Entropic bounds on coding for noisy quantum channels
多层感知机计算响应函数例题
多层感知机计算响应函数例题
多层感知机(MLP)是一种人工神经网络,它由多个神经元组成的多层结构。
在MLP中,每个神经元与上一层的所有神经元连接,每个连接都有一个权重,而每个神经元还有一个偏置。
MLP通过前向传播和反向传播来进行训练和预测。
现在让我们来看一个简单的例题,来计算多层感知机的响应函数。
假设我们有一个包含两个输入特征的二分类问题,我们的MLP 有一个隐藏层,隐藏层有两个神经元,输出层有一个神经元。
我们使用Sigmoid激活函数。
首先,我们计算隐藏层的响应。
对于第一个隐藏层的第一个神经元,我们有:
z1 = w1 x1 + w2 x2 + b1。
其中w1和w2是输入特征的权重,x1和x2是输入特征的值,b1是偏置。
然后,我们将z1输入Sigmoid激活函数得到隐藏层第一个神经元的输出:
a1 = σ(z1)。
同样地,我们可以计算第一个隐藏层的第二个神经元的输出a2。
接下来,我们计算输出层的响应。
对于输出层的神经元,我们有:
z2 = w3 a1 + w4 a2 + b2。
其中w3和w4是隐藏层到输出层的权重,b2是输出层的偏置。
然后,我们将z2输入Sigmoid激活函数得到最终的输出:
ŷ = σ(z2)。
这个ŷ就是我们MLP对输入数据的预测。
这就是一个简单的多层感知机计算响应函数的例题。
通过这个
例子,我们可以看到多层感知机是如何通过权重和偏置以及激活函
数来计算并得出最终的预测结果的。
希望这个例子能帮助你更好地
理解多层感知机的工作原理。
基于主动学习和二次有理核的模型无关局部解释方法
基于主动学习和二次有理核的模型无关局部解释方法
周晟昊;袁伟伟;关东海
【期刊名称】《计算机科学》
【年(卷),期】2024(51)2
【摘要】深度学习模型的广泛使用,在更大程度上使人们意识到模型的决策是亟需解决的问题,复杂难以解释的黑盒模型阻碍了算法在实际场景中部署。
LIME作为最流行的局部解释方法,生成的扰动数据却具有不稳定性,导致最终的解释产生偏差。
针对上述问题,提出了一种基于主动学习和二次有理核的模型无关局部解释方法ActiveLIME,使得局部解释模型更加忠于原始分类器。
ActiveLIME生成扰动数据后,通过主动学习的查询策略对扰动数据进行采样,筛选不确定性高的扰动集训练,使用迭代过程中准确度最高的局部模型对感兴趣实例生成解释。
并且,针对容易陷入局部过拟合的高维稀疏样本,在模型损失函数中引入了二次有理核来减少过拟合。
实验结果表明,所提出的ActiveLIME方法引比传统局部解释方法具有更高的局部保真度和解释质量。
【总页数】7页(P245-251)
【作者】周晟昊;袁伟伟;关东海
【作者单位】南京航空航天大学计算机科学与技术学院
【正文语种】中文
【中图分类】TP391
【相关文献】
1.一种基于因果强度的局部因果结构主动学习方法
2.基于主动形状模型算法的局部灰度模型的加权改进方法
3.基于局部主动轮廓模型的飞机壁板铆接孔定位方法研究
4.基于模糊核聚类和主动学习的异常检测方法
5.基于核极限学习机的快速主动学习方法及其软测量应用
因版权原因,仅展示原文概要,查看原文内容请购买。
一种基于奇异值分解的双语语言过滤算法
一种基于奇异值分解的双语语言过滤算法
路海明;徐晋晖
【期刊名称】《中文信息学报》
【年(卷),期】1999(013)003
【摘要】本文提出了一种基于SVD(奇异值分解)的双语信息过滤算法,将双语文档进行了统一的表示,使得适应于单语过滤的算法可以方便地用于双语过滤,同时对文档向量进行了压缩,滤去了噪声,在应用方面,将双语过滤算法用于互联网上的个性化主动信息过滤。
【总页数】8页(P18-25)
【作者】路海明;徐晋晖
【作者单位】清华大学自动化系;清华大学自动化系
【正文语种】中文
【中图分类】TP391.2
【相关文献】
1.基于双语主题模型和双语词向量的跨语言知识链接 [J], 余圆圆;巢文涵;何跃鹰;李舟军
2.基于局部优化奇异值分解和K-means聚类的协同过滤算法 [J], 尹芳; 宋垚; 李骜
3.一种基于评分信息熵的融合协同过滤算法 [J], 张洁;李港
4.一种基于BP神经网络的电影协同过滤算法 [J], 宋曼
5.双语翻译过程中的译语词汇提取机制研究——基于双语语言提取理论的认知思考[J], 章琦;刘绍龙
因版权原因,仅展示原文概要,查看原文内容请购买。
深度强化学习算法及其在无监督去噪中的应用
深度强化学习算法及其在无监督去噪中的应用汇报人:2023-11-20•深度强化学习算法介绍•深度强化学习算法应用•无监督去噪算法介绍目•深度强化学习算法在无监督去噪中的应用•未来展望与挑战录深度强化学习算法介绍强化学习定义01强化学习问题定义02强化学习问题分类03深度神经网络卷积神经网络DQN是一种基于Q-learning的深度强化学习算法,它可以解决具有离散动作空间的强化学习问题。
DQN通过使用神经网络来估计Q值,从而实现对复杂环境的处理和决策。
Proximal Policy Optimization (PPO)PPO是一种基于策略的深度强化学习算法,它可以解决具有连续动作空间的强化学习问题。
PPO通过使用神经网络来估计策略,并使用Actor-Critic结构来更新策略,从而实现对复杂环境的处理和决策。
Double Deep Q-Network (DDQN)DDQN是一种改进的DQN算法,它通过使用两个神经网络来估计Q值,从而解决DQN中存在的稳定性问题。
Asynchronous Advantage Actor-Critic (A3C)A3C是一种基于策略的深度强化学习算法,它可以解决多智能体任务的问题。
A3C通过使用多个并行智能体来收集数据并更新策略,从而实现对复杂环境的处理和决策。
深度强化学习算法应用传感器数据融合机器人通过多个传感器获取环境信息,深度强化学习算法可以帮助融合这些数据,提高机器人的感知能力,从而更好地适应环境变化。
机器人运动控制深度强化学习算法可以用于控制机器人的运动,使其能够自主地执行一系列复杂的动作,实现精准的目标追踪、抓取和放置等任务。
实时决策与规划深度强化学习算法还可以用于实时决策和路径规划,使机器人在动态环境中能够快速做出最优决策,适应各种复杂场景。
在机器人控制中的应用策略学习游戏中的角色需要执行各种复杂的动作,深度强化学习算法可以用于生成这些动作,提高游戏的真实感和流畅度。
信息论与编码习题与答案第五章
5-10 设有离散无记忆信源}03.0,07.0,10.0,18.0,25.0,37.0{)(=X P 。
(1)求该信源符号熵H(X)。
(2)用哈夫曼编码编成二元变长码,计算其编码效率。
(3)要求译码错误小于310-,采用定长二元码达到(2)中的哈夫曼编码效率,问需要多少个信源符号连在一起编? 解:(1)信源符号熵为symbolbit x p x p X H i ii /23.203.0log 03.007.0log 07.010.0log 10.018.0log 18.025.0log 25.037.0log 37.0)(log )()(222222=------=-=∑ (2)1x 3x 2x 6x 5x 4x 0.370.250.180.100.070.030111110.100.200.380.621.0000011110110001001符号概率编码该哈夫曼码的平均码长为符号码元/3.2403.0407.0310.0218.0225.0237.0)(=⨯+⨯+⨯+⨯+⨯+⨯==∑iii K x p K 编码效率为9696.03.223.2)(===KX H η (3)信源序列的自信息方差为2222)(792.0)]([)]()[log ()(bit X H x p x p X i ii =-=∑σ7.00696.90)()(==+=εεη得,由X H X H53222102.6110)7.00(92.70)(⨯=⨯=≥-δεσX L 由切比雪夫不等式可得所以,至少需要1.62×105个信源符号一起编码才能满足要求。
5-12 已知一信源包含8个消息符号,其出现的概率}04.0,07.0,1.0,06.0,05.0,4.0,18.0,1.0{)(=X P ,则求:(1)该信源在每秒内发出1个符号,求该信源的熵及信息传输速率。
(2)对这8个符号作哈夫曼编码,写出相应码字,并求出编码效率。
基于最大信息熵的小波包阈值去噪语音增强算法
文 献标 识码 : A
文章编 号 :0 0—8 2 ( 0 1 1 0 1 0 10 8 9 2 1 ) 0— 0 2— 3
A a ee c tThr s l - ii g Alo ih o p e h En a e e t W v ltPa ke e hod De Nosn g rt m f r S e c h nc m n
Ab t ac : s r t De— o sng ag rt m ly e y i o t n o iin i hes e c n n e n , ie t e ta to a n ii l o ih pa sav r mp ra tp st n t p e h e ha c me t wh l h r di n l o i wa ee h e h l e nosn l o ih wilc u e ls fp r fu e u p e h sg as i vt b y I r e o d — v ltt r s o d d — ii g ag rt m l a s o so a to s f ls e c i n l ne i l . n o d rt e a
Ba e n a i u n o m a i n Ent o s d o M x m m I f r to r py
YANG iq n XU n —i Gu - i , Ho g l
( col f l t n s& If m t nE gneig LnhuJ o n nvr t L nh u70 7 , hn ) Sho o e r i E co c n r ai n i r , a zo i t gU i sy a zo 3 0 0 C i o o e n ao e i, a
为了更好地对含噪语音信号进行去噪选用小波包分析法进行语音分解采用一种新的阈值函数同时基于最大信息熵的原理确定了阈值和加权阈值函数中的权因子
一种改进的高斯频率域压缩感知稀疏反演方法(英文)
AbstractCompressive sensing and sparse inversion methods have gained a significant amount of attention in recent years due to their capability to accurately reconstruct signals from measurements with significantly less data than previously possible. In this paper, a modified Gaussian frequency domain compressive sensing and sparse inversion method is proposed, which leverages the proven strengths of the traditional method to enhance its accuracy and performance. Simulation results demonstrate that the proposed method can achieve a higher signal-to- noise ratio and a better reconstruction quality than its traditional counterpart, while also reducing the computational complexity of the inversion procedure.IntroductionCompressive sensing (CS) is an emerging field that has garnered significant interest in recent years because it leverages the sparsity of signals to reduce the number of measurements required to accurately reconstruct the signal. This has many advantages over traditional signal