高考数学模拟复习试卷试题模拟卷1911
高三数学模拟考试卷(附答案解析)
高三数学模拟考试卷(附答案解析)一、单选题(本大题共4小题,共20分。
在每小题列出的选项中,选出符合题目的一项)1.已知p:sinx=siny,q:x=y,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则此双曲线的渐近线方程为()A. y=±3xB. y=±2xC. y=±2xD. y=±x3.函数y=f(x)是定义域为R的奇函数,且对于任意的x1≠x2,都有f(x1)−f(x2)x1−x2<1成立.如果f(m)>m,则实数m的取值集合是()A. {0}B. {m|m>0}C. {m|m<0}D. R4.已知数列{an}满足a1+a2+⋯+an=n(n+3),n∈N*,则an=()A. 2nB. 2n+2C. n+3D. 3n+1二、填空题(本大题共12小题,共54分)5.不等式|2x+1|+|x−1|<2的解集为______.6.函数f(x)=x+9x(x>0)的值域为______.7.函数f(x)=sinx+cosx(x∈R)的最小正周期为______.8.若an为(1+x)n的二项展开式中x2项的系数,则n→+∞lim ann2=______.9.在所有由1,2,3,4,5这五个数字组成的无重复数字的五位数中,任取一个数,则取出的数是奇数的概率为______.10.若实数x,y满足x+y≤4y≤3xy≥0,则2x+3y的取值范围是______.11.已知向量a,b满足|a|=2,|b|=1,|a+b|=3,则|a−b|=______.12.已知椭圆C:x29+y2b2=1(b>0)的左、右两个焦点分别为F1、F2,过F2的直线交椭圆C于A,B两点.若△F1AB是等边三角形,则b的值等于______.13.已知等比数列{an}的前n项和为Sn,公比q>1,且a2+1为a1与a3的等差中项,S3=14.若数列{bn}满足bn=log2an,其前n项和为Tn,则Tn=______.14.已知A,B,C是△ABC的内角,若(sinA+i⋅cosA)(sinB+i⋅cosB)=12+32i,其中i为虚数单位,则C 等于______.15.设a∈R,k∈R,三条直线l1:ax−y−2a+5=0,l2:x+ay−3a−4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为.16.设函数f(x)=x2−1,x≥a|x−a−1|+a,x<a,若函数f(x)存在最小值,则a的取值范围为______.三、解答题(本大题共5小题,共76分。
全国卷高考数学模拟卷(含答案)
全国卷高考数学模拟卷(含答案)全国卷-数学本试题卷共6页,23题(含选考题),全卷满分150分,考试用时120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交。
一、选择题:1.已知集合A={x|x-1>0}。
B={-2.2-1.1},则A∩B=?A。
{-2.-1} B。
{-2} C。
{-1.1} D。
{0.1}2.设复数z=-1+ i(i是虚数单位),z的共轭复数为z,则(1+z)/(1-z)=?A。
-12/55+i/55 B。
-12/55-i/55 C。
12-i/55 D。
-12+i/553.若sin(α-π/4)=4/32,α∈(0,π/2),则cosα的值为?A。
4-2√7/27 B。
4-√7/3 C。
4+√7/3 D。
4+2√7/274.已知双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的一个焦点为F(0,-2),一条渐近线的斜率为3,ab,则该双曲线的方程为?A。
(y-2)^2/9 - x^2/4 = 1 B。
x^2/9 - (y-2)^2/4 = 1 C。
-x^2/9 + (y-2)^2/4 = 1 D。
(y+2)^2/9 - x^2/4 = 15.某空间几何体的三视图如图所示,则该几何体的体积为?A。
56-8π/3 B。
64-8π/3 C。
64-4π/3 D。
2024年全国普通高中九省联考仿真模拟数学试题(三)
2024年高考仿真模拟数学试题(三)试卷+答案本套试卷根据九省联考题型命制,题型为8+3+3+5模式,适合黑龙江、吉林、安徽、江西、甘肃、河南、新疆、广西、贵州等省份考生模拟练习.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的六位数,每个数字至少出现一次. (1)求满足条件的对接码的个数;(2)若对接密码中数字1出现的次数为X ,求X 的分布列和数学期望.16.(15分)已知函数()()ln 1f x x a x =−−. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.2024年高考仿真模拟数学试题(三)试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某校高三年级一共有1200名同学参加数学测验,已知所有学生成绩的第80百分位数是103分,则数学二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.非空集合A具有如下性质:①若x,y∈A,则;②若x,y∈A,则x+y∈A下列判断中,正确的有()A.﹣1∉A B.C.若x,y∈A,则xy∈A D.若x,y∈A,则x﹣y∈A答案ABC解析:对于A,假设﹣1∈A,则令x=y=﹣1,则=1∈A,x+y=﹣2∈A,令x=﹣1,y=1,则=﹣1∈A,x+y=0∈A,令x=1,y=0,不存在,即y≠0,矛盾,∴﹣1∉A,故A对;对于B,由题,1∈A,则1+1=2∈A,2+1=3∈A,…,2022∈A,2023∈A,∴∈A,故B对;对于C,∵1∈A,x∈A,∴∈A,∵y∈A,∈A,∴=xy∈A,故C对;对于D,∵1∈A,2∈A,若x=2,y=1,则x﹣y=1∈A,故D错误.故选ABC.的部分图三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)两个安全设备间由一组对接码进行“握手”连接,对接码是一个由“1,2,3,4”4个数字组成的)连接当5k ≥时,可得()111k k ii a a a i k −+−=≤≤−, (∗) ②设32i k ≤≤−,则112k i k k a a a a a −−+>+=,所以{}1k i n a a a −+∉, 由111213320k k k k k k k a a a a a a a a a −−−−−−=−<−<<−<−= , 又由12320k k a a a a −−≤<<<< ,可得111122133133,,k k k k k k k k a a a a a a a a a a a a −−−−−−−−−=−=<−=−= , 所以1(13)k k ii a a a i k −−−=≤≤−, 因为5k ≥,由以上可知:111k k a a a −−−=且122k k a a a −−−=, 所以111k k a a a −−−=且122k k a a a −−−=,所以1(11)k k ii a a a i k −−−=≤≤−,(∗∗) 由(∗)知,()111k k ii a a a i k −+−=≤≤− 两式相减,可得()1111k k i i a a a a i k −+−=−≤≤−, 所以当5k ≥时,数列{}n a 为等差数列. ……………17分.。
高考数学模拟试题含答案详解
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
2023高考数学模拟卷(一)(含答案解析)
9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)Word版含解析
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题一
高考数学高三模拟试卷试题压轴押题全国高中数学联赛模拟试题(一)第一试一、 选择题:(每小题6分,共36分)1、方程6×(5a2+b2)=5c2满足c≤20的正整数解(a,b,c)的个数是(A )1(B )3(C )4(D )52、函数12-=x x y (x ∈R ,x≠1)的递增区间是(A )x≥2 (B )x≤0或x≥2 (C )x≤0(D )x≤21-或x≥23、过定点P(2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O 为原点)的面积最小,则l 的方程为 (A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=04、若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是(A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <1 5、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、在1,2,3,4,5的排列a1,a2,a3,a4,a5中,满足条件a1<a2,a2>a3,a3<a4,a4>a5的排列的个数是 (A )8 (B )10 (C )14 (D )16二、 填空题:(每小题9分,共54分)1、[x]表示不大于x 的最大整数,则方程21×[x2+x]=19x +99的实数解x 是. 2、设a1=1,an+1=2an +n2,则通项公式an =. 3、数799被2550除所得的余数是.4、在△ABC 中,∠A =3π,sinB =135,则cosC =.5、设k 、是实数,使得关于x 的方程x2-(2k +1)x +k2-1=0的两个根为sin 和cos ,则的取值范围是. 6、数()n2245+(n ∈N )的个位数字是.三、 (20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x(1-2x)(1-3x)+y(1-2y)(1-3y)+z(1-2z)(1-3z)≥0,并确定等号成立的条件.四、 (20分)(1) 求出所有的实数a ,使得关于x 的方程x2+(a +)x +a =0的两根皆为整数. (2) 试求出所有的实数a ,使得关于x 的方程x3+(-a2+2a +2)x -2a2-2a =0有三个整数根.五、 (20分)试求正数r 的最大值,使得点集T ={(x,y)|x 、y ∈R ,且x2+(y -7)2≤r2}一定被包含于另一个点集S ={(x,y)|x 、y ∈R ,且对任何∈R ,都有cos2+xcos +y≥0}之中.第二试一、(50分) 设a 、b 、c ∈R ,b≠ac ,a≠-c ,z 是复数,且z2-(a -c)z -b =0.求证:()12=-+-+bac zc a b a 的充分必要条件是(a -c)2+4b≤0.二、(50分)如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证: (1) AK ⊥BC ;(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a1,a2,…,an 满足下列n 个方程:∑==+=+ni i n j j j i a 1),,3,2,1(124. 确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子). 参考答案第一试题号 1 2 3 4 5 6 答案 CCDABD二、填空题: ACBD QK PA BCDMNA 1D 1B 1C 1图11、38181-或381587;2、7×2n1-n2-2n -3;3、343;4、261235-;5、{|=2n +或2n -2π,n ∈Z} ;6、1(n 为偶数);7(n 为奇数). 三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a的可能取值有-3,11,-1,9. 五、rmax =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ). 三、()11212++-=n S .全国高中数学联赛模拟试题(二)(命题人:江厚利 审题人:李潜)第一试一、选择题(每小题6分,共36分)1、已知集合()⎭⎬⎫⎩⎨⎧+=--=123,a x y y x A ,()()(){}1511,2=-+-=y a x a y x B .若∅=B A ,则a 的所有取值是(A )-1,1 (B )-1,21(C )±1,2(D )±1,-4,25 2、如图1,已知正方体ABCD -A1B1C1D1,点M 、N 分别在AB1、BC1上,且AM =BN .那么, ①AA1⊥MN ;②A1C1∥MN ;③MN ∥平面A1B1C1D1; ④MN 与A1C1异面.以上4个结论中,不正确的结论的个数为 (A )1 (B )2 (C )3(D )43、用Sn 与an 分别表示区间[)1,0内不含数字9的n 位小数的和与个数.则nnn S a ∞→lim的值为 (A )43(B )45 (C )47(D )49 4、首位数字是1,且恰有两个数字相同的四位数共有(A )216个(B )252个(C )324个(D )432个5、对一切实数x ,所有的二次函数()c bx ax x f ++=2(a <b )的值均为非负实数.则c b a ab ++-的最大值是(A )31 (B )21(C )3(D )26、双曲线12222=-by a x 的一个焦点为F1,顶点为A1、A2,P 是双曲线上任意一点.则分别以线段PF1、A1A2为直径的两圆一定(A )相交(B )相切(C )相离(D )以上情况均有可能二、填空题(每小题9分,共54分)1、已知复数i 21+=z ,()1121i 2i2z z z -++=.若△ABC 的3个内角∠A 、∠B 、∠C依次成等差数列,且2icos2cos 2CA u +=,则2z u +的取值范围是. 2、点P(a,b)在第一象限内,过点P 作一直线l ,分别交x 、y 轴的正半轴于A 、B 两点.那么,PA2+PB2取最小值时,直线l 的斜率为.3、若△ABC 是钝角三角形,则arccos(sinA)+arccos(sinB)+arccos(sinC)的取值范围是.4、在正四面体ABCD 中,点M 、P 分别是AD 、CD 的中点,点N 、Q 分别是△BCD 、△ABC 的中心.则直线MN 于PQ 的夹角的余弦值为.5、在()122++n x 的展开式中,x 的幂指数是整数的各项系数之和是.6、集合A 、B 、C (不必两两相异)的并集A ∪B ∪C ={1,2,3,…,n}.则满足条件的三OBCAD N M 图2元有序集合组(A,B,C)的个数是.三、(20分)设p >0,当p 变化时,Cp :y2=2px 为一族抛物线,直线l 过原点且交Cp 于原点和点Ap .又M 为x 轴上异于原点的任意点,直线MAp 交Cp 于点Ap 和Bp .求证:所有的点Bp 在同一条直线上. 四、(20分)对于公差为d(d≠0)的等差数列{an},求证:数列中不同两项之和仍是这一数列中的一项的充要条件是存在整数m≥-1,使a1=md . 五、(20分)求最大的正数,使得对任意实数a 、b ,均有()222b a b a +λ≤()322b ab a ++.第二试一、(50分)如图2,⊙O 切△ABC 的边AB 于点D ,切边AC 于点C ,M 是边BC 上一点,AM 交CD 于点N .求证:M 是BC 中点的充要条件是ON ⊥BC .二、(50分)求出能表示为()abcc b a n 2++=(a 、b 、c ∈Z+)的所有正整数n .三、(50分)在一个()()1212-⨯-nn(n≥2)的方格表的每个方格内填入1或-1,如果任意一格内的数都等于与它有公共边的那些方格内所填数的乘积,则称这种填法是“成功”的.求“成功”填法的总数.参考答案 第一试题号 1 2 3 4 5 6 答案 DBDDAB二、填空题:1、⎪⎪⎭⎫⎢⎣⎡25,22;2、aab -;3、⎪⎭⎫⎝⎛23,2ππ;4、181;5、21312++n ;6、7n .三、证略. 四、证略.五、427max =λ. 