热喷涂概述与材料.
热喷涂材料简介
喷涂用的钼其纯度在99.95%以上,既可是线材也可是粉末。由于钼与钢铁材料之间有良好的联合性能,所以常用作打底层材料,钼涂层还具有较好的耐磨性,而且钼仍是耐热浓盐酸的独一金属。
4、镍和镍合金
纯镍具有较好的耐腐蚀性能,是耐热浓碱液腐蚀最好金属材料,但不耐氧化性酸。
镍铬合金是目前使用极广的耐磨、耐腐蚀材料,它们既具有良好的耐酸、耐碱性、又具有良好的耐热性,其耐磨性随铬和碳量的增长而增加。
自熔性合金的三种典型就是铁铬硼硅系列、镍铬硼硅系列和钴铬钨系列。
铁基合金存在很好的耐磨性和必定的耐蚀性,因其价廉而被普遍用于个别机械零件量与含碳量而定,普通在HRC25~60或更高。
2、铜及铜合金
高纯度的铜可以制成导电涂层和美术装饰涂层(好比用于雕塑制品的喷涂)。在铝青铜中加入少量铁、镍、锰元素就具有很好的耐蚀性能,特别是抗海水腐蚀才能很强,难熔于硫酸和盐酸,但易溶于硝酸,此外耐蚀疲劳性和耐磨性能也很好。磷青铜具有很好的耐磨性,可用于轴承的耐磨涂层,磷青铜涂层呈漂亮的淡**,所以也可用于装潢性涂层。
热喷涂材料
金属及合金是热喷涂中利用最广、种类最多的材料。因为金属大多具备延展性,所以它们既可制成粉末又可制成线材。转变合金中元素的成分可以得到各种所需的物感性能和化学性能。
1、铝、锌及合金
铝和锌以及它们的合金,是运用最早的热喷涂材料,最初它们是用于熔线式喷涂。粉末式喷涂方法出现后也有制成粉末材料涌现的。
铝和锌的电动顺序都在铁之前,都是比铁活跃的元素,所以将它们广泛用于钢铁构件的防腐涂层,既可耐大气腐蚀、也可以作为就义阳极,对钢铁基体起到电化学掩护作用。国外通过对铝涂层的海水浸渍实验,证实其耐海水腐蚀性能良好,经由6年海水浸渍的试样,几乎未发明腐蚀。铝和锌涂层,如再进行封孔处理,其耐腐蚀性能会有所提高。
热喷涂概述
( 2 )喷涂过程中基体表面受热的程度较小
而且可以控制 , 因此可以在各种材料上进行喷
涂 ( 如金属、陶瓷、玻璃、布疋、纸张、塑料 等),并且对基材的组织和性能几乎没有影响,工 件变形也小。 (3)设备简单、操作灵活, 既可对大型构件
进行大面积喷涂 , 也可在指定的局部进行喷涂;
既可在工厂室内进行喷涂也可在室外现场进行 施工。
由于喷涂颗粒以超音速飞行而撞击到基体 表面,所以HVOF喷涂涂层的结合强度、密度
和硬度都非常高。
高速(可使颗粒获得高的动能和较短的氧 化暴露时间)和相对较低的温度是HVOF热喷 涂工艺方法最重要的两个特征。
(4)电弧喷涂 电弧喷涂是在两根丝状的金属材料之间产生 电弧, 电弧产生的热使金属丝熔化, 熔化部分由压
五、热喷涂技术的分类 依据GB/T1872-2002颁布的分类方 法有三种: 热喷涂材料类型 操作方法 热源
(1)按热喷涂材料类型分类
• • • • • 线材喷涂 棒材喷涂 芯材喷涂 粉末喷涂 熔液喷涂 wire spraying rod spraying cord spraying powder spraying molten bath spraying
预热温度取决于工件的大小、形状和材质,
以及基材和涂层材料的热膨胀系数等因素,一般 情况下预热温度控制在60 - 120 ℃之间。
(3)喷涂
• 采用何种喷涂方法进行喷涂主要取决于选用的喷涂 材料、工件的工况及对涂层质量的要求。 • 陶瓷涂层:最好选用等离子喷涂; • 碳化物金属陶瓷涂层:最好采用高速火焰喷涂;
二、热喷涂技术的定义
GB/T18719—2002《热喷涂 术语、分类》中
定义:
热喷涂技术是利用热源将喷涂材料 加热至溶化或半溶化状态并以一定的速 度喷射沉积到经过预处理的基体表面形 成涂层的方法。
7.4热喷涂技术
