粗 糙 集 理 论

合集下载

粗糙集理论——精选推荐

粗糙集理论——精选推荐

粗糙集理论
粗糙集理论
1 粗糙集的基本概念
在粗糙集理论中,我们把知识看做是⼀种能被⽤于分类对象的能⼒。

其中对象可以代表现实世界中的任意事物,包括物品、属性、概念等。

即:知识需要同现实世界中特定环境的确定对象相关联,这⼀集合称为论域。

知识与概念
令U为包含若⼲对象的⾮空有限集,也即论域,在论域中,称任意集合为⼀个概念或范畴。

特别地,我们把空集也视为⼀个概念,称之为空概念。

⽽由任意个这样的X组成的⼦集簇形成了U中抽象知识,简称为知识。

知识库
在给定论域中,任意选择⼀个等价关系集R,我们可以得到⼀个⼆元组K=<U,R>,称这样的⼆元组视为⼀个知识库(近似空间)。

在论域中,任何等价关系都能导出⼀个对论域的划分,从⽽形成了⼀个知识库。

由此,每个知识库就能够与论域中的某个等价类⼀⼀对应。

不可分辨(不可区分/不分明)关系
在给定的论域U上,任意选择⼀个等价关系集R和R的⼦集,且,则P中所有等价关系的交集依然是论域U中的等价关系,称该等价关系为P 的不可分辨关系,记作IND(P)。

并且
:表⽰⾮空⼦族集所产⽣的不分明关系IND(P)的所有等价类关系的集合,⼜称该知识为知识库K=<U,R>中关于P-基本知识(P-基本集)集合的上下近似
上近似包含了所有那些可能是属于X的元素,下近似包含了所有使⽤知识R可确切分类到X的元素。

在给定的知识库K=<U,R>中,任意选择集合,可以定于X关于知识R的上下近似。

粗糙集理论介绍

粗糙集理论介绍
粗糙集理论介绍
问题的提出:知识的含糊性
术语的模糊性,如高矮 数据的不确定性,如噪声 知识自身的不确定性,如规则的前后件间的 依赖关系不完全可靠 不完备性,数据缺失
由此,提出了包括
概率与统计、证据理论:理论上还难以令人信服,
不能处理模糊和不完整的数据
模糊集合理论:能处理模糊类数据,但要提供隶属
函数(先验知识)
so
例2: (表2)
R1(颜色) R2(形状) R3(体积) class
X1

圆形

1
X2

方形

1
X3

三角形

1
X4

三角形

1
X5

圆形

2
X6

方形

2
X7

三角形

2
X8

三角形

2
等价类IND(R1)={{x1,x3,x7}, {x2,x4}, {x5,x6,x8}}
X={X1,X2,X3,X4}
Step2. 针对各个属性下的初等集合寻找下近似和上近似。
以“头疼+肌肉痛+体温”为例,设集合X为患流感的 人的集合,I为3个属性构成的一个等效关系: {p1},{p2,p5},{p3},{p4},{p6}, 则
X={P1,P2,P3,P6} I={{p1},{p2,p5},{p3},{p4},{p6}}
粗糙集在数据挖掘中的应用 基于粗糙集的数据约简
返回
1. 粗糙集在数据挖掘中的应用
粗糙集对不精确概念的描述是通过上、下近似这两 个精确概念来表示的。
粗糙集理论的的数学基础:假定所研 究的每一个对象都涉及到一些信息(数据、 知识),如果对象由相同的信息描述,那 么它们就是相似的或不可区分的。

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理

粗糙集理论的基本概念与原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它的提出源于20世纪80年代初期的波兰学者Zdzisław Pawlak。

