2016-2017学年山东省青岛市黄岛区九年级上学期期末数学试卷

合集下载

2016-2017学年第一学期期末考试九年级数学答案

2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。

青岛市初三数学九年级上册期末试卷及答案

青岛市初三数学九年级上册期末试卷及答案

青岛市初三数学九年级上册期末试卷及答案一、选择题1.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-14.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°5.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43 D .356.sin30°的值是( ) A .12 B .22C 3D .17.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A 43B .3C 33D 328.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1- 0 1 2y5 0 3-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点; ④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .410.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③15.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题16.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.17.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .18.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.19.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.20.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 22.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.一组数据3,2,1,4,x 的极差为5,则x 为______.25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.28.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 29.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m30.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题31.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.32.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?33.二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).34.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)35.如图,抛物线y=-x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(-1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒2个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点 E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E 的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ; ②若AD+BD =14,求2AD BD CD ⎛⎫⋅+⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.39.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.4.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.5.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴AB5==,∵CD⊥AB,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 6.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.7.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO , ∴1DO 2=,32AD =,∴BD ==,∴BC =∴1322ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.8.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.B解析:B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【详解】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=12∠AOB=30°故选A.13.B解析:B【解析】【分析】①由于AC与BD不一定相等,根据圆周角定理可判断①;②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;③先由垂径定理得到A为CE的中点,再由C为AD的中点,得到CD AE=,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC ∴∆∆∽,可得2AC AF AB =,ACQ ACB ∠=∠,CAQ ABC ∠=∠,CAQ CBA ∴∆∆∽,可得2AC CQ CB =⋅,AP AD CQ CB ∴⋅=⋅.故④正确,故选:B .【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=25 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.17.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BEN K的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.18.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.19.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9 【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC,∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=22,故答案为:22.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 22.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.23.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.25.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.26.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵A D 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 28.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

九年级2016--2017期末数学试卷

九年级2016--2017期末数学试卷

人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。

2016-2017学年青岛市黄岛区九上期末数学试卷

2016-2017学年青岛市黄岛区九上期末数学试卷

2016-2017学年青岛市黄岛区九上期末数学试卷一、选择题(共8小题;共40分)1. 下面四个几何体中,其主视图为圆形的是 A. B.C. D.2. 在△ABC中,∠C=90∘,AB=5,BC=3,则sin B的值是 A. 34B. 43C. 35D. 453. 抛物线y=x2−2x+3的顶点坐标是 A. 1,3B. −1,3C. 1,2D. −1,24. 甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是 A. 从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被2整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现1点的概率5. 已知点−2,y1,−1,y2,1,y3都在反比例函数y=kxk<0的图象上,那么y1,y2与y3的大小关系是 A. y3<y1<y2B. y3<y2<y1C. y1<y2<y3D. y1<y3<y26. 如图,已知小鱼与大鱼是位似图形,则小鱼的点a,b对应大鱼的点 A. −a,−2bB. −2a,−bC. −2b,−2aD. −2a,−2b7. 如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC;②∠ABC=90∘;③AC=BD;④AC⊥BD中,再选两个作为补充,使平行四边形ABCD变为正方形.下面四种组合,错误的是A. ①②B. ①③C. ②③D. ②④与y=−kx2+k k≠0在同一直角坐标系中的图象可能是 8. 函数y=kxA. B.C. D.二、填空题(共6小题;共30分)9. cos45∘−sin30∘tan60∘=.10. 把抛物线y=−2x2的图象先向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为.11. 某企业前年缴税30万元,今年缴税36.3万元.那么该企业缴税的年平均增长率为.12. 如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F.若AB=4,BC=3,DE=6,则DF=.AD,BD与MC相交于点O,则13. 如图,在平行四边形ABCD中,AM=13S△MOD:S△COD=.14. 已知二次函数y=ax2+bx+c a≠0的部分图象如图所示,则关于x的一元二次方程ax2+bx+c=2a≠0的解为.三、解答题(共10小题;共130分)15. 已知某四棱柱(任意高)的俯视图如图所示,画出它的主视图和左视图.16. (1)解方程:x2−2x−3=0.(2)若关于x的方程2x2−5x+c=0没有实数根,求c的取值范围.17. 小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.18. 我们知道,蓄电池的电压为定值,使用此电源时,用电器的电流I A与电阻RΩ成反比例.已知电阻R=7.5 Ω时,电流I=2 A.(1)求确定I与R之间的函数关系式并说明此蓄电池的电压是多少;(2)若以此蓄电池为电源的用电器额定电流不能超过5 A,则该电路中电阻的电阻值应满足什么条件?19. 小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20 m,到达坡顶D处.已知斜坡的坡角为15∘.小华的身高ED是1.6 m,他站在坡顶看楼顶A处的仰角为45∘,求楼房AB的高度.(计算结果精确到1 m)(参考数据:sin15∘=14,cos15∘=2425,tan15∘=726)20. 如图,隧道的截面由抛物线和长方形构成.长方形的长为12 m,宽为5 m,抛物线的最高点C离路面AA1的距离为8 m,建立如图所示的直角坐标系.(1)求该抛物线的函数表达式,并求出自变量x的取值范围;(2)一大型货运汽车装载大型设备后高为6 m,宽为4 m.如果该隧道内设双向行车道,那么这辆货车能否安全通过?21. 已知:如图,平行四边形ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.(1)求证:△FBE≌△COE;(2)将平行四边形ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.22. 服装厂生产某品牌的T恤衫,每件成本是10元,根据调查,服装厂以批发单价13元给经销商,经销商愿意经销1000件,并且表示每件降价0.1元,愿意多经销100件,所以服装厂打算即不亏本,又要低于13元的单价批发给经销商.(1)求服装厂获得利润y(元)与批发单价x(元)之间的函数关系式,并写出自变量x的取值范围;(2)服装厂批发单价是多少时可以获得最大利润?最大利润是多少?23. 问题提出:如图(1),在边长为a a>2的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45∘时,求S.正方形MNPQ(1)问题探究:分别延长QE,MF,NG,PH,交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图(2)).若将上述四个等腰三角形拼成一个新的正方形(无缝隙,不重叠),则新正方形的边长为;这个新正方形与原正方形ABCD的面积有何关系(填“>”,“=”或“<”);通过上述的分析,可以发现S与S△FSB之间的关系是.正方形MNPQ(2)问题解决:求S.正方形MNPQ(3)拓展应用:如图(3),在等边△ABC各边上分别截取AD=BE=CF=1,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△PQR,求S△PQR.(请仿照上述探究的方法,在图(3)的基础上,先画出图形,再解决问题)24. 如图,在△ABC中,AB=AC=10 cm,BC=12 cm,点P从点C出发,在线段CB上以每秒1 cm的速度向点B匀速运动.与此同时,点M从点B出发,在线段BA上以每秒1 cm的速度向点A匀速运动.过点P作PN⊥BC,交AC于点N,连接MP,MN.当点P到达BC中点时,点P与M同时停止运动.设运动时间为t秒(t>0).(1)当t为何值时,PM⊥AB.(2)设△PMN的面积为y cm2,求出y与x之间的函数关系式.(3)是否存在某一时刻t,使S△PMN:S△ABC=1:5?若存在,求出t的值;若不存在,说明理由.答案第一部分1. B2. D3. C4. A5. A6. D7. C8. B第二部分9. 2−3210. y=−2x−12+311. 10%12. 21213. 2:314. 0或2第三部分15. 如图所示.16. (1)∵x2−2x−3=0,∴x−3x+1=0,∴x−3=0或x+1=0,∴x1=2,x2=−1.(2)∵方程2x2−5x+c=0没有实数根,∴Δ<0,∴25−8c<0,∴c>25.817. 这个游戏对双方不公平.理由如下:画树状图为:共有9种等可能的结果数,其中两次数字之和为奇数的结果数为5,两次数字之和为偶数的结果数为4,∴小明胜的概率=59,小亮胜的概率=49,而59>49,∴这个游戏对双方不公平.18. (1)根据题意,设I=UR,将R=7.5,I=2代入,得:U=15,故I=15R,此蓄电池的电压是15 V.(2)在I=15R中,当I=5 A时,R=3 Ω,∵15>0,∴在第一象限内,I随R的增大而减小,∴如果要求以此蓄电池为电源的用电器额定电流不能超过5 A时,则该电路中电阻的电阻值应不低于3 Ω.19. 作DH⊥AB于点H,∵∠DBC=15∘,BD=20,∴BC=BD⋅cos∠DBC=20×2425=19.2,CD=BD⋅sin∠DBC=20×14=5,由题意得,四边形ECBF和四边形CDHB是矩形,∴EF=BC=19.2,BH=CD=5,∵∠AEF=45∘,∴AF=EF=19.2,∴AB=AF+FH+HB=19.2+1.6+5=25.8≈26 m,答:楼房AB的高度约为26 m.20. (1)设抛物线的解析式为y=ax2+8,∵函数经过点6,5,∴5=a×62+8,得a=−112,即该抛物线的解析式为y=−112x2+8−6≤x≤6;(2)∵该隧道内设双向行车道,∴该货车只能走一个车道,∴将x=4代入y=−112x2+8,得y=623,∵623>6,∴这辆货车能安全通过.21. (1)如图,取BC的中点G,连接EG.∵E是BO的中点,∴EG是△BFC的中位线,∴EG=12BF.同理,EG=12OC,∴BF=OC.又∵BF∥AC,∴∠FBE=∠COE.在△FBE和△COE中,∠OEC=∠BEF,∠EOC=∠EBF,OC=BF.∴△FBE≌△COE AAS.(2)当AC=BD时,四边形AFBO是菱形.理由如下:∵BF∥AC,BF=OA=OC,∴四边形AFBO为平行四边形.∵AC=BD,∴平行四边形ABCD是矩形,∴OA=OC=OB=OD,∴平行四边形AFBO是菱形.22. (1)由题意可得:y=1000+1000×13−x x−10=−1000x2+24000x−14000010≤x<13;(2)由(1)得:y=−1000x2+24000x−140000=−1000x−122+4000,∵a=−1000<0,且对称轴为:x=1210≤x<13,∴当x=12时,y取最大值为:4000元,故服装厂批发单价是12元时,可以获得最大利润,最大利润是4000元.23. (1)a;=;S正方形MNPQ=4S△FSB【解析】∵AE=BF=CG=DH=1,∠AFO=∠BGM=∠CHN=∠DEP=45∘,∴△AER,△BFS,△CGT,△DHW是四个全等的等腰直角三角形,∴AE=DW,∴AE+DE=DW+DE=a,即AD=WE=a,∵拼成一个新的正方形无缝隙,不重叠,∴这个新正方形的边长为a;∵所得的四个等腰直角三角形的斜边长为a,则斜边上的高为12a,每个等腰直角三角形的面积为:12a⋅12a=14a2,∴拼成的新正方形面积为:4×14a2=a2,即新正方形与原正方形ABCD的面积相等;∵新正方形的面积=4×S△MSG=4× S△FSB+S四边形MFBG,原正方形ABCD的面积=S正方形MNPQ +4×S四边形MFBG,∴4× S△FSB+S四边形MFBG =S正方形MNPQ+4×S四边形MFBG,即S正方形MNPQ=4S△FSB.(2)∵S△FSB=12×1×1=12,∴S正方形MNPQ =4S△FSB=4×12=2.(3)如图所示,△PDH,△QEI,△RFG是三个全等的三角形,可以拼成一个和△ABC一样的等边三角形(无缝隙,不重叠),∴S△PRQ=S△ADG+S△BHE+S△CFI=3S△ADG,如图,过点G作GJ⊥BA于点J,根据∠ADG=∠BDP=30∘,∠DAF=60∘=∠GAJ可得,∠ADG=∠AGD=30∘,∴AD=AG=1,∴GJ=32AG=32,∴S△ADG=12AD×GJ=12×1×32=34,∴S△PQR=3S△ADG=3×34=343.24. (1)过点A作AD⊥BC于点D,∵AB=AC,∠ADB=90∘,∴BD=CD=6,∴AD= AB2−BD2=8,∵MP⊥AB,∴∠BMP=∠ADB=90∘,∵∠B=∠B,∴△BMP∽△BDA,∴BMBD =PBAB,∴t6=12−t10,解得t=154,∴当t为154时,PM⊥AB.(2)过点M作ME⊥NP于点E,交AD于点F.如图所示,∵BC⊥NP,∴∠ADC=∠NPC=90∘,∵∠C=∠C,∴△CPN∽△CDA,∴PNAD =CPCD,∴PN8=t6,∴PN=43t,由△AMF∽△ABD,可得MFBD =AMAB,即MF6=10−t10,∴MF=3510−t,∵∠BPN=∠ADP=∠MEP=90∘,∴四边形DPEF是矩形,∴EF=DP=6−t,∴ME=MF+EF=3510−t+6−t=12−35t,∴S△MPN=12PN⋅ME=12⋅43t⋅12−35t =−615t2+8t(0<t≤6).(3)存在.由题意:−615t2+8t=15×12×12×8,解得t=32或6.∴t=32秒或6 秒时,S△PMN:S△ABC=1:5.。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