二)应用范围 1、机体等壳体类零件,油箱等薄板件和电瓶等非金属制品 破裂的粘补; 2、铸件砂眼、气孔的粘补; 3、离合器、制动带摩擦片的粘接,以替代铆接;
4、连接面的密封、堵漏;
5、可做为绝缘及防腐涂层; 6、零件表面磨损、划伤的修复; 7、零件表面腐蚀的修复。
一)胶接的特点 优点: 1、不受母材的影响,可连接和粘补各种不同的金属材料 和非金属材料,并不受形状和尺寸的限制; 2、接头应力分布均匀,避免因热影响区所引起的变形损 坏缺陷; 比焊、铆、螺栓连接的疲劳强度高十多倍,且能吸震、阻 尼振动。 3、可节省紧固件或焊条金属,减轻连接重量; 4、粘接表面平整,具有良好的密封、耐水、耐腐蚀和绝 缘性能; 5、粘接工艺简单,操作简便,不需复杂设备,成本较低。
2、有机胶按其胶接接头的受力情况分 1)通用胶: 常温固化,综合性能好;
2)结构胶: 强度较高,能承受较大载荷;
3)特殊用途胶: 导电,耐高、低温和密封。 另外,还可按包装、固化温度、使用温度等分类。
Hale Waihona Puke 二、粘接基本原理 粘接是靠胶在被粘接件之间的机械、物理及化学作用而进 行连接。要使粘接牢固,粘接处胶层必须有足够的内聚强度, 胶层与粘接面间则应有足够的粘附强度,才不致产生破坏。 1、粘接的破坏形式 内聚破坏、粘附破坏和综合破坏。
硼、硅的作用 氧-乙炔喷焊是采用子熔性合金粉末材料。所谓子熔性主要 指在案合金粉末中加入硼、硅元素,其作用是: 1)降低合金熔点 2)增强合金的子脱氧作用
3)提高合金的浸润性
4)提高合金的硬度 根据合金粉末的基本组成元素,自熔合金粉末可分为: 镍基、钴基、铁基以及碳化钨弥散型四大类。
第三章热喷涂
①火焰类,包括火焰喷涂、爆炸喷涂、超音速喷 涂;
②电弧类,包括电弧喷涂和等离子喷涂; ③电热法,包括电爆喷涂、感应加热喷涂和电容
放电喷涂; ④激光类:激光喷涂。
15
二、粉末火焰喷涂
图3-1 粉末火焰喷涂原理 1-氧-乙炔混合气 2-氧气 3-喷枪 4-粉末 5-火焰 6-喷涂层
作气体23等离子喷涂原理241工件2喷涂层6绝缘套3前枪体4冷却水出口7冷却水进口8钨电极5等离子气进口9后枪体10送粉口等离子喷涂设备工位布置示意图251喷枪2送粉器3控制柜4等离子气和送粉气瓶5直流电源6冷却水进口7冷却水出口影响涂层质量的工艺参数?等离子气体?电弧的功率?供粉?喷涂距离和喷涂角?喷枪与工件的相对运动速度?喷枪与工件的相对运动速度26?基体温度控制真空等离子喷涂又叫低压等离子喷涂?真空等离子喷涂是在气氛可控的440kpa的密封室内进行喷涂的技术
3
热喷涂涂层的结构特点
热喷涂涂层形成过程决定了涂层的结构特 点,喷涂层是由无数变形粒子相互交错呈 波浪式堆叠在一起的层状组织结构,涂层 中颗粒与颗粒之间不可避免地存在一些孔 隙和空洞,并伴有氧化物夹杂,其特点为 :
* 呈层状 * 含有氧化物夹杂 * 含有孔隙或气孔
4
热喷涂涂层的结合机理
热喷涂金属涂层是研究和应用较早的耐磨 涂层,常用的有金属(Mo、Ni)、碳钢和低合金 钢、不锈钢和Ni-Cr合金系列涂层。一般采用 火焰喷涂、电弧喷涂、等离子喷涂、HVOF及 爆炸喷涂工艺,涂层具有与基体的结合强度较 高,耐磨、抗腐蚀性能较好等优点,用于修复 磨损件及机械加工超差件。
41
采用铝系合金等离子喷涂技术对活塞环、同步 环及气缸等零件进行喷涂时,涂层具有良好的耐 磨性、高结合强度及优异的耐粘着磨损性,在有 润滑油的条件下具有良好的抗咬死性和抗拉伤性 能。高碳钢丝、不锈钢(Crl3型、 18-8型等)合金丝 是常用的耐磨耐蚀喷涂材料。具有强度较高、耐 磨性好、来源广泛、价格低廉等特点。NiCr涂层 具有较好的耐热、抗腐蚀及抗冲蚀磨损的性能, 可作为电站锅炉的过热器管和再热器管的防护涂 层,采用火焰和等离子喷涂方法可制备具有不同 组织结构的NiCr金属耐磨涂层,涂层中孔隙率和 氧化物含量较高。