第二试一、证略;二、1,2,3,4,5,6,8,9. 三、1种(每空填1).全国高中数学联赛模拟试题(三)(命题人:吴伟朝)第一试一、选择题:(每小题6分,共36分)1、若集合S ={n|n 是整数,且22n +2整除n +},则S 为(A )空集∅ (B )单元集 (C )二元集 (D )无穷集2、若多项式x2-x +1能除尽另一个多项式x3+x2+ax +b (a 、b 皆为常数).则a+b 等于 (A )0 (B )-1 (C )1 (D )23、设a 是整数,关于x 的方程x2+(a -3)x +a2=0的两个实根为x1、x2,且tan(arctan x1+arctan x2)也是整数.则这样的a 的个数是 (A )0 (B )1 (C )2 (D )44、设一个四面体的体积为V1,且它的各条棱的中点构成一个凸多面体,其体积为V2.则12V V 为 (A )21(B )32 (C )常数,但不等于21和32 (D )不确定,其值与四面体的具体形状有关5、在十进制中,若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称它为递降正整数.所有这样的递降正整数的个数为(A )1001 (B )1010 (C )1011 (D )1013 6、在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是(A )36 (B )37 (C )48 (D )49二、填空题:(每小题9分,共54分)1、若直线xcos +ysin =cos2-sin2(0<<)与圆x2+y2=41有公共点,则的取值范围是.2、在平面直角坐标系xOy 中,一个圆经过(0,2)、(3,1),且与x 轴相切.则此圆的半径等于.3、若常数a 使得关于x 的方程lg(x2+20x)-lg(8x -6a -3)=0有惟一解.则a 的取值范围是.4、f(x)=82x +xcosx +cos(2x)(x ∈R)的最小值是.5、若k 是一个正整数,且2k 整除则k 的最大值为.6、设ABCD 为凸四边形,AB =7,BC =4,CD =5,DA =6,其面积S 的取值范围是(a,b] .则a +b =.三、(20分)设椭圆的左右焦点分别为F1、F2,左准线为l ,点P 在椭圆上.作PQ ⊥l ,Q 为垂足.试问:对于什么样的椭圆,才存在这样的点P ,使得PQF1F2为平行四边形?说明理由(答案用关于离心率e 的等式或不等式来表示). 四、(20分)设a0=1,a1=2,an+1=2an1+n ,n =1,2,3,….试求出an 的表达式(答案用有限个关于n 的式子相加的形式表示,且项数与n 无关). 五、(20分)试求出所有的有序整数对(a,b),使得关于x 的方程x4+(2b -a2)x2-2ax +b2-1=0的各个根均是整数.第二试一、(50分)点P 在△ABC 内,且∠BAP =∠CAP ,连结BP 并延长交AC 于点Q .设∠BAC=60°,且PQPC BP 111=+. 求证:P 是△ABC 的内心.二、(50分)设正数a 、b 满足2b a >且使得关于x 的不等式1-x ≥b x a -+1总有实数解.试求f(a,b)=a2-3ab +b2的取值范围. 三、(50分)试求出正整数k 的最小可能值,使得下述命题成立:对于任意的k 个整数a1,a2,…,ak (允许相等),必定存在相应的k 的整数x1,x2,…,xk (也允许相等),且|xi|≤2(i =1,2,…,k),|x1|+|x2|+…+|xk|≠0,使得整除x1a1+x2a2+…+xkak .参考答案 第一试二、填空题:11、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡65,323,6ππππ ;2、5615±;3、⎪⎭⎫⎝⎛--21,6163;4、-1;5、;6、2102.三、⎪⎭⎫ ⎝⎛∈1,21e .四、a2n =2n+2-2n -3;a2n+1=3×2n+1-2n -4.五、(a,b)=(2l―1,l2―l―1)(∀l ∈Z)第二试 一、证略(提示:将条件变形为PQPCPB PA PA PC =+⋅1,然后应用正弦定理,进行三角变换,得∠BPC =120°,利用同一法即证);二、(-∞,-1). 三、kmin =7.全国高中数学联赛模拟试题(四)(命题人:刘康宁)第一试一、 选择题(每小题6分,共36分):1、函数()aa x x a x f -+-=22是奇函数的充要条件是(A )-1≤a <0或0<a≤1 (B )a≤-1或a≥1 (C )a >0 (D )a <02、已知三点A(-2,1)、B(-3,-2)、C(-1,-3)和动直线l :y =kx .当点A 、B 、C 到直线l 的距离的平方和最小时,下列结论中,正确的是 (A )点A 在直线l 上 (B )点B 在直线l 上 (C )点C 在直线l 上 (C )点A 、B 、C 均不在直线l 上 3、如图,已知正方体ABCDA1B1C1D1,过顶点A1在空间作直线l ,使l 与直线AC 和BC1所成的角都等于60°.这样的直线l 可以做(A )4条 (B )3条(C )2条 (D )1条4、整数的100200C=n 两位质因数的最大值是(A )61(B )67(C )83(D )975、若正整数a 使得函数()ax x x f y 213-+==的最大值也是整数,则这个最大值等于 (A )3 (B )4 (C )7 (D )86、在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第个数是 (A )3844 (B )3943 (C )3945 (D )4006二、 填空题(每小题9分,共54分):1、在复平面上,Rt △ABC 的顶点A 、B 、C 分别对应于复数z +1、2z +1、(z +1)2,A 为直角顶点,且|z|=2.设集合M ={m|zm ∈R ,m ∈N+},P ={x|x =m 21,m ∈M}.则集合P 所有元素之和等于.2、函数f(x)=|sinx|+sin42x +|cosx|的最大值与最小值之差等于.3、关于x 的不等式的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a 的取值范围是.4、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是.5、已知点(a,b)在曲线arcsinx =arccosy 上运动,且椭圆ax2+by2=1在圆x2+y2=32的外部(包括二者相切的情形).那么,arcsinb 的取值范围是.6、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是.三、 (20分)△ABC 的三边长a 、b 、c (a≤b≤c )同时满足下列三个条件 (i )a 、b 、c 均为整数;(ii )a 、b 、c 依次成等比数列; (iii )a 与c 中至少有一个等于100.求出(a,b,c)的所有可能的解.四、 (20分)在三棱锥DABC 中,AD =a ,BD =b ,AB =CD =c ,且∠DAB +∠BAC +∠DAC =180°,∠DBA +∠ABC +∠DBC =180°.求异面直线AD 与BC 所成的角.五、 (20分)设正系数一元二次方程ax2+bx +c =0有实根.证明:(1) max{a,b,c}≥94(a +b +c);(2) min{a,b,c}≤41(a +b +c).第二试一、(50分)已知△ABC 的外角∠EAC 平分线与△ABC 的外接圆交于D ,以CD 为直径的圆分别交BC 、CA 于点P 、Q .求证:线段PQ 平分△ABC 的周长.二、(50分)已知x0=1,x1=3,xn+1=6xn -xn1(n ∈N+). 求证:数列{xn}中无完全平方数.三、(50分)有名运动员,号码依次为1,2,3,…,.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.参考答案 第一试二、填空题: 1、71;2、2;3、[1,3];4、10%;5、⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ ;6、aR334-. 三、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100). 四、222arccosac b -.五(1)证略(提示:令a +b +c =t ,分b≥t 94和b <t 94讨论); (2)证略(提示:分a≤t 41和a >t 41讨论); 第二试一、证略;二、证略(提示:易由特征根法得xn =()()⎥⎦⎤⎢⎣⎡-++nn22322321,设yn =()()⎥⎦⎤⎢⎣⎡--+nn223223221,于是1222=-n n y x,原结论等价于方程x4-2y2=1无整数解,由数论只是可证).三、43.全国高中数学联赛模拟试题(五)(命题人:罗增儒)第一试一、 选择题:(每小题6分,共36分)1、空间中n (n≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论(1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n2个平面相交. 其中,正确的个数为(A )1 (B )2 (C )3 (D )42、若函数y=f(x)在[a,b]上的一段图像可以近似地看作直线段,则当c ∈(a,b)时,f(c)的近似值可表示为(A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f (C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、设a >b >c ,a+b+c=1,且a2+b2+c2=1,则(A )a+b >1 (B )a+b=1 (C )a+b <1 (D )不能确定,与a 、b 的具体取值有关4、设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b= (A )161 (B )81(C )41(D )21 5、S={1,2,…,},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C(B )2100221001C C + (C )2100221001A A +(D )32003A6、长方体ABCDA1B1C1D1,AC1为体对角线.现以A 为球心,AB 、AD 、AA1、AC1为半径作四个同心球,其体积依次为V1、V2、V3、V4,则有(A )V4<V1+V2+V3 (B )V4=V1+V2+V3(C )V4>V1+V2+V3 (D )不能确定,与长方体的棱长有关二、 填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为. 2、等差数列{an}的首项a1=8,且存在惟一的k 使得点(k,ak)在圆x2+y2=102上,则这样的等差数列共有个.3、在四面体PABC 中,PA=PB=a ,PC=AB=BC=CA=b ,且a <b ,则ba的取值范围为.4、动点A 对应的复数为z=4(cos +isin ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为.5、∑=200313k k被8所除得的余数为.6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为.三、 (20分)已知抛物线y2=2px(p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、 (20分)单位正方体ABCDA1B1C1D1中,正方形ABCD 的中心为点M ,正方形A1B1C1D1的中心为点N ,连AN 、B1M . (1)求证:AN 、B1M 为异面直线; (2)求出AN 与B1M 的夹角.五、 (20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9. 第二试一、 (50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA·PB 取最小值时, (1)证明:AB≥2BC ; (2)求AQ·BQ 的值.二、 (50分)给定由正整数组成的数列⎩⎨⎧+===++nn n a a a a a 12212,1(n≥1). (1)求证:数列相邻项组成的无穷个整点(a1,a2),(a3,a4),…,(a2k1,a2k),…均在曲线x2+xyy2+1=0上.(2)若设f(x)=xn+xn1anxan1,g(x)=x2x1,证明:g(x)整除f(x).三、 (50分)我们称A1,A2,…,An 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j≤n .求最小正整数m ,使得对A ={1,2,…,m}的任意一个13分划A1,A2,…,A13,一定存在某个集合Ai(1≤i≤13),在Ai 中有两个元素a 、b 满足b <a≤89b . 参考答案 第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l pl .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA·PB 最小值为2,此时∠APB =90°);(2)AQ·BQ=1.二、证略(提示:用数学归纳法).三、m=117.全国高中数学联赛模拟试题(六) (命题人:秦永 苟春鹏)第一试一、 选择题:(每小题6分,共36分)1、在复平面上,非零复数z1、z2在以i 对应的点为圆心,1为半径的圆上,21z z ⋅的实部为零,argz1=6π,则z2= (A )i 2323+-(B )i 2323- (C )i 2323+-(D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫⎝⎛+∞,23 (C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛,2385,21(D )⎪⎭⎫⎝⎛+∞,21 3、已知双曲线过点M(2,4),N(4,4),它的一个焦点为F1(1,0),则另一个焦点F2的轨迹方程是(A )()()116425122=-+-y x (y≠0)或x=1(y≠0)(B )()()125416122=-+-y x (x≠0)或x=1(y≠0)(C )()()116125422=-+-y x (y≠0)或y=1(x≠0)(D )()()125116422=-+-y x (x≠0)或y=1(x≠0)4、已知正实数a 、b 满足a+b=1,则b a M 2112+++=的整数部分是(A )1 (B )2 (C )3 (D )45、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米 6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分,共36分)1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截面AMN 与底面AFH 所成的角是.2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a2+b2=2c2,则角C 的最大值是.3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是.4、已知函数f(x)与g(x)的定义域均为非负实数集,对任意x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3x ,g(x)=52+x ,则f(x)*g(x)的最大值为.5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有不同的取法.6、若实数a >0,则满足a5a3+a=2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是.