processing methods, including faster data acquisition times, reduced power consumption, and lower data storage requirements. CS has been successfully applied to a wide range of fields, including medical imaging, wireless communications, and surveillance.One of the most commonly used methods in compressive sensing is the Gaussian frequency domain compressive sensing and sparse inversion (GFD-CS) method. In this method, compressive measurements are acquired by multiplying the original signal with a randomly generated sensing matrix. The measurements are then transformed into the frequency domain using the Fourier transform, and the sparse signal is reconstructed using a sparsity promoting algorithm.In recent years, researchers have made numerous improvementsto the GFD-CS method, with the goal of improving its reconstruction accuracy, reducing its computational complexity, and enhancing its robustness to noise. In this paper, we propose a modified GFD-CS method that combines several techniques to achieve these objectives.Proposed MethodThe proposed method builds upon the well-established GFD-CS method, with several key modifications. The first modification is the use of a hierarchical sparsity-promoting algorithm, which promotes sparsity at both the signal level and the transform level. This is achieved by applying the hierarchical thresholding technique to the coefficients corresponding to the higher frequency components of the transformed signal.The second modification is the use of a novel error feedback mechanism, which reduces the impact of measurement noise on the reconstructed signal. Specifically, the proposed method utilizes an iterative algorithm that updates the measurement error based on the difference between the reconstructed signal and the measured signal. This feedback mechanism effectively increases the signal-to-noise ratio of the reconstructed signal, improving its accuracy and robustness to noise.The third modification is the use of a low-rank approximation method, which reduces the computational complexity of the inversion algorithm while maintaining reconstruction accuracy. This is achieved by decomposing the sensing matrix into a product of two lower dimensional matrices, which can be subsequently inverted using a more efficient algorithm.Simulation ResultsTo evaluate the effectiveness of the proposed method, we conducted simulations using synthetic data sets. Three different signal types were considered: a sinusoidal signal, a pulse signal, and an image signal. The results of the simulations were compared to those obtained using the traditional GFD-CS method.The simulation results demonstrate that the proposed method outperforms the traditional GFD-CS method in terms of signal-to-noise ratio and reconstruction quality. Specifically, the proposed method achieves a higher signal-to-noise ratio and lower mean squared error for all three types of signals considered. Furthermore, the proposed method achieves these results with a reduced computational complexity compared to the traditional method.ConclusionThe results of our simulations demonstrate the effectiveness of the proposed method in enhancing the accuracy and performance of the GFD-CS method. The combination of sparsity promotion, error feedback, and low-rank approximation techniques significantly improves the signal-to-noise ratio and reconstruction quality, while reducing thecomputational complexity of the inversion procedure. Our proposed method has potential applications in a wide range of fields, including medical imaging, wireless communications, and surveillance.。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
混沌麻雀搜索优化算法
混沌麻雀搜索优化算法一、本文概述随着和计算智能的快速发展,优化算法在众多领域,如机器学习、数据挖掘、模式识别、控制工程等,都发挥着越来越重要的作用。
近年来,群体智能优化算法因其强大的全局搜索能力和鲁棒性受到了广泛关注。
其中,麻雀搜索算法(Sparrow Search Algorithm, SSA)作为一种新兴的群体智能优化算法,凭借其独特的搜索机制和高效的求解能力,在众多优化问题中展现出良好的应用前景。
然而,传统的麻雀搜索算法在面对复杂多变的问题时,仍存在一定的局限性,如易陷入局部最优、搜索精度与速度之间的矛盾等。
为了解决这些问题,本文提出了一种混沌麻雀搜索优化算法(Chaotic Sparrow Search Optimization Algorithm, CSSOA)。
该算法将混沌理论引入麻雀搜索算法中,通过对搜索过程中的种群初始化、搜索策略、位置更新等环节进行改进,有效提高了算法的搜索效率和全局优化能力。
本文首先简要介绍了麻雀搜索算法的基本原理和研究现状,然后详细阐述了混沌麻雀搜索优化算法的设计思路、实现方法以及性能评估。
通过与其他群体智能优化算法的比较,验证了CSSOA在解决多模态函数优化问题、约束优化问题以及工程实际问题中的有效性和优越性。
对混沌麻雀搜索优化算法的未来研究方向和应用前景进行了展望。
本文旨在为相关领域的研究人员和实践者提供一种新型的群体智能优化算法,并为解决复杂优化问题提供新的思路和方法。
二、混沌理论基础混沌理论,起源于20世纪60年代,是一种研究非线性动态系统行为的科学。
混沌现象普遍存在于自然界中,如天气变化、股市波动、生态系统等。
混沌理论的核心在于揭示看似无序、随机的现象背后隐藏的有序性和规律性。
混沌系统具有对初始条件的敏感性,即微小的初始差异可能导致系统行为的巨大变化,这种现象被称为“蝴蝶效应”。
混沌麻雀搜索优化算法(CMSOA)借鉴了混沌理论的核心思想,将其应用于优化问题的求解过程。
c++ 信奥赛 常用英语
c++ 信奥赛常用英语在C++ 信奥赛中(计算机奥林匹克竞赛),常用英语词汇主要包括以下几方面:1. 基本概念:- Algorithm(算法)- Data structure(数据结构)- Programming language(编程语言)- C++(C++ 编程语言)- Object-oriented(面向对象)- Function(函数)- Variable(变量)- Constants(常量)- Loops(循环)- Conditional statements(条件语句)- Operators(运算符)- Control structures(控制结构)- Memory management(内存管理)2. 常用算法与数据结构:- Sorting algorithms(排序算法)- Searching algorithms(搜索算法)- Graph algorithms(图算法)- Tree algorithms(树算法)- Dynamic programming(动态规划)- Backtracking(回溯)- Brute force(暴力破解)- Divide and conquer(分治)- Greedy algorithms(贪心算法)- Integer array(整数数组)- Linked list(链表)- Stack(栈)- Queue(队列)- Tree(树)- Graph(图)3. 编程实践:- Code optimization(代码优化)- Debugging(调试)- Testing(测试)- Time complexity(时间复杂度)- Space complexity(空间复杂度)- Input/output(输入/输出)- File handling(文件处理)- Console output(控制台输出)4. 竞赛相关:- IOI(国际信息学奥林匹克竞赛)- NOI(全国信息学奥林匹克竞赛)- ACM-ICPC(ACM 国际大学生程序设计竞赛)- Codeforces(代码力)- LeetCode(力扣)- HackerRank(黑客排名)这些英语词汇在信奥赛领域具有广泛的应用,掌握这些词汇有助于提高选手之间的交流效率,同时对提升编程能力和竞赛成绩也有很大帮助。