热喷涂综述 一、热喷涂的定义 热喷涂技术,是采用某种高温热源,将欲涂
热喷涂综述一、热喷涂的定义热喷涂技术,是采用某种高温热源,将欲涂覆的涂层材料熔化或至少软化,并用气体使之雾化成微细液滴或高温颗粒,高速喷射到经过预处理的基体表面形成涂层的技术。
当热源的比能量足以使基体表面发生薄层熔化,与喷射的熔融颗粒形成完全致密的冶金结合涂层时,称为热喷焊,简称喷焊。
使用高温热源,如氧——可燃气体燃烧火焰、电弧、等离子电弧、激光束、爆炸能等,是热喷涂技术区别于其他喷涂方法和表面涂覆方法的主要特征。
不同热源的最高温度列于附表。
附表:不同热源的最高温度二、热喷涂技术的特点采用热喷涂技术,制备各种表面强化和表面防护涂层,具有许多独特的优点:(1)能够喷涂的材料范围特别广,包括各种金属及合金、陶瓷及金属陶瓷、塑料、非金属矿物等几乎所有固态工程材料。
因而能够制备耐磨、减摩、耐蚀、耐高温、抗氧化、绝缘、导电、催化、辐射、防辐射、抗干扰、超导、非晶态及生物功能等各种功能涂层;(2)能够在多种基体材料上形成涂层,包括金属基体、陶瓷基体、塑料基体、石膏、木材甚至纸板上都能喷涂,被喷涂的材料范围也十分广泛;(3)一般不受被喷涂工件尺寸和施工场所的限制,既可厂内施工,也可现场施工;(4)涂层沉积效率较高,特别适合沉积薄膜涂层。
涂层厚度可以控制,从几十微米到几毫米甚至可厚达 20mm;(5)除喷焊外,热喷涂施工对基体的热影响很小,基体受热温度不超过200℃,基体不会发生变形和性能变化;(6)在满足强度要求的前提下,制件基体可以采用普通材料代替贵重材料,仅涂层使用优质材料,使“好钢用在刀刃上”;(7)热喷涂施工艺灵活,方便,迅速,适应性强。
当然,热喷涂技术也有如下一些缺点:(1)除喷焊外,热喷涂涂层与基体的结合主要是物理机械结合,结合强度不大高,涂层耐冲击和重载性能较差;(2)喷涂涂层含有不同程度的孔隙,对于耐腐蚀、抗氧化、绝缘等应用,一般不如整体材料。
但可通过复合涂层系统设计等方法予以改进提高;(3)喷涂小件时,涂层材料的收得率低;(4)热喷涂手工操作时的劳动条件较差,有噪音、粉尘、热和弧光辐射问题,必须注意劳动保护措施。
热喷涂技术及应用
热喷涂技术及应用学校:西南大学班级:材料科学与能源学部学号:***************姓名:***热喷涂技术及应用㈠热喷涂的定义热喷涂是利用热源讲喷涂材料加热到熔化或半融化状态,用高速气流将其雾化并喷射到基体表面形成涂层的技术。
热喷涂技术在普通材料的表面上,制造一个特殊的工作表面,使其达到:防腐、耐磨、减摩、抗高温、抗氧化、隔热、绝缘、导电、防微波辐射等一系多种功能,使其达到节约材料,节约能源的目的,我们把特殊的工作表面叫涂层,把制造涂层的工作方法叫热喷涂。
㈡热喷涂基本原理⒈热喷涂的基本过程①喷涂材料被加热到熔化或半融化状态②喷涂材料的熔滴被雾化③雾化或软化的微细颗粒喷射飞行④微小颗粒撞击基体表面并形成涂层⒉涂层的结构热喷涂涂层是由燃烧火焰或等离子热源将某种材料加热至熔化或热塑性状态,形成一簇高速的熔态粒子流(熔滴流),熔滴依次撞击基体或已形成的涂层表面,经过粒子的横向流动扁平化、急速凝固冷却、不断堆积起来而形成的。
由于热喷涂涂层为典型的层状结构,所以涂层的性能具有方向性。
在垂直和平行涂层为向上的性能有显著的差异。
对涂层进行适当地处理和重熔,既可以使层状结构转变为均质结构,还可以消除层状中的氧化物夹杂和气孔。
⒊涂层的结合方式涂层的结合包括涂层与基体表面的结合和涂层内聚的结合。