粗糙集理论的核心思想是通过将数据划分成不同的等价类,来描述和处理不完全和不确知的信息。

本文将介绍粗糙集理论的基本概念与原理。

1. 粗糙集的定义与等价关系粗糙集是指将一个数据集划分成若干个等价类,其中每个等价类称为一个粗糙集。

在粗糙集理论中,等价关系是一个重要的概念。

等价关系是指具有自反性、对称性和传递性的关系。

在粗糙集理论中,等价关系用来描述数据中的相似性和差异性。

2. 上近似集与下近似集上近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素相似的元素。

下近似集是指在一个粗糙集中,包含了所有与该粗糙集中的元素不相似的元素。

上近似集和下近似集是粗糙集理论中的两个重要概念,它们用来描述数据的粗糙性和不确定性。

3. 约简与精确度约简是粗糙集理论中的一个重要操作,它的目的是通过删除一些不必要的属性或条件,从而减少数据集的复杂性,提高数据的处理效率。

约简可以通过删除一些不重要或不相关的属性来实现。

精确度是用来评估数据集的质量和可靠性的指标,粗糙集理论通过约简来提高数据集的精确度。

4. 粗糙集与模糊集粗糙集理论与模糊集理论有一些相似之处,但也存在一些差异。

模糊集理论是一种用来处理模糊和不确定性问题的数学工具,它通过给每个元素赋予一个隶属度来描述元素的模糊性。

而粗糙集理论是一种用来处理不完全和不确知信息的数学工具,它通过将数据划分成不同的等价类来描述数据的粗糙性。

5. 粗糙集的应用领域粗糙集理论在许多领域中都有广泛的应用。

在数据挖掘领域,粗糙集理论可以用来处理不完全和不确定的数据。

在人工智能领域,粗糙集理论可以用来处理模糊和不确定性问题。

在决策支持系统领域,粗糙集理论可以用来辅助决策过程。

在模式识别领域,粗糙集理论可以用来提取和分类模式。

总结:粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它通过将数据划分成不同的等价类来描述和处理不完全和不确知的信息。

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析

粗糙集理论简介及基本概念解析粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰学者Pawlak于1982年提出。

粗糙集理论的核心思想是通过对数据进行粗糙化处理,将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括:粗糙集、等价关系、下近似集和上近似集。

首先,粗糙集是指在不完全信息条件下,通过将数据进行粗糙化处理得到的集合。

粗糙集可以看作是原始数据的一个近似描述,它包含了原始数据的一部分信息。

粗糙集的构建是通过等价关系来实现的。

其次,等价关系是粗糙集理论中的一个重要概念。

等价关系是指在给定的数据集中,将数据划分为若干等价类的关系。

等价关系的划分可以通过相似性度量来实现,相似性度量可以是欧氏距离、余弦相似度等。

等价关系的划分可以将原始数据进行分类,从而构建粗糙集。

下面,我们来介绍下近似集和上近似集。

下近似集是指在给定的粗糙集中,对于某个特定的属性或条件,能够确定的元素的集合。

换句话说,下近似集是能够满足某个条件的元素的集合,它是粗糙集的一个子集。

而上近似集是指在给定的粗糙集中,对于某个特定的属性或条件,可能满足的元素的集合。

上近似集是包含下近似集的最小集合,它是粗糙集的一个超集。

粗糙集理论的应用非常广泛,特别是在数据挖掘和模式识别领域。

通过粗糙集理论,可以对大量的数据进行处理和分析,从中发现隐藏的规律和模式。

粗糙集理论可以用于特征选择、属性约简、数据分类等任务,为决策提供有力支持。

总结起来,粗糙集理论是一种处理不确定性和模糊性问题的数学工具。

它通过粗糙化处理将不完全、不确定的信息转化为可处理的粗糙集,进而进行数据分析和决策。

粗糙集理论的基本概念包括粗糙集、等价关系、下近似集和上近似集。

粗糙集理论在数据挖掘和模式识别领域有着广泛的应用,可以用于特征选择、属性约简、数据分类等任务。

通过粗糙集理论,我们可以更好地理解和处理不确定性和模糊性问题,为决策提供有力支持。

粗糙集理论l

粗糙集理论l

粗糙集理论粗糙集理论作为一种数据分析处理理论,是在1982年以波兰数学家Z.Pawlak为代表的研究者在研究不精确、不确定性及不完全知识表示和分类的基础上,首次提出了粗糙集理论。

最开始由于语言的问题,该理论创立之初只有东欧国家的一些学者研究和应用它,后来才受到国际上数学界和计算机界的重视。

在1991年,Pawlak出版了《粗糙集—关于数据推理的理论》这本专著,从此粗糙集理论及其应用的研究进入了一个新的阶段,1992年关于粗糙集理论的第一届国际学术会议在波兰召开,这次会议着重讨论了集合近似定义的基本思想及其应用和粗糙集合环境下的机器学习基础研究,从此每年都会召开一次以粗糙集理论为主题的国际研讨会,从而推动了粗糙集理论的拓展和应用。