2016-2017九上期末数学考试(青岛市南区)

2016-2017九上期末数学考试(青岛市南区)

2016-2017学年度第一学期期末教育质量评价监测九年级数学试题(满分 :120分;考试时间:120分钟) 一、 选择题(本题满分24分,共8道小题,每小题3分) 1、一元二次方程230x x -=的根为( )A.123,0x x ==B.12x x ==C.x =3x =2、如图是一个用于防震的L 形包装用泡沫塑料,则它的左视图是( )3、在Rt △ABC 中,∠ACB=90。

,BC=3,AB=4,则下列结论正确的是( ) A.3sin 5A = B.3tan 4A = C.3tan 4B = D.3cos 4B = 4、已知0234a b c==≠,且216a b +=,则c 的值是( ) A.1287 B.645C.8D.2 5、某商场出售某种服装,平均每天可销售20件,每件盈利60元。

若每件降价1元,则每天可多售3件,若每天要盈利2000元,设每件应降价x 元,则可以列出关于x 的方程为( )A.60(20+3x )=2000B.(60-x)[20+3(60-x)]=0C.(60-x)(20+3x)=2000D.(60+x)(20-3x)=20006、如图,矩形的中心为直角坐标系的原点O ,各边分别与坐标轴平行,其中一边AB 交x 轴于点C ,交反比例函数图像于点P ,且点P 是AC 的中点。

已知图中阴影部分的面积为8,则该反比例函数的表达式是( )A.y x =B.4y x =C.y x =D.8y x= 7、将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF 。

若AB=3,则菱形AECF 的面积为( )8、下面表格中的数据是二次函数2y ax bx c =++的几组对应值。

根据表中数据我们可以判断,当2ax bx c ++>0时,自变量x 的取值范围是()A.x>1B.x<-1或x>3C.x>5D.-1<x<3二、填空题(本题满分18分,共6道小题,每小题3分)9.计算:2cos60sin45+。

2016--2017学年度上学期期末九年级数学试题及答案

2016--2017学年度上学期期末九年级数学试题及答案

2016-2017学年度上学期期末考试九年级数学试题2017.01注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程xx22=的根是A.2 B.0 C.2或0 D.无解2.若反比例函数的图象过点(2,1),则这个函数的图象一定过点A.(-2,-1) B.(1,-2) C.(-2,1) D.(2,-1)3. 如图,点A为α∠边上任意一点,作BCAC⊥于点C,ABCD⊥于点D,下列用线段比表示αsin的值,错误..的是A.BCCDB.ABACC.ACADD.ACCD4. 如图,AD∥BE∥CF,直线a,b与这三条平行线分别交于点A,B,C和点D,E,F,若AB=2,AC=6,DE=1.5,则DF的长为A.7.5 B.6 C.4.5 D.35.如图,四边形A BCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88°B.92°C.106°D.136°6. 在Rt△ABC中,∠C=90°,34tan=A,若AC=6cm,则BC的长度为A.8cm B.7cm C.6cm D.5cm7. 已知二次函数)0()3(2≠-+=abxay有最大值1,则该函数图象的顶点坐标为A.)1,3(-- B.)(1,3- C.)1,3( D.)1,3(-8. 从n个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n的值是(第3题图)(第4题图)(第5题图)A .8B .6C .4D .29. 已知反比例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分支分布在第二、四象限 C .y 随x 的增大而增大 D .若x >1,则5-<y <010. 直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形 的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这 块扇形铁皮的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan∠BDE 的值是 A .34 B .43 C .21D .1:2 13.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,(第13题图) (第14题图)(第10题图) (第11题图)(第12题图)AD ,BD ,某同学根据图象写出下列结论:①0=-b a ; ②当x <21-时,y 随x 增大而增大;③四边形ACBD 是菱形;④cba +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④第II 卷 非选择题(共78分)二、填空题(本题共5小题,每小题3分,共15分)15.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是 . 16. 若n (其中0≠n )是关于x 的方程022=++n mx x 的根,则m +n 的值为 . 17.如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A 中”记作事件W ,请估计事件W 的概率P (W )的值 .18. 如图,在△ABC 中,AD 平分∠BAC ,与BC 边的交点为D ,且DC =31BC ,DE ∥AC ,与AB 边的交点为E ,若DE =4,则BE 的长为 .19. 如图,在直角坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本大题共7小题,共63分) 20.(本题满分5分) 计算:2cos30sin 45tan 601cos60︒+︒--︒o .题号 二 三Ⅱ卷总分20 21 22 23 24 25 26 得分得分 评卷人(第19题图)(第17题图) (第18题图)21.(本题满分8分)解方程:(1))1(212+=-x x ; (2)05422=--x x .22. (本题满分8分)如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号).得分 评卷人得分 评卷人(第22题图)30°23. (本题满分9分)如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)24. (本题满分10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=35.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.得分评卷人(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三角形,若存在请直接写出点M 坐标,若不存在请说明理由.得分 评卷人(第25题图)26.(本题满分12分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________; ②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出相应的BF 的长.得分 评卷人A (D )B (E )C 图1 ACBDE图22016-2017学年度上学期期末考试 九年级数学参考答案 2017-1注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB 二、填空题(每小题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④ 三、解答题(本大题共7小题,共63分)20. 解:原式=21(1)()222÷-+2分124分 =12……5分 21. (8分)解:(1)将原方程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分 ∴x 1=﹣1,x 2=3;……………………………………………………….4分 (2)∵2x 2﹣4x ﹣5=0, ∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30° ∴EF =10 …………2分 CF =3 EF =103(米) ………4分 过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt△AHE 中,∠HAE =45°,∴AH =HE ,又∵BC =10米,∴HE =(10+103)米, ………6分∴AB =AH +BH =10+103+10=20+103(米) ………………………7分 答:楼房AB 的高为(20+103) 米. ………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C , ∴∠OCD =90°. ………………………2分 ∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分 ∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分 由(1)得DC =DE =21(3+x ). ……………7分 在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=⎥⎦⎤⎢⎣⎡++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所示.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin∠AOC =35,∴AE =AO •sin∠AOC =3,OE =22AO AE -=4,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反比例函数解析式为k y x =.∵点A (﹣4,3)在反比例函数ky x=的图象上, ∴3=4k -,解得k =﹣12. ∴反比例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反比例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代入y =ax +b 中, 得34,43,a b a b =-+⎧⎨-=+⎩ 解得1,1.a b =-⎧⎨=-⎩ ∴一次函数解析式为y =﹣x ﹣1.…………8分 令一次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC •(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分 25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代入y =x 2+bx +c 中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3.……………3分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m , 1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分 ②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°, ∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的高相等,此时 BDE DCF S S ∆∆=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴︒=∠6021F DF ,︒=∠=∠=∠30211ABC DBE DB F ,∴︒=∠6021DF F , ∴21F DF ∆是等边三角形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,⎪⎩⎪⎨⎧=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS), ∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形, 连接EF 1, 则BD EF ⊥1, 垂足为O ,在1BOF Rt ∆中,BO =21BD =2,︒=∠301BO F , ∴︒=30cos 1BF BO , ∴33423230cos 1==︒=BO BF ………………11分. 在Rt BD F 2中,︒=30cos 2BF BD ,∴33823430cos 2==︒=BD BF , 故BF 的长为334或338.…………………12分。