前者的结合强度称为结合力。
后者的结合强度称为内聚力。
涂层的一般结合方式有三种:①机械结合熔融态的粒子撞击基体表面并快速冷却凝固时,会因收缩而咬住高低不平的基体部分,形成了机械结合。
②物理结合借助于分子(原子)之间的范德华力是喷涂层附着于基体表面的结合方式。
③冶金结合当熔融的微细颗粒高速撞击基体表面是时,涂层和基体界面出现扩散和合金化时的一种结合方式。
⒋涂层的残余应力一般情况下,热喷涂涂层存在着明显的残余应力。
当熔融颗粒高速碰撞碰撞基体表面,在产生形变的同时快速冷却凝固,这时会在颗粒内部产生张应力,而在基体表面产生压应力。
热喷涂再制造技术(初稿)
热喷涂再制造技术1 概述1.热喷涂是一种材料表面强化和表面改性的新技术,是表面工程技术的重要组成部分,一直是我国重点推广的新技术项目.它是利用某种热源(如电弧、等离子喷涂或燃烧火焰等)将粉末状或丝状的金属或非金属材料加热到熔融或半熔融状态,然后借助焰留本身或压缩空气以一定速度喷射到预处理过的基体表面,沉积而形成具有各种功能的表面涂层的一种技术。
它可以使基体表面具有耐磨、耐蚀、耐高温氧化、电绝缘、隔热、防辐射、减磨、密封等性能。
原则上讲可在任何固体物质上喷涂。
可喷涂的材料有金属、合金、塑料、陶瓷、金属陶瓷以及它们的复合物等等。
热喷涂技术的应用主要包括:长效防腐、机械修复及先进制造技术、模具制作与修复、制造特殊的功能涂层等四个方面。
目前,热喷涂技术已广泛应用于几乎所有工业领域以及家庭用品(如不粘锅、红外线保健电热器等)。
2.热喷涂原理:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备的基体表面,形成某种喷涂沉积层。
涂层材料可以是粉状、带状、丝状或棒状。
热喷涂枪由燃料气、电弧或等离子弧提供必需的热量,将热喷涂材料加热到塑态或熔融态,再经受压缩空气的加速,使受约束的颗粒束流冲击到基体表面上。
冲击到表面的颗粒,因受冲压而变形,形成叠层薄片,粘附在经过制备的基体表面,随之冷却并不断堆积,最终形成一种层状的涂层。
该涂层因涂层材料的不同可实现耐高温腐蚀、抗磨损、隔热、抗电磁波等功能,如下图所示。
3.定义:热喷涂是指采用氧—乙炔焰、电弧、等离子弧、爆炸波等提供不同热源的喷涂装置,产生高温高压焰流或超音速焰流,将要制成涂层的材料如各种金属、陶瓷、金属加陶瓷的复合材料、各种塑料粉末的固态喷涂材料,瞬间加热到塑态或熔融态,高速喷涂到经过预处理(清洁粗糙)的零部件表面形成涂层的一种表面加工方法。
我们把特殊的工作表面叫“涂层”,把制造涂层的工作方法叫“热喷涂”,它是采用各种热源进行喷涂和喷焊的总称。
表面涂镀层技术--热喷涂
喷涂层形成过程
1.喷涂过程
①喷涂材料的加热熔化
喷涂材料被加热达到熔化或半熔化状态
②熔滴的雾化
喷涂材料熔化后,在高速气流的作用下,熔滴
被击碎成小颗粒呈雾状;粉末无,线材,外加压
缩气流或热源自身射流
12/118
③粒子的飞行
细小的雾状颗粒在气流的推动下向前飞行,颗 粒获得一定的动能;先加速、后减速
④粒子的喷涂
在产生碰撞瞬间,颗粒的动能转化成热能付 予基材,并沿预处理的凹凸不平表面产生变 形,变形的颗粒迅速冷凝并产生收缩,呈扁 平状粘结在基材表面。
尺寸,几十微米~几百微米;
速度,几十~几百米/秒;
温度,熔点
碰撞,动能→热能;
变形成扁平状粒子,凝固
13/118
2. 涂层的形成过程
由不断飞向基体表面的粒子撞击基体或涂层表面 堆积而成
等离子弧—压缩电弧,弧柱细、电流密度大、电离度高 温度高、能量集中、弧稳定性好