数字信号处理英语词汇
AAbsolutely integrable绝对可积Absolutely integrable impulse response绝对可积冲激响应Absolutely summable绝对可和Absolutely summable impulse response绝对可和冲激响应Accumulator累加器Acoustic 声学Adder加法器Additivity property可加性Aliasing混叠现象All-pass systems全通系统AM (Amplitude modulation )幅度调制Amplifier放大器Amplitude modulation (AM)幅度调制Amplitude-scaling factor幅度放大因子Analog-to-digital (A-to-D) converter模数转换器Analysis equation分析公式(方程)Angel (phase) of complex number复数的角度(相位)Angle criterion角判据Angle modulation角度调制Anticausality反因果Aperiodic非周期Aperiodic convolution非周期卷积Aperiodic signal非周期信号Asynchronous异步的Audio systems音频(声音)系统Autocorrelation functions自相关函数Automobile suspension system汽车减震系统Averaging system平滑系统BBand-limited带(宽)限的Band-limited input signals带限输入信号Band-limited interpolation带限内插Bandpass filters带通滤波器Bandpass signal带通信号Bandpass-sampling techniques带通采样技术Bandwidth带宽Bartlett (triangular) window巴特利特(三角形)窗Bilateral Laplace transform双边拉普拉斯变换Bilinear双线性的Bilinear transformation双线性变换Bit(二进制)位,比特Block diagrams方框图Bode plots波特图Bounded有界限的Break frequency折转频率Butterworth filters巴特沃斯滤波器C“Chirp” transform algorithm“鸟声”变换算法Capacitor电容器Carrier载波Carrier frequency载波频率Carrier signal载波信号Cartesian (rectangular) form 直角坐标形式Cascade (series) interconnection串联,级联Cascade-form串联形式Causal LTI system因果的线性时不变系统Channel信道,频道Channel equalization信道均衡Chopper amplifier斩波器放大器Closed-loop闭环Closed-loop poles闭环极点Closed-loop system闭环系统Closed-loop system function闭环系统函数Coefficient multiplier系数乘法器Coefficients系数Communications systems通信系统Commutative property交换性(交换律)Compensation for nonideal elements非理想元件的补偿Complex conjugate复数共轭Complex exponential carrier复指数载波Complex exponential signals复指数信号Complex exponential(s)复指数Complex numbers 复数Conditionally stable systems条件稳定系统Conjugate symmetry共轭对称Conjugation property共轭性质Continuous-time delay连续时间延迟Continuous-time filter连续时间滤波器Continuous-time Fourier series连续时间傅立叶级数Continuous-time Fourier transform连续时间傅立叶变换Continuous-time signals连续时间信号Continuous-time systems连续时间系统Continuous-to-discrete-time conversion连续时间到离散时间转换Convergence 收敛Convolution卷积Convolution integral卷积积分Convolution property卷积性质Convolution sum卷积和Correlation function相关函数Critically damped systems临界阻尼系统Crosss-correlation functions互相关函数Cutoff frequencies截至频率DDamped sinusoids阻尼正弦振荡Damping ratio阻尼系数Dc offset直流偏移Dc sequence直流序列Deadbeat feedback systems临界阻尼反馈系统Decibels (dB) 分贝Decimation抽取Decimation and interpolation抽取和内插Degenerative (negative) feedback负反馈Delay延迟Delay time延迟时间Demodulation解调Difference equations差分方程Differencing property差分性质Differential equations微分方程Differentiating filters微分滤波器Differentiation property微分性质Differentiator微分器Digital-to-analog (D-to-A) converter数模转换器Direct Form I realization直接I型实现Direct form II realization直接II型实现Direct-form直接型Dirichlet conditions狄里赫利条件Dirichlet, P.L.狄里赫利Discontinuities间断点,不连续Discrete-time filters 离散时间滤波器Discrete-time Fourier series离散时间傅立叶级数Discrete-time Fourier series pair离散时间傅立叶级数对Discrete-time Fourier transform (DFT)离散时间傅立叶变换Discrete-time LTI filters离散时间线性时不变滤波器Discrete-time modulation离散时间调制Discrete-time nonrecursive filters离散时间非递归滤波器Discrete-time signals离散时间信号Discrete-time systems离散时间系统Discrete-time to continuous-time conversion离散时间到连续时间转换Dispersion弥撒(现象)Distortion扭曲,失真Distribution theory(property)分配律Dominant time constant主时间常数Double-sideband modulation (DSB)双边带调制Downsampling减采样Duality对偶性EEcho回波Eigenfunctions特征函数Eigenvalue特征值Elliptic filters椭圆滤波器Encirclement property围线性质End points终点Energy of signals信号的能量Energy-density spectrum能量密度谱Envelope detector包络检波器Envelope function包络函数Equalization均衡化Equalizer circuits均衡器电路Equation for closed-loop poles闭环极点方程Euler, L.欧拉Euler’s relation欧拉关系(公式)Even signals偶信号Exponential signals指数信号Exponentials指数FFast Fourier transform (FFT)快速傅立叶变换Feedback反馈Feedback interconnection反馈联结Feedback path反馈路径Filter(s)滤波器Final-value theorem终值定理Finite impulse response (FIR)有限长脉冲响应Finite impulse response (FIR) filters有限长脉冲响应滤波器Finite sum formula有限项和公式Finite-duration signals有限长信号First difference一阶差分First harmonic components基波分量(一次谐波分量)First-order continuous-time systems一阶连续时间系统First-order discrete-time systems一阶离散时间系统First-order recursive discrete-time filters一阶递归离散时间滤波器First-order systems一阶系统Forced response受迫响应Forward path正向通路Fourier series傅立叶级数Fourier transform傅立叶变换Fourier transform pairs傅立叶变换对Fourier, Jean Baptiste Joseph傅立叶(法国数学家,物理学家)Frequency response频率响应Frequency response of LTI systems线性时不变系统的频率响应Frequency scaling of continuous-time Fourier transform 连续时间傅立叶变化的频率尺度(变换性质)Frequency shift keying (FSK)频移键控Frequency shifting property频移性质Frequency-division multiplexing (FDM)频分多路复用Frequency-domain characterization频域特征Frequency-selective filter频率选择滤波器Frequency-shaping filters频率成型滤波器Fundamental components基波分量Fundamental frequency基波频率Fundamental period基波周期GGain增益Gain and phase margin增益和相位裕度General complex exponentials一般复指数信号Generalized functions广义函数Gibbs phenomenon吉伯斯现象Group delay群延迟HHalf-sample delay半采样间隔时延Hanning window汉宁窗Harmonic analyzer谐波分析议Harmonic components谐波分量Harmonically related谐波关系Heat propagation and diffusion热传播和扩散现象Higher order holds高阶保持Highpass filter高通滤波器Highpass-to-lowpass transformations高通到低通变换Hilbert transform希尔波特滤波器Homogeneity (scaling) property齐次性(比例性)IIdeal理想的Ideal bandstop characteristic理想带阻特征Ideal frequency-selective filter理想频率选择滤波器Idealization理想化Identity system恒等系统Imaginary part虚部Impulse response 冲激响应Impulse train冲激串Incrementally linear systems增量线性系统Independent variable独立变量Infinite impulse response (IIR)无限长脉冲响应Infinite impulse response (IIR) filters无限长脉冲响应滤波器Infinite sum formula无限项和公式Infinite taylor series无限项泰勒级数Initial-value theorem初值定理Inpulse-train sampling冲激串采样Instantaneous瞬时的Instantaneous frequency瞬时频率Integration in time-domain时域积分Integration property积分性质Integrator积分器Interconnection互联Intermediate-frequency (IF) stage中频级Intersymbol interference (ISI)码间干扰Inverse Fourier transform傅立叶反变换Inverse Laplace transform拉普拉斯反变换Inverse LTI system逆线性时不变系统Inverse system design逆系统设计Inverse z-transform z反变换Inverted pendulum倒立摆Invertibility of LTI systems线性时不变系统的可逆性Invertible systems逆系统LLag network滞后网络Lagrange, J.L.