青岛9年级上册试卷1-6套 九年级数学期末(7)

青岛9年级上册试卷1-6套  九年级数学期末(7)

九年级数学期末(7)1.顺次连接四边形各边中点得到的四边形是菱形,则这个四边形() A.矩形 B.菱形 C.对角线垂直 D.对角线相等2.下列函数:①3y x =-②21y x =-③()10y x x=-<④223y x x =-++,其中y 的值随x 值的增大而增大的函数有()A.4个B.3个C.2个D.1个3.我市某企业为节约用水,自建污水净化站.7月份净化污水3000吨,9月份增加到3630吨,则这两个月净化污水量的平均每月增长的百分率为()A.21%B.10%C.12%D.15%4.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是() A.18 B.16 C.13D.125.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.12 B.29 C.49 D.136.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为()A B C D7.一次函数()10y kx b k =+≠与反比例函数()20my m x=≠,在同一直角坐标系中的图象如图所示,若12y y >,则x 的取值范围是()A.20x -<<或1x >B.2x <-或01x <<C.1x >D.21x -<< 8.二次函数2241y x x =-++的图象如何平移就得到22y x =-的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,在向下平移3个单位D.向右平移1个单位,在向下平移3个单位 9.如下图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于F 点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是()O xvA.AD BC =B.CD BF =C.A C ∠=∠D.F CDE ∠=∠ 10.方程()33x x x +=+的解是_________.11.关于x 的一元二次方程2221ax x x -+=有两个不相等的实根,a 的取值范围是__________. 12.如图:反比例函数ky x=的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果2MONS =△,则k 的值为____________.13.正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE △沿AE 对折至AFE △,延长EF交边BC 于点G ,连接AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③AG CF ∥;④3FGC S =△.其中正确结论的是()14.如下图,在菱形ABCD 中,AE BC ⊥于点E ,P 为边AB 上的一个动点,若4cos 5D ∠=,2CE =,20160109九年级数学期末过关1.在可以不同年的前提下,下列结论正确的是()A.40个人中一定有两人生日相同B.40个人中不可能有两人生日相同C.20个人中不可能有两人同月过生日D.20个人中至少有两人同月过生日2.一个不透明的盒子里有若干枚黑棋子,在不允许倒出来数的情况下,为估计黑棋子的数目,小刚向盒中放入8枚白棋子,摇匀后从盒中一次摸出10枚棋子,记下其中白棋子的数目,再把它们放回盒中,不断重复上述过程,总共摸了5次,每次摸出的棋子中白棋子的数目分别是2、3、2、1、4,由此可以估计盒中黑棋子大约有()枚A.12B.19C.25D.333.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有()个黄球.A.7B.10C.15D.20 4.二次函数221y x =-+的图像上有两点()111,P x y ,()222,P x y ,当120x x <<时,则1y ,2y 的大小关系是()A.12y y >B.120y y <<C.120y y >>D.12y y <5.已知反比例函数my x=图象在一、三象限,且点()1,2A x -,()2,2B x ,()3,3C x 再此函数图象上,则正确的是()A.123x x x <<B.132x x x <<C.321x x x <<D.231x x x <<6.若1x ,2x 是一元二次方程22310x x -+=的两个根,则2212x x +的值是()A.54 B.94 C.114D.7 7.某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为%x ,则%x 满足的关系是() A.12%7%%x += B.()()()112%17%21%x ++=+ C.12%7%2%x +=⋅ D.()()()2112%17%1%x ++=+8.ABC △中,DE BC ∥,D 在AB 上,BE 与CD 交于点O ,AO 与DE 、BC 交于N 、M ,则下列式子中错误的是() A.DN AD BM AB = B.AD DE AB BC = C.DO DE OC BC = D.AE AOEC OM= 9.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB BC =,②90ABC ∠=︒,③AC BD =,④AC BD ⊥中选两个作为补充条件,使平行四边形ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④10.如图,在边长为2a 的正方形中央剪去一边长为()2a +的小正方形()2a >,将剩余部分剪开密铺成一个平行四边形,如果该平行四边形的面积为11,则大正方形的面积为()A.9B.73C.18D.611.在矩形ABCD 中,1AB =,AD AF 平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①AF FH =;②BO BF =;③CA CH =;④3BE ED =,正确的()A.②③B.③④C.①②④D.②③④12.正方形ABCD 中,点E 、F 分别在BC 、CD 上,AEF △是等边三角形,连接AC 交EF 于G ,下列结论:①BE DF =,②15DAF ∠=︒,③AC 垂直平分EF ,④BE DF EF +=,⑤2CEF ABE S S =△△.其中正确的结论有()个A.2B.3C.4D.5 13.如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一直线上,P 是线段DF 的中点,连接PG ,PC .若60ABC BEF ∠=∠=︒,则PGPC=()15.在x 轴的上方,直角BOA ∠绕原点O 按顺时针方向旋转.若BOA ∠的两边分别与函数1y x =-、2y x=的图象交于B 、A 两点,则OAB ∠大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变 17.方程()22x x x -=-的根是__________18.关于x 的一元二次方程()21210a x x --+=有两个不相等的实数根,a 的取值范围是__________. 19.两个连续整数的积为56,则这两个数分别是___________________.20.已知方程22350x x --=两根分别为3.5、1-,则抛物线2235y x x =--与x 轴两个交点间距为_____________.21.如图,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,如果:2:3AB AD =,那么cos EFC ∠值是_____________.22.在等边ABC △内有一点D ,5AD =,6BD =,4CD =,将ABD △绕A 点逆时针旋转,使AB 与AC 重合,点D 旋转至点E ,则CDE ∠的正切值为__________.23.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿2AB =米,它的影子 1.6BC =米,木竿PQ 的影子有一部分落在墙上, 1.2PM =米,0.8MN =米,求木竿PQ 的长度.24.四边形ABCD 是矩形,E 是对角线BD 上不同于B 、D 的任意一点,AF BE =,DAF CBD ∠=∠.1.求证:AF BE ∥;2.四边形DCEF 是什么特殊四边形?说明理由;3.试确定当点E 在什么位置时,四边形AEDF 变为菱形?并说明理由 25.如图1,ABC △中,沿BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下部分沿11B A C ∠的平分线11A B 折叠,剪掉重叠部分;将余下部分沿n n B A C ∠的平分线1n n A B +折叠,点n B 与点C 重合.无论折叠多少次,只要最后一次恰好重合,我们就称BAC ∠是ABC △的好角.小丽展示了确定BAC ∠是ABC △的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角BAC ∠的平分线1AB 折叠,点B 与点C 重合;情形二:如图3,沿ABC △的BAC ∠的平分线1AB 折叠,剪掉重叠部分;将余下的部分沿11B A C ∠的平分线11A B 折叠,此时点1B 与点C 重合. 探究发现(1)ABC △中,2B C ∠=∠,经过两次折叠,BAC ∠是不是ABC △的好角?________(填:“是”或“不是”).(2)小丽经过三次折叠发现了BAC ∠是ABC △的好角,请探究B ∠与C ∠(不妨设B C ∠>∠)之间的等量关系.根据以上内容猜想:若经过n 次折叠BAC ∠是ABC △的好角,则B ∠与C ∠(不妨设B C ∠>∠)之间的等量关系为______________. 应用提升(3)小丽找到一个三角形,三个角分别为15︒,60︒,105︒,发现60︒和105︒的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4︒,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.27.如图,在梯形ABCD 中,BD AC ⊥,90C D ∠=∠=︒,2cm BD =,10cm AB AC ==,连接BC .一动点P 由点B 出发沿边BA 向点A 匀速运动,速度为1cm/s ;同时点Q 由点A 出发沿边AC 向点C 匀速运动,速度为2cm/s .当其中一点到达终点时另一点随之停止运动,连接PQ 、PC .设运动时间为()()05t s t ≤≤.(1)当t 为何值时,PQ BC ∥?(2)设PCQ △的面积为()2cm y ,求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PCQ △的面积y 等于BCD △的面积?若存在,求出t 的值;若不存在,说明理由.(4)若BCD △与点P 、Q 同时出发,沿DC 方向以1cm/s 的速度向下移动,移动后的三角形记为'''B C D △.试探索:是否存在某一时刻t ,使得P 、Q 、'C 三点在同一条直线上?若存在,求出t 的值;若不存在,说明理由.28.某电器厂去年生产某种电子产品,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次以拓展市场.若今年这种电子产品每件的成本比去年增加0.7x 倍,今年这种电子产品每件的出厂价比去年相应增加0.6x 倍,则预计今年年销售量比去年年销售量增加x 倍()01x <≤(1)用含x 的代数式表示,今年生产的这种电子产品每件的成本为________元,今年生产这种电子产品每件的出厂价为__________元(2)求今年这种电子产品的每件利润y 元与x 之间的函数关系式.(3)设今年这种电子产品的年销售利润为W 万元,求当x 为何值时,今年的年售利润最大?最大年销售利润是多少万元?备用图29.我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生菌存放多少天后出售可获得最大利润W元?(利润=销售总额-收购成本-各种费用)。