三种形式: 非转移弧 阴极和喷嘴之间,工件不带电——喷涂 转移弧 工件接正极——焊接、切割 联合弧 喷嘴、工件均接正极 温度 中心30000K,出口15000-20000K 速度 出口1000~2000m/s,工件>150m50//s118
①涂层材料取材范围广 金属、合金、陶瓷、塑料、尼龙、复合材料等。 ②可用于各种基体
金属、陶瓷、玻璃、石膏、布、纸、木材等固体 ③可使基体保持较低温度、基材变形小
冷工艺30~200℃、不变形、不弱化 ④工艺灵活
可10mm内孔,也可大型构件;可大面积,也可局部; 保护性气氛,也可现场作业
9/118
⑤工效高、操作程序少、速度快 每小时几公斤~几十公斤
→ 燃烧室混合 → 爆炸式燃烧 → 高速通过膨胀管获得超音速
熔射(热喷涂工艺)
2.热喷涂的形成过程 2.3 涂层成分与结构
一般情况下,涂层成分中的合金元素含量 与原喷涂材料是有所差异的,其原因在于:
① 粒子在高温下蒸发 ② 粒子在高温下烧损 ③ 粒子在高温下表面发生反应
2.4 热喷涂层的结合机理
热喷涂的结合方式可分为:机械结合和冶金化学结合 1.机械结合 熔化或接近熔化的粒子在喷涂时撞击到基体 表面产生变形、镶嵌、咬合和填塞,最后冷凝收缩,形成 机械的结合,这是涂层结合的主要形态。 2.冶金-化学结合 涂层结合的次要形态,当涂层与基体表 面出现扩散和合金化时的一种结合类型,但其结合力比机 械结合大的多,由三部分组成:
粒子的尺寸、粒子的飞行距离等因素有关。
黄铜、钼及锌的线材气体火焰喷涂时,在粒子的飞行 距离为100mm处,三种粒子的平均飞行速度分别为120, 65,140m/s。
爆炸喷涂时粒子的飞行速度更大,可高达1000m/s。
飞行速度的大小影响粒子与基体表面碰撞时转换能量 的大小、粒子的变形程度以及结合强度。
主要内容
1 热喷涂的定义与特点 2 热喷涂的基本原理 3 热喷涂工艺 4 热喷涂材料的工艺性能及分类 5 热喷涂层的后处理
1.热喷涂的定义与特点
★ 定义 采用一定的热源,将喷涂材料加热到熔融或半熔融状态,
通过高速气流使其雾化,然后喷射、沉积到工件表面,形成 喷涂沉积层的一种表面覆盖方法。
1.热喷涂的定义与特点
4.热喷涂材料的工艺性能及分类
4.2 热喷涂材料分类 热喷涂材料按形态可分为:
粉末:等离子喷涂、爆炸喷涂和气体火焰喷涂。 线材及棒材:主要用于气体火焰喷涂,电弧喷涂和线爆喷 涂。
热喷涂材料按材质可分为: 金属及其合金陶瓷、金属间化合物、塑料、玻璃和陶瓷等。
热喷涂行业知识
热喷涂行业知识
热喷涂是一种表面处理技术,通过将粉末、金属丝或其他材料加热至熔融状态,然后以高速喷射到工件表面形成涂层的方法。
热喷涂技术具有制备工艺简单、涂层质量高、适用范围广等优点,被广泛应用于航空航天、石油化工、钢铁冶金等领域。
以下是热喷涂行业的一些知识:
1. 热喷涂技术分类
热喷涂技术主要分为火焰喷涂、电弧喷涂、等离子喷涂、超音速喷涂等几类。
不同的热喷涂技术适用于不同的材料和工件表面,具有不同的特点和优缺点。
2. 热喷涂材料
热喷涂材料主要包括金属粉末、非金属粉末和金属丝材等。
金属粉末主要有铝、镍、钛等,非金属粉末主要有陶瓷、石墨等,金属丝材主要有钨、钼、钢等。
3. 热喷涂工艺
热喷涂工艺主要包括预热、喷涂、冷却和固化等步骤。
在喷涂过程中,需要控制喷枪的距离、速度和角度等参数,以保证涂层的均匀性和质量。
4. 热喷涂应用
热喷涂技术被广泛应用于各种领域,如航空航天、石油化工、钢铁冶金、电力等。
在这些领域中,热喷涂技术主要
用于强化金属表面性能、提高耐腐蚀性、耐磨损性和导电性等。
总之,热喷涂技术是一种表面处理技术,具有制备工艺简单、涂层质量高、适用范围广等优点,被广泛应用于航空航天、石油化工、钢铁冶金等领域。