三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax+Bx+C=0(A·B·C≠0)与椭圆b2x2+a2y2=a2b2相交于P 、Q 两点,O为坐标原点,且OP ⊥OQ .求证:2222222BA b a C b a ++=. 五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c (万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1 各部每1万元营业额所需人数表部门 人数 百货部 5 服装部 4家电部2部门 利润 百货部 0.3万元 服装部 0.5万元 家电部0.2万元第二试一、 (50分)矩形ABCD 的边AD=·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE2+BF2=AB2,试求正实数的值.二、 (50分)若ai ∈R+(i=1,2,…,n ),∑==ni iaS 1,且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211. 三、 (50分)无穷数列{cn}可由如下法则定义:cn+1=|1|12cn||,而0≤c1≤1.(1)证明:仅当c1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c1值,使得数列自某项之后以T 为周期(对于每个T=2,3,…)?参考答案 第一试题号 1 2 3 4 5 6 答案 ACABCC二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④. 三、证略. 四、证略.五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).第二试一、22=λ; 二、证略.三、 (1)证略. (2)无穷个.全国高中数学联赛模拟试题(七)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)7、 a 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有(A )1条 (B )2条 (C )3条 (D )无数条8、 已知f(x)是R 上的奇函数,g(x)是R 上的偶函数,若f(x)g(x)=x2+2x+3,则f(x)+g(x)=(A )x2+2x3 (B )x2+2x3 (C )x22x+3 (D )x22x+39、已知△ABC ,O 为△ABC 内一点,∠AOB=∠BOC=∠COA=32π,则使AB+BC+CA≥m(AO+BO+CO)成立的m 的最大值是 (A )2(B )35(C )3(D )23 10、 设x=0.820.5,y=sin1,z=log37则x 、y 、z 的大小关系是(A )x <y <z (B )y <z <x (C )z <x <y (D )z <y <x11、整数⎥⎦⎤⎢⎣⎡+31010951995的末尾两位数字是(A )10 (B )01 (C )00 (D )20 12、 设(a,b)表示两自然数a 、b 的最大公约数.设(a,b)=1,则(a2+b2,a3+b3)为(A )1 (B )2 (C )1或2 (D )可能大于2二、填空题:(每小题9分,共54分)1、若f(x)=x10+2x92x82x7+x6+3x2+6x+1,则f(21)=.2、设F1、F2是双曲线x2y2=4的两个焦点,P 是双曲线上任意一点,从F1引∠F1PF2平分线的垂线,垂足为M ,则点M 的轨迹方程是. 3、给定数列{xn},x1=1,且nn n x x x -+=+3131,则x1999x601=.4、正方体ABCDA1B1C1D1的棱长为1,E 是CD 中点,F 是BB1中点,则四面体AD1EF 的体积是.5、在坐标平面上,由条件⎪⎩⎪⎨⎧+-≤--≥321x y x y 所限定的平面区域的面积是.6、12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要周.三、(20分)已知椭圆12222=+by a x 过定点A(1,0),且焦点在x 轴上,椭圆与曲线|y|=x 的交点为B 、C .现有以A 为焦点,过B 、C 且开口向左的抛物线,抛物线的顶点坐标M(m,0).当椭圆的离心率e 满足1322<<e ,求实数m 的取值范围. 四、(20分)a 、b 、c 均为实数,a≠b ,b≠c ,c≠a .证明:23≤ac c b b a b a c a c b c b a -+-+--++-++-+222<2. 五、(20分) 已知f(x)=ax4+bx3+cx2+dx ,满足 (i )a 、b 、c 、d 均大于0;(ii )对于任一个x ∈{2,1,0,1,2},f(x)为整数; (iii )f(1)=1,f(5)=70.试说明,对于每个整数x ,f(x)是否为整数.第二试一、(50分)设K 为△ABC 的内心,点C1、B1分别为边AB 、AC 的中点,直线AC 与C1K 交于点B2,直线AB 于B1K 交于点C2.若△AB2C2于△ABC 的面积相等,试求∠CAB .二、(50分)设5sini 5cosππ+=w ,f(x)=(xw)(xw3)(xw7)(xw9).求证:f(x)为一整系数多项式,且f(x)不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参考答案 第一试二、填空题:1、4;2、x2+y2=4;3、0;4、245;5、16;6、5.三、⎪⎪⎭⎫⎝⎛+423,1. 四、证略.五、是.第二试一、60°; 二、证略. 三、100.全国高中数学联赛模拟试题(八)(选题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设logab 是一个整数,且2log log 1log a b bb a a>>,给出下列四个结论 ①21a b b>>;②logab+logba=0; ③0<a <b <1;④ab1=0. 其中正确结论的个数是 (A )1 (B )2(C )3(D )42、若△ABC 的三边长a 、b 、c 满足⎩⎨⎧=+-+=---03220222c b a c b a a ,则它的最大内角度数是(A )150°(B )120°(C )90°(D )60°3、定长为l (a b l 22>)的线段AB 的两端点都在双曲线12222=-by a x (a >0,b >0),则AB 中点M 的横坐标的最小值为 (A )222ba al + (B )222ba l a ++(C )()2222ba a l a +- (D )()2222ba a l a ++4、在复平面上,曲线z4+z=1与圆|z|=1的交点个数为(A )0 (B )1 (C )2(D )35、设E={(x,y)|0≤x≤2,0≤y≤2}、F={(x,y)|x≤10,y≥2,y≤x4}是直角坐标平面上的两个点集,则集合G=()()⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫⎝⎛++F y x E y x y y x x 22112121,,,2,2所组成的图形面积是(A )6 (B )2 (C )6.5 (D )76、正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC所成的角一定不等于 (A )30° (B )45° (C )60° (D )90°二、填空题:(每小题9分,共54分)1、已知24πα=,则αααααααααααcos sin cos 2cos sin 2cos 3cos sin 3cos 4cos sin +++的值等于.2、2004321132112111+++++++++++=. 3、在Rt △ABC 中,AB =AC ,以C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 内,且椭圆过A 、B 点,则这个椭圆的离心率等于.4、从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有种不同的选法.5、设a 、b 均为正数,且存在复数z 满足⎪⎩⎪⎨⎧≤+=⋅+1iz b a z z z ,则ab 的最大值等于.6、使不等式137158<+<k n n 对惟一的一个整数k 成立的最大正整数n 为.三、(20分)已知实数x 、y 满足x2+y2≤5.求f(x,y)=3|x+y|+|4y+9|+|7y3x18|的最大值与最小值.四、(20分)经过点M(2,1)作抛物线y2=x 的四条弦PiQi(i=1,2,3,4),且P1、P2、P3、P4四点的纵坐标依次成等差数列.求证:44332211MQ M P MQ M P MQ MP MQ M P ->-. 五、(20分)n 为正整数,r >0为实数.证明:方程xn+1+rxnrn+1=0没有模为r 的复数根.第二试一、(50分)设C(I)是以△ABC 的内心I 为圆心的一个圆,点D 、E 、F 分别是从I 出发垂直于边BC 、CA 和AB 的直线C(I)的交点.求证:AD 、BE 和CF 三线共点.二、(50分) 非负实数x 、y 、z 满足x2+y2+z2=1.求证:1≤xyzzx y yz x +++++111≤2.三、(50分)对由n 个A ,n 个B 和n 个C 排成的行,在其下面重新定义一行(比上面一行少一个字母),若其头上的两个字母不同,则在该位置写上第三个字母;若相同,则写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.下面给出了n=2的一个例子. A C B C B A B A A A C C A A B B A C C B A求所有的正整数n ,使得对任意的初始排列,经上述操作后,所得的大三角形的三个顶点上的字母要么全相同,要么两两不同.参考答案 第一试二、填空题:1、33; 2、20054008; 3、36-; 4、816;5、81;6、112.三、最大值5627+,最小值10327-. 四、证略. 五、证略.第二试一、证略; 二、证略. 三、 n=1.全国高中数学联赛模拟试题(九)(命题人:葛军)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x28nx+7s=0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k+1的数集 (C )偶数集 (D )所有形如4k+3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是(A )16966 (B )16975 (C )16984(D )170093、非常数数列{ai}满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i=0,1,2,…,n .对于给定的自然数n ,a1=an+1=1,则∑-=1n i ia等于(A )2(B )1(C )1(D )04、已知、是方程ax2+bx+c=0(a 、b 、c 为实数)的两根,且是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2 (C )0(D )3i5、已知a+b+c=abc ,()()()()()()abb a ac c a bc c b A 222222111111--+--+--=,则A的值是 (A )3(B )3(C )4(D )46、对xi ∈{1,2,…,n},i=1,2,…,n ,有()211+=∑=n n x ni i ,x1x2…xn=n !,使x1,x2,…,xn ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8 (D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A1A2…An 内一点,点P 到直线A1A2的距离为h1,到直线A2A3的距离为h2,…,到直线An1An 的距离为hn1,到直线AnA1的距离为hn .若存在点P 使nn h a h a h a +++ 2211(ai=AiAi+1,i=1,2,…,n1,an=AnA1)取得最小值,则此凸多边形一定符合条件.2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是.3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、∈R ,a≠0.那么,对于任意的a 、,F(a,)的最大值和最小值分别是.4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是.5、已知集合{1,2,3,…,3n1,3n},可以分为n 个互不相交的三元组{x,y,z},其中x+y=3z ,则满足上述要求的两个最小的正整数n 是.6、任给一个自然数k ,一定存在整数n ,使得xn+x+1被xk+x+1整除,则这样的有序实数对(n,k)是(对于给定的k ).三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{an}定义如下:a1=3,an=13-n a (n≥2).试求an (n≥2)的末位数.五、(20分) 已知a 、b 、c ∈R+,且a+b+c=1.证明:2713≤a2+b2+c2+4abc <1. 第二试一、(50分)已知△ABC 中,内心为I ,外接圆为⊙O ,点B 关于⊙O 的对径点为K ,在AB 的延长线上取点N ,CB 的延长线上取M ,使得MC=NA=s ,s 为△ABC 的半周长.证明:IK ⊥MN .二、(50分)M 是平面上所有点(x,y)的集合,其中x 、y 均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M 的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c 满足b <0,ab=9c .试判别此多项式是否有三个不同的实根,说明理由.参考答案 第一试二、填空题: 1、该凸多边形存在内切圆; 2、5;3、32+,32-;4、9;5、5,8;6、(k,k)或(3m+2,2)(m ∈N+). 三、332. 四、7. 五、证略.第二试一、证略;二、证略. 三、 有.全国高中数学联赛模拟试题(十)(命题人:杨建忠 审题人:李潜)第一试一、选择题:(每小题6分,共36分)1、设集合M={2,0,1},N={1,2,3,4,5},映射f :M→N 使对任意的x ∈M ,都有x+f(x)+xf(x)是奇数,则这样的映射f 的个数是 (A )45 (B )27 (C )15 (D )112、已知sin2=a ,cos2=b ,0<<4π,给出⎪⎭⎫ ⎝⎛+4tan πθ值的五个答案:①a b-1; ②b a-1;③ab+1; ④ba+1; ⑤11-++-b a b a . 其中正确的是:(A )①②⑤ (B )②③④ (C )①④⑤ (D )③④⑤3、若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是 (A )64 (B )66 (C )68 (D )704、递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个3的幂之和,则此数列的第100项为 (A )729 (B )972 (C )243 (D )9815、14951C C C C +++++m n n n n (其中⎥⎦⎤⎢⎣⎡-=41n m ,[x]表示不超过x 的最大整数)的值为 (A )4cos2πn n(B )4sin2πn n(C )⎪⎭⎫ ⎝⎛+-4cos 22211πn nn (D )⎪⎭⎫ ⎝⎛+-4sin 22211πn nn 6、一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是(A )8568 (B )2142 (C )2139(D )1134二、填空题:(每小题9分,共54分)1、过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ=PH (≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是.2、已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角(0<<90°)的直线l ,则这样的直线l 的条数是f()=.3、不等式()92211422+<+-x xx 的解集为.4、设复数z 满足条件|zi|=1,且z≠0,z≠2i ,又复数使得i2i 2-⋅-z zωω为实数,则复数2的辐角主值的取值范围是.5、设a1,a2,…,a 均为正实数,且21212121200221=++++++a a a ,则a1a2…a 的最小值是.6、在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为.