山东省2016-2017学年度上学期期末九年级数学试题 (2)

山东省2016-2017学年度上学期期末九年级数学试题 (2)

2016-2017学年度上学期期末九年级数学试题一、选择题:(本大题共12小题,每小题3分,满分36分) 1、 在半径为12cm 的圆中,垂直平分半径的弦长为( )A 33cm B 27 cm C 312 cm D 36cm2、方程(x+1)(x ﹣2)=x+1的解是( )A 、2B 、3C 、﹣1,2D 、﹣1,33、 已知∠A 是锐角,且sinA=32,那么∠A等于()A .30° B.45° C.60° D.75°4、.下列说法中,①平分弦的直径垂直于弦 ②直角所对的弦是直径 ③相等的弦所对的弧相等 ④等弧所对的弦相等 ⑤圆周角等于圆心角的一半,其中正确的命题个数为()A 、0B 、1C 、2D 、35、若关于x 的方程2x 2-ax +a -2=0有两个相等的实根,则a 的值是 ( ) (A )-4 (B )4 (C )4或-4 (D )2 6、如果关于x 的方程x 2-2x -2k=0没有实数根,那么k 的最大整数值是 ( )(A )-3 (B )-2 (C )-1 (D )07.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为( )A. B. C. D.8、已知关于x 的方程x2+bx +a =0的一个根是-a (a ≠0),则a -b 值为( )A.-1B.0C.1D.29、小明乘车从南充到成都,行车的平均速度v (km/h )和行车时间t (h )之间的函数图象是( )A 、B 、C 、D 、10、如图,D 是△ABC 的边AB 上一点,在条件(1)∠ACD =∠B ,(2)AC 2=AD ·AB ,(3)AB 边上与点C 距离相等的点D 有两个,(4)∠B =∠ACB 中,一定使△ABC ∽△ACD 的个数是( )(A )1 (B )2 (C )3 (D )411、如图,DE ∥BC ,在下列比例式中,不能成立的是 ( )(A )DB AD =ECAE (B )BC DE =EC AE (C )AD AB =AE AC (D )EC DB =AC AB12、二次函数式y =x 2-2 x +3配方后,结果正确的是 ( )(A )y =(x +1)2-2 (B )y =(x -1)2+2(C )y =(x +2)2+3(D )y =(x -1)2+4 二、填空题:(本大题共6小题,每小题3分,满分18分) 13、如果关于x 的方程220xx m -+=(m 为常数)有两个相等实数根,么m =______.14、某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________15、如图,PA 与⊙O 相切,切点为A ,PO 交⊙O 于点C ,点B 是优弧CBA 上一点,若∠ABC=32°,则∠P 的度数为 .16、已知双曲线 经过矩形OABC 过AB 的中点F ,交BC 于点E ,且四边形OEBF 的 面积为2,则k= .17、如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标 为 。

2016-2017学年度第一学期九年级数学期末考试试卷

2016-2017学年度第一学期九年级数学期末考试试卷

2016—2017学年度第一学期九年级数学期末试卷一、选择题(共10小题,每小题3分,共30分)1.一元二次方程x 2-2x-3=0的一次项系数、常数项是( )A .2和-3B .2和3C .-2和-3D .1和-22平面直角坐标系内与点P (-2,3)关于原点对称的点的坐标是( )A .(3,-2)B .(2,3)C .(2,-3)D .(-3,-3)3.下列图形中是中心对称图形的有( ).4.若x 1、x 2是方程3x 2+6x +4=0的两根,则x 1+ x 2的值是( )A .2B .4C .-2D .34 5.如图,在4×4的正方形网格中,每个小正方形的边长为1,90°得到△BOD ,则AB︵的长( )A .πB .6πC .3πD .1.5π6..三角形ABC 中,∠A=80°点O 是三角形ABC 的内心,则∠AOB 的度数是( )A 、100°B 、130°C 、120 °D 、80°7.如图1,⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM ∶OC =3∶5,则AB 的长为( )A .91cmB .8 cmC .6 cmD .4 cm8.已知:直角三角形的两直角边长分别是3、4,则其外接圆的面积是( )A 、425∏B 、512∏ C 、25∏ D 、12∏ 9.已知A 、 B 是⊙O 上两点,∠AOB=60°.点C 是圆上异于A 、B 的点,则∠BCA 的度数是( )A .30B .150C .135或30D .30或15010.如图,是抛物线y=ax 2+bx+c (a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x 轴的一个交点是(﹣1,0).有下列结论:①abc >0;②4a ﹣2b+c <0;③4a+b=0;A A 1 CB O yx5 132 ④抛物线与x 轴的另一个交点是(5,0);⑤点(﹣3,y 1),(6,y 2)都在抛物线上,则有y 1<y 2.其中正确的是( )A .①②③B .②④⑤C .①③④D .③④⑤二、填空题(共6小题,每小题3分,共18分) 11.若关于x 的方程x 2+2(k -1)x +k 2=0有实数根,则k 的取值范围是12.⊙O 的半径为13 cm ,AB 、CD 是⊙O 的两条弦,AB ∥CD .AB =24 cm ,CD =10 cm ,则AB 和CD 之间的距离为___________cm13.一个底面直径是80 cm ,母线长为90 cm 的圆锥的侧面展开图的圆心角的度数为14.某农机厂四月份生产零件50万个,第二季度共生产零件182万个。

新青岛版2016-2017学年第一学期期末九年级数学试题(4页)20170101

新青岛版2016-2017学年第一学期期末九年级数学试题(4页)20170101

新青岛版2016-2017学年第⼀学期期末九年级数学试题(4页)201701012016—2017学年度第⼀学期期末学业质量评估九年级数学试题(时间120分钟,满分120分)注意事项:答卷前,考⽣务必将试题密封线内及答题卡上⾯的项⽬填涂清楚;所有答案都必须涂、写在答题卡相应位置,答在本试卷上⼀律⽆效.⼀、选择题(本题共12⼩题,在每⼩题给出的四个选项中,只有⼀个是正确的,请把正确的选项选出来,每⼩题选对得3分,满分36分.多选、不选、错选均记零分.)1. 下列关于函数3)6(212+-=x y 的图象,下列叙述错误的是() A. 图象是抛物线,开⼝向上; B. 对称轴为直线x=6;C. 顶点是图象的最⾼点,坐标为(6,3);D. 当x <6时,y 随x 的增⼤⽽减⼩;当x >6时,y 随x 的增⼤⽽增⼤.2. 下列⽅程中两个实数根的和等于2的⽅程是()A. 03422=+-x xB. 03222=--x xC. 03422=-+y yD. 03422=--t t3. 如图,扇形OAB 的圆⼼⾓为90°,点C ,D 是弧AB 的三等分点,半径OC ,OD 分别与弦AB交于点E ,F.下列说法错误的是()A. AE=EF=FBB. AC=CD=DBC. EC=FDD. ∠DFB=75°4. 下列关于圆的叙述正确的有()①圆内接四边形的对⾓互补;②相等的圆周⾓所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等;④同圆中的平⾏弦所夹的弧相等.A. 1个B. 2个C. 3个D. 4个5. 如图,以半径为2的正六边形ABCDEF 的中⼼O 为原点建⽴平⾯直⾓坐标系,顶点A ,D 在x 轴上,则点C 的坐标为()A. (1,-2)B. (1,-2)C. (1,-3)D. (-1,-3)6. 如图,⊿ABC 的内切圆O 与各边分别相切于点D ,E ,F ,那么下列叙述错误的是()A. 点O 是⊿ABC 的三条⾓平分线的交点B. 点O 是⊿DEF 的三条中线的交点C. 点O 是⊿DEF 的三条边的垂直平分线的交点D. △DEF ⼀定是锐⾓三⾓形7. 如图所⽰,图中共有相似三⾓形()A. 2对B. 3对C. 4对D. 5对8. 如图,已知∠AOB=60°,点P 在边OA 上,OP=24,点M ,N 在边OB 上,PM=PN.若NM=6,则OM 等于()A. 6B. 7C. 8D. 99. 已知开⼝向下的抛物线32322--+-=a a x ax y 经过坐标原点,那么a 等于()A. -1B. 3C. -3D.3或-110.已知A(m ,y 1)和B (-2,y 2)是函数xy 6-=上的点,且y 1>y 2 ,则m 的取值范围是() A. -2<m <0 B. m >-2 C. m <-2 D. m <-2或m >0 11.在平⾯直⾓坐标系中,平移⼆次函数342++=x x y 的图象能够与⼆次函数2x y =的图象重合,则平移⽅式为()A. 向左平移2个单位,向下平移1个单位B. 向左平移2个单位,向上平移1个单位C. 向右平移2个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位12.如图,正⽅形ABCD 边长为2,AB ∥x 轴,AD ∥y 轴,顶点A 恰好落在双曲线xy 21=上,边CD ,BC 分别交双曲线于E ,F 两点,若线段AE 过原点,则EF 的长为() A. 23 B. 45 C. 313 D. 34⼆、填空题(本题共6⼩题,共18分,只要求填写最后结果,每⼩题填对得3分.)13.某航空公司托运⾏李的费⽤y 元与托运⾏李的质量x (kg )之间的函数关系如图所⽰.根据图中的信息可知:免费托运⾏李质量应不超过 kg .14.如图,在△ABC 中,D 为AC 边上⼀点,且∠DBA=∠C.若AD=2cm ,AB=4cm ,那么CD 的长等于 cm.15.如图,在Rt △ABC 中,∠C=90°,∠B=58°,内切圆 O 与边AB ,BC ,CA 分别相切于点D ,E ,F ,则∠DEF 的度数是 .16.已知⼆次函数的图象经过(-1,0)、(0,3)与(3,0)三个点,那么这个函数的表达式为 .17.如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两⽵条AB ,AC 的夹⾓为120°,弧BC 的长为30πcm ,AD 的长为15cm ,则贴纸的⾯积等于 cm 2 .18.已知函数21x y =与函数3212+-=x y 的图象交于点A )4,2(-和点B )49,23(,若1y <2y ,则x 的取值范围是 .三、解答题(本题共6⼩题,共66分.解答应写出必要的⽂字说明、证明过程或推演步骤.)19. (本题满分15分)计算下列各题(1)⽤两种⽅法解⽅程:0542=--x x(2)求值:2sin30°+tan60°-cos45°+tan30°20. (本题满分10分)如图,在△ABC 中,BD ⊥AC ,垂⾜为D ,AB=AC=9,BC=6.求BD 的长.21. (本题满分10分)在矩形ABCD 中,AB=6,AD=8,P 是BC 边上⼀个动点(不与点B重合).设PA=x ,点D 到PA 的距离为y. 求y 与x 之间的函数表达式,并求出⾃变量x 的取值范围.22. (本题满分10分)如图①,AB 是⊙O 的直径,E 为⊙O 上⼀点,过弧AE 的中点C 作CD ⊥AB ,垂⾜为D. AE 交CD 于点F ,连接AC.(1)求证:AF=CF ;(2)如图②,AB 是⊙O 的直径,E 为⊙O 上⼀点,过优弧ABE 的中点C 作CD ⊥AB ,垂直为D.直线AE 与CD 交于点F ,连接AC. 证明:AF=CF.23. (本题满分10分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况):①;②;③;(2)如图②,AB是⾮直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.(3)如图③,AB是⾮直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.24. (本题满分11分)如图,在正⽅形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF. 设△AEF 的⾯积为y,EC的长为x .(1)求y与x之间的函数表达式,并写出⾃变量x的取值范围;(2)当x取何值时,△AEF的⾯积最⼤,最⼤⾯积是多少?(3)在直⾓坐标系中画出y关于x的函数的图象;。