拉格朗日(法国数学家,力学家)Laplace transform拉普拉斯变换Laplace, P.S. de拉普拉斯(法国天文学家,数学家)lead network超前网络left-half plane左半平面left-sided signal左边信号Linear线性Linear constant-coefficient difference线性常系数差分方程equationsLinear constant-coefficient differential线性常系数微分方程equationsLinear feedback systems线性反馈系统Linear interpolation线性插值Linearity线性性Log magnitude-phase diagram对数幅-相图Log-magnitude plots对数模图Lossless coding无损失码Lowpass filters低通滤波器Lowpass-to-highpass transformation低通到高通的转换LTI system response线性时不变系统响应LTI systems analysis线性时不变系统分析MMagnitude and phase幅度和相位Matched filter匹配滤波器Measuring devices测量仪器Memory记忆Memoryless systems无记忆系统Modulating signal调制信号Modulation调制Modulation index调制指数Modulation property调制性质Moving-average filters移动平均滤波器Multiplexing多路技术Multiplication property相乘性质Multiplicities多样性NNarrowband窄带Narrowband frequency modulation窄带频率调制Natural frequency自然响应频率Natural response自然响应Negative (degenerative) feedback负反馈Nonanticipatibe system不超前系统Noncausal averaging system非因果平滑系统Nonideal非理想的Nonideal filters非理想滤波器Nonmalized functions归一化函数Nonrecursive非递归Nonrecursive filters非递归滤波器Nonrecursive linear constant-coefficient非递归线性常系数差分方程difference equationsNyquist frequency奈奎斯特频率Nyquist rate奈奎斯特率Nyquist stability criterion奈奎斯特稳定性判据OOdd harmonic 奇次谐波Odd signal奇信号Open-loop开环Open-loop frequency response开环频率响应Open-loop system开环系统Operational amplifier运算放大器Orthogonal functions正交函数Orthogonal signals正交信号Oscilloscope示波器Overdamped system过阻尼系统Oversampling过采样Overshoot超量PParallel interconnection并联Parallel-form block diagrams并联型框图Parity check奇偶校验检查Parseval’s relation帕斯伐尔关系(定理)Partial-fraction expansion部分分式展开Particular and homogeneous solution特解和齐次解Passband通频带Passband edge通带边缘Passband frequency通带频率Passband ripple通带起伏(或波纹)Pendulum钟摆Percent modulation调制百分数Periodic周期的Periodic complex exponentials周期复指数Periodic convolution周期卷积Periodic signals周期信号Periodic square wave周期方波Periodic square-wave modulating signal周期方波调制信号Periodic train of impulses周期冲激串Phase (angle) of complex number复数相位(角度)Phase lag相位滞后Phase lead相位超前Phase margin相位裕度Phase shift相移Phase-reversal相位倒置Phase modulation相位调制Plant工厂Polar form极坐标形式Poles极点Pole-zero plot(s)零极点图Polynomials 多项式Positive (regenerative) feedback正(再生)反馈Power of signals信号功率Power-series expansion method幂级数展开的方法Principal-phase function主值相位函数Proportional (P) control比例控制Proportional feedback system比例反馈系统Proportional-plus-derivative比例加积分Proportional-plus-derivative feedback比例加积分反馈Proportional-plus-integral-plus-different比例-积分-微分控制ial (PID) controlPulse-amplitude modulation脉冲幅度调制Pulse-code modulation脉冲编码调制Pulse-train carrier冲激串载波QQuadrature distortion正交失真Quadrature multiplexing正交多路复用Quality of circuit电路品质(因数)RRaised consine frequency response升余弦频率响应Rational frequency responses有理型频率响应Rational transform有理变换RC highpass filter RC 高阶滤波器RC lowpass filter RC 低阶滤波器Real实数Real exponential signals实指数信号Real part实部Rectangular (Cartesian) form 直角(卡笛儿)坐标形式Rectangular pulse矩形脉冲Rectangular pulse signal矩形脉冲信号Rectangular window矩形窗口Recursive (infinite impulse response)递归(无时限脉冲响应)滤波器filtersRecursive linear constant-coefficient 递归的线性常系数差分方程difference equationsRegenerative (positive) feedback再生(正)反馈Region of comvergence收敛域right-sided signal右边信号Rise time上升时间Root-locus analysis根轨迹分析(方法)Running sum动求和SS domain S域Sampled-data feedback systems采样数据反馈系统Sampled-data systems采样数据系统Sampling采样Sampling frequency采样频率Sampling function采样函数Sampling oscilloscope采样示波器Sampling period采样周期Sampling theorem采样定理Scaling (homogeneity) property比例性(齐次性)性质Scaling in z domain z域尺度变换Scrambler扰频器Second harmonic components二次谐波分量Second-order二阶Second-order continuous-time system二阶连续时间系统Second-order discrete-time system二阶离散时间系统Second-order systems二阶系统sequence序列Series (cascade) interconnection级联(串联)Sifting property筛选性质Sinc functions sinc函数Single-sideband单边带Single-sideband sinusoidal amplitude单边带正弦幅度调制modulationSingularity functions奇异函数Sinusoidal正弦(信号)Sinusoidal amplitude modulation正弦幅度调制Sinusoidal carrier正弦载波Sinusoidal frequency modulation正弦频率调制Sliding滑动Spectral coefficient频谱系数Spectrum频谱Speech scrambler语音加密器S-plane S平面Square wave方波Stability稳定性Stabilization of unstable systems不稳定系统的稳定性(度)Step response阶跃响应Step-invariant transformation阶跃响应不定的变换Stopband阻带Stopband edge阻带边缘Stopband frequency阻带频率Stopband ripple 阻带起伏(或波纹)Stroboscopic effect频闪响应Summer加法器Superposition integral叠加积分Superposition property叠加性质Superposition sum叠加和Suspension system减震系统Symmetric periodic 周期对称Symmetry对称性Synchronous同步的Synthesis equation综合方程System function(s)系统方程TTable of properties 性质列表Taylor series泰勒级数Time时间,时域Time advance property of unilateral单边z变换的时间超前性质z-transformTime constants时间常数Time delay property of unilateral单边z变换的时间延迟性质z-transformTime expansion property时间扩展性质Time invariance时间变量Time reversal property时间反转(反褶)性Time scaling property时间尺度变换性Time shifting property时移性质Time window时间窗口Time-division multiplexing (TDM)时分复用Time-domain时域Time-domain properties时域性质Tracking system (s)跟踪系统Transfer function转移函数transform pairs变换对Transformation变换(变形)Transition band过渡带Transmodulation (transmultiplexing) 交叉调制Triangular (Barlett) window三角型(巴特利特)窗口Trigonometric series三角级数Two-sided signal双边信号Type l feedback system l 型反馈系统UUint impulse response单位冲激响应Uint ramp function单位斜坡函数Undamped natural frequency无阻尼自然相应Undamped system无阻尼系统Underdamped systems欠阻尼系统Undersampling欠采样Unilateral单边的Unilateral Laplace transform单边拉普拉斯变换Unilateral z-transform单边z变换Unit circle单位圆Unit delay单位延迟Unit doublets单位冲激偶Unit impulse单位冲激Unit step functions单位阶跃函数Unit step response 单位阶跃响应Unstable systems不稳定系统Unwrapped phase展开的相位特性Upsampling增采样VVariable变量WWalsh functions沃尔什函数Wave波形Wavelengths波长Weighted average加权平均Wideband宽带Wideband frequency modulation宽带频率调制Windowing加窗zZ domain z域Zero force equalizer置零均衡器Zero-Input response零输入响应Zero-Order hold零阶保持Zeros of Laplace transform拉普拉斯变换的零点Zero-state response零状态响应z-transform z变换z-transform pairs z变换对。
中英翻译《使用加权滤波器的一种改进的谱减语音增强算法》
使用加权滤波器的一种改进的谱减语音增强算法摘要在噪声环境,例如飞机座舱、汽车引擎中,语音中或多或少地夹杂着噪声。
为了减少带噪语音中的噪声,我们提出了一种改进型的谱减算法。
这种算法是利用对谱减的过度减法而实现的。
残余噪声能够利用人类听觉系统的掩蔽特性被掩蔽。
为了消除残余的音乐噪声,引入了一种基于心理声学的有用的加权滤波器。
通过仿真发现其增强的语音并未失真,而且音乐噪声也被有效地掩蔽,从而体现了一种更好的性能。
关键词:语音增强;谱减1.引言语音信号中经常伴有环境中的背景噪声。
在一些应用中如:语音命令系统,语音识别,说话者认证,免提系统,背景噪声对语音信号的处理有许多不利的影响。
语音增强技术可以被分为单通道和多通道或多通道增强技术。
单通道语音增强技术的应用情况是只有一个采集通道可用。
谱减语音增强算法是一个众所周知的单通道降噪技术[]2,1。
大多数实现和多种基本技术的运用是在语音谱上减去对噪声谱的估计而得以实现的。
传统的功率谱相减的方法大大减少了带噪语音中的噪声水平。
然而,它也在语音信号中引入了一种被称为音乐噪声的恼人的失真。
在本文中我们运用一种能够更好、更多地抑制噪声的改进的频谱过度减法的方法[]3。
该方法的运用是为了估计纯净语音的功率谱,它是通过从语音功率谱中减去噪声功率谱的过度估计而实现的。
此外,为了在语音失真和噪声消除之间找到最佳的平衡点,一种基于声学心理学的动机谱加权规则被纳入。
通过利用人耳听觉系统的掩蔽特性能够掩蔽现有的残余噪声。
当确定了语音掩蔽阈值的时候,运用一种改进的掩蔽阈值估计来消除噪声的影响。
该方法提供了比传统的功率谱相减法更优越的性能,并能在很大程度上降低音乐噪声。
2.过度谱相减算法该方法的基本假设是把噪声看作是独立的加性噪声。
假设已经被不相关的加性噪声信号()t n降解的语音信号为()t s:()()()t n t s t x += (1)带噪语音信号的短时功率谱近似为:()()()ωωωj j j e N e S e X +≈ (2) 通过用无音期间得到的平均值()2ωj e N 代替噪声的平方幅度值()2ωj e N 得到功率谱相减的估计值为: ()()()222ˆωωωj j j e N e X e S -= (3)在运用了谱减算法之后,由于估计的噪声和有效噪声之间的差异而出现了一种残余噪声。
平移不变自适应块阈值图像去噪算法
Ke o d : d p i eb o k t r s o d ta sa i n i v ra t i g e o sn yw r s a a t lc h e h l ; r n l t n a in ; ma ed n ii g v o
在图像 信号的获取与传输 中 ,各种噪声如加性 、乘性 、松泊噪声 等会使 图像失真而影响主观视
觉效 果 ,并 对 图像 的分 析 பைடு நூலகம் 压缩 等 产生 巨大 影 响 :因 此 ,对 图像 进 行 有 效 去 噪 处 理 非 常 关键 . 波 小
变换因具有 良好 的时频局部化及 多分辨率分析能力 而广泛应 用于信 号及 图像处理领域l 卜i a e .Wevr
trso e o 。 hc ae ns b b c nry i ue o p t eey u - lc rso heh l m t d w ih s sdo u - l ke eg,s sdt c m ue vr b bokt eh l d h ib o o s h d
u i g t e b o k ta sa i n v ra c n h l c h e h l d p a i t . h T I i o a e sn h l c r n lto a n e a d t e b o k t r s o d a a tb l y T e AB T s c mp r d i i
等 【最 早 将 小 波 变换 运 用 于 图像 去 噪 .D nh 对 阈值 滤波 算 法 作 了系 统 阐述 ,提 出 了软 阈值 ( ot 3 】 ooo Sf
wih o h rd n ii g meho s uc sS f r s o d a d Bl c r s l t t e e os n t d ,s h a o tTh e h l n o k Th e hod.S mu a in r s ls s o i lto e u t h w t a h tABTTIn to y h sg o e o ma c n ei n tn ria t u lo c n a h e ehih rP o nl a o d p r r n e i lmi a i g a tf cs b ta s a c i v g e SNR f
一种新的阈值函数的平移不变多小波去噪方法
J 一。 。
() 1
对 函数 () 缩 及 平 移 后 可得 : £伸
1 +…
吼 ,( ) = _ ( £ J = -
)
() 2
特 点 , L Do o o和 I M. o n tn D. . n h . J h so e在 小 波 变 换 的 基
第1 卷 第7 0 期
2 1年 7 1 01 2
V0l1 l ON O. 7
J . O1 u12 l
一
种 新 的 阈值 函数 的平 移 不 变 多小波 去噪 方法
季桂 树 , 安 博
( 中南大 学 信 息科 学与 工程 学院 , 南 长 沙 4 0 8 ) 湖 1 0 3
摘 要 : 为了改进 图像 的质 量, 将一种新颖的基于新 闽值 函数 的平移不 变多小波去噪方 法引入 信号的去 噪 中。通过
值 函数 的整 体 不连 续 性 和软 阈值 函数 中估计 小 波 系 数 与原
函数 , f在 位 置 “ 尺 度 S 的 小 波 变 换 定 义 为 如 下 () 、 上 内积 , 中 w 定义为小波变换 : 其
r + 1 +…
4 s。 同 窗 口傅 里 叶变 换 一 样 , 波 变 换 也 可 以度 量频 谱 成 小
2016年清华大学现代通信原理考研,真题解析,复试笔记,考研真题,心得分享,考研笔记,考研经验
2016年清华大学现代通信原理考研,真题解析,复试笔记,考研真题,心得分享,考研笔记,考研经验清华考研详解与指导2014清华复试现代通信原理试题回忆版与英语面试流程回忆1.请叙述并分别用两种方法证明:(1)带通抽样定理(2)根号奈奎斯特准则。
证明的方法越不相同,得分越高。
(30分)2.传输一个连续的随机变量X,该变量期望E(X)=0,概率密度函数(pdf)是腰长为a的等腰三角形。
(1)如果用2bit量化,请计算最佳的判决门限,重构值与重构后的均方误差(10分)(2)(3)(4)(5)全忘了(………………),一问5分。
3.现在有如下这样一个二元信源,0.75的可能性传输电平1(对应符号“0”),0.25的可能性传输电平3(对应符号“1”),信道加性噪声n的分布为f(n)=0.5*exp(-|n-4|),接收端解调后采用最大似然法进行判决,请问最佳判决门限是多少?(15分)4.现在有一个4ASK调制的系统,其星座点为{-3,-1,1,3},使用升余弦滤波器成型,接收端信噪比为10dB(笔者注:这里有点坑,我忘了写没写是S/N还是E_b/n_0了,不过只是数字的问题,不影响这题本身的思路)不幸的是,发射端出了些问题,于是接收端的星座图变成了{-3.45,-1.15,1.15,3.45}。
(1)请问收端的BER(5分)(2)现在发端载波同步也出现了问题,同步相位偏差了0.1π,请重算BER(5分)(3)现在采用(15,11)汉明码对信息进行编码,要求信息码速不变,请问所用升余弦滤波器的滚降系数如何定性定量变化,带宽效率如何变化(这题还问了一个参数,笔者忘了……)(5分)(4)在(3)的条件下,重新计算(1)(2)(10分)人生最怕的三件事:不坚持选择;不会选择;不断地选择。
有少部分同学应该早已决定了报考院校和专业,还有那种非某个学校不上的。
对于这种态度非常坚定的同学来说,陈教授鼓励大家坚持自己的选择,毕竟准备了很长时间,不要轻易改变。
计算机算法相关术语的英语词汇
计算机算法相关术语的英语词汇计算机英语其实说难学习也不难,说不难又有一点难,小编今天就给大家整理了有关于计算机的英语,大家可以多多阅读一下计算机英语字典Dictionaries堆Heap优先级队列Priority queue矩阵乘法Matrix multiplication贪心算法Greedy algorithm上界/下界Upper bound / Lower bound最好情况/最坏情况/平均情况Best case /Worst Case/ Average case插入排序Insertion sort合并排序Merge sort堆排序Heap sort快速排序Quick sort动态规划DP (Dynamic Programming)背包问题Knapsack problem霍夫曼编码Huffman Coding迪杰斯特拉算法Dijkstra’s algorithm贝尔曼-福德算法Bellman-Ford algorithm弗洛伊德算法Floyd-Warshall algorithm回溯Back-TrackingN皇后问题N-Queen problem渐进增长Asymptotic growth(包含O-notationΩ-notation Θ-notation)线性规划Linear programming随机数生成Random number generation图的生成Generating graphs图论-多项式算法Graph Problems – polynomial algorithm连通分支Connected components最小生成树Minimum Spanning Tree最短路径Shortest pathNP问题Non-Deterministic Polynomial problem旅行商问题Traveling salesman problem同构Graph isomorphism压缩Text compression最长公共子串Longest Common Substring最短公共父串Shortest Common Superstring收敛速度Rate of convergence 计算机算法相关术语的英语词汇。
湖北工业大学-2015年12月人工智能-试卷A
1
卷号:
二O 一五—二O 一六 学年第一学期期末考试
人工智能导论 试题A
(13自动化、13电气工程专业用)闭卷
题号 一 二 三 四 五 六 七 八 九 十 题分 20 20 20 10 15 15 得分
注意:学号、姓名和所在年级班级不写、不写全或写在密封线外者,试卷作废。
一、求下列谓词公式的子句集 (1)
(2)
二、试判断下列子句集中哪些是不可满足的。
(1)
(2)
三、用线性归结策略证明下列子句集不可满足。
四、基于规则的专家系统与基于逻辑的专家系统的主要区
别是什么?