1995年ACM将粗糙集理论列为新兴的计算机科学的研究课题。

粗集理论作为智能计算的科学研究,无论是在理论方面还是在应用实践方面都取得了很大的进展,已经在人工智能、知识与数据发现、模式识别与分类、故障检测等方面得到了较为成功的应用,展示了它光明的前景。

粗集理论不仅为信息科学和认知科学提供了新的科学逻辑和研究方法,而且为智能信息处理提供了有效的处理技术。

目前粗糙集理论已成为国内外人工智能领域中一个较新的学术热点,引起了越来越多科研人员的关注。

资料个人收集整理,勿做商业用途粗糙集合论回答了,面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识;如何将所学到的知识去粗取精;什么是对事物的粗线条描述什么是细线条描述。

要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?资料个人收集整理,勿做商业用途在粗糙集理论中,“知识”被认为是一种分类能力。

人们的行为是基于分辨现实的或抽象的对象的能力。

所谓知识,就是论域U的子集为U上的概念,并约定空集⌀也是一个概念,则概念的族集称为U上的知识。

;而知识的族集构成关于U的知识库。

其中U味所讨论对象的非空有限集合。

所谓基本知识,就是论域U,等价关系族R,P⊆R且P≠⌀,则不可区分关系的所有等价类的集合,即商集。

经典粗糙集理论

经典粗糙集理论
粗糙集理论能够处理不确定性和模糊性,而神经网络则能够通过学习过 程找到数据中的模式。将粗糙集与神经网络结合,可以利用粗糙集对数 据的不确定性进行建模,并通过神经网络进行分类或预测。
粗糙集可以用于提取数据中的决策规则,这些规则可以作为神经网络的 训练样本。通过训练,神经网络可以学习到决策规则,并用于分类或预 测。
边界区域
近似集合中的不确定性区 域,即既不属于正域也不 属于负域的元素集合。
粗糙集的度量
精确度
描述了集合中元素被近似集合 包含的程度,即属于近似集合
的元素比例。
覆盖度
描述了近似集合能够覆盖的元 素数量,即近似集合的大小。
粗糙度
描述了集合被近似程度,是精 确度和覆盖度的综合反映。
知识的不确定性
描述了知识表达系统中属性值 的不确定性程度,与粗糙度相
经典粗糙集理论
目录
• 粗糙集理论概述 • 粗糙集的基本概念 • 粗糙集的运算与性质 • 粗糙集的决策分析 • 粗糙集与其他方法的结合 • 经典粗糙集理论案例研究
01 粗糙集理论概述
定义与特点
定义
粗糙集理论是一种处理不确定性和模 糊性的数学工具,通过集合近似的方 式描述知识的不完全性和不确定性。
粗糙集理论中的属性约简可以用于简化神经网络的输入特征,降低输入 维度,提高分类或预测的准确率。
粗糙集与遗传算法
01
遗传算法是一种全局优化算法,能够通过模拟自然界的进化过程来寻找最优解 。将粗糙集与遗传算法结合,可以利用粗糙集对数据的分类能力,结合遗传算 法的全局搜索能力,寻找最优的分类规则或决策规则。
02
粗糙集可以用于生成初始的分类规则或决策规则,然后利用遗传算法对这些规 则进行优化,通过选择、交叉、变异等操作,寻找最优的规则组合。