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案

2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。

)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。

)A。

y=-3(x-2)^2+1B。

y=-3(x+2)^2+1C。

y=-3x^2+2D。

y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。

)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。

)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。

)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。

)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。

)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。

)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。

)A。

2B。

1C。

√2D。

1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。

)12、正六边形的边长为10cm,那么它的边心距等于(。

青岛市九年级上册期末数学试题(含答案)

青岛市九年级上册期末数学试题(含答案)

青岛市九年级上册期末数学试题(含答案)一、选择题1.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .无法判断2.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .193.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm πC .2130cm πD .2155cm π 4.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4 6.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .433B .23C .334D .3228.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2B .2C .-1D .1 9.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .180 10.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )A .45B .35C .43D .3411.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .5 12.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1213.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80° 14.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 15.2的相反数是( )A .12-B .12C .2D .2- 二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.18.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.19.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .20.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.21.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).22.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________23.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.24.抛物线2(-1)3y x =+的顶点坐标是______.25.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.28.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.29.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是_________.30.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.33.如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=10,AC=1,求⊙O的半径.34.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.四、压轴题36.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.37.如图,已知矩形ABCD 中,BC =2cm ,AB =23cm ,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.38.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.39.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA 5tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.40.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..2.B解析:B【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例. 3.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.4.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 5.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确; ②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.6.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.8.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.10.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.【详解】如图,∵∠C =90°,AC =8,BC =6,∴AB 222268BC AC +=+10,∴sin B =84105AC AB ==. 故选:A .【点睛】 本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.12.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以232CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =,∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴22632CE OC ==⨯=, ∴262CD CE ==.故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.13.C解析:C【解析】【分析】连接OD ,根据∠AOD =2∠ACD ,求出∠AOD ,利用等腰三角形的性质即可解决问题.【详解】连接OD .∵∠ACD =20°,∴∠AOD =2∠ACD =40°.∵OA =OD ,∴∠BAD =∠ADO =12(180°﹣40°)=70°. 故选C .【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.14.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽,∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACB∠=∠,90CAF BAC∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.15.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.19.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=, 解得:AB=1205060⨯ =100(米). 故答案为100.【点睛】 本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.20.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.21.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.22.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.23.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x =−1-2<0,∵-4≤-3,∴322-≤≤-,∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.24.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.25.2【解析】【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM 即可得到答案.【详解】解:如图所示,连接OA,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA,先根据垂径定理求出AO的长,再设ON=OA,则MN=ON-OM即可得到答案.【详解】解:如图所示,连接OA,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴5AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.28.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.29.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离30.4π【解析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题31.(1)14;(2)716; 【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=14. (2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.32.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得:112 abc=⎧⎪=⎨⎪=-⎩,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣1,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=12 MD•OA=12×2(m2﹣2m)=﹣m2﹣2m=﹣(m+1)2+1,∵﹣2<m<0,∴当m=﹣1时,S△MAB有最大值1,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,∴BQ=OP=2,点Q的横坐标为2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),综上所述,点Q的坐标为(﹣2,2)或(﹣515155(2,﹣2).【点睛】本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.33.(1)详见解析;(2)⊙O 的半径是13. 【解析】【分析】(1)连接OA ,求出OA ∥BC ,根据平行线的性质和等腰三角形的性质得出∠OBA =∠OAB ,∠OBA =∠ABC ,即可得出答案;(2)根据矩形的性质求出OD =AC =1,根据勾股定理求出BC ,根据垂径定理求出BD ,再根据勾股定理求出OB 即可.【详解】(1)证明:连接OA ,∵OB =OA ,∴∠OBA =∠OAB ,∵AC 切⊙O 于A ,∴OA ⊥AC ,∵BC ⊥AC ,∴OA ∥BC ,∴∠OBA =∠ABC ,∴∠ABC =∠ABO ;(2)解:过O 作OD ⊥BC 于D ,∵OD ⊥BC ,BC ⊥AC ,OA ⊥AC ,∴∠ODC =∠DCA =∠OAC =90°,∴OD =AC =1,在Rt △ACB 中,AB 10AC =1,由勾股定理得:BC ()22101-=3, ∵OD ⊥BC ,OD 过O ,∴BD =DC =12BC =132⨯=1.5,。

山东省青岛市 九年级(上)期末数学试卷

山东省青岛市  九年级(上)期末数学试卷

A. ������(������ + 1) = 1035 C. ������(������−1) = 1035
B. ������(������−1) = 1035 × 2 D. 2������(������ + 1) = 1035
6. 如图,在 Rt△ABC 中,∠C=90°,AB=6,AC=2,CD⊥AB 于 D,设∠ACD=α,则 cosα 的值为( )
九年级(上)期末数学试卷
题号 得分




总分
一、选择题(本大题共 8 小题,共 24.0 分) 1. 如图所示的几何体,它的左视图是( )
A.
B.
C.
D.
2. 在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )
A. 小明的影子比小强的影子长
B. 小明的影子比小强的影子短
C. 小明的影子和小强的影子一样长
13. 给定一个边长为 3 的正方形,存在一个矩形,使它的周长和面积分别是这个正方形 周长和面积的 2 倍,则这个矩形较长边的边长为______.
14. 如图,在正方形 ABCD 中,∠BAC 的平分线交 BC 边 于 G,AG 的中垂线与 CB 的延长线交于 E,与 AB、 AC、DC 分别交于点 M,N,F,下列结论:①tan∠E= 33,②△AGC≌△EMG,③四边形 AMGN 是菱形, ④S△CFN=S 四边形 AMGN,其中正确的是______(填序号).
D. 无法判断谁的影子长
3. 如果两个相似三角形的相似比是 1:2,那么它们的周长比是( )
A. 2:1
B. 1:4
C. 1: 2
D. 1:2
4. 如图,已知一次函数 y=ax+b 和反比例函数 y=������������的图象相交于 A(-2,y1)、B(1,