三、(20分)已知数列{an}是首项为2,公比为21的等比数列,且前n 项和为Sn .(1) 用Sn 表示Sn+1; (2) 是否存在自然数c 和k ,使得cS cS k k --+1>2成立. 四、(20分)设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF|=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.五、(20分)已知定义在R+上的函数f(x)满足(i )对于任意a 、b ∈R+,有f(ab)=f(a)+f(b); (ii )当x >1时,f(x)<0; (iii )f(3)=1.现有两个集合A 、B ,其中集合A={(p,q)|f(p2+1)f(5q)2>0,p 、q ∈R+},集合B={(p,q)|f(q p )+21=0,p 、q ∈R+}.试问是否存在p 、q ,使∅≠B A ,说明理由.第二试一、(50分)如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N 的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若POQ O S S △⊙32π=,求证:∠POQ=60°.二、(50分)已知数列a1=20,a2=30,an+2=3an+1an (n≥1).求所有的正整数n ,使得1+5anan+1是完全平方数.三、(50分)设M 为坐标平面上坐标为(p·,7p·)的点,其中p 为素数.求满足下列条件的直角三角形的个数:(1) 三角形的三个顶点都是整点,而且M 是直角顶点; (2) 三角形的内心是坐标原点.参考答案 第一试二、填空题:1、⎪⎪⎭⎫⎢⎣⎡1,33; 2、()⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<<︒︒=︒<<︒︒=︒<<︒=900,460,36030,230,1300,0ααααααf ;3、⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡-845,00,21 ;4、⎪⎭⎫⎢⎣⎡-ππ,34arctan;5、4002;6、⎪⎪⎭⎫⎝⎛-+++63142789102111n n . 三、(1)2211+=+n n S S ;(2)不存在.四、1922=+y x . 五、不存在.第二试PQ。
高中高考数学模拟试卷
高中高考数学模拟试卷试卷一一、单项选择题(本大题10小题,每题3分,共计30分)1、集合A={ 1 , 2 , 3 , 4 , 5 },集合B={ 2 , 3 , 4 , 6 }则A B= ( )A. { 1 , 2 , 3 , 4 , 5 , 6 }B. { 1 , 2 , 3 , 4 , 5 }C. { 2 , 3 , 4 , 6 }D. { 2 , 3 , 4 }2、设全集U=R,集合A={ x | -1 < x≤5 },则C A=()A. {x | x≤- 1}B. {x | x > 5}C. {x | x < - 1或x > 5}D. {x | x≤ - 1或x > 5}3、当a > b > 0时,则下列比较关于a , b的式子大小正确的为()A. a - 1 < b - 1B. 2 a + 1 < 2 b + 1C. - a > - bD. - a < b4、设2 x - 3 < 7,则x < ( )A. x < 5B. x < - 5C. x > 5D. x > - 55、已知集合A= [ - 3,4 ],B= [ 1,6 ],求A B = ( )A. [ - 3 ,4 ]B. [ 1 ,6 ]C. [ - 3 ,6 ]D. [ 1 ,4 ]6、设全集U=R,集合A= [ - 6,9),则C A=()A. ( -,- 6) [ 9 ,+)B. ( -,- 6)C. [ 9 ,+)D. ( -,- 6 ] ( 9 ,+)7、不等式(1-x)(4+x)>0的解集为()A.(1 ,+)B.(-,- 4)C.(- 4,1 )D.(-,- 4)(1 ,+)8、解含绝对值的不等式| x - 8 | < 2解集正确的为()A. (6,10)B.(-,6)(10 ,+)C.(-,6)D.(10 ,+)9、梯形面积公式正确的为()A.×底×高B. 底×高C.× (上底+下底)×高D. (上底+下底)×高10、用描述法表示集合:由第一象限所有点组成的集合,正确的为()A. {(x,y)| x > 0 , y > 0 }B. {(x,y)| x > 0 , y < 0 }C. {(x,y)| x < 0 , y > 0 }D. {(x,y)| x < 0 , y < 0 }11、用列举法表示集合:大于- 4且小于等于6的所有偶数组成的集合,正确的为()A. { - 4 , - 2 , 0 , 2 , 4 , 6}B. { - 4 , - 2 , 0 , 2 , 4 }B. { - 2 , 0 , 2 , 4 , 6} D. { - 2 , 0 , 2 , 4 }12、五边形的内角和为()度A. 360度B. 180度C. 540度D. 720度13、所有正整数组成的集合叫做正整数集,记作()A. NB. ZC. QD.14、不含任何元素的集合叫做( ),记作A. 全集B. 补集C. 空集D. 交集15、当x是什么实数时,有意义?()A. x ≠ 3B.x = 3C. x > 3D. x ≥ 3二、填空题(每个空3分,共计30分)1、设集合A={x | - 2 < x < 3},B={x | x > 1},则集合A B=2、方程3- x - 2的解集为(解集用区间表示)3、设全集为U=R,A={x | x ≤ 1},则集合C A=4、设,则x<5、设x+5 < - 3,则x <6、设集合A={- 3 , - 2 , 0 , 1 , 3 , 4},B={0 , 2 , 4 , - 3},则A B=7、不等式(1 - x)(3x - 2)> 0的解集为8、设a > b,则a + 2 b + 2 ,2 a 2 b , 5 - a 5 - b三、计算题(本大题5小题,共计40分)1、在开秋季运动会时,某班共有28名同学参加比赛,其中有15人参加径赛,有8人参加田赛,有14人参加球类比赛,同时参加田赛和径赛的有3人,同时参加径赛和球类比赛的有3人,没有人同时参加三项比赛,问同时参加田赛和球类比赛的有多少人?只参加径赛的同学有多少人?(6分)2、已知全集U={0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8,9 },集合A={0 , 1 , 2 , 3},集合B={2 ,3,4 , 6 , 8},求:(1)A B , A B (2)C A ,C B (6分)3、设全集U={x | - 7 ≤ x ≤ 5},集合A={x | -4 < x ≤ 2},B={x | - 2 < x < 4},求:(1)C A ,C B (2)(C A)(C B)(3)(C A)(C B)(4)C(A B)(12分)4、当x为何值时,代数式的值与代数式的值之差不小于3 ?(5分)5、设全集为R,集合A=(-,4],集合B=[-3,+) , 求:(1)C A ,C B (2)(C A)(C B)(3)(C A)(C B)(4)C(A B)(12分)6、解一元二次不等式 -- 6x+7 ≤ 0 (5分)7、解含绝对值的不等式 | 3x-5 | - 4 ≥ 3 (5分)8、当x是什么实数时,有意义?(5分)9、解含绝对值的不等式 | 2x-1 | - | x+3 | >2 (8分)试卷二一、选择题:本大题共10小题,每小题5分,共50分。
(完整word版)高考数学模拟试题及答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵C D=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)
一、单选题二、多选题1. 已知,都是的充分条件,是的必要条件,是的必要条件,则( )A .是的既不充分也不必要条件B .是的必要条件C.是的必要不充分条件D.是的充要条件2. 在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是()A.成绩在分的考生人数最多B .不及格的考生人数为1000C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分3. 过抛物线的焦点作直线交抛物线于,两点(点在第一象限).若,则( )A .2B .3C .4D .54. 为庆祝广益中学建校130周年,高二年级派出甲、乙、丙、丁、戊5名老师参加“130周年办学成果展”活动,活动结束后5名老师排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则排法共有( )种.A .40B .24C .20D .125. 已知椭圆的左,右焦点分别为,,上顶点为A ,直线与椭圆E 的另一个交点为B ,若,则椭圆E 的离心率为( )A.B.C.D.6. 已知是边长为3的正三角形,点是的中点,点在边上,且,则( ).A.B.C.D.7. 已知,则的值为( )A .10B.C .30D.8.已知函数满足,则( )A .10000B .10082C .10100D .103029. 已知棱长为的正方体中,是的中点,点在正方体的表面上运动,且总满足,则下列结论中正确的是( )A .点的轨迹中包含的中点B.点的轨迹与侧面的交线长为C.的最大值为2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)2022年普通高等学校招生全国(新高考)统一考试模拟数学试题(一)(2)三、填空题四、解答题D .直线与直线所成角的余弦值的最大值为10. 已知正数a ,b满足,则( )A .的最小值为2B .的最小值为4C.的最小值为8D .的最小值为811. “中国最具幸福感城市调查推选活动”由新华社《瞭望东方周刊》、瞭望智库共同主办,至今已连续举办15年,累计推选出80余座幸福城市,现某城市随机选取30个人进行调查,得到他们的收入、生活成本及幸福感分数(幸福感分数为0~10分),并整理得到散点图(如图),其中x 是收入与生活成本的比值,y是幸福感分数,经计算得回归方程为.根据回归方程可知( )A .y 与x 成正相关B .样本点中残差的绝对值最大是2.044C .只要增加民众的收入就可以提高民众的幸福感D .当收入是生活成本3倍时,预报得幸福感分数为6.04412. 在棱长为的正方体中,点P 在正方形内含边界运动,则下列结论正确的是( ).A .若点P 在上运动,则B.若平面,则点P 在上运动C .存在点P ,使得平面PBD 截该正方体的截面是五边形D.若,则四棱锥的体积最大值为113.已知当时,不等式恒成立,则正实数a 的最小值为___________.14. 已知集合,集合,则________.15. 如图,在三棱锥中,,,且,点E ,F分别为,的中点,则异面直线与所成角的大小为__________,与所成角的余弦值为__________.16. 某校为了解校园安全教育系列活动的成效,对全校3000名学生进行一次安全意识测试,根据测试成绩评定“优秀”、“良好”、“及格”、“不及格”四个等级,现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.等级不及格及格良好优秀得分频数624(1)求的值;(2)试估计该校安全意识测试评定为“优秀”的学生人数;(3)已知已采用分层抽样的方法,从评定等级为“优秀”和“良好”的学生中任选6人进行强化培训;现再从这6人中任选2人参加市级校园安全知识竞赛,求选取的2人中有1人为“优秀”的概率;17. 有个型号和形状完全相同的纳米芯片,已知其中有两件是次品,现对产品随机地逐一检测.(1)求检测过程中两件次品不相邻的概率;(2)设检测完后两件次品中间相隔正品的个数为,求的分布列和数学期望.18. 如图,在四棱锥中,已知底面是边长为4的菱形,平面平面,且,点E在线段上,.(1)求证:;(2)求点E到平面的距离.19. 已知函数.(1)设曲线与轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(2)若函数的图象上有、两点,横坐标分别为,且满足.求证:.20. 已知的内角的对边分别为,,,若,(1)求;(2)请指出不满足下面的哪一个条件并说明理由,根据另外两个条件,求的面积.①;②;③的周长为9.21. 已知圆过椭圆的左右焦点,且与椭圆在第一象限交于点.已知三点共线.(1)求椭圆的标准方程;(2)设是椭圆上不同于左顶点的两个动点,且,过作,垂足为.则是否存在定点,使得的长度为定值?若存在,求出点的坐标;若不存在,请说明理由.。
2024年全国普通高中九省联考仿真模拟数学试题(一)
2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =,若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)不妨设23(5)ka a ab k ====≥ , 令1(2,3,,1)i t j k t t k ==+−=−, ,可得1()k A b +∈,因此1k a b +=. ……………14分 令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=. 所以12(1)n a a a n b a +++=−+ .……………16分综上,a b =时,12n a a a na +++=. 3a a b =≠时,12(1)n a a a n a b +++=−+ .3a b a =≠时,12(1)n a a a n b a +++=−+ . ……………17分。
【全真模拟】高考数学检测试卷含答案
(1)若 , ,求 的大小;
(2)若 的面积为 ,其外接圆半径为 ,求 的周长.
18.机动车行经人行横道时,应当减速慢行:遇行人正在通过人行横道,应当停车让行,俗称“礼让行人”.如表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让行人”行为统计数据:
④ , ,都有 .
其中正确的命题是()
A.①③B.②③C.②④D.③④
[答案]D
[解析]
[分析]直接利用函数的性质的应用,分段函数的应用,函数的导数的应用,函数的单调性和导数的关系判断①②③④的结论.
对于①,用代入法计算验证;
对于②,直接求出零点验证;
对于③,直接解不等式,求出解集;
对于④,用导数判断单调性,求出 的值域验证即可.
所以 时 取得最小值 ,且 时, ,
所以 ,
即 ,
当 时, ,
所以 在 上单调递增,在 上单调递减,
时, 取最大值 ,且 时, ,
所以 ,
所以 ,
所以 的值域为 .
故 , ,都有 ,故④正确.
故选:D.
[点睛]导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:
24
16
驾龄1年以上
16
14
能否据此判断有90%的把握认为“礼让行人”行为与驾龄有关?
参考公式: , .
(其中 )
0.15
0.10
0.05
0.025
0.010
2 072
2.706
3.841
5.024
6.635
19.在四棱锥 中, 平面 , , .四边形 为直角梯形, , , .