热喷涂行业的发展前景广阔,未来将会有更多的创新和应用。
第五章-热喷涂技术PPT课件
表面粗化处理与清洗过程同样重要。工件表面经过粗化处理后, 可以增大工件表面的活性和增大喷涂层的接触面积,在有些情况 (如喷砂)还可以使工件产生表面压应力,有助于增强工件的抗疲 劳性能。
热喷涂的基本工艺流程图如图2所示
工件表面制备
喷
涂
表 表 表预
底
面面面
净 化
预 加 工
粗热 化
层
喷
喷后处理
涂
工
机封
作
械
层
加 工空
图2 热喷涂的基本工艺流程图
2021
19
1)表面净化
喷涂前,首先须将待喷涂表面净化,彻底清除附着在表面的油 污、油漆、氧化物等,显露出新鲜的金属表面。
2)表面预加工
表面预加工的主要目的是预留一定的喷涂层厚度。
2021
11
涂层形成过程示意图如下:
冲击
碰撞
变形
图1 涂层形成过程示意图
2021
凝固-收缩
12
热喷涂原理示意图
2021
13
涂层形成示意图
2021
14
涂层的结构
涂层结构示意图
2021
15
涂层的形成过程表明,涂层是由无数变形粒子互相交错呈波浪式 堆叠在一起而形成的层状组织结构。
在喷涂过程中由于熔融的颗粒在熔化、软化、加速及飞行及基材表 面接触过程中与周围截至发生了化学反应,使得喷涂材料经喷涂后 会出现氧化物,而且,由于颗粒的陆续堆叠和部分颗粒的反弹散失, 在颗粒之间不可避免地存在一部分孔隙式空洞。因此,喷涂层是由 变形颗粒,气孔和氧化物所组成。
2021
8
热喷涂的主要应用特性
与其他表面工程技术相比,热喷涂在实用性方面有以下方 面的特点:
热喷涂原理及介绍
热喷涂原理及介绍1.热喷涂原理及介绍热喷涂技术是表面工程领域的重要技术之一,它的原理是利用各种不同的热源,将预喷涂的各种材料如金属、合金、陶瓷、塑料及其各类复合材料加热至熔化或熔融状态,借助气流的高速雾化形成微粒雾流沉积在已预处理的工件表面形成堆积状,与基体紧密结合的涂层。
而将Ni-Cr-B-Si系列喷涂层进行重熔处理形成的具有冶金结合特征的涂层称为喷熔层或重熔层。
热喷涂技术可用来喷涂几乎所有的固体工程材料,如硬质合金、陶瓷、金属、石墨和尼龙等,形成耐磨、耐蚀、隔热、抗氧化、绝缘、导电、防辐射等具有各种特殊功能的涂层。
该技术还具有工艺灵活、施工方便、适应性强及经济效益好等优点,被广泛应用于宇航、机械、化工、冶金、地质、交通、建筑等工业部门,并获得了迅猛的发展。
从喷涂材料进入热源到形成涂层称喷涂过程,一般经历四个阶段既加热、雾化、飞行和沉积。
首先是喷涂材料被加热熔化或软化阶段。
当端部材料进入热源的高温区域,即被加热,形成熔滴,进而形成的熔滴,在外加压缩气流或热源自身射流的作用下,雾化成细微的熔粒。
第二阶段熔粒流飞行过程中,被加速。
当这些具有一定温度和速度的颗粒以一定的动能冲击基材表面,产生强烈的碰撞,在碰撞瞬间,颗粒的动能转化成热能传给基材,并沿凹凸不平的表面产生变形,变形的颗粒迅速冷凝并产生收缩,呈扁平状连续不断地沉积在基材表面,从而形成涂层。
众所周知,除少数贵金属外,金属材料会与周围介质发生化学反应和电化学反应而遭受腐蚀。
此外,金属表面受各种机械作用而引起的磨损也极为严重,大量的金属构件因腐蚀和磨损而失效,造成极大的浪费和损失。
据一些工业发达国家统计,每年钢材因腐蚀和磨损而造成的损失约占钢材总产量的10%,损失金额约占国民经济总产值的2-4%。
如果将因金属腐蚀和磨损而造成的停工、停产和相应引起的工伤、失火、爆炸事故等损失统计在内的话,其数值更加惊人。
因此,发展金属表面防护和强化技术,是各国普遍关心的重大课题。
热喷涂 纳米氧化锆粉末及涂层制备工艺技术条件