山东省青岛市黄岛区上学期九年级数学上学期期末考试试题(含解析) 青岛版-青岛版初中九年级全册数学试题

山东省青岛市黄岛区上学期九年级数学上学期期末考试试题(含解析) 青岛版-青岛版初中九年级全册数学试题

某某省某某市黄岛区2015-2016学年上学期九年级数学上学期期末考试试题一、选择题(每小题3分,共24分)1.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A.③④②① B.②④③① C.③④①② D.③①②④2.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA=C.cosB= D.tanB=3.如图,分別将三角形、矩形、菱形、正方形各边向外平移1个单位并适当延长,得到下列图形,其中变化前后的两个图形不一定相似的有()A.1对B.2对C.3对D.4对4.计算:cos30°+sin60°tan45°=()A.1 B.C.D.5.将抛物线y=x2向下平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的表达式为()A.y=(x﹣1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2﹣1 D.y=(x﹣1)2﹣26.如图,在△ABC中,点D、E分别是边AB和AC上的点,AD=2BD,DE∥BC,S△ABC=36,则S△ADE=()A.9 B.16 C.18 D.247.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为()A. C.或(﹣4,2)8.对于二次函数y=﹣2(x﹣1)(x+3),下列说法正确的是()A.图象的开口向上B.图象与y轴交点坐标是(0,6)C.当x>﹣1时,y随x的增大而增大D.图象的对称轴是直线x=1二、填空题(每小题3分,共18分)9.观察图1中的三种视图,在图2中与之对应的几何体是(填序号)10.小华的爸爸存入银行1万元,先存一个一年定期,一年后将本息自动转存另一个一年定期,两年后共得本息10609元.设存款的年利率为x,则由题意列方程应为.11.如图,把两个全等的矩形ABCD和矩形CEFG拼成如图所示的图案,则∠AFC=°.12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是cm.13.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EM的面积之比为.14.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(﹣1,0),(3,0).对于下列结论:①abc>0,;b2﹣4ac>0;③当x1<x2<0时,y1>y2;④当﹣1<x<3时,y>0.其中正确的有个.三、作图题(共4分)15.画出如图所示几何体的主视图、左视图.四、解答题(本题共9小题,共74分)16.解方程:(1)x2﹣6x=11(配方法)(2)(x+5)(x+1)=12.17.如图,某高尔夫球手击出的高尔夫求的运动路线是一条抛物线,当球水平运动了24m时达到最高点.落球点C比击球点A的海拔低1m,它们的水平距离为50m.(1)按如图所示的直角坐标系,求球的高度y(m)关于水平距离x(m)的函数关系式;(2)与击球点相比,球运动到最高点时有多高?18.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小颖和小凡做“石头、剪刀、布”游戏,如果两人的手势相同,那么小明获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小颖和小凡每次出这三种手势的可能性相同:(1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对三人公平吗?请说明理由.19.在某次反潜演习中,我军舰A测得离开海平面的下潜潜艇C的俯角为37°,位于军舰A 正上方1100米的反潜飞机B測得此时潜艇C的俯角为67°,求前艇C离开海平面的下潜深度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin67°≈,cos67°≈,tan26°≈)20.如图,正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,已知点A的横坐标为1,点B的纵坐标为﹣3.(1)请直接写出A、B两点的坐标;(2)求处这两个函数的表达式;(3)根据图象写出正比例函数的值不小于反比例函数的值的x的取值X围.21.已知,如图,在▱ABCD中,AC是对角线,AB=AC,点E、F分别是BC、AD的中点,连接AE,CF.(1)四边形AECF是什么特殊四边形?证明你的结论;(2)当△ABC的角满足什么条件时,四边形AECF是正方形?证明你的结论.22.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y(元).(1)求出y与x之间的函数关系式及自变量x的取值X围;(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12解得,x1=x2=∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:巳知边长为1的正方形ABCD,一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)24.已知,如图,在△ABC中,已知AB=AC=5cm,BC=6cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1cm/s,且QD⊥BC,与AC,BC分别交于点D,Q;当直线QD停止运动时,点P也停止运动.连接PQ,设运动时间为t(0<t<3)s.解答下列问题:(1)当t为何值时,PQ∥AC?(2)设四边形APQD的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APQD:S△ABC=23:45?若存在,求出t的值;若不存在,请说明理由.2015-2016学年某某省某某市黄岛区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A.③④②① B.②④③① C.③④①② D.③①②④【考点】平行投影.【分析】根据影子变化规律可知道时间的先后顺序.【解答】解:从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.所以正确的是③④①②.故选C.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.2.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是()A.sinA= B.tanA=C.cosB= D.tanB=【考点】特殊角的三角函数值;锐角三角函数的定义.【分析】根据三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠ACB=90°,BC=1,AB=2.∴AC===,∴sinA==,tanA===,cosB==,tanB==.故选D.【点评】解答此题关键是正确理解和运用锐角三角函数的定义.3.如图,分別将三角形、矩形、菱形、正方形各边向外平移1个单位并适当延长,得到下列图形,其中变化前后的两个图形不一定相似的有()A.1对B.2对C.3对D.4对【考点】相似图形.【分析】利用相似图形的判定方法:对应角相等,对应边成比例的图形相似,进而判断即可.【解答】解:∵三角形、矩形对应边外平移1个单位后,对应边的比值不一定相等,∴变化前后的两个三角形、矩形都不相似,∵菱形、正方形边长改变后对应比值仍相等,且对应角相等,∴变化前后的两个菱形、两个正方形相似,故选:B.【点评】此题主要考查了相似图形的判定,正确掌握相似图形的判定方法是解题关键.4.计算:cos30°+sin60°tan45°=()A.1 B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=+×1=.故选:C.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.将抛物线y=x2向下平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的表达式为()A.y=(x﹣1)2+2 B.y=(x+1)2﹣2 C.y=(x﹣2)2﹣1 D.y=(x﹣1)2﹣2【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先利用顶点式得到抛物线y=x2的顶点坐标为(0,0),再根据点利用的规律得到点(0,0)平移后所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)向下平移2个单位,再向右平移1个单位所得对应点的坐标为(1,﹣2),所以所得到的抛物线的解析式是y=(x﹣1)2﹣2.故选D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.如图,在△ABC中,点D、E分别是边AB和AC上的点,AD=2BD,DE∥BC,S△ABC=36,则S△ADE=()A.9 B.16 C.18 D.24【考点】相似三角形的判定与性质.【分析】由平行线的性质得出△ADE∽△ABC,得出相似三角形的面积比等于相似比的平方:=()2=,即可得出结果.【解答】解:∵AD=2BD,∴AD=AB,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE=×36=16;故选:B.【点评】本题考查了相似三角形的判定与性质;证明三角形相似得出面积比等于相似比的平方是解决问题的关键.7.如图,已知线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点D的坐标为()A. C.或(﹣4,2)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:线段AB两个端点的坐标分别为A(6,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B与点D是对应点,则点D的坐标为(8×,4×),即(4,2),故选:A.【点评】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.8.对于二次函数y=﹣2(x﹣1)(x+3),下列说法正确的是()A.图象的开口向上B.图象与y轴交点坐标是(0,6)C.当x>﹣1时,y随x的增大而增大D.图象的对称轴是直线x=1【考点】二次函数的性质.【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【解答】解:A、y=﹣2(x﹣1)(x+3),∵a=﹣2<0,∴图象的开口向下,故本选项错误;B、y=﹣2(x﹣1)(x+3)=﹣2x2﹣4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确;C、y=﹣2(x﹣1)(x+3)=﹣2(x+1)2+8,即当x>﹣1,y随x的增大而减少,故本选项错误;D、y=﹣2(x﹣1)(x+3)=﹣2(x+1)2+8,即图象的对称轴是直线x=﹣1,故本选项错误.故选B.【点评】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.二、填空题(每小题3分,共18分)9.观察图1中的三种视图,在图2中与之对应的几何体是③(填序号)【考点】由三视图判断几何体.【分析】首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰①②,选③,故答案为:③.【点评】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大.10.小华的爸爸存入银行1万元,先存一个一年定期,一年后将本息自动转存另一个一年定期,两年后共得本息10609元.设存款的年利率为x,则由题意列方程应为10000(1+x)2=10609 .【考点】由实际问题抽象出一元二次方程.【分析】根据题意可得一年后的本息和为:10000(1+x),则两年后的本息和为:10000(1+x)(1+x),进而得出答案.【解答】解:设存款的年利率为x,则由题意列方程应为:10000(1+x)2=10609.故答案为:10000(1+x)2=10609.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确表示出第2年的本息和是解题关键.11.如图,把两个全等的矩形ABCD和矩形CEFG拼成如图所示的图案,则∠AFC= 45 °.【考点】矩形的性质;等腰直角三角形.【分析】根据矩形的性质得出AB=CE,BC=EF,∠B=∠E=90°,根据SAS推出△ABC≌≌△CEF,根据全等得出∠BAC=∠FCE,AC=CF,求出△ACF是等腰直角三角形,即可得出答案.【解答】解:∵四边形ABCD和四边形CEFG是全等的矩形,∴AB=CE,BC=EF,∠B=∠E=90°,在△ABC和△CEF中,,∴△ABC≌≌△CEF(SAS),∴∠BAC=∠FCE,AC=CF,∵∠B=90°,∴∠BAC+∠ACB=90°,∴∠ACB+∠FCE=90°,∴∠ACF=90,∴△ACF是等腰直角三角形,∴∠AFC=45°.故答案为:45.【点评】本题考查了矩形的性质,全等三角形的性质和判定的应用,能根据定理推出三角形ACF是等腰直角三角形是解此题的关键.12.如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1:5,则AC的长度是210 cm.【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点B作BD⊥AC于D,根据题意即可求得AD与BD的长,然后由斜坡BC的坡度i=1:5,求得CD的长,继而求得答案.【解答】解:过点B作BD⊥AC于D,根据题意得:AD=2×30=60(cm),BD=18×3=54(cm),∵斜坡BC的坡度i=1:5,∴BD:CD=1:5,∴CD=5BD=5×54=270(cm),∴AC=CD﹣AD=270﹣60=210(cm).∴AC的长度是210cm.故答案为:210.【点评】此题考查了解直角三角形的应用:坡度问题.此题难度适中,注意掌握坡度的定义,注意数形结合思想的应用与辅助线的作法.13.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EM的面积之比为.【考点】菱形的性质;平移的性质.【分析】首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.【解答】解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EM的面积之比为: =.故答案为:.【点评】此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.14.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(﹣1,0),(3,0).对于下列结论:①abc>0,;b2﹣4ac>0;③当x1<x2<0时,y1>y2;④当﹣1<x<3时,y>0.其中正确的有①②③个.【考点】二次函数图象与系数的关系.【分析】首先根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出①的正误;抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故②正确;根据二次函数的性质即可判断出③的正误;由图象可知:当﹣1<x<3时,y<0,即可判断出④的正误.【解答】解:根据图象可得:抛物线开口向上,则a>0.抛物线与y交与负半轴,则c<0,对称轴:x=﹣>0,∴b<0,∴abc>0,故①正确;∵它与x轴的两个交点分别为(﹣1,0),(3,0),则△=b2﹣4ac>0,故②正确∵抛物线与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∵抛物线开口向上,∴当x<1时,y随x的增大而减小,∴当x1<x2<0时,y1>y2;故③正确;由图象可知:当﹣1<x<3时,y<0,故④错误;故正确的有①②③.故答案为①②③.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右..三、作图题(共4分)15.画出如图所示几何体的主视图、左视图.【考点】作图-三视图.【分析】分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.四、解答题(本题共9小题,共74分)16.解方程:(1)x2﹣6x=11(配方法)(2)(x+5)(x+1)=12.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x=11x2﹣6x+9=11+9(x﹣3)2=20,x﹣3=x1=3+2,x2=3﹣2;(2)(x+5)(x+1)=12,整理得:x2+6x﹣7=0,(x+7)(x﹣1)=0,x+7=0,x﹣1=0,x1=﹣7,x2=1.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程转是解此题的关键.17.如图,某高尔夫球手击出的高尔夫求的运动路线是一条抛物线,当球水平运动了24m 时达到最高点.落球点C比击球点A的海拔低1m,它们的水平距离为50m.(1)按如图所示的直角坐标系,求球的高度y(m)关于水平距离x(m)的函数关系式;(2)与击球点相比,球运动到最高点时有多高?【考点】二次函数的应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量,可得函数值.【解答】解:(1)以海拔0米为x轴,过最高点为y轴,可设函数关系式:y=ax2+b,函数图象过(﹣24,0)(26,﹣1),把坐标点(﹣24,0),(26,﹣1)代入y=ax2+b,得,解得2+5.76;(2)当x=0时,y=b=5.76,答:球运动到最高点时最高为5.76米.【点评】本题考查了二次函数的应用,建立平面直角坐标系是解题关键.18.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小颖和小凡做“石头、剪刀、布”游戏,如果两人的手势相同,那么小明获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小颖和小凡每次出这三种手势的可能性相同:(1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对三人公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列表得出所有等可能的情况数,找出两人手势相同的情况,求出小凡获胜的概率即可;(2)找出小明与小颖获胜的情况数,求出两人获胜的概率,比较即可得到结果.【解答】解:(1)列出表格,如图所示:石头剪刀布石头(石头,石头)(剪刀,石头)(布,石头)剪刀(石头,剪刀)(剪刀,剪刀)(布,剪刀)布(石头,布)(剪刀,布)(布,布)由列表可知所有等可能的情况有9种;(2)小明获胜的情况有3种,小颖获胜的情况有3种,∴P(小明获胜)=P(小颖获胜)==,∴P(小凡获胜)=,∴这个游戏对三人公平.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平19.在某次反潜演习中,我军舰A测得离开海平面的下潜潜艇C的俯角为37°,位于军舰A 正上方1100米的反潜飞机B測得此时潜艇C的俯角为67°,求前艇C离开海平面的下潜深度.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin67°≈,cos67°≈,tan26°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作CD⊥AB于点D.设AD=x米,在直角△ACD中利用三角函数利用x表示出CD,然后在直角△ACD中利用三角函数即可列方程求得x的值.【解答】解:作CD⊥AB于点D.设AD=x米,∵在直角△ACD中,∠ACD=37°,tan∠ACD=,∴CD====.∴BD=AB+AD=1100+x,∵直角△ACD中,∠DB C=23°,tan∠ACD=,∴=,解得:x=.答:潜艇下潜深度是米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.20.如图,正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,已知点A的横坐标为1,点B的纵坐标为﹣3.(1)请直接写出A、B两点的坐标;(2)求处这两个函数的表达式;(3)根据图象写出正比例函数的值不小于反比例函数的值的x的取值X围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点成中心对称,根据中心对称的性质从而求得A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入y=k1x(k1≠0)与y=即可求得k1,k2;(3)根据图象和交点A、B的坐标即可求得.【解答】解:(1)∵正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于点A、B两点,∴A、B关于原点成中心对称,∵点A的横坐标为1,点B的纵坐标为﹣3.∴A(1,3),B(﹣1,﹣3),(2)把A(1,3)代入正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0),得k1=3,k2=3,∴这两个函数的表达式为y=3x和y=;(3)由图象可知:正比例函数的值不小于反比例函数的值的x的取值X围为﹣1≤x<0或x >1.【点评】本题考查了反比例函数和一次函数的交点问题,根据题意求得A、B的坐标是解题的关键.21.已知,如图,在▱ABCD中,AC是对角线,AB=AC,点E、F分别是BC、AD的中点,连接AE,CF.(1)四边形AECF是什么特殊四边形?证明你的结论;(2)当△ABC的角满足什么条件时,四边形AECF是正方形?证明你的结论.【考点】正方形的判定;平行四边形的性质.【分析】(1)平行四边形的性质得出AD=BC,AD∥BC,求出AF=CE,AF∥CE,求出四边形AECF 是平行四边形,求出∠AEC=90°,即可得出答案;(2)求出AE=EC=BC,即可得出答案.【解答】(1)四边形AECF是矩形,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E、F分别是BC、AD的中点,∴AF=AD,CE=BC,∴AF=CE,AF∥CE,∴四边形AECF是平行四边形,∵AB=AC,E为BC的中点,∴AE⊥BC,∴∠AEC=90°,∴四边形AECF是矩形;(2)当△ABC满足∠BAC=90°时,四边形AECF是正方形,证明:∵∠BAC=90°,E为BC的中点,∴AE=EC=BC,∵四边形AECF是矩形,∴四边形AECF是正方形,∴当△ABC满足∠BAC=90°°时,四边形AECF是正方形.【点评】本题考查了矩形的判定、菱形的判定、正方形的判定,平行四边形的性质和判定,等腰三角形的性质,直角三角形的性质的应用,能综合运用知识点进行推理是解此题的关键.22.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y(元).(1)求出y与x之间的函数关系式及自变量x的取值X围;(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?【考点】二次函数的应用;二次函数的最值;根据实际问题列二次函数关系式.【专题】应用题;函数思想;二次函数的应用.【分析】(1)根据“实际销量=原计划销量﹣因价格提高减少的销量”表示出销售量,再根据:每周利润=每件利润×实际销售量可列出函数关系式;由销售量≥0确定x的取值X围;(2)将(1)中函数关系式配方成顶点式,依据顶点式可得其最大值.【解答】解:(1)根据题意,当销售单价定为x元时,其每周销售量为:400﹣20(x﹣40),则该商品每星期获得的利润y=(x﹣30)[400﹣20(x﹣40)]=﹣20x2+1800x﹣36000,即y=﹣20x2+1800x﹣36000,∵其每周销售量400﹣20(x﹣40)≥0且x>40,∴40<x≤60;(2)由(1)知y=﹣20x2+1800x﹣36000,配方得:y=﹣20(x﹣45)2+4500,∵﹣20<0,且40<45<60,∴当x=45时,y最大值=4500,答:销售单价为45元时,每星期获得的利润最大,最大利润是4500元.【点评】本题主要考查二次函数的实际应用能力,将实际问题根据相等关系建立二次函数关系是关键.23.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣xx2+(﹣x)2=12解得,x1=x2=∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:巳知边长为1的正方形ABCD,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)【考点】四边形综合题.【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【解答】解:探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣xx2+(﹣x)2=12整理得x2﹣x+1=0b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=2﹣x在Rt△AEB中,由勾股定理,得x2+(2﹣x)2=12整理得2x2﹣4x+3=0b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为:不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE=﹣x在Rt△AEB中,由勾股定理,得x2+(﹣x)2=12整理得2x2﹣2x+n﹣1=0b2﹣4ac=8﹣4n<0,。