高考数学模拟试题含答题卡及答案
高考数学模拟试题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,若集合{1,0,1}S =-,则下面正确的是( )A .i S ∈B .2i S ∈C .3i S ∈D .2S i∈ 2.若函数)(x f y =是偶函数,其图像与x 轴有四个交点,则方程0)(=x f 的所有实数根的和为 ( ) A .0B .1 C.2D .43.设点M 是线段BC 的中点,点A 在直线BC 外,216BC =, AB AC AB AC +=-,则AM =( )A .8B . 4 C.2D .14. 已知三个平面γβα,,,若γβ⊥,且γα与相交但不垂直,则( )A .存在a α⊂,a γ⊥B .存在a α⊂,α∥γC .任意β⊂b ,b γ⊥D .任意β⊂b ,b ∥γ5.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC 是( ) A .一定是锐角三角形. B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形. 6.已知函数1(0,1)xy aa a -=>≠的图象恒过定点A ,若点A 在直线10(0,0)mx ny m n +-=>>上,则14m n+的最小值为( )A .8B .9C .4D .67. .若θ是三角形的一个内角,且1sin cos 2θθ+=,则曲线22sin cos 1x y θθ+=是( ) A. 焦点在x 轴上的椭圆 B. 焦点在x 轴上的双曲线C. .焦点在y 轴上的椭圆D. 焦点在y 轴上的双曲线 8.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为A9.(理)若实数a,b满足0,0,a b≥≥且0ab=,则称a与b互补,记(,),a b a bϕ=-,那么(),0a bϕ=是a与b互补的A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.即不充分也不必要的条件(文)对于非零向量0+=“”a b是“a∥b”的A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件10.设函数)(xf是定义在R上的函数,且[])(1)(1)2(xfxfxf+=-+,又1(1)2f=,则(2013)f等于()A.3 B.-12 C.2 D.-2二、填空题( 11—14题为必做题,15题为选做题;每小题5分,满分25分.)11.设数列{a n},{b n}都是等差数列,若11a b+=7,33a b+ =21,则55a b+=___________ 12. 执行如图所示的程序框图,则输出的S值是___________13.(理)若9()axx-的展开式中3x的系数是84-,则a=.(文).将一个总数为A、B、C三层,其个体数之比为5:3:2。
高考数学全真模拟试卷一及答案
(第5题)高考数学全真模拟试卷一试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1. 已知集合{}0A x x =≥,{}1B x x =<,则A B = ▲ .【答案】R2. 某公司生产三种型号A ,B ,C 的轿车,产量分别为1200辆,6000辆,2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A 的轿车应抽取 ▲ 辆. 【答案】63. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>的焦点坐标为(0 1),,则实数p 的值为 ▲ . 【答案】24. 已知集合{}0 A ππππ2π3π5π=π6432346,,,,,,,,.现从集合A 中随机选取一个元素,则该元素的 余弦值为正数的概率为 ▲ . 【答案】495. 如图,是一个算法的程序框图,当输出的y 值为2时,若将输入的x 的所有可能值按从小到大的顺序排列得到一个数列{}n a ,则该数列的通项公式为n a = ▲ . 【答案】34n a n =-6. 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 的基因遗传是等可能的(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显示矮茎),则第二子代为高茎的概率为 ▲ . 【答案】347. 在平面直角坐标系xOy 中,已知向量(1 2)=,a ,1(2 1)5-=-,a b ,则⋅=a b ▲ . 【答案】25ABCO (第13题)BACD 1B1A1C1D (第9题)E F8. 已知x y ,为正实数,满足26x y xy +=+,则xy 的最小值为 ▲ .【答案】189. 如图,已知正四棱柱1111ABCD A B C D -的体积为36,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四 棱锥1A AEFD -的体积为 ▲ . 【答案】1210. 设定义在区间[] -11,的函数()sin()f x x ϕ=π+(其中0ϕ<<π)是偶函数,则函数()f x 的单调 减区间为 ▲ . 【答案】(0 1),【解析】依题意,ϕπ=2,则()cos f x x =π的减区间为(0 1),.11.在平面直角坐标系xOy 中,已知圆C :22()(21)2x a y a -++-=(11)a -≤≤,直线l :y x b =+()b ∈R .若动圆C 总在直线l 的下方且它们至多有1个交点,则实数b 的最小值是 ▲ .【答案】2【解析】依题意,圆心( 12)C a a -,(11)a -≤≤的轨迹为线段12y x=-(11)x -≤≤, 当且仅当1a =-时,实数b 的最小,此时2b =.12.如图,三次函数32y ax bxcx d =+++的零点为112-, , ,则该函数的单调减区间为 ▲ . 【答案】【解析】设()(1)(1)(2)f x a x x x=+--,其中0a >,令 ()0f x '<x <<所以该函数的单调减区间为;13.如图,点O 为△ABC 的重心,且OA OB ⊥,6AB =,则AC BC ⋅的值为 ▲ . 【答案】72【解析】以AB 的中点M 为坐标原点,AB 为x 轴建立 平面直角坐标系,则()30A -,,()30B ,,设()C x y ,,则O ()33yx ,,(第12题)因为OA ⊥OB ,所以0AO BO ⋅=, 从而()()()2330333yx x +⋅-+=,化简得,2281x y +=,所以222(3)(3)972AC BC x x y x y ⋅=+-+=+-=14.设k b ,均为非零常数,给出如下三个条件:①{}n a 与{}n ka b +均为等比数列; ②{}n a 为等差数列,{}n ka b +为等比数列; ③{}n a 为等比数列,{}n ka b +为等差数列,其中一定能推导出数列{}n a 为常数列的是 ▲ .(填上所有满足要求的条件的序号) 【答案】①②③【解析】①易得()()()211n n n k x b k x b k x b -+⋅+=⋅+⋅+,即2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++, 因为211n n n x x x -+=,且0kb ≠,所以112n n n x x x -+=+,即证; ②由①知2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++,因为112n n n x x x -+=+,所以211n n n x x x -+=,即证; ③易得()()()112n n n k x b k x b k x b -+⋅+=⋅++⋅+,且0k ≠,故112n n n x x x -+=+,又211n n n x x x -+=,即证.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证 明过程或演算步骤. 15.(本题满分14分)已知()π02α∈,,()ππ2β∈,,1cos 3β=-,()7sin 9αβ+=. (1)求tan2β的值;(2)求sin α的值.解:(1)因为22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222βββββββββ--=-==++,且1cos 3β=-,所以221tan 1231tan2ββ-=-+,解得2tan 22β=,(4分)因为()ππ2β∈,,所以()ππ242β∈,,从而tan 02β>,所以tan2β=(6分)(2)因为()ππ2β∈,,1cos 3β=-,所以sin β=,(8分) 又()π02α∈,,故()π3π22αβ+∈,,从而()cos αβ+===,(10分)所以[]sin sin ()sin()cos cos()sin ααββαββαββ=+-=+-+()7193=⨯-(13-=.(14分)16.(本题满分14分)如图,在长方体1111ABCD A B C D -中, 已知11AD AA ==,2AB =,点E 是AB 的中点. (1)求三棱锥1C DD E -的体积; (2)求证:11D E A D ⊥.【解】(1)由长方体性质可得,1DD ⊥ 平面DEC ,所以1DD 是三棱锥1D DCE -的高, 又点E 是AB 的中点,11AD AA ==,AB =2,所以DE CE ==222DE EC CD +=,90DEC ∠=, 三棱锥1D DCE -的体积1111323V DD DE CE =⨯⨯=;(7分)(2)连结1AD ,AEBCD1A 1D 1C 1B (第16题)因为11A ADD 是正方形,所以11AD A D ⊥ ,又AE ⊥面11ADD A ,1A D ⊂面11ADD A , 所以1AE A D ⊥, 又1AD AE A =,1AD AE ⊂,平面1AD E ,所以1A D ⊥平面1AD E ,(12分) 而1D E ⊂平面1AD E , 所以11D E A D ⊥.(14分)17.(本题满分14分)请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底 面圆半径为5m 的圆锥,下部是底面圆半径为5m 的圆柱,且该仓库的总高度为5m .经过预算, 制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/2m ,1百元/2m ,设圆锥母线与底 面所成角为θ,且()π0 4θ∈,,问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并 求出此时圆锥的高度.解:设该仓库的侧面总造价为y ,则[]152π55(1tan )12π542cos y θθ⎡⎤=⨯⨯-⨯+⨯⨯⨯⨯⎢⎥⎣⎦()2sin 50π1+cos θθ-=,(6分)由()22sin 1cos 50π0y θθ-'==得1sin 2θ=,()π0 4θ∈,, 所以π6θ=,(10分)列表: π6θ=时,侧面总造价y 最小,此时圆锥所以当(第17题).(14分)18.(本题满分16分)定义:如果一个菱形的四个顶点均在一个椭圆上,那么该菱形叫做这个椭圆的内接菱形,且该菱形的对角线的交点为这个椭圆的中心.如图,在平面直角坐标系xOy 中,设椭圆2214x y +=的所有内接菱形构成的集合为F .(1)求F 中菱形的最小的面积;(2)是否存在定圆与F 中的菱形都相切?若存在, 求出定圆的方程;若不存在,说明理由; (3)当菱形的一边经过椭圆的右焦点时,求这条边所在的直线的方程.解:(1)如图,设11( )A x y ,,22( )B x y ,, 1︒当菱形ABCD 的对角线在坐标轴上时,其面积为142142⨯⨯⨯=;2︒当菱形ABCD 的对角线不在坐标轴上时,设直线AC 的方程为:y kx =,① 则直线BD 的方程为:1y x k=-,又椭圆2214xy +=, ②由①②得,212441x k =+,2212441k y k =+, 从而22221124(1)41k OA x y k +=+=+,同理可得,()()2222222221414(1)4141kk OB x y k k⎡⎤-+⎢⎥+⎣⎦=+==+-+,(3分) 所以菱形ABCD 的面积为2OA OB ⨯⨯====≥165= (当且仅当1k =±时等号成立),综上得,菱形ABCD 的最小面积为165;(6分)(第20题)(2)存在定圆2245x y +=与F 中菱形的都相切,设原点到菱形任一边的距离为d ,下证:d ,证明:由(1)知,当菱形ABCD的对角线在坐标轴上时,d ,当菱形ABCD 的对角线不在坐标轴上时,22222OA OB d OA OB ⨯=+222222224(1)4(1)4144(1)4(1)414k k k k k k k k ++⨯++=+++++ 2222224(1)(1)(4)(1)(41)k k k k k +=+++++22224(1)45(1)(55)k k k +==++,即得d , 综上,存在定圆2245x y +=与F 中的菱形都相切;(12分)(3)设直线AD的方程为(y t x =,即0tx y -=,则点(0 0)O ,到直线AD=解得t =, 所以直线AD的方程为y x =.(16分)19.(本题满分16分)设a ,b ,c 为实数,函数32()f x x ax bx c =--+为R 上的奇函数,且在区间[)1 +∞,上单调.(1)求a ,b ,c 应满足的条件; (2)求函数()f x 的单调区间;(3)设001 ()1x f x ≥,≥,且[]00()f f x x =,求证:00()f x x =. 解:(1)因为32()f x x ax bx c =--+为R 上的奇函数,所以()()f x f x -=-,即32x ax bx c --++=32x ax bx c -++-, 变形得,20ax c +=, 所以0a c ==, (2分)此时3()f x x bx =-在区间[)1 +∞,上单调, 则2()30f x x b '=-≥在区间[)1 +∞,上恒成立,得3b ≤;(5分)(2)2()3f x x b '=-,且3b ≤,当0b ≤时,2()30f x x b '=-≥,所以函数()f x 的单调增区间为( )-∞+∞,;(7分)当0b >时,2()30f x x b '=->得,函数()f x 的单调减区间为(,单调增区间为( -∞,,)+∞;(10分)(3)设0()f x t =,则1t ≥,0()1f t x =≥, 即有300x bx t -=,且30t bt x -=, 两式相减得,()()33000x bx t bt t x ---=-, 即()()2200010x t x x t t b -+++-=,因为1t ≥,01x ≥,3b ≤,所以220011x x t t b ++-+≥, 故0x t =,即00()f x x =.(16分)20.(本题满分16分)若存在非零常数p ,对任意的正整数n ,212n n n a a a p ++=+,则称数列{}n a 是“T 数列”.(1)若数列{}n a 的前n 项和()2n S n n *=∈N ,求证:{}n a 是“T 数列”; (2)设{}n a 是各项均不为0的“T 数列”. ①若0p <,求证:{}n a 不是等差数列;②若0p >,求证:当1a ,2a ,3a 成等差时,{}n a 是等差数列. 解:(1)当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 所以21n a n =-,n *∈N ,(3分)则{}n a 是“T 数列”⇔存在非零常数p ,2(21)(21)(23)n n n p +=-++ 显然4p =满足题意,所以{}n a 是“T 数列”;( 5分) (2)①假设{}n a 是等差数列,设1(1)n a a n d =+-,则由212n n n a a a p ++=+得,()[][]2111(1)(1)a nd a n d a n d p +=+-+++, 解得20p d =≥,这与0p <矛盾,故假设不成立, 从而{}n a 不是等差数列;(10分) ②因为212n n n a a a p ++=+()0p >, ① 所以()211 2n n n a a a p n -+=+≥, ②①-②得,221211n n n n n n a a a a a a ++-+-=-(2)n ≥, 因为{}n a 的各项均不为0, 所以1121n n n n n n a a a a a a +---++=(2)n ≥, 从而11n n n a a a +-+⎧⎫⎨⎬⎩⎭()2n ≥是常数列,因为1a ,2a ,3a 成等差,所以3122a aa +=,从而112n n na a a +-+=()2n ≥,即112n n n a a a +-+=()2n ≥,即证.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)如图,已知凸四边形ABCD 的顶点在一个圆周上, 另一个圆的圆心O 在AB 上,且与四边形ABCD 的其余三边相切.点E 在边AB 上,且AE AD =. 求证: O ,E ,C ,D 四点共圆. 证明:因为AD AE =,所以()11802AED A ∠=-∠,因为四边形ABCD 的顶点在一个圆周上, 所以180A BCD -∠=∠,从而AED DCO ∠=∠,所以O ,E ,C ,D 四点共圆.(10分) B .(矩阵与变换)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ), 求1x y -⎡⎤⎢⎥⎣⎦M .解:依题意,1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102 320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, (4分) 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=-⎢⎥⎣⎦M ,(8分) 所以1x y -⎡⎤⎢⎥⎣⎦M 213122-⎡⎤⎢⎥=-⎢⎥⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦.(10分)C .(极坐标与参数方程) 在极坐标系中,设直线l 过点)Aπ6,,()3 B 0,,且直线l 与曲线C :cos (0)a a ρθ=>有且只有一个公共点,求实数a 的值. 解:依题意,)Aπ6,,()3 B 0,的直角坐标方程为(32A ,()3 B 0,, 从而直线l的普通方程为30x -=,(4分) 曲线C :cos (0)a a ρθ=>的普通方程为()22224aa x y -+=(0)a >,(8分) 因为直线l 与曲线C 有且只有一个公共点,所以3222a a -=(0)a >,解得2a =(负值已舍).(10分)D .(不等式选讲)设正数a ,b ,c 满足3a b c ++≤,求证:11131112a b c +++++≥.