粗糙集理论简介及应用介绍

粗糙集理论简介及应用介绍

粗糙集理论简介及应用介绍引言:在现代信息时代,数据的快速增长和复杂性给决策和问题解决带来了挑战。

为了更好地理解和分析数据,人们提出了许多数据挖掘和分析方法。

其中,粗糙集理论作为一种有效的数据处理方法,被广泛应用于各个领域。

本文将简要介绍粗糙集理论的基本概念以及其在实际应用中的一些案例。

一、粗糙集理论的基本概念粗糙集理论是由波兰学者Pawlak在20世纪80年代初提出的。

它是一种基于近似和不确定性的数学工具,用于处理不完全和不确定的信息。

粗糙集理论的核心思想是通过将数据划分为等价类来对数据进行描述和分析。

在这种划分中,数据被分为确定和不确定的部分,从而实现了对数据的粗糙描述。

1.1 粗糙集的等价关系粗糙集的等价关系是粗糙集理论的基础。

在粗糙集中,等价关系是指具有相同属性值的数据实例之间的关系。

通过等价关系,我们可以将数据实例划分为不同的等价类,从而实现对数据的刻画和分析。

1.2 下近似集和上近似集在粗糙集中,下近似集和上近似集是对数据的进一步描述。

下近似集是指具有最小确定性的数据实例的集合,而上近似集是指具有最大确定性的数据实例的集合。

通过下近似集和上近似集,我们可以更好地理解数据的不确定性和不完整性。

二、粗糙集理论的应用案例粗糙集理论在实际应用中具有广泛的应用价值。

以下将介绍一些典型的应用案例。

2.1 数据挖掘粗糙集理论在数据挖掘中被广泛应用。

通过粗糙集理论,我们可以对大量的数据进行分类和聚类。

例如,在医学领域,研究人员可以利用粗糙集理论对医疗数据进行分类,从而实现对疾病的诊断和治疗。

2.2 特征选择特征选择是数据挖掘和机器学习中的一个重要问题。

通过粗糙集理论,我们可以对数据中的特征进行选择,从而减少数据的维度和复杂性。

例如,在图像识别中,研究人员可以利用粗糙集理论选择最具代表性的图像特征,从而提高图像识别的准确性和效率。

2.3 决策支持系统粗糙集理论在决策支持系统中的应用也非常广泛。

通过粗糙集理论,我们可以对决策问题进行建模和分析。

粗糙集理论

粗糙集理论

BX { x1 , x 3 , x 4 , x 5 , x 8 , x 9 }
; }=
BN B ( X )
=
BX BX
x1 , x 3 , x 4 , x 5 , x 8 , x 9
}-{
x1 , x 3 , x 4 , x 9
{ x 5 , x 8 }。因为 BX 义的。
BX
,即 BN
4
5
从表 4 可见,当去掉属性 a2 或 a3 时,基本集个数减少, 而去掉属性 a1 时,基本集数目不变。说明属性 a1 是冗 余的,而属性 a 2 和 a3 则是独立的。所以,仅仅使用属 性 a 2 和 a3 ,便可以区分出 5 个基本集,可获得于原始 信息系统相同的信息系统。
2012-5-29
a 1 2 2 1 1
2
a
3
3 1 3 4 2
9
2012-5-29
例 3 : 如果仅考虑表 1 所示信息系统的属性子集
B { a 1 , a 2 }, 则
B 所对应的不可辨识关系 Ind ( B ) 导
出的等价类 U / Ind ( B ) 如表 3 所示。其中的每一行是一 个 B 的基本集。
表 3:关于属性子集 B { a 1 , a 2 } 的基本集 U B a
1
a2
{ { { {
x1 , x 3 , x 9 }
x 2 , x 7 , x 10 }
x4 }
2 3 2 1
1 2 2 1
x5 , x6 , x8
}
2012-5-29
10
下近似和上近似
上、下近似(Low er and U pper approxi ati m ons)是用 粗糙集理论进行数据分析的两个关键概念。设信息系统

粗糙集理论介绍

粗糙集理论介绍

基本概念(二)
对象集合PU 成为信息系统的一个概念. 此概念在属性集合B A下的下近似是包含在 该概念下的最小粒度之和. 此概念在属性集合B A下的上近似是和该概 念交不为空的最小粒度之和. 如果上下近似是相等的, 则这是一个精确集合, 否则它是一个粗糙集, 其中下近似称为该概念 的正区域, 上下近似的差称为边界.上近似以外 的区域称为负区域.
左边是一个信息系统 及区分矩阵的例子. 可 由此构造区分函数: f(S)=(er)(de)(de r)(efr)(def)( dr)e(defr) 简化后, f(S)=(er )(d e). 所以该信息系统 的约简是{e, r} 或{d,e}
快速约简算法的考虑
x5
x6 x7
MBA
MCE MSc
Low
Low Medium
Yes
Yes Yes
Neutral
Good Neutral
Reject
Reject Reject
x8
MCE
x1
Low
x2 x3
No
x4
Excellent
x5 x6
Reject
x7 x8
x1 x2 x3 x4 x5 x6 x7 x8 er der dr def de der e defr der der er def efr def defr der
Experie nce
Fren ch
Reference
Decisio n
x1
x2 x3 x4
MBA
MSc MSc MBA
Medium
High High High
Yes
Yes Yes No
Excellent
Neutral Excellent Good