黄岛区九上期末数学试卷

黄岛区九上期末数学试卷

一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,若f(2) = 7,则f(-1)的值为()A. 1B. 5C. 3D. 72. 下列各组数中,能构成等差数列的是()A. 1, 3, 5, 7B. 2, 4, 8, 16C. 1, 4, 9, 16D. 3, 6, 9, 123. 若等比数列{an}中,a1 = 2,公比q = 3,则第5项a5的值为()A. 18B. 54C. 162D. 4864. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 45. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则ac > bcC. 若a > b,则a + c > b + cD. 若a > b,则a - c > b - c6. 若复数z = a + bi(a,b为实数),且|z| = 1,则z的共轭复数是()A. a - biB. b - aiC. -a + biD. -a - bi7. 已知函数f(x) = -x^2 + 4x + 3,若f(x)的图像关于x = 2对称,则f(1)的值为()A. 2B. 3C. 4D. 58. 在直角坐标系中,点A(2, 3),点B(4, 1),则线段AB的中点坐标为()A. (3, 2)B. (3, 1)C. (4, 2)D. (2, 1)9. 已知三角形ABC中,AB = AC,∠B = 60°,则∠C的度数为()A. 60°B. 120°C. 180°D. 90°10. 下列函数中,在定义域内单调递增的是()A. y = -x^2B. y = 2x - 1C. y = x^2 + 2x + 1D. y = x^3二、填空题(每题5分,共20分)11. 若等差数列{an}中,a1 = 3,公差d = 2,则第10项a10 = ________。