证明:由柯西不等式得,PAB CD(第22题)E[]()111(1)(1)(1)111a b c a b c +++++⋅+++++2≥23=,(6分) 所以1119931113332a b c a b c ++=+++++++≥≥.(10分)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,90ABC BAD ∠=∠=,且PA AB BC == 112AD ==,PA ⊥平面ABCD .(1)求PB 与平面PCD 所成角的正弦值; (2)棱PD 上是否存在一点E 满足AEC ∠=90?若存在,求AE 的长;若不存在,说明理由.解:(1)依题意,以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0 0 1)P ,,,(1 0 0)B ,,,(1 1 0)C ,,,(0 2 0)D ,,, 从而(1 0 1)PB =-,,,(1 1 1)PC =-,,,(0 2 1)PD =-,,,(2分)设平面PCD 的法向量为( )a b c =,,n ,则⋅n 0PC =,且⋅n 0PD =, 即0a b c +-=,且20b c -=,不妨取2c =,则1b =,1a =, 所以平面PCD 的一个法向量为(1 1 2)=,,n ,(4分)此时cos PB 〈〉=,n ,所以PB 与平面PCD ;(6分)(2)设(01)PE PD λλ=≤≤,则(0 2 1)E λλ-,,, 则(1 21 1)CE λλ=---,,,(0 2 1)AE λλ=-,,, 由AEC ∠=90得,AE ⋅22(21)+(1)0CE λλλ=--=, 化简得,25410λλ-+=,该方程无解,所以,棱PD 上不存在一点E 满足AEC ∠=90.(10分)23.设整数n ≥3,集合P ={1,2,3,…,n },A ,B 是P 的两个非空子集.记a n 为所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数. (1)求a 3; (2)求a n .解:(1)当n =3时,P ={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 则所有满足题意的集合对(A ,B )为:({1},{2}),({1},{3}),({2},{3}), ({1},{2,3}),({1,2},{3})共5对, 所以a 35=;(3分)(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=,(5分) B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,k 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n kn k n k n k -----++⋅⋅⋅+=-,(7分) 从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---, 所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑.(10分)。
高考模拟题复习试卷习题资料高考数学试卷附详细答案1659
高考模拟题复习试卷习题资料高考数学试卷(附详细答案)一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.2.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.3.(5分)如图是一个算法流程图,则输出的n的值是.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.高考模拟题复习试卷习题资料高考数学试卷(附详细答案)参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.【分析】根据集合的基本运算即可得到结论.【解答】解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为 21 .【分析】根据复数的有关概念,即可得到结论.【解答】解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21【点评】本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)如图是一个算法流程图,则输出的n的值是 5 .【分析】算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.【解答】解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.【分析】由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.【解答】解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.【点评】本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 24 株树木的底部周长小于100cm.【分析】根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.【解答】解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.【点评】本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)在各项均为正数的等比数列{an}中,若a2=1,a8=a6+2a4,则a6的值是 4 . 【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.【点评】本题考查了等比数列的通项公式,属于基础题.8.(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.【分析】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.【解答】解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.【点评】本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【分析】求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C 到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.【点评】本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0) .【分析】由条件利用二次函数的性质可得,由此求得m的范围.【解答】解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .【分析】由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.【解答】解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.【点评】本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,) .【分析】在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).【点评】本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.【分析】根据正弦定理和余弦定理,利用基本不等式即可得到结论.【解答】解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.【点评】本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.【分析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.【解答】解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,si n2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.【点评】本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可. 【解答】证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.【点评】本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.【分析】(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.【解答】解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.【点评】本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O 正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【分析】(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.【解答】解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.【点评】本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)已知函数f(x)=ex+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较ea﹣1与ae﹣1的大小,并证明你的结论.【分析】(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.【解答】解:(1)∵f(x)=ex+e﹣x,∴f(﹣x)=e﹣x+ex=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(ex+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴ex+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=ex,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=ex+e﹣x﹣a(﹣x3+3x),则g′(x)=ex﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而ea﹣1<ae﹣1,②当a=e时,ae﹣1=ea﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e ﹣1)lna,从而ea﹣1>ae﹣1.【点评】本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn (n∈N*)成立.【分析】(1)利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”即可得到an,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出Sn,对∀n∈N*,∃m∈N*使Sn=am,取n=2和根据d<0即可得出;(3)设{an}的公差为d,构造数列:bn=a1﹣(n﹣1)a1=(2﹣n)a1,cn=(n﹣1)(a1+d),可证明{bn}和{cn}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.【解答】解:(1)当n≥2时,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,Sn=an+1.∴数列{an}是“H”数列.(2)Sn==,对∀n∈N*,∃m∈N*使Sn=am,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{an}的公差为d,令bn=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,bn+1﹣bn=﹣a1,cn=(n﹣1)(a1+d),对∀n∈N*,cn+1﹣cn=a1+d,则bn+cn=a1+(n﹣1)d=an,且数列{bn}和{cn}是等差数列.数列{bn}的前n项和Tn=,令Tn=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使Tn=bm成立,即{bn}为H数列.数列{cn}的前n项和Rn=,令cm=(m﹣1)(a1+d)=Rn,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使Rn=cm成立,即{cn}为H数列.因此命题得证.【点评】本题考查了利用“当n≥2时,an=Sn﹣Sn﹣1,当n=1时,a1=S1”求an、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修41:几何证明选讲】21.(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【分析】利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.【解答】证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.【点评】本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修42:矩阵与变换】22.(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【分析】利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.【解答】解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=【点评】本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修43:极坐标及参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为.【分析】直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.【解答】解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.故答案为:8.【点评】本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修44:不等式选讲】24.已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.【分析】由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.【解答】证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.【点评】本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)26.(10分)已知函数f0(x)=(x>0),设fn(x)为fn﹣1(x)的导数,n∈N*. (1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【分析】(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.【解答】解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵fn(x)为fn﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kfk﹣1(x)+xfk(x)]′=kfk﹣1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nfn﹣1(x)+xfn(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nfn﹣1()+fn()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nfn﹣1()+fn()|=都成立.【点评】本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.25.(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).【分析】(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【解答】解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.【点评】本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.高考数学高三模拟考试试卷压轴题猜题押题高考数学试卷(文科)一、选择题(每小题5分,共40分)1.若集合{}52A x x =-<<,{}33B x x =-<<,则A∩B=( ) A .{}32x x -<<B .{}52x x -<< C .{}33x x -<<D .{}53x x -<<2.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++=D .()()22112x y -+-= 3.下列函数中为偶函数的是( )A .2sin y x x =B .2cos y x x =C .ln y x =D .2xy -=4.某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .3005.执行如图所示的程序框图,输出的k 值为( )A .3B .4C .5D .66.设,a b 是非零向量,“a b a b ⋅=”是“a b //”的( ) A .充分而不必要条件B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件7.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1B 2C 3D .28.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升) 加油时的累计里程(千米)2015年5月1日 12 35000 2015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升二、填空题9.