五、试写出两种特殊的产生式系统并说明他们各自的特点。
六、试编写一个Prolog 程序,包括域说明、谓词说明、子
句说明和目标说明等部分,并写出程序的运行结果。
总分 核分人
分数 阅卷人
分数 阅卷人
分数 阅卷人
分数 阅卷人
分数 阅卷人
分数
阅卷人
姓 名
一、密封线内不准答题。
二、姓名、学号不许涂改,否则试卷无效。
三、考生在答题前应先将姓名、学号、年级和班级填写在指定的方框内。
四、试卷印刷不清楚。
可举手向监考教师询问。
学 号
所在年级、班级
密
封
注意。
2023-S2提高组组第二轮题目参考资料
2023CCF非专业级软件能力认证CSP-J/S2023第二轮认证提高级时间:2023年10月21日14:30∼18:30题目名称密码锁消消乐结构体种树题目类型传统型传统型传统型传统型目录lock game struct tree可执行文件名lock game struct tree输入文件名lock.in game.in struct.in tree.in输出文件名lock.out game.out struct.out tree.out每个测试点时限 1.0秒 1.0秒 1.0秒 1.0秒内存限制512MiB512MiB512MiB512MiB测试点数目10202020测试点是否等分是是是是提交源程序文件名对于C++语言lock.cpp game.cpp struct.cpp tree.cpp 编译选项对于C++语言‐O2‐std=c++14‐static.注.意.事.项(.请.仔.细.阅.读)1.文件名(程序名和输入输出文件名)必须使用英文小写。
2.C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
3.提交的程序代码文件的放置位置请参考各省的具体要求。
4.因违反以上三点而出现的错误或问题,申诉时一律不予受理。
5.若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
6.选手提交的程序源文件必须不大于100KB。
7.程序可使用的栈空间内存限制与题目的内存限制一致。
8.全国统一评测时采用的机器配置为:Intel(R)Core(TM)i7-8700K CPU@3.70GHz,内存32GB。
上述时限以此配置为准。
9.只提供Linux格式附加样例文件。
10.评测在当前最新公布的NOI Linux下进行,各语言的编译器版本以此为准。
密码锁(lock)【题目描述】小Y有一把五个拨圈的密码锁。
如图所示,每个拨圈上是从0到9的数字。
每个拨圈都是从0到9的循环,即9拨动一个位置后可以变成0或8,图1:密码锁因为校园里比较安全,小Y采用的锁车方式是:从正确密码开始,随机转动密码锁仅一次;每次都是以某个幅度仅转动一个拨圈或者同时转动两个相邻的拨圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :q u a n t -p h /9707023v 2 31 M a r 1998Entropic bounds on coding for noisy quantum channelsNicolas J.Cerf 1,21W.K.Kellogg Radiation Laboratory,California Institute of Technology,Pasadena,California 911252Information and Computing Technologies Research Section,Jet Propulsion Laboratory,Pasadena,California 91109(Received 9July 1997)In analogy with its classical counterpart,a noisy quantum channel is characterized by a loss ,a quantity that depends on the channel input and the quantum operation performed by the channel.The loss reflects the transmission quality:if the loss is zero,quantum information can be perfectly transmitted at a rate measured by the quantum source entropy.By using block coding based on sequences of n entangled symbols,the average loss (defined as the overall loss of the joint n -symbol channel divided by n ,when n →∞)can be made lower than the loss for a single use of the channel.In this context,we examine several upper bounds on the rate at which quantum information can be transmitted reliably via a noisy channel,that is,with an asymptotically vanishing average loss while the one-symbol loss of the channel is non-zero.These bounds on the channel capacity rely on the entropic Singleton bound on quantum error-correcting codes [Phys.Rev.A 56,1721(1997)].Finally,we analyze the Singleton bounds when the noisy quantum channel is supplemented with a classical auxiliary channel.PACS numbers:03.65.Bz,03.67.Hk,89.70.+cKRL preprint MAP-215I.INTRODUCTIONWithin recent years,the quantum theory of informa-tion and communication has undergone a dramatic evolu-tion (see,e.g.,[1]).Major progress has been made toward the extension to the quantum regime of the classical the-ory of information pioneered by Shannon [2].In particu-lar,the use of quantum communication channels in order to transmit not only classical information but also intact quantum states (or quantum information)has received a considerable amount of attention,following the proof of the quantum analog of Shannon’s fundamental theorem for noiseless coding by Schumacher [3].It has been shown that the von Neumann entropy plays the role of a quan-tum information-theoretic entropy in the sense that it characterizes the minimum amount of quantum resources (e.g.,number of quantum bits)that is necessary to code an ensemble of quantum states with an asymptotically vanishing distortion in the absence of noise.This result suggests that a general quantum theory of information,paralleling Shannon theory,can be developed based on this concept.While such a full theory does not exist as of yet,a great deal of effort has been devoted to this issue over the last few years,and several fundamental results have been obtained,ranging from entanglement-based communication schemes [4]to quantum error-correcting codes [5].In particular,a substantial amount of work has been devoted recently to the transmission of arbitrary states (or quantum information)through noisy quantum channels (see,e.g.,[6–9]).A quantum state processed by such a channel undergoes decoherence by interacting with an external system or environment,which effects an alter-ation of quantum information.A natural question that arises in this context concerns the possibility of transmit-ting quantum information reliably ,in spite of quantum noise,if it is suitably encoded as sequences of quantum bits in analogy with the standard construction used for classical channels.More specifically,a fundamental is-sue is to understand the quantum analog of Shannon’s noisy channel coding theorem and to define the capacity of a noisy quantum channel,i.e.,an upper limit to the amount of quantum information that can be processed with an arbitrarily high fidelity.While several attempts have been made to define a quantum analog of Shannon mutual information that would be a natural candidate for such a quantum measure of capacity (see the concepts of coherent information [7,8]or von Neumann mutual en-tropy [9,10]),the problem of characterizing in general the capacity of a noisy quantum channel is still unsolved.The purpose of this paper is to further clarify the de-scription of noisy quantum channels centered on the von Neumann mutual entropy (see [9]).It has been shown re-cently that a consistent information-theoretic framework that closely parallels Shannon’s construction can be de-veloped,based on von Neumann conditional and mutual entropies [10–13].The central peculiarity of this frame-work is that it involves negative conditional entropies in order to account for quantum non-local correlations between entangled variables.This is in contrast with Shannon information theory in which marginal and con-ditional entropies are all non-negative quantities.Neg-ative quantum conditional entropies simply reflect the non-monotonicity of the von Neumann entropy [14](the entropy of a composite system can be lower than that of its components if the latter are entangled).The resulting information-theoretic formalism provides grounds for the quantum extension of the usual algebraic relations be-tween Shannon entropies in multipartite systems [11–13].Surprisingly,many concepts of Shannon theory can be straightforwardly translated to the quantum regime by extending the range for quantum(conditional and mu-tual)entropies with respect to the classical one in or-der to encompass entanglement[10].This is very help-ful in analyzing quantum information processes in a uni-fied framework,paralleling Shannon theory.For exam-ple,entanglement-based quantum communication pro-cesses[10],quantum channels[9],and quantum error-correcting codes[15]can be described along these lines. In this paper,we focus on the application of this information-theoretic framework to the issue offinding upper bounds on the capacity of quantum codes and quantum channels.In Section II,we outline the general treatment of noisy quantum channels based on quantum entropies[9],and extend it to the characterization of con-secutive uses of a quantum memoryless channel(cf.the notions of one-symbol and average loss explained in Sec-tion IID).This provides a simple framework to consider block coding with quantum channels.Note that,just as in Shannon information theory,quantum entropic consid-erations alone do not result in constructive methods for building codes.Rather,they are useful to derive bounds on what can possibly be achieved or not,from basic prin-ciples.Accordingly,we analyze in Section III several upper bounds(based on the Singleton bound on quan-tum codes[15])for standard quantum channels such as the quantum erasure or depolarizing channel.This con-firms bounds on the quantum capacity that were derived otherwise,but places this problem in a unified context. Finally,we examine in Section IV the extension of this quantum entropic treatment of noisy quantum channels to the case where an auxiliary classical channel is avail-able.Quantum teleportation appears then as a special case of this construction when no block coding is applied.II.ENTROPIC CHARACTERIZATION OFNOISY QUANTUM CHANNELSA.NotationsLet us start by summarizing the basic definitions that will be useful in the rest of this paper when consider-ing noisy quantum channels.The entropy of a quantum system X(of arbitrary dimension)is defined as the von Neumann entropy of the density operatorρX that char-acterizes the state of X,i.e.,S(X)=S[ρX]≡−Tr(ρX log2ρX)(2.1) It can be viewed as the uncertainty about X in the sense that it measures(asymptotically)the minimum number of quantum bits(qubits)necessary to specify X[3].This definition can be extended to the notions of conditional and mutual von Neumann entropies,based on a simple parallel with their classical counterparts which is moti-vated in[10–12].For a bipartite system XY character-ized byρXY,the conditional von Neumann entropy isS(X|Y)=S(XY)−S(Y)(2.2) while the mutual von Neumann entropy isS(X:Y)=S(X)−S(X|Y)=S(Y)−S(Y|X)=S(X)+S(Y)−S(XY)(2.3) where S(XY)is calculated fromρXY,while S(X)and S(Y)are obtained from the reduced density operatorsρX=Tr Y(ρXY)andρY=Tr X(ρXY).Subadditiv-ity of quantum entropies implies S(X:Y)≥0,where the equality holds if X and Y are independent(i.e.,ρXY=ρX⊗ρY).Note that,when S(XY)=0(i.e.,the joint system