粗糙集理论简介及基本原理

粗糙集理论简介及基本原理

粗糙集理论简介及基本原理粗糙集理论是一种用于处理不确定性和模糊性问题的数学工具,它由波兰数学家Pawlak于1982年提出。

粗糙集理论的核心思想是通过对数据进行粗糙化,将数据集划分为不同的等价类,以便更好地理解和描述数据的特征和规律。

粗糙集理论的基本原理是基于信息的不完备性和不确定性。

在现实世界中,我们往往无法获取到完整和精确的信息,数据中可能存在噪声、缺失或冲突等问题。

粗糙集理论通过对数据进行粗糙化,将不确定的数据转化为一组等价类,从而更好地处理这些问题。

粗糙集理论的核心概念是粗糙集和约简。

粗糙集是指在数据集中,存在一些元素无法被确定地分类到某个等价类中,即存在不确定性。

而约简则是指通过消除冗余和保留核心信息,将原始数据集简化为一个更小的等价类集合。

通过约简,我们可以减少数据集的复杂性,提取出数据中的关键特征和规律。

在粗糙集理论中,最常用的方法是基于属性约简。

属性约简是指通过选择一部分重要的属性,来代表整个数据集的特征和规律。

在实际应用中,数据集往往包含大量的属性,其中某些属性可能是冗余的或无关的。

通过属性约简,我们可以提取出最具代表性的属性,从而减少数据集的维度和复杂性。

粗糙集理论在各个领域都有广泛的应用。

在数据挖掘领域,粗糙集理论可以用于特征选择、分类和聚类等任务。

通过约简,我们可以选择出最具代表性的特征,从而提高分类和聚类的准确性和效率。

在决策支持系统中,粗糙集理论可以用于帮助决策者进行决策分析和风险评估。

通过对数据进行粗糙化和约简,我们可以更好地理解和描述决策问题,从而提供决策支持。

总之,粗糙集理论是一种处理不确定性和模糊性问题的有效工具。

它通过对数据进行粗糙化和约简,提取出数据的核心特征和规律,从而帮助我们更好地理解和处理现实世界中的复杂问题。

粗糙集理论在各个领域都有广泛的应用,为我们提供了一种全新的思维方式和分析工具。

粗糙集理论简介及应用案例解析

粗糙集理论简介及应用案例解析

粗糙集理论简介及应用案例解析引言:在信息时代的背景下,数据的爆炸式增长给人们的决策和分析带来了巨大的挑战。

而粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。

本文将对粗糙集理论进行简要介绍,并通过实际案例来解析其应用。

一、粗糙集理论的基本原理粗糙集理论是由波兰学者Pawlak于1982年提出的一种数据分析方法,它主要通过对数据集中的不确定性进行处理,从而提取出其中的规律和知识。

粗糙集理论的核心思想是基于近似和不确定性,通过构建等价关系和约简操作来实现对数据的分析。

二、粗糙集理论的应用案例解析1. 医学领域在医学领域,粗糙集理论可以用于辅助医生进行疾病诊断和预测。

例如,通过对患者的病历数据进行分析,可以建立一个疾病与症状之间的关联模型。

通过这个模型,医生可以根据患者的症状快速判断出可能的疾病,并采取相应的治疗措施。

2. 金融领域在金融领域,粗糙集理论可以用于风险评估和投资决策。

例如,通过对股票市场的历史数据进行分析,可以建立一个股票价格与各种因素之间的关联模型。

通过这个模型,投资者可以根据市场的变化预测股票的价格走势,并做出相应的投资决策。

3. 交通领域在交通领域,粗糙集理论可以用于交通流量预测和交通优化。

例如,通过对交通数据进行分析,可以建立一个交通流量与各种因素之间的关联模型。

通过这个模型,交通管理者可以根据不同的因素预测交通流量的变化,并采取相应的措施来优化交通。

4. 教育领域在教育领域,粗糙集理论可以用于学生评估和课程推荐。

例如,通过对学生的学习数据进行分析,可以建立一个学生能力与学习成绩之间的关联模型。

通过这个模型,教育者可以根据学生的能力评估学生的学习状况,并推荐适合的课程来提高学生的学习效果。

结论:粗糙集理论作为一种有效的数据分析工具,已经在各个领域得到了广泛的应用。

通过对数据集中的不确定性进行处理,粗糙集理论可以提取出其中的规律和知识,为决策和分析提供有力的支持。

粗糙集理论

粗糙集理论

粗糙集理论及其应用发展一、粗糙集的产生与发展粗糙集(Roughsets)理论是由波兰数学家Z. Pawlak在1982年提出的,该理论是一种刻画不完整性和不确定性的数学工具,能有效地分析和处理不精确、不一致、不完整等各种不完备信息,并从中发现隐含的知识,揭示潜在的规律。