复数()1i i +的实部为.10.13222,3,log 5-三个数中最大数的是. 11.在ABC 中,23,6,3a b A π==∠=,则B ∠=. 12.已知()2,0是双曲线()22210y x b b-=>的一个焦点,则b =.13.如图,ABC 及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为.14.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.已知函数()2sin 232x f x x =-. (1)求()f x 的最小正周期; (2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值. 16.已知等差数列{}n a 满足124310,2a a a a +=-=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等? 17.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300√ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB 为等边三角形,AC ⊥BC 且2AC BC ==,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB (3)求三棱锥V ABC -的体积.19.设函数()2ln (0)2x f x k x k =->. (1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x 在区间(e 上仅有一个零点.20.已知椭圆C :2233x y +=,过点(1,0)D 且不过点(2,1)E 的直线与椭圆C 交于,A B两点,直线AE 与直线3x =交于点M . (1)求椭圆C 的离心率;(2)若AB 垂直于x 轴,求直线BM 的斜率;(3)试判断直线BM 与直线DE 的位置关系,并说明理由.北京市高考数学试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.(•北京)若集合A={x|﹣5<x <2},B={x|﹣3<x <3},则A∩B=( )A.{x|﹣3<x<2} B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3} 【分析】直接利用集合的交集的运算法则求解即可.【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.2.(•北京)圆心为(1,1)且过原点的圆的方程是()A.(x﹣1)^^^2+(y﹣1)^^^2=1 B.(x+1)^^^2+(y+1)^^^2=1 C.(x+1)^^^2+(y+1)^^^2=2 D.(x﹣1)^^^2+(y﹣1)^^^2=2【分析】利用两点间距离公式求出半径,由此能求出圆的方程.【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)^^^2+(y﹣1)^^^2=2.故选:D.3.(•北京)下列函数中为偶函数的是()A.y=x^^^2sinx B.y=x^^^2cosx C.y=|lnx| D.y=2﹣^^^x【分析】首先从定义域上排除选项C,然后在其他选项中判断﹣x与x的函数值关系,相等的就是偶函数.【解答】解:对于A,(﹣x)^^^2sin(﹣x)=﹣x^^^2sinx;是奇函数;对于B,(﹣x)^^^2cos(﹣x)=x^^^2cosx;是偶函数;对于C,定义域为(0,+∞),是非奇非偶的函数;对于D,定义域为R,但是2﹣(﹣^^^x)=2^^^x≠2﹣^^^x,2^^^x≠﹣2﹣^^^x;是非奇非偶的函数;故选B4.(•北京)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90 B.100 C.180 D.300【分析】由题意,老年和青年教师的人数比为900:1600=9:16,即可得出结论.【解答】解:由题意,老年和青年教师的人数比为900:1600=9:16,因为青年教师有320人,所以老年教师有180人,故选:C.5.(•北京)执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【分析】模拟执行程序框图,依次写出每次循环得到的a,k的值,当a=时满足条件a <,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,a=3,q=a=,k=1不满足条件a<,a=,k=2。
高三下学期高考数学试卷附答案 (191)
2019-2020学年度第二学期第*次考试试卷高考数学模拟测试学校:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.设命题甲:“直四棱柱ABCD -A 1B 1C 1D 1中,平面ACB 1与对角面BB 1D 1D 垂直”;命题乙:“直四棱柱ABCD -A 1B 1C 1D 1是正方体”.那么,甲是乙的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件D .既非充分又非必要条件(2002北京理10)2.已知集合{1,2,3,4}A =,函数()f x 的定义域、值域都是A ,且对于任意i A ∈,i i f ≠)(. 设4321,,,a a a a 是4,3,2,1的任意一个排列,定义数表12341234()()()()a a a a f a f a f a f a ⎛⎫⎪⎝⎭,若两个数表的对应位置上至少有一个数不同,就说这是两张不同的数表,那么满足条件的不同的数表的张数() A .216 B .108 C .48 D .24 3.1.已知命题甲是“△ABC 的一个内角B 为60°”,命题乙是“△ABC 的三个内角A 、B 、C 成等差数列”,那么 [ ]. A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是必要条件第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题4.设2()f X x =的值域为}{0,4则满足条件的不同函数()f x 最多有 个.5.已知扇形的半径为10cm ,圆心角为120︒,则扇形的面积为 。
6. 双曲线08222=+-y x 的焦点坐标为 7.函数2()2cos 3sin 3f x x x =++,2,63x ππ⎡⎤∈⎢⎥⎣⎦的值域 ▲ .8.在棱长为4的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、11D C 上的动点,点G 为正方形11B BCC 的中心. 则空间四边形AEFG 在该正方体各个面上的正投影构成的图形中,面积的最大值为 ▲ . 关键字:投影;正方体;求最值9.如图程序运行后输出的结果是 .10.设集合A={3>x x },B={a x x >},且A ⊆B ,则a11. 已知复数z 满足11z i --=,则z 的最小值是 ▲ .12.已知全集{}4,3,2,1=U ,集合{}1,2P =,{}2,3Q =,则()U P Q U ð等于 ▲ . 13.若1()21x f x a =+-是奇函数,则a = .14.sin()4y x π=-在[0,]π上的单调递增区间是 ▲ .15.等差数列{}n a 中,10120S =,那么29a a += .16.正整数按下列所示的规律排列 1 2 5 10 174 3 6 11 18 9 8 7 12 19 16 15 14 13 20 25 24 23 22 21则上起2007,左起2008列的数是 .三、解答题17.已知函数21()cos cos ,2f x x x x x R =--∈. (1)求函数)(x f 的最小值和最小正周期;(第5题图)(2)已知ABC ∆内角A B C 、、的对边分别为a b c 、、,且3,()0c f C ==,若向量(1,sin )m A =u r 与(2,sin )n B =r共线,求a b 、的值.18.求使等式成立的矩阵M 。
高考模拟试题(九)数学(后附参考答案解析)
绝密★启用前高考模拟试题(九)数学时间:120 分钟 分值:150 分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数i R a ai z ,∈-=(23为虚数单位),若i z 23212-=,则=a ()A.1B.2C.21D.232.若61)4tan(=-πθ,则=θtan ()A.1B.75-C.65-D.573.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数)(x f ,则)(x f y =在],0[π的图象大致为()BA CD4.已知平面向量a )1,2(=,b ),2(x =,且(a +2b )⊥(a —b ),则=x ()A.21-B.21 C.—1 D.15.一个多面体的三视图如图所示,则该多面体的表面积为()A.18B.21C.318+ D.321+6.设集合}1)2()(|),{(}1)4(|),{(2222=+-+-==+-=at y t x y x B y x y x A ,,如果命题“ØB A R t ≠∈∃ ,”是真命题,则实数a 的取值范围为()A.34,(-∞ B.]34,0[ C.)2,34[ D.),2(+∞7.两所学校分别有2名,3名学生获奖,这5名学生要排成一排合影,则同校学生排在一起的概率为()A.51 B.41 C.32D.528.“斐波那契数列”由十三世纪意大利数学家列昂纳多斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”,斐波那契数列}{n a 满足:11=a ,12=a ,21--+=n n n a a a (3≥n ,*N n ∈),记其前n 项和为n S ,设t a =2018(t 为常数),则=-+2015201720182S S S ()A.2tB.tC.t2 D.t39.作出不等式组⎪⎩⎪⎨⎧≤≤≥+341043y x y x ,,表示的平面区域,过该区域上任意一点P 作圆122=+y x 的两条切线,切点分别为B A ,,则PAB ∠cos 的最大值为()A.23 B.32 C.31 D.2110.已知函数)(x f '是函数)(x f 的导函数,ef 1)1(=(e 是自然对数的底数),对任意实数x ,都有0)()(>'-x f x f ,则不等式2)(-<x e x f 的解集为()A.),(e -∞ B.),1(+∞ C.),1(e D.),(+∞e 11.抛物线)0(22>=p px y 的焦点为F ,准线为l ,B A 、是抛物线上的两个动点,且满足32π=∠AFB ,设线段AB 的中点M 在l 上的投影为N ,则ABMN 的最大值是()A.3B.23 C.33 D.4312.体积为3的三棱锥ABC P -的顶点都在球的球O 面上,⊥PA 平面ABC ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.4.知道指数函数是一类重要的函数模型.5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.6.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.7.知道对数函数是一类重要的函数模型.8.了解指数函数y =ax 与对数函数y =logax 互为反函数(a>0,且a≠1). 【热点题型】题型一指数式与根式的计算( 例1、计算(1)733-3324-6319+4333=________. (2)⎝⎛⎭⎫2790.5+0.1-2+⎝⎛⎭⎫21027-23-3π0+3748=________.【提分秘籍】化简指数幂的一般步骤是:有括号先算括号里的,无括号先进行指数运算(即先乘方、开方),再乘除,最后加减,负指数幂化为正指数幂的倒数;底数是负数,先确定符号;底数是小数,先要化成分数;底数是带分数的,先要化成假分数;若是根式,应化为分数指数幂,然后再尽可能用幂的形式表示,便于运用指数幂的运算性质.【举一反三】若x>0,则(2x 14+332)(2x 14-332)-4x -12(x -x 12)=________.解析:原式=(2x 14)2-(332)2-4x1-12+4x -12+12=4x 12-33-4x 12+4=-23. 答案:-23题型二指数函数的图象问题(例2、若方程|ax -1|=2a(a>0,且a≠1)有两解,则a 的取值范围是________.解析 令f(x)=|ax -1|,g(x)=2a ,画出它们的图象,如图,由图可知0<2a<1,则0<a<12.答案 ⎝⎛⎭⎫0,12 【提分秘籍】y =ax ,y =|ax|,y =a|x|(a>0且a≠1)三者之间的关系: y =ax 与y =|ax|是同一函数的不同表现形式.函数y =a|x|与y =ax 不同,前者是一个偶函数,其图象关于y 轴对称,当x≥0时两函数图象相同. 【举一反三】已知c<0,下列不等式中成立的一个是() A .c>2c B .c>⎝⎛⎭⎫12c C .2c<⎝⎛⎭⎫12c D .2c>⎝⎛⎭⎫12c 解析:在同一平面直角坐标系中分别作出y =x ,y =⎝⎛⎭⎫12x ,y =2x 的图象(如图),显然x<0时,x<2x<⎝⎛⎭⎫12x.即c<0时,c<2c<⎝⎛⎭⎫12c.故选C. 答案:C题型三指数函数性质的应用例3、设a =40.8,b =80.46,c =⎝⎛⎭⎫12-1.2,则a ,b ,c 的大小关系为() A .a>b>cB .b>a>cC .c>a>bD .c>b>a解析 ∵a =40.8=21.6,b =80.46=21.38,c =⎝⎛⎭⎫12-1.2=21.2,又∵1.6>1.38>1.2,∴21.6>21.38>21.2.即a>b>c.答案 A 【提分秘籍】(1)比较大小问题.常利用指数函数的单调性及中间值(0或1)法.(2)简单的指数方程或不等式的求解问题.解决此类问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)指数型函数中参数的取值范围问题.在解决涉及指数函数的单调性或最值问题时,应注意对底数a 的分类讨论.【举一反三】若函数f(x)=⎩⎨⎧1x ,x<0,⎝⎛⎭⎫13x ,x≥0,则不等式-13≤f(x)≤13的解集为()A .[-1,2)∪[3,+∞)B .(-∞,-3]∪[1,+∞)C.⎣⎡⎭⎫32,+∞ D .(1, 3 ]∪[3,+∞)答案:B 题型四对数运算例4、(1)(3+2)2log(3-2)5=( ) A .1B.12 C.14D.15(2)=________.(3)若log147=a,14b =5,则a ,b 表示log3528=________. 解析 (1)原式=(3+2)log(3-2)5 =(3+2)log(3+2)15 =15.(2)原式===-32(3)∵14b =5,∴log145=b , 又log147=a , ∴log3528=log1428log1435 =log141427log145+log147 =2-aa +b. 答案 (1)D (2)-32 (3)2-a a +b【提分秘籍】对数式的化简与求值的常用思路:(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数的运算,然后逆用对数的运算法则,转化为同底数真数的积、商、幂再运算.【举一反三】lg 25+lg 2·lg 50+(lg 2)2=() A .1B .2 C .3D .4解析:原式=2lg 5+lg 2·(1+lg 5)+(lg 2)2 =2lg 5+lg 2(1+lg 5+lg 2) =2lg 5+2lg 2=2. 答案:B题型五对数函数的图象及应用例5、(1)函数f(x)=lg(|x|-1)的大致图象是()(2)设方程10x=|lg(-x)|的两个根分别为x1,x2,则()A.x1x2<0 B.x1x2=0C.x1x2>1 D.0<x1x2<1(2)作出y=10x,与y=|lg(-x)|的大致图象,如图.显然x1<0,x2<0.不妨设x1<x2,则x1<-1,-1<x2<0,所以10x1=lg(-x1),10x2=-lg(-x2),此时10x1<10x2,即lg(-x1)<-lg(-x2),由此得lg(x1x2)<0,所以0<x1x2<1, 故选D. 答案 (1)B(2)D 【提分秘籍】在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.在研究方程的根时,可把方程的根看作两个函数图象交点的横坐标,通过研究两个函数图象得出方程根的关系.【举一反三】若函数y =logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()题型六对数函数的性质及应用例6、对于函数f(x)=log 12(x2-2ax +3),解答下列问题:(1)若f(x)的定义域为R,求实数a的取值范围;(2)若f(x)的值域为R,求实数a的取值范围;(3)若函数f(x)在(-∞,1]内为增函数,求实数a的取值范围.【提分秘籍】对数函数性质的考查多与复合函数联系在一起.要注意两点:(1)要认清复合函数的构成,判断出单调性.(2)不要忽略定义域.【举一反三】已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间.(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.解析:(1)∵f(1)=1,∴log4(a+5)=1,因此a+5=4,a=-1,这时f(x)=log4(-x2+2x+3).由-x2+2x+3>0得-1<x<3,函数f(x)的定义域为(-1,3).令g(x)=-x2+2x+3,则g(x)在(-1,1)上单调递增,在(1,3)上单调递减.又y =log4x 在(0,+∞)上单调递增,所以f(x)的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a 使f(x)的最小值为0, 则h(x)=ax2+2x +3应有最小值1, 因此应有⎩⎪⎨⎪⎧a>0,3a -1a =1,解得a =12.故存在实数a =12使f(x)的最小值为0. 【高考风向标】1.【高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=( )(A )74-(B )54-(C )34-(D )14- 【答案】A【解析】∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立,当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 2.【高考山东,文8】若函数21()2x x f x a+=-是奇函数,则使3f x >()成立的x 的取值范围为( )(A )( ) (B)() (C )0,1()(D )1,+∞()【答案】C3.