XY is in a pure state),we have S(X:Y)=2S(X)=2S(Y)as a consequence of the Schmidt decom-position.This property will be useful in the following. Several quantum entropies can also be defined for char-acterizing multipartite quantum systems.Consider,for instance,a tripartite system XY Z.The von Neumann conditional mutual entropy(of X and Y,conditionally on Z)can be defined asS(X:Y|Z)=S(X|Z)−S(X|Y Z)=S(X|Z)+S(Y|Z)−S(XY|Z)=S(XZ)+S(Y Z)−S(Z)−S(XY Z)(2.4) in perfect analogy with the classical expressions.Note that the strong subadditivity of quantum entropies im-plies S(X:Y|Z)≥0[12].We can also define the von Neumann ternary mutual entropy asS(X:Y:Z)=S(X:Y)−S(X:Y|Z)(2.5) Note that,if S(XY Z)=0(i.e.,the ternary system is in a pure state),then S(X:Y:Z)=0[12],or,equivalently, S(X:Y)=S(X:Y|Z),a property which is very useful in the analysis of quantum channels.Also,chain rules for quantum entropies can be written,such asS(X:Y Z)=S(X:Y)+S(X:Z|Y)(2.6) which parallel the classical relations[12].The motiva-tion for building such a quantum entropic framework is that it provides an information-theoretic formulation of quantum entanglement in multipartite systems,unified with Shannon’s description of classical correlation.It is an extension of Shannon’s formalism beyond its original range,as reflected for example by the fact that the quan-tum mutual entropy can reach twice the maximum value allowed for classical entropies[10],that is,0≤S(X:Y)≤2min[S(X),S(Y)](2.7) This factor2appears in many quantum information-theoretic relations(see below),and originates from the Araki-Lieb inequality for quantum entropies[10–12].B.Quantum mutual entropy,loss,and noiseLet us now outline the entropic treatment of a noisy quantum channel(see also Ref.[9]).Such a treatmentexplicitly displays the correspondence with the standard description of noisy classical channels(see Appendix A),thereby unifying classical and quantum channels.Ourdescription involves three quantum systems of arbitrary dimensions:Q(the quantum system whose processingby the channel is concerned),R(a“reference”systemwhich Q is initially entangled with),and E(an exter-nal system or environment which Q is interacting within the noisy channel).More specifically,we assume that Q is initially entangled with R,so that the joint stateof Q and R is the pure state|ΨRQ .We may as well regard Q as a quantum source,being initially in a mixed stateρQ(realized by a given ensemble of quantum statesassociated with some probability distribution).The“pu-rification”ofρQ into|ΨRQ can always achieved by ex-tending the Hilbert space H Q to H RQ,so that we have ρQ=Tr R(|ΨRQ ΨRQ|).The corresponding reduced von Neumann entropies areS(R)=S(Q)≡S(2.8) where S is called the source entropy.In the dual picture where an arbitrary pure state of Q(rather than entan-glement)is sent through the channel,S then measures the“arbitrariness”of Q(it can be viewed as the aver-age number of quantum bits that are to be processed by the channel in order to transmit the state of Q).In what follows,we prefer to consider a quantum input Q that is entangled with R,so that the preservation of entanglement—rather than of arbitrary states—will be the central feature of a quantum transmission channel. The initial mutual entropy to be transmitted is thusS(R:Q)=2S(2.9) that is,twice1the source entropy.When it is processed by the channel,Q interacts withE(assumed to be initially in a pure state|0 )according to the unitary transformation U QE,inducing decoherence. This describes the most general(trace-preserving)oper-ation of a quantum channel that is allowed by quantum mechanics.Roughly speaking,the resulting noisy quan-tum channel is such that,typically,only a fraction of the initial entanglement with R can be recovered after having been processed by the channel(the rest of the entangle-ment with R is lost,in the sense that it is transferred to the environment).More specifically,the decohered quan-tum system after interaction with E,denoted as Q′,is in the stateρ′Q=Tr E U QE(ρQ⊗|0 0|)U†QE (2.10)whereρQ is the initial state of Q(with source entropy S).The completely positive linear mapρQ→ρ′Q cor-responds to the“quantum operation”performed by the noisy channel[7].After such an environment-induced decoherence,the joint system R′Q′E′is in the state |ΨR′Q′E′ =(1R⊗U QE)|ΨRQ |0E whose entropy Venn diagram is represented in Fig.1(the primes refer to the systems after decoherence).Note that,as the reference is not involved in decoherence,we have R′≡R.FIG.1.Schematic representation of the quantum opera-tion effected by a noisy quantum channel.The quantum sys-tem Q is initially entangled with the reference R,with a mu-tual entropy of twice the source entropy S(this is indicated by a dashed line).Then Q decoheres by interacting with an environment E(initially in a pure state|0 ).The entropy Venn diagram summarizes the entropic relations between Q′(output of the quantum channel),R′(reference),and E′(en-vironment)after decoherence.The three parameters,I,L, and N,denote the von Neumann mutual entropy(quantum information),the loss,and the noise,respectively.QR2SR’Q’E’-I/2-L/2-I/2-N/2-N/2-L/2N LR’Q’E’IThe entropy diagram of R′Q′E′depends on three pa-rameters,the von Neumann mutual entropy(or the quan-tum information)I,the loss L,and the noise N,these quantities being defined in analogy with their classical counterparts:I=S(R:Q′)(2.11)L=S(R:E′|Q′)=S(R:E′)(2.12)N=S(Q′:E′|R)=S(Q′:E′)(2.13)The classical correspondence can be made fully explicit by including an environment in the description of a clas-sical channel,as shown in[9].The second equality inEqs.(2.12)and(2.13)has no classical analog,and re-sults from the vanishing of the ternary mutual entropy S(R:Q′:E′)(see[9,15]).Physically,the quantum infor-mation I corresponds to the residual mutual entropy be-tween the decohered quantum output Q′and the refer-ence system R that purifies the quantum input Q.The loss L is the mutual entropy that has arisen between the environment after decoherence E′and the reference sys-tem R,while the noise N is the mutual entropy between the decohered quantum output Q′and the environment E′.Note that I,L,and N can be written as a function of reduced entropies only,without explicitly involving the environment E in the discussion,by making use of the Schmidt decomposition of the state of R′Q′E′,namely S(E′)=S(RQ′):I=S(Q)+S(Q′)−S(RQ′)(2.14)L=S(Q)+S(RQ′)−S(Q′)(2.15)N=S(Q′)+S(RQ′)−S(Q)(2.16) It can also be shown that these three quantities are in fact independent of the choice of the reference system R whenever the latter purifies the quantum input Q,so that they provide a most concise entropic characterization of informationflow in the channel.They depend in gen-eral on the channel input(i.e.,ρQ)and on the quantum operation performed by the channel(i.e.,the completely positive trace-preserving map on Q that is specified by U QE in the joint space of Q and E).This exactly paral-lels the situation for the analog classical quantities.The information I,loss L,and noise N of a classical channel of input X and output Y(see Appendix A)indeed de-pend on the input distribution p(x)and on the channel “operation”characterized by p(y|x).Among these three quantities,only I and L are rele-vant as far as(forward)information transmission through the channel is concerned(the noise N plays a role in the description of the“reverse”channel,just as for classical channels).Indeed,information processing is character-ized by the balance between the von Neumann mutual entropy and the loss,these two quantities always sum-ming to twice the source entropy:I+L=2S(Q)≡2S(2.17) The mutual entropy I=S(R:Q′)represents the amount of the initial mutual entropy with respect to R(i.e.,2S) that has been processed by the channel,while the loss L=S(R:E′)corresponds to the fraction of it that is unavoidably lost in the environment.If the channel is lossless(L=0),then I=2S,so that the interaction with the environment can be perfectly“undone”,and the initial entanglement of Q can be fully recovered by an appropriate decoding[7,9].(Equivalently,this means that an arbitrary initial state of Q can be recovered with-out error.)This can be understood by noting that R does not become entangled directly with the environment in a lossless channel,but only via the output Q′(see Fig.1 when L=0).An operation on Q′only(namely,the de-coding operation)is enough to transfer the entanglement with E′(measured by the noise N)to an ancilla,while preserving the entanglement2S with R.Thus,if L=0,a perfect transmission of informa-tion(including quantum information)can be achieved through the channel by applying an appropriate decod-ing.When I=0,on the other hand,no information at all(classical or quantum)can be processed by the channel.This is the case,for example,of the quantum depolarizing channel with p=3/4(see Section IIID).In between these limiting cases,classical information(and, up to some restricted extent,quantum information)can be reliably transmitted at the expense of a decrease in the rate by making use of block coding.The analysis of such a transmission of quantum information immune to noise is the main focus of this paper.For completeness,let us mention that a channel with N=0is the quantum analog of a deterministic chan-nel[16],that is,a channel where the input fully deter-mines the output(see Appendix A).The quantum output Q′is indeed not directly entangled with E′but only via R,which implies that its entanglement with R remains intact(see Fig.1when N=0).This does not mean, however,that perfect error correction is achievable,as an operation on the reference R is needed to recover the initial entanglement2S between Q and R.A channel which is both lossless(L=0)and deterministic(N=0) is called noiseless;its action on Q is the identity operator (or anyfixed unitary operator).For example,the overall channel including a noisy quantum channel along with the encoder and decoder is obviously noiseless if perfect error correction is achieved.