1992年至今,每年都召开以RS为主题的国际会议,推动了RS理论的拓展和应用。

国际上成立了粗糙集学术研究会,参加的成员来自波兰、美国、加拿大、日本、挪威、俄罗斯、乌克兰和印度等国家。

目前,粗糙集这一新的数学理论已经成为信息科学领域的研究热点之一,它在机器学习、知识获取、决策分析、过程控制等许多领域得到了广泛的应用。

粗糙集首先从新的视角对知识进行了定义。

把知识看作是关于论域的划分,从而认为知识是具有粒度〔granularity〕的。

认为知识的不精确性是由知识粒度太大引起的。

为处理数据〔特别是带噪声、不精确或不完全数据〕分类问题提供了一套严密的数学工具,使得对知识能够进行严密的分析和操作。

又由于数据挖掘的深入研究和一些成功的商业运作,使得粗糙集理论和数据挖掘有了天然的联系,粗糙集在知识上的定义、属性约简、规则提取等理论,使得数据库上的数据挖掘有了深刻理论基础,从而为数据挖掘提供了一种崭新的工具。

粗糙集不仅自己可以独特的挖掘知识,而且可以和其他的数据挖掘算法结合起来,从而产生了学多混合数据挖掘算法,大大开拓了数据挖掘的算法和技术,丰富了数据挖掘的工具。

除了研究,人们也在积极寻找粗糙集在数据挖掘中的应用,如RSES系统,该系统是基于粗糙集理论上研制的数据挖掘系统,里面提供了粗糙集的属性约简算法和规则提取,可以找到最佳约简集和近似约简集,并可以提出规则。

另外,还有,Regina大学开发的KDD-R系统,被广泛用于医疗诊断、电信业等领域。

还有美国Kansas大学开发的LERS(Learningfrom Examples based on RS)系统,在医疗诊断、社区规划、全球气象研究等方面都有应用。

粗糙集理论

粗糙集理论

定义六


,R是一个等价关系,称 RX={ x |x U |,且[x]R X } 为集合X的R下近似集; 称 RX={ x |x U |,且[x]R X} 为集合X的R上近似集; 称集合 BNR ( X ) RX RX 为X的R边界域; 称 POSR (X)=RX 为X的R正域; 称 NEGR (X)=U-RX 为X的R负域。
©
第11章
粗糙集理论: 13
上、下近似集


给定论域U,一族等价关系R将U划分为互不相交的 基本等价类U/R。令 XgU为R上的一个等价关系。 当能表达成某些基本等价类的并集时,称为可定义 的;否则称为不可定义的。R可定义集能在这个知 识库中被精确地定义,所以又称为R精确集。 R不可定义集不能在这个知识库中被精确定义,只 能通过集合逼近的方式来刻画,因此也称为R粗糙 集 (Roughset)。
©
第11章
粗糙集理论: 12


定义五 设U是一个论域,R是U上的等价关系,U/R 表示U上由R导出的所有等价类。 [ x]R 表示包含元素x∈U的R等价类。一个知识库就是 一个关系系统K ={U ,P},其中U是论域,P是U上的 一个等价类簇。如果 Q P 且 Q ,则 Q (Q的 所有等价类的交也是一个等价关系),称Q为不可分 辨关系,记作IND(Q)。
粗糙集理论
粗糙集的基本概念 知识表达 粗糙集在数据预处理中的应用
©
第11章
粗糙集理论: 1