【高考山东,文2】设0.6 1.50.60.60.6 1.5a b c ===,,,则a b c ,,的大小关系是( )(A )a b c <<(B ) a c b <<(C )b a c <<(D )b c a << 【答案】C【解析】由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C . 4.【高考新课标1,文12】设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A )1-(B )1(C )2(D )4 【答案】C【解析】设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x ay +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.5.【高考浙江,文9】计算:22log 2=,24log 3log 32+=. 【答案】1,332-【解析】122221log log 22-==-;2424log 3log 3log 3log 32223333+=⨯==. 6.【高考四川,文12】lg0.01+log216=_____________. 【答案】2【解析】lg0.01+log216=-2+4=27.【高考湖北,文17】a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.【答案】222.【解析】因为函数2()||f x x ax =-,所以分以下几种情况对其进行讨论:①当0a ≤时,函数22()||f x x ax x ax =-=-在区间[0,1]上单调递增,所以max ()(a)1f x g a ==-;②当0222a <<时,此时22()|()|2224a a a a f a =-⨯=,(1)1f a =-,而22(2)(1)2044a a a +--=-<,所以max ()(a)1f x g a ==-;③当2221a ≤<时,22()||f x x ax x ax =-=-+在区间(0,)2a 上递增,在(,1)2a 上递减.当2ax =时,()f x 取得最大值2()24a a f =;④当2a ≥时,22()||f x x ax x ax =-=-+在区间[0,1]上递增,当1x =时,()f x 取得最大值(1)1f a=-,则21,222 (),222241,2a aag a aa a⎧-<-⎪⎪=-≤<⎨⎪-≥⎪⎩在(,222)-∞-上递减,(222,)-+∞上递增,即当222a=-时,()g a的值最小.故应填222-.8.【高考上海,文8】方程2)23(log)59(log1212+-=---xx的解为.【答案】29.(·天津卷)设a=log2π,b=log12π,c=π-2,则()A.a>b>c B.b>a>cC.a>c>b D.c>b>a【答案】C【解析】∵a=log2π>1,b=log12π<0,c=1π2<1,∴b<c<a.10.(·四川卷)已知b>0,log5b=a,lg b=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cdC.c=ad D.d=a+c【答案】B【解析】因为5d=10,所以d=log510,所以cd=lg b·log510=log5b=a,故选B.11.(·安徽卷)设a=log37,b=21.1,c=0.83.1,则()A.b<a<c B.c<a<bC.c<b<a D.a<c<b【答案】B【解析】因为2>a =log37>1,b =21.1>2,c =0.83.1<1,所以c<a<b.12.(·福建卷)若函数y =logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()ABCD 【答案】B13.(·辽宁卷)已知a =2-13,b =log 213,c =log 1213,则() A .a >b >c B .a >c >b C .c >b >a D .c >a >b 【答案】D【解析】因为0<a =2-13<1,b =log213<0, c =log 1213>log 1212=1,所以c>a>b.14.(·全国新课标卷Ⅰ] 设函数f(x)=⎩⎪⎨⎪⎧ex -1,x <1,x 13,x≥1,则使得f(x)≤2成立的x 的取值范围是________.【答案】(-∞,8]【解析】当x<1时,由ex -1≤2,得x<1;当x≥1时,由x 13≤2,解得1≤x≤8,综合可知x 的取值范围为x≤8.15.(·山东卷)已知实数x ,y 满足ax<ay(0<a<1),则下列关系式恒成立的是()A .x3>y3B .sin x>sin yC .ln(x2+1)>ln(y2+1) D.1x2+1>1y2+1 【答案】A【解析】因为ax <ay(0<a <1),所以x >y ,所以x3>y3恒成立.故选A. 16.(·陕西卷)下列函数中,满足“f (x +y)= f(x)f(y)”的单调递增函数是() A .f(x)=x3 B .f(x)=3x C .f(x)=x 12 D .f(x)=⎝⎛⎭⎫12x【答案】B【解析】由于f(x +y)=f(x)f(y),故排除选项A ,C.又f(x)=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D. 18.(·陕西卷)已知4a =2,lg x =a ,则x =________. 【答案】10【解析】4a =2,即22a =2,可得a =12,所以lg x =12,所以x =1012=10.19.(·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P(x ,y),则|PA|+|PB|的取值范围是()A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 【答案】B20.(·天津卷) 函数f(x)=lg x2的单调递减区间是________. 【答案】(-∞,0)【解析】函数f(x)=lg x2的单调递减区间需满足x2>0且y =x2单调递减,故x ∈(-∞,0). 21.(·安徽卷) ⎝⎛⎭⎫1681-34+log354+log345=________.【答案】278【解析】原式=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫234-34+log3⎝⎛⎭⎫54×45=⎝⎛⎭⎫23-3=278. 22.(·浙江卷) 在同一直角坐标系中,函数f(x)=xa(x >0),g(x)=logax 的图像可能是( )A BC D 【答案】D【解析】只有选项D 符合,此时0<a<1,幂函数f(x)在(0,+∞)上为增函数,且当x ∈(0,1)时,f(x)的图像在直线y =x 的上方,对数函数g(x)在(0,+∞)上为减函数.故选D.23.(·福建卷) 若函数y =logax(a>0,且a ≠1)的图像如图所示,则下列函数图像正确的是( )A BC D 【答案】B【解析】由函数y =logax 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x3,其函数图像正确;选项C 中的函数为y =(-x)3,其函数图像不正确;选项D 中的函数为y =log3(-x),其函数图像不正确,故选B.24.(·广东卷) 等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.【答案】5【解析】在等比数列中,a1a5=a2a4=a23=4.因为an>0,所以a3=2,所以a1a2a3a4a5=(a1a5)(a2a4)a3=a53=25,所以log2a1+log2a2+log2a3+log2a4+log2a5=log2(a1a2a3a4a5)=log225=5.25.(·辽宁卷) 已知a =2-13,b =log213,c =log 1213,则() A .a >b >cB .a >c >b C .c >b >aD .c >a >b 【答案】D【解析】因为0<a =2-13<1,b =log213<0,c =log 1213>log 1212=1,所以c>a>b.26.(·山东卷) 已知函数y =loga(x +c)(a ,c 为常数,其中a>0,a≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a>1,x>1B .a>1,0<c<1C .0<a<1,c>1D .0<a<1,0<c<1【答案】D【解析】由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =logax 的图像向左平移不到1个单位后得到的,∴0<c <1.27.(·四川卷) 已知b >0,log5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =acB .a =cd C .c =adD .d =a +c 【答案】B【解析】因为5d =10,所以d =log510,所以cd =lg b·log510=log5b =a ,故选B. 28.(·重庆卷) 若log4(3a +4b)=log2ab ,则a +b 的最小值是( ) A .6+2 3B .7+2 3 C .6+4 3 D .7+43【答案】D【高考押题】1.函数y =a|x|(a>1)的图像是()解析y =a|x|=⎩⎪⎨⎪⎧ax x≥0,a -x x <0.当x≥0时,与指数函数y =ax(a>1)的图像相同;当x<0时,y =a -x 与y =ax 的图像关于y 轴对称,由此判断B 正确.答案B2.已知函数f(x)=⎩⎪⎨⎪⎧log3x ,x>02x x≤0,则f(9)+f(0)=()A .0B .1C .2D .3解析f(9)=log39=2,f(0)=20=1, ∴f(9)+f(0)=3. 答案D3.不论a 为何值时,函数y =(a -1)2x -a2恒过定点,则这个定点的坐标是 (). A.⎝⎛⎭⎫1,-12 B.⎝⎛⎭⎫1,12C.⎝⎛⎭⎫-1,-12D.⎝⎛⎭⎫-1,12解析 y =(a -1)2x -a 2=a ⎝⎛⎭⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a -1)2x -a 2恒过定点⎝⎛⎭⎫-1,-12.答案 C4.定义运算:a*b =⎩⎪⎨⎪⎧a ,a≤b ,b ,a>b ,如1*2=1,则函数f(x)=2x*2x 的值域为().A .RB .(0,+∞)C .(0,1]D .[1,+∞)解析 f(x)=2x*2-x =⎩⎪⎨⎪⎧2x ,x≤0,2-x ,x>0,∴f(x)在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f(x)≤1.答案 C5.若a>1,b>0,且ab +a -b =22,则ab -a -b 的值为() A. 6 B .2或-2C .-2D .2解析(ab +a -b)2=8⇒a2b +a -2b =6, ∴(ab -a -b)2=a2b +a -2b -2=4. 又ab>a -b(a>1,b>0),∴ab -a -b =2.6.若函数f(x)=(k -1)ax -a -x(a>0且a≠1)在R 上既是奇函数,又是减函数,则g(x)=loga(x +k)的图象是下图中的().解析 函数f(x)=(k -1)ax -a -x 为奇函数,则f(0)=0,即(k -1)a0-a0=0,解得k =2,所以f(x)=ax -a -x ,又f(x)=ax -a -x 为减函数,故0<a<1,所以g(x)=loga(x +2)为减函数且过点(-1,0).答案 A7.已知实数a =log45,b =⎝⎛⎭⎫120,c =log30.4,则a ,b ,c 的大小关系为() A .b<c<a B .b<a<c C .c<a<bD .c<b<a解析由题知,a =log45>1,b =⎝⎛⎭⎫120=1,c =log30.4<0,故c<b<a. 答案D8.设f(x)=lg(21-x +a)是奇函数,则使f(x)<0的x 的取值范围是().A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析 ∵f(x)为奇函数,∴f(0)=0,∴a =-1. ∴f(x)=lg x +11-x ,由f(x)<0得,0<x +11-x <1,∴-1<x <0. 答案 A9.若函数y =loga(x2-ax +1)有最小值,则a 的取值范围是(). A .0<a<1 B .0<a<2,a≠1 C .1<a<2D .a≥2解析 因为y =x2-ax +1是开口向上的二次函数,从而有最小值4-a24,故要使函数y =loga(x2-ax +1)有最小值,则a>1,且4-a24>0,得1<a<2,故选C.10.若函数f(x)=loga(x2-ax +3)(a>0且a≠1)满足对任意的x1,x2,当x1<x2≤a2时,f(x1)-f(x2)>0,则实数a 的取值范围为().A .(0,1)∪(1,3)B .(1,3)C .(0,1)∪(1,23)D .(1,23)解析 “对任意的x1,x2,当x1<x2≤a2时,f(x1)-f(x2)>0”实质上就是“函数单调递减”的“伪装”,同时还隐含了“f(x)有意义”.事实上由于g(x)=x2-ax +3在x≤a2时递减,从而⎩⎪⎨⎪⎧a>1,g ⎝⎛⎭⎫a 2>0.由此得a 的取值范围为(1,23).故选D.答案 D11.已知函数f(x)=2x -12x +1.(1)判断函数f(x)的奇偶性; (2)求证f(x )在R 上为增函数.12.已知函数f(x)=b·ax(其中a ,b 为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24). (1)求f(x);(2)若不等式(1a )x +(1b )x -m≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围. 解析(1)把A(1,6),B(3,24)代入f(x)=b·ax ,得⎩⎪⎨⎪⎧6=ab ,24=b·a3.结合a>0且a≠1,解得⎩⎪⎨⎪⎧a =2,b =3.∴f(x)=3·2x.(2)要使(12)x +(13)x≥m 在(-∞,1]上恒成立,只需保证函数y =(12)x +(13)x 在(-∞,1]上的最小值不小于m 即可. ∵函数y =(12)x +(13)x 在(-∞,1]上为减函数, ∴当x =1时,y =(12)x +(13)x 有最小值56. ∴只需m≤56即可. ∴m 的取值范围(-∞,56]13.已知函数f(x)=⎝⎛⎭⎫13ax2-4x +3. (1)若a =-1,求f(x)的单调区间; (2)若f(x)有最大值3,求a 的值.解析(1)当a =-1时,f(x)=⎝⎛⎭⎫13-x2-4x +3, 令t =-x2-4x +3,由于t(x)在(-∞,-2)上单调递增,在[-2,+∞)上单调递减,而y =⎝⎛⎭⎫13t 在R 上单调递减, 所以f(x)在(-∞,-2)上单调递减,在[-2,+∞)上单调递增, 即函数f(x)的递增区间是[-2,+∞),递减区间是(-∞,-2).(2)令h(x)=ax2-4x +3,f(x)=⎝⎛⎭⎫13h(x), 由于f(x)有最大值3, 所以h(x)应有最小值-1,因此必有⎩⎪⎨⎪⎧a>0,12a -164a =-1,解得a =1.即当f(x)有最大值3时,a 的值等于1. 14.已知定义在R 上的函数f(x)=2x -12|x|.(1)若f(x)=32,求x 的值;(2)若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.解 (1)当x<0时,f(x)=0,无解;当x≥0时,f(x)=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x>0,∴x =1.(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m(22t -1)≥-(24t -1),∵22t -1>0,∴m≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5],故m 的取值范围是[-5,+∞).15.若函数y =lg(3-4x +x2)的定义域为M.当x ∈M 时,求f(x)=2x +2-3×4x 的最值及相应的x 的值.16.已知函数f(x)=loga x +b x -b(a >0,b >0,a≠1). (1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性;解 (1)令x +b x -b >0, 解得f(x)的定义域为(-∞,-b)∪(b ,+∞).(2)因f(-x)=loga -x +b -x -b =loga ⎝ ⎛⎭⎪⎫x +b x -b -1 =-loga x +b x -b=-f(x), 故f(x)是奇函数.(3)令u(x)=x +b x -b ,则函数u(x)=1+2b x -b在(-∞,-b)和(b ,+∞)上是减函数,所以当0<a <1时,f(x)在(-∞,-b)和(b ,+∞)上是增函数;当a >1时,f(x)在(-∞,-b)和(b ,+∞)上是减函数.17.已知函数f(x)=loga x +1x -1,(a>0,且a≠1). (1)求函数的定义域,并证明:f(x)=loga x +1x -1在定义域上是奇函数; (2)对于x ∈[2,4],f(x)=loga x +1x -1>loga m x -127-x恒成立,求m 的取值范围. 解 (1)由x +1x -1>0,解得x<-1或x>1, ∴函数的定义域为(-∞,-1)∪(1,+∞).当x ∈(-∞,-1)∪(1,+∞)时,f(-x)=loga -x +1-x -1=loga x -1x +1=loga ⎝ ⎛⎭⎪⎫x +1x -1-1=-loga x +1x -1=-f(x), ∴f(x)=loga x +1x -1在定义域上是奇函数. (2)由x ∈[2,4]时,f(x)=logax +1x -1>loga m x -127-x恒成立, ①当a>1时,∴x +1x -1>m x -127-x >0对x ∈[2,4]恒成立. ∴0<m<(x +1)(x -1)(7-x)在x ∈[2,4]恒成立.设g(x)=(x +1)(x -1)(7-x),x ∈[2,4]则g(x)=-x3+7x2+x -7,g′(x)=-3x2+14x +1=-3⎝⎛⎭⎫x -732+523, ∴当x ∈[2,4]时,g′(x)>0.∴y =g(x)在区间[2,4]上是增函数,g(x)min =g(2)=15.∴0<m<15.②当0<a<1时,由x ∈[2,4]时,f(x)=loga x +1x -1>loga m x -127-x恒成立, ∴x +1x -1<m x -127-x对x ∈[2,4]恒成立. ∴m>(x +1)(x -1)(7-x)在x ∈[2,4]恒成立.设g(x)=(x +1)(x -1)(7-x),x ∈[2,4],由①可知y =g(x)在区间[2,4]上是增函数,g(x)max =g(4)=45,∴m>45.∴m 的取值范围是(0,15)∪(45,+∞). 高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。