(In other words,the decoder is used to eliminate the quantum noise N=0by trans-ferring the entanglement with E to an ancilla,which then makes the overall channel noiseless provided that L=0.) It is worth noting here that the noise N and the loss L play symmetric roles when considering the“reverse”channel obtained by interchanging the input and output. (This is true for classical channels as well.)More specif-ically,N and I always sum to twice the output entropy,I+N=2S(Q′)(2.18) in analogy with Eq.(2.17).Roughly speaking,N plays the role of the loss of the reverse channel,as shown in Sec.IIC.C.Properties of quantum I,L,and NThe above entropies for a noisy quantum channel can be shown to fulfill several properties,akin to classical ones,which make them reasonable quantum measures of information,loss,or noise(see also Ref.[9]).First,thequantum mutual entropy I can be shown to be concave in the inputρQ for afixed channel,i.e.,afixed quantumoperationρQ→ρQ′or afixed U QE.Therefore,any lo-cal maximum of I is the absolute maximum,that is,thevon Neumann capacity of the channel.This parallels the concavity of the Shannon mutual entropy H(X:Y)in the input probability distribution p(x)for afixed channel, i.e.,fixed p(y|x)[17].Second,I is convex in the output ρQ′for afixed inputρQ.This property will be used in the next Section when considering a“probabilistic”channel (the effective channel resulting from the probabilistic use of a family of channels).It is the quantum analog of the property that the information H(X:Y)processed by a classical channel is a convex function of p(y|x)for afixed p(x)[17].These two properties are simple to prove by reexpressing the von Neumann mutual entropy I asS(R:Q′)=S(Q′E′)+S(Q′)−S(E′)=S(Q′)+S(Q′|E′)(2.19) or asS(R:Q′)=S(R)+S(Q′)−S(RQ′)=S(R)−S(R|Q′)(2.20) If the inputρQ is a convex combination of density opera-tors while the channel isfixed,it is easy to see thatρQE and thereforeρQ′E′are also convex combinations(as the channel operation is linear).Since the conditional en-tropy S(Q′|E′)is concave in a convex combination of ρQ′E′while S(Q′)is concave inρQ′[14],Eq.(2.19)im-plies the concavity of the quantum mutual entropy I in the input for afixed channel.The second property can be proven the same way by noting that,if we have a “probabilistic”channel—a convex combination of quan-tum channels—acting on afixed input,thenρRQ′is a convex combination of density operators whileρR is con-stant.Thus,Eq.(2.20)together with the concavity of the conditional entropy S(R|Q′)in a convex combina-tion ofρRQ′implies that the quantum mutual entropy I is convex in the output for afixed input.A third important property is that the mutual entropyI and the quantum loss L are subadditive when consid-ering a channel made of several independent quantum channels used in parallel.This will be shown when ana-lyzing quantum block coding(cf.Sect.IID).Finally,it can be proved that I obeys(forward and reverse)data-processing inequalities when considering chained quan-tum channels.If we chain two channels by using the output of thefirst as an input for the second(see Fig.2), the total(1+2)channelρQ→ρQ′→ρQ′′is characterized byI12=S(R:Q′′)(2.21)L12=S(R:E′E′′)(2.22)N12=S(Q′′:E′E′′)(2.23)since we can regard the two environments E′and E′′as a global environment for this total channel.FIG.2.Schematic view of the chaining of two noisy quan-tum channels.In each of them,the input state decoheres by interacting with a(separate)environment.The input of the first channel is initially entangled with R,with a source en-tropy of S(see the dashed line).The output of this channel Q′is then used as an input for the second channel.Since Q′is purified by RE′(not by R alone),the“reference”system that must be considered in the entropic characterization of the second channel is RE′.’’’R0E02SQ12Q’E’’QUsing the chain rule for quantum mutual entropies S(R:E′E′′)=S(R:E′)+S(R:E′′|E′),and remembering that S(R:E′′|E′)≥0as a result of strong subadditivity, we obtain0≤L1≤L12(2.24) where L1=S(R:E′)is the loss of thefirst channel while L12is the loss of the total channel.Thus,the loss can only increase by further processing of quantum informa-tion in the second channel.Since I1+L1=2S(Q)and I12+L12=2S(Q),we obtain the forward data-processing inequalityI12≤I1≤2S(Q)(2.25) implying that the mutual entropy of the total channel cannot exceed the one of thefirst channel.This is the quantum analog of H(X:Z)≤H(X:Y)≤H(X)for chained classical channels X→Y→Z[17].Now,if we use the chain rule S(Q′′:E′E′′)= S(Q′′:E′′)+S(Q′′:E′|E′′)together with strong subad-ditivity,we obtain0≤N2≤N12(2.26) where N2=S(Q′′:E′′)is the noise of the second chan-nel while N12is the noise of the total channel.As I2+N2=2S(Q′′)and I12+N12=2S(Q′′),we obtain the reverse data-processing inequalityI12≤I2≤2S(Q′′)(2.27) where I2=S(RE′:Q′′)is the mutual entropy processed by the second channel.(Note that the“reference”sys-tem that purifies the input Q′of the second channel is RE′.)This parallels the classical inequality H(X:Z)≤H(Y:Z)≤H(Z)for chained channels[17].Eqs.(2.24) and(2.26)emphasize that the loss L and the noise Nplay a symmetric role in this entropic description if one interchanges the input and the output of the quantum channel(“time-reversal”),just as for classical channels. This is reflected by the symmetry between the forward and the reverse data-processing inequalities.D.One-symbol loss and average lossThe central idea of classical error correction by block coding is to introduce correlations between the bits that make a block,in order to have redundancy in the trans-mittedflow of data.This can make the transmission asymptotically immune to errors,up to some level of noise.In quantum error-correcting codes,the qubits that form a block are entangled in a specific way,so that a par-tial alteration due to decoherence can be recovered[5]. Even though entanglement gives rise to some qualita-tively new features(see[15]for a detailed analysis),the objective is ly,when block coding is used, i.e.,when say k“logical”qubits are encoded into blocks of n“physical”qubits,it is possible to achieve a situation where the overall loss of the joint(n-bit)channel is arbi-trarily small,while the loss for individual qubits(for each use of the channel)isfinite.In analogy with the classi-cal construction,if blocks of n qubits that are initially entangled with respect to R(with a mutual entropy2k) can be transmitted through the channel with an asymp-totically vanishing overall loss,we say that the channel processes2k/n bits of entanglement per qubit.Equiva-lently,the channel is transmitting at a rate R=k/n(on average,k arbitrary binary quantum states can be trans-mitted for n transmitted qubits).The maximum rate at which quantum information can be reliably sent through the noisy channel is defined as the quantum channel ca-pacity.(This maximum has to be taken over all possible coding schemes,and for n→∞.)Whether a good(and operational)definition of such a“purely quantum”chan-nel capacity exists is currently an open question.In the following,we restrict ourselves to the issue offinding up-per bounds on the rate of perfect quantum information transmission(and therefore on such a“purely quantum”capacity).Let us consider the asymptotic use of a quantum dis-crete memoryless channel,where n(tending to infin-ity)qubits are transmitted sequentially.2Each qubit may decohere due to an environment(quantum noise), the exact interaction depending on the considered noise model.The important point is that the environment foreach qubit is initially independent of the one interact-ing with every other qubit.Thus the information pro-cess can be viewed as n sequential uses of a quantum memoryless channel(the environment being“reset”af-ter each use)or,equivalently,as n parallel independentchannels processing one qubit each(see Fig.3).We as-sume that the set of n input symbols(Q1,...Q n)areinitially entangled with R,so that S(R:Q1···Q n)=2S and S(R)=S(Q1···Q n)=S.If we consider these n symbols as the single input of a joint n-bit channelQ1···Q n→Q′1···Q′n,information transmission is de-scribed by the mutual entropyI=S(R:Q′1···Q′n)=S(Q1···Q n)+S(Q′1···Q′n)−S(E′1···E′n)=S(Q′1···Q′n|E′1···E′n)+S(Q′1···Q′n)(2.28) and the lossL=S(R:E′1···E′n)=S(Q1···Q n)+S(E′1···E′n)−S(Q′1···Q′n)=S(E′1···E′n|Q′1···Q′n)+S(E′1···E′n)(2.29) where we have made use of the conservation of entropy imposed by the unitarity of the global interaction with the n environments E1,...E n.Obviously,we have I+L=2S(Q1···Q n)=2S(R),which is twice the source entropy S of the joint channel.FIG.3.Schematic view of a memoryless quantum channel.This channel is used n times,but the environment is“reset”after each use.This can be viewed as n parallel(independent) channels,each one being used for one of the input symbols. The n input symbols(Q1,Q2,···Q n)are initially entangled with R(as indicated by a dashed line),with a joint source entropy of S.1’Q2SRQQn2’’2n1QQQ1’’’EEE2n。