热喷涂纳米氧化锆粉末及涂层制备工艺技术条件简介任务背景热喷涂技术是一种常用的表面涂覆技术,用于在材料表面形成陶瓷涂层,提高材料的硬度、耐磨性和耐腐蚀性能。
在热喷涂过程中,选择合适的喷涂材料对于获得优质涂层至关重要。
其中,纳米氧化锆粉末作为一种常用的喷涂材料,具有出色的耐磨、耐腐蚀和高温抗氧化性能。
工艺目标本文将探讨纳米氧化锆粉末的制备工艺及其在热喷涂过程中的应用技术条件,旨在提供一种可行的方法,以获得高质量的氧化锆涂层。
纳米氧化锆粉末制备工艺原料准备氧化锆粉末选择选择具有较高纯度和较小颗粒大小的氧化锆粉末,以确保喷涂材料的质量。
粉末后处理方法通过球磨、机械混合等方法处理氧化锆粉末,以获得较小的粒径和均匀的颗粒分布。
纳米氧化锆粉末制备水热合成法1.将预处理过的氧化锆粉末悬浮于适量的水溶液中。
2.在恒定的温度和压力条件下进行水热反应,使氧化锆粉末与水溶液中的离子发生反应生成纳米氧化锆颗粒。
3.过滤、干燥和研磨得到纳米氧化锆粉末。
气相沉积法1.利用化学气相沉积设备,在高温条件下将气态的锆化合物分子分解生成纳米氧化锆颗粒。
2.调节反应温度、气体流量和反应时间等参数,实现纳米颗粒的控制生长和分散性。
纳米氧化锆涂层热喷涂工艺喷涂设备选择选择适合纳米氧化锆粉末喷涂的热喷涂设备,常用的包括等离子喷涂、电弧喷涂和火焰喷涂等。
气氛控制在喷涂过程中,维持合适的气氛,以避免杂质对涂层质量的影响。
可以通过惰性气体保护气氛,如氩气或氮气。
涂层结构控制调节喷涂工艺参数,如喷涂速度、喷涂距离和喷涂角度等,以控制生成的纳米氧化锆涂层的结构和性能。
纳米氧化锆涂层性能评价涂层硬度测试使用硬度计或类似仪器测试涂层的硬度,以评估其耐磨性和耐腐蚀性能。
显微结构观察使用扫描电子显微镜(SEM)观察涂层的表面形貌和颗粒分布情况,以评估涂层的致密性和均匀性。
热稳定性测试将纳米氧化锆涂层置于高温环境中,观察其抗高温氧化性能和热稳定性。
摩擦磨损性能测试通过旋转摩擦测试机等设备,评估纳米氧化锆涂层在摩擦条件下的耐磨性能。
热喷涂在制氢电极上的应用_概述说明以及解释
热喷涂在制氢电极上的应用概述说明以及解释1. 引言1.1 概述:随着环境问题和能源危机的不断加剧,制氢技术作为一种清洁能源的解决方案受到了广泛关注。
制氢电极作为制氢过程中重要的组成部分,其性能对于制氢效率和经济性有着至关重要的影响。
热喷涂技术作为一种表面工程处理方法,已经被广泛应用于各个领域以改善材料的表面性能。
本文将聚焦于探讨热喷涂技术在制氢电极上的应用及其对电极性能的影响。
1.2 文章结构:本文主要分为五个部分进行阐述。
引言部分首先介绍了文章主题和研究背景,接下来将进入正文部分。
正文包括热喷涂技术概述、热喷涂在制氢电极上的应用介绍以及其优点和挑战等内容。
然后,我们将进行热喷涂对制氢电极性能的影响分析,包括表面改性效果评价指标介绍、研究方法和实验装置描述以及结果和讨论等方面。
接着,通过一个实例研究,我们将详细分析热喷涂在制氢电极上的成功案例,包括案例背景介绍、方案设计和实施过程描述以及成果分析和评估结果展示。
最后,在结论与展望部分,我们将对整个文章进行总结,并提出未来发展的建议和展望。
1.3 目的:本文的主要目的是系统地概述热喷涂技术在制氢电极上的应用,并深入探讨其对电极性能的影响。
通过对已有研究和成功案例进行分析和归纳,在全面了解热喷涂技术在此领域应用情况的基础上,为进一步推动该技术的发展提供参考和指导。
同时,本文还旨在为相关领域专业人士提供一个全面了解热喷涂技术在制氢电极上应用现状与挑战的视角,促进学术界与工业界间的交流与合作。
2. 正文:2.1 热喷涂技术概述热喷涂技术是一种将材料在高温下加热融化,并通过喷枪将其喷射到基材表面形成涂层的方法。