粗糙集理论是由波兰华沙理工大学 Pawlak 教 授于 20 世纪 80 年代初提出的一种研究不完整、 不确定知识和数据的表达、学习、归纳的理 论方法,它是一种刻画不完整性和不确定性 的数学工具,能有效地分析不精确、不一致 (inconslsteni)、不完整 (incomPlete) 等各 种不完备的信息,还可以对数据进行分析和 推理,从中发现隐含的知识,揭示潜在的规 律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1995年,ACM Communication将其列为新浮现的计算机 科学的研究课题。
研究背景(续)
1998年,国际信息科学杂志(Information Sciences) 为粗糙集理论的研究出了一期专辑[2,3]。 第一届中国RS理论与软计算学术研讨会,于2001年5月在重 庆举行。 第二届中国RS理论与软计算学术研讨会,于2002年10月在苏 州大学举行。 第三届中国RS理论与软计算学术研讨会,于2003年8月在重 庆举行。 第四届中国RS理论与软计算学术研讨会,将于2004年在舟山 举行。



, card X表X的基数。
可被用作Rough逻辑中的算子。
粗糙集的几种表示(续)
④在Rough集上也有元素隶属于集合的问题(与Fuzzy 集一样)。 X U 设 ,
card X x R x ,则 card xR
R X
0 X x 1 。


粗糙集的几种表示(续)

R X
card apr X card apr X

称 R (X )为X的近似精度, 0 R X 1 (粗糙程度。 于是也可用 R (X ) 来定义Rough集。 当 R X 1 ,称U上子集X关于U上不分明关系R是 Rough的; 当 R X 1 ,称X关于R是精确的;

则X关于R是精确的。
相反地,Rough隶属函数可用来定义一个集合 的上、下近似集及边界集
R apr X x U , X x 1
X U


R apr X x U , X x 0

R bn X x U ,0 X

x 1
粗糙集的理论及应用的文章
主要发表在以下杂志
国内: 1.模式识别与人工智能 2.软件学报 3.科学通报 4.计算机科学 5.计算机学报 6.模糊系统与数学 7.计算机应用与软件 8.计算机研究与发展 9.计算技术与自动化
粗糙集的理论及应用的文章
主要发表在以下杂志(续)
国际: 1.Information Sciences 2.Fuzzy sets and systems 3.International Journal of Computer and Information Sciences 4.Communication of the ACM 5.Computational Intelligence 6.Journal of computer and system sciences
X是不可定义的 apr X apr X ,此时称X在近似 空间A中是粗糙集。 同时, 2U ,,, ~, apr , apr 其中∽表示集合补。


称为粗糙代数系统[6],
粗糙集的几种表示
①称二元对 apr X , apr X 为Rough集(粗糙集) ② BND X apr X apr X 可认为Rough集的另一种 表示形式,这种定义方式可直接算出U上关于其 子集X的含糊元素数目。 这种边界区意味着由于掌握的知识不完全而存在 不能辨别的区域,即bnd(X)上的元素不可分辨,所 以U上子集X关于U上不分明关系R是Rough的,主要是 bnd X ,否则它是可分辨的。一个集合X的边 界区域越大,则这个集合X的含糊元素也越多,这种 思想可以用数值化的系数表示。
研究背景(续)
1993年在加拿大Banff召开第二届国际RS理论与知识发 现研讨会。这次会议积极推动了国际上对RS理论与应用的研 究。由于当时正值KDD(数据库知识发现)成为研究的热门话 题,一些著名KDD学习者参加这次会议,并且介绍了许多应用 扩展RS理论的知识发现方法与系统。
1996年在日本东京召开了第5届国际RS研讨会,推动了 亚洲地区对RS理论与应用的研究。
x x U , xR X
称为集合X关于R的下近似。
apr X R X xR xR X
= x x U , xR X 称为集合X关于R的上近似。


例1
给定一玩具积木的集合 U x1 , x2 ,, x8 ,并 假设这些积木有不同的颜色(红、黄、蓝),形状 (方、圆、三角)和体积(大、小)。积木的集合U 可按颜色、形状、体积分类。 R1 :颜色关系, R2 :形状关系, R3 :体积。则
粗糙集理论的基本概念
RS理论认为知识即是将对象进行分类的能力, 假定我们起初对全域里的元素(对象)具有必要的 信息、或知识,通过这些知识能够将其划分到不同 的类别。若我们对两个元素具有相同的信息,则它 们就是不可区分的(即根据已有的信息不能够将其 划分开)。显然这是一种等价关系。不可区分关系 是RS理论最基本概念。在此基础上引入了成员关系, 上近似和下近似等概念来刻划不精确性与模糊性[1, 2,4,5]。