黄岛初三期末数学试卷

黄岛初三期末数学试卷

一、选择题(每题3分,共30分)1. 已知等差数列{an}的公差d=3,若a1=2,则第10项an=()A. 29B. 31C. 33D. 352. 已知等比数列{bn}的公比q=2,若b1=3,则第5项bn=()A. 48B. 96C. 192D. 3843. 在直角坐标系中,点P(-3,2)关于x轴的对称点为()A.(-3,-2)B.(3,2)C.(3,-2)D.(-3,2)4. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 60°B. 45°C. 75°D. 30°5. 已知二次函数y=ax^2+bx+c(a≠0),若a>0,b<0,则该函数的图像()A. 开口向上,顶点在x轴上方B. 开口向上,顶点在x轴下方C. 开口向下,顶点在x轴上方D. 开口向下,顶点在x轴下方6. 若x^2+4x+3=0,则x的值为()A. -1,-3B. 1,3C. -2,2D. -4,47. 已知一次函数y=kx+b的图像经过点(2,3),则该函数的斜率k=()A. 1B. 2C. -1D. -28. 在△ABC中,∠A=90°,a=6,b=8,则△ABC的面积S=()A. 24B. 30C. 36D. 409. 已知等差数列{an}的公差d=2,若a1+a4+a7=30,则a1=()A. 3B. 5C. 7D. 910. 已知等比数列{bn}的公比q=3,若b1+b2+b3=27,则b1=()A. 3B. 9C. 27D. 81二、填空题(每题5分,共50分)11. 已知等差数列{an}的公差d=5,若a1=10,则第8项an=______。

12. 已知等比数列{bn}的公比q=4,若b1=2,则第5项bn=______。

13. 在直角坐标系中,点P(1,-2)关于y轴的对称点为______。

14. 在△ABC中,∠A=50°,∠B=70°,则∠C=______。

黄岛初三期末数学试卷

黄岛初三期末数学试卷

一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x - 3,那么f(-1)的值为:A. -5B. -1C. 1D. 52. 下列命题中,正确的是:A. 等腰三角形的底角相等B. 等边三角形的内角都是直角C. 平行四边形的对边平行D. 相似三角形的对应边成比例3. 若一个数列的前三项分别是2,4,6,那么这个数列的通项公式是:A. an = 2nB. an = 2n + 1C. an = 2n - 1D. an = 2n - 24. 下列函数中,定义域为实数集R的是:A. y = √(x - 1)B. y = 1/xC. y = x^2D. y = |x|5. 若a、b是方程x^2 - 5x + 6 = 0的两个根,那么a + b的值为:A. 5B. -5C. 6D. -66. 在△ABC中,∠A = 45°,∠B = 30°,那么∠C的度数是:A. 75°B. 105°C. 120°D. 135°7. 若等差数列{an}的前n项和为Sn,且S5 = 25,公差d = 2,那么a1的值为:A. 1B. 3C. 5D. 78. 下列不等式中,恒成立的是:A. x + 1 > xB. x - 1 > xC. x^2 + 1 > xD. x^2 - 1 > x9. 若函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),那么a的值为:A. 1B. -1C. 2D. -210. 在直角坐标系中,点P(2,3)关于直线y = x的对称点坐标为:A. (2,3)B. (3,2)C. (-2,-3)D. (-3,-2)二、填空题(每题5分,共50分)11. 若一个等差数列的前三项分别是2,4,6,那么这个数列的公差是______。

12. 若函数f(x) = x^2 - 2x + 1,那么f(3)的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-
2017学年山东省青岛市黄岛区九年级上学期
期末数学试卷
一、选择题
1.下面四个几何体中,其主视图为圆形的是(??)
A、B、C、D、
+
2.在△ABC中,∠C=90°,AB=5,BC=3,则sinB的值是(??)
A、B、C、D、
+
3.抛物线y=x2﹣2x+3的顶点坐标是(??)
A、(1,3)
B、(﹣1,3)
C、(1,2)
D、
(﹣1,2)
+
4.
甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(??)
A、从一个装有2个白球和1个红球的袋子中任取两球,取到两个白球的概率
B、任意写一个正整数,它能被2整除的概率
C、抛一枚硬币,连续两次出现正面的概率
D、掷一枚正六面体的骰子,出现1点的概率
+
5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数
y=
(k<0)的图象上,那么y1,y2与y3的大小关系是(??)
A、y3<y1<y2
B、y3<y2<y1
C、y1<y2<y3
D、y1<y3<y2
+
6.如图,已知小鱼与大鱼是位似图形,则小鱼的点(a,b)对应大鱼的点(??)
A、(﹣a,﹣2b)
B、(﹣2a,﹣b)
C、(﹣2b,﹣2a)
D、(﹣2a,﹣2b)
+
7.
如图,已知四边形ABCD是平行四边形,从下列条件:①AB=BC,②∠ABC=90 °,
③AC=BD,④AC⊥BD中,再选两个做为补充,使?ABCD变为正方形.下面四
种组
合,错误的是(??)
A、①②
B、①③
C、②③
D、②④
+
8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()
A、B、C、D、
+
二、填空题
9. cos45°﹣sin30°tan60°= .
+
10.
把抛物线y=﹣2x2的图象先向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为.
+
11.
某企业前年缴税30万元,今年缴税36.3万元.那么该企业缴税的平均增长率
为.
+
12.如图,l1∥l2∥l3,两条直线与这三条平行线分别交于点A,B,C和D,E,F.
若AB=4,BC=3,DE=6,则DF= .
+
13.如图,在?ABCD中,AM= AD,BD与MC相交于点O,则S△MOD:S△COD
= .
+
14.
已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则关于x的一元一次方程ax2+bx+c=2(a≠0)的解为.
+
三、作图题
15.已知某四棱柱的俯视图如图所示,画出它的主视图和左视图.
+
16.解答题。

(1)、解方程:x2﹣2x﹣
3=0
(2)、若关于x的方程2x2﹣5x+c=0没有实数根,求c的取值范围.
+
四、四.解答题
小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.
+
18.
我们知道,蓄电池的电压为定值,使用此电源时,用电器的电流I(A)与电阻R (Ω)成反比例.已知电阻R=7.5Ω时,电流I=2A.
(1)、求确定I与R之间的函数关系式并说明此蓄电池的电压是多少;
(2)、若以此蓄电池为电源的用电器额定电流不能超过5A,则该电路中电阻的
电阻值应满足什么条件?
+
19.
小华为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达
坡顶D处.已知斜坡的坡角为15°.小华的身高ED是1.6m,他站在坡顶看楼顶
A处的仰角为45°,求楼房AB的高度.(计算结果精确到1m)
(参考数据:sin15°=,cos15°= ,tan15°= )
+
如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,建立如图所示的直角坐标系.
(1)、求该抛物线的函数表达式,并求出自变量x的取值范围;
(2)、一大型货运汽车装载大型设备后高为6m,宽为4m.如果该隧道内设双向
行车道,那么这辆货车能否安全通过?
+
21.
已知:如图,?ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的
平行线BF,交CE的延长线于点F,连接AF.
(1)、求证:△FBE≌△COE;
(2)、将?ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.
+
22.
服装厂生产某品牌的T恤衫,每件成本是10元,根据调查,服装厂以批发单价
13元给经销商,经销商愿意经销1000件,并且表示每件降价0.1元,愿意多经
销100件,所以服装厂打算即不亏本,又要低于13元的单价批发给经销商.(1)、求服装厂获得利润y(元)与批发单价x(元)之间的函数关系式,并写出自变量x的取值范围;
(2)、服装厂批发单价是多少时可以获得最大利润?最大利润是多少?
+
问题提出:如图(1),在边长为a (a >2)的正方形ABCD 各边上分别截取AE=BF
=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求S 正方形MNPQ
. 问题探究:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形( 如图(2)).
(1)、若将上述四个等腰三角形拼成一个新的正方形(无缝隙,不重叠),则新 正方形的边长为
;这个新正方形与原正方形ABCD 的面积有何关系
;(填“>”,“=”“或<”);通过上述的分析,可以发现S 正方形MNPQ 与S △FSB 之间 的关系是 :
(2)、问题解决:求S 正方形MNPQ
(3)、拓展应用:如图(3),在等边△ABC 各边上分别截取AD=BE=CF=1,再分 别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△PQR ,求S △PQR . .
(请仿照上述探究的方法,在图3的基础上,先画出图形,再解决问题). +
24.
如图,在△ABC 中,AB=AC=10cm ,BC=12cm ,点P 从点C 出发,在线段CB 上以 每秒1cm 的速度向点B 匀速运动.与此同时,点M 从点B 出发,在线段BA 上以 每秒lcm 的速度向点A 匀速运动.过点P 作PN ⊥BC ,交AC 点N ,连接MP ,MN . 当点P 到达BC 中点时,点P 与M 同时停止运动.设运动时间为t 秒(t >0).
(1)、当t为何值时,PM⊥AB.
(2)、设△PMN的面积为y(cm2),求出y与x之间的函致关系式.
(3)、是否存在某一时刻t,使S△PMN:S△ABC=1:5?若存在,求出t的值;若不存在,说明理由.
+。

相关文档
最新文档