的相似,相似三角形,位似等。
4. 解直角三角形:包括锐角三角函数,有关三角函数的计算等。
5. 圆:包括圆的基本性质,点和圆的位置关系,直线和圆的位置关系,圆和圆的位置关系等。
三、数学分析部分1. 数轴与绝对值:包括数轴的认识,相反数与绝对值等。
2. 有理数的运算:包括有理数的加法、减法、乘法、除法、乘方运算等。
3. 实数:包括无理数、实数的概念及其运算等。
4. 二次根式:包括二次根式的概念及其运算等。
5. 一元一次方程:包括一元一次方程的解法及其应用等。
6. 二元一次方程组:包括二元一次方程组的解法及其应用等。
7. 不等式与不等式组:包括不等式的性质,一元一次不等式(组)的解法及其应用等。
8. 分式与分式方程:包括分式的概念及其运算,分式方程的解法及其应用等。
9. 函数及其图象:包括函数的概念,正比例函数、一次函数、反比例函数、二次函数的图象及其性质等。
10. 数据的收集、整理与描述:包括数据的收集方法,数据的表示方法,数据的分析方法等。
以上是中学数学的主要框架内容,具体的学习内容可能会因教材和地区的不同而有所差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点框架详 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数一、数实数 1.算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么正数x 叫做a 的算术平方根,记a 。
0的算术平方根为0;从定义可知,只有当作a ≥0时,a 才有算术平方根。
2.平方根:一般地,如果一个数x 的平方根等于a ,即x 2=a ,那么数x 就叫做a 的平方根。
3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5.数a 的相反数是-a ,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是06.根式运算())0,0(0,0>≥=≥≥=⨯b a b a ba b a ab b a.实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。
重点是实数的意义和实数的分类;实数的运算法则及运算律。
有理数知识概念1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类:①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a ≠0,那么a 的倒数是a 1;若ab=1a 、b 互为倒数;若ab=-1a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n =-a n 或(a-b)n =-(b-a)n ,当n 为正偶数时:(-a)n =a n 或(a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.有理数要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
重点利用有理数的运算法则解决实际问题体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
二、式式知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
整式的乘除与分解因式1.同底数幂的乘法法则:n m n m a a a +=⋅(m,n 都是正数)2..幂的乘方法则:mn n m a a =)((m,n 都是正数)3.整式的乘法(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:22))((b a b a b a -=-+5.完全平方公式:2222)(b ab a b a +±=±6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a ≠0,m 、n都是正数,且m>n).在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a ≠0.②任何不等于0的数的0次幂等于1,即)0(10≠=a a ,如1100=,(-2.50=1),则00无意义.③任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即p p a a 1=-(a≠0,p 是正整数),而0-1,0-3都是无意义的;当a>0时,a -p 的值一定是正的;当a<0时,a -p 的值可能是正也可能是负的,如41(-2)2-=,81)2(3-=-- ④运算要注意运算顺序.7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。
在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。
在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。
分式知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*CA/B=A÷C/B÷C(A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b*c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式和分数有着许多相似点。