X关于A的度量(续)
X关于A的近似精度:
A X
apr X apr X
它反映了根据现有知识对X的了解程度[2,5]。
集合类关于近似空间的下近似、上近似
设 F X 1 , X 2 , X n 是由U的子集所构成的集类。 apr 则F关于近似空间A的下近似 F和上近似 apr F:
7. AI Magazine 8. AI Communications 9. European Journal of Operational Research 10.International Journal of Approximate Reasoning 11.Theoretical computer sciences 12.Decision support Systems 13.International Journal of Man-Machine studies 14.Fundamenta Informaticae 15.Intelligent Automation Sciences
解释为:由那些根据现有知识判断肯定不属于X的对象 所组成的集合。
apr X \ apr X 称作X的边界(域)记为BND(X)。
解释为:由那些根据现有知识判断出可能属于X但不 能完全肯定是否一定属于X的对象所组成的集合[5]。 apr (上下近似之差,即: X aprX )
X是可定义
apr X apr X ;
基本概念(续)
U/R中的元素(集合)称为U的基本集或原子集, 任意有限个基本集的并称为可定义集,空集也称为可定 义集( 可定义集也称为精确集)。否则称为不可定义 集。 若将U中的集合称为概念或表示知识,则A=(U,R )称为知识库,原子集(基本集)表示基本概念或知识 模块。那么精确集可以在知识库中被精确地定义或描述 ,可表示已知的知识。
称 R 为Rough隶属函数,解释为一种条件概率,能从 X 全域上的个体加以计算。Fuzzy集上的隶属函数则不然。 用 来定义Rough集,则得到Rough集的第四种表 示形式。

R X
x
粗糙集的几种表示(续)
R x X U X x 1 ,称X关于R是 若存在 ,有 R Rough的,若对每个 x X U ,有 X x 1
U / R2 x1 , x5 , x2 , x6 , x3 , x4 , x7 , x8 U / R3 x2 , x7 , x8 , x1 , x3 , x4 , x5 , x6
U / R1 x1 , x3 , x7 , x2 , x4 , x5 , x6 , x8
粗糙集理论
粗糙集理论是一种处理不精确、不确定与不完 全数据的新的数学方法。由于它在机器学习与知识 发现、数据挖掘、决策支持与分析、专家系统、归 纳推理、模式识别等方面的广泛应用,现已成为一 个热门的研究领域[2]。 RS理论主要兴趣在于它恰好反映了人们用Rough 集方法处理不分明问题的常规性,即以不完全信息 或知识去处理一些不分明现象的能力。或依据观察, 度量到的某些不确定的结果而进行分类数据的能力 [4]。
aprF apr X 1 , apr X 2 , apr X n


aprF {apr X 1 , apr X 2 ,apr X n }
F关于A的近似精度
A F
apr Xi apr Xi
上近似,下近似
对于一个近似空间A=(U,R),X是U的任意一个子 集。X不一定能用知识库中的知识来精确地描述;即X可 能为不可定义集,这时就用X关于A的一对下近似、上近 [ 似来“近似”地描述。下面xR X
粗糙集的几种表示(续)
无论哪一种Rough集的表示形式都离不开全域U 上的不分明关系R以及由R定义的下和上近似集。因 此对Rough集理论中的不分明关系以及下和上近似 集的研究尤其重要。定义观点的不同往往带来研究 的侧重面的不同。
X关于A的度量
X关于A的近似质量: apr X card apr X rA X card U U 近似质量 rA (X ) 反映了知识X中肯定在知识库中的部 分在现有知识中的百分比。 apr X X关于A的粗糙性测度: A X 1 apr X 则 0 A X 1 ,且X是可定义的 A X 0 X是粗糙的 A X 0 。 粗糙性测度反映了知识的不完全程度。
例1(续)
取 ,那么 X x 2 , x 4 , x7
apr X x 2 , x 4
R1
apr R1 X x2 , x4 x1 , x3 , x7 x2 , x4 , x1, x3 , x7
apr
R2
X
apr R2 X x 2 , x6 , x3 , x 4 , x7 , x8
样本 粗糙集方法处理
具有优化指标的样本
评审样本 数据预处理 (粗糙集方法、模糊集方法) 学习样本
相关文档
最新文档