它主要包括火焰喷涂、电弧喷涂、等离子喷涂和高速火焰喷涂等多种类型。
热喷涂技术具有操作简便、成本低廉以及能够制备均匀致密的薄膜等优点,因而广泛应用于许多领域。
2.2 热喷涂在制氢电极上的应用介绍制氢电极是用于水电解制氢过程中的重要组件之一,其性能对整个水电解制氢系统的效率和稳定性有着重大影响。
热喷涂中的喷涂涂层的组织结构与性能分析
热喷涂中的喷涂涂层的组织结构与性能分析热喷涂是一种常见的表面处理技术,通过高温喷涂将涂层材料喷涂在被涂物表面上,形成一层具有特定性能的涂层。
在热喷涂技术中,涂层的组织结构对于涂层性能的影响非常大。
本文通过分析热喷涂中的喷涂涂层的组织结构与性能,探讨涂层组织结构与性能之间的关系。
一、涂层组织结构涂层组织结构是指涂层内部不同材料相对分布的情况,通常包括涂层材料的晶体结构、孔隙度、厚度、相对密度等。
热喷涂涂层的组织结构受到多种因素的影响,其中包括涂层材料的物理化学性质、喷涂参数、喷涂设备性能、喷涂的物理环境等。
1. 涂层材料的晶体结构涂层材料的晶体结构是影响涂层性能的重要因素之一。
晶体结构的不同会影响涂层的硬度、强度、耐腐蚀性等性能。
例如,钨合金涂层中晶体结构的稳定性会影响涂层的耐腐蚀性。
2. 孔隙度涂层的孔隙度是指涂层中存在的毛孔和微缺陷的数量以及分布情况。
孔隙度会影响涂层的耐腐蚀性、耐磨损性和耐热性能。
例如,在涂层的热膨胀系数中,孔隙度是一个非常重要的因素。
3. 厚度涂层的厚度会影响其多种性能,包括耐冲击性、耐磨损性和导电性等。
通常情况下,增加涂层厚度可以提高涂层的硬度和综合性能。
4. 相对密度涂层的相对密度是指涂层的实际密度与材料理论密度之比。
相对密度越高,涂层的耐磨损性和硬度越高,但其制备难度也会增加。
二、涂层性能分析涂层性能是指涂层在使用过程中表现出来的各种性能特点。
涂层的性能分析需要考虑其用途和使用环境。
通常涂层的性能特点包括硬度、强度、耐腐蚀性、耐磨损性、耐热性和导电性等。
1. 硬度和强度涂层的硬度和强度可以通过厚度和组织结构的控制来调节。
例如,增加硬质相的含量和晶粒尺寸可以提高涂层的硬度和强度。
2. 耐腐蚀性涂层的耐腐蚀性是指在化学腐蚀介质中,涂层的表面不受腐蚀和破坏的能力。
通过增加涂层相对密度、减少涂层孔隙度、增加薄膜厚度等方式可以提高涂层的耐腐蚀性。
3. 耐磨损性涂层的耐磨损性是指涂层在机械磨损和摩擦过程中,表面不受磨损和破坏的能力。
半导体氧化钇热喷涂
半导体氧化钇热喷涂
热喷涂是一种工业表面涂层技术,它利用火焰或等离子束加热
涂层材料,然后将其喷射到基底材料表面形成涂层。
对于半导体氧
化钇热喷涂来说,通常会使用高温等离子火焰或等离子喷涂技术,
确保涂层能够均匀地覆盖在基底材料上。
半导体氧化钇热喷涂涂层的制备过程通常包括原料的制备、喷
涂工艺参数的优化以及涂层的表征和性能测试。
在制备过程中,需
要选择合适的氧化钇粉末作为原料,并针对具体的应用需求进行工
艺参数的优化。
涂层的表征和性能测试则包括对涂层厚度、结合强度、孔隙率、表面粗糙度以及耐磨性、耐腐蚀性和高温性能等方面
进行评估。
半导体氧化钇热喷涂涂层的应用领域非常广泛,包括航空航天、汽车、能源、化工等行业。
例如,在航空航天领域,半导体氧化钇
热喷涂涂层常用于制造燃气涡轮发动机的涡轮叶片和燃烧室部件,
以提高其耐高温氧化和耐热腐蚀能力。
在汽车领域,该涂层也可用
于增强引擎部件和排气系统的耐磨性和耐腐蚀性能。
总的来说,半导体氧化钇热喷涂涂层技术在材料表面工程领域
具有重要的应用意义,能够显著改善材料的性能,延长其使用寿命,推动相关行业的发展。
热喷涂粉末特性概述
DOI:10.16661/ki.1672-3791.2018.29.066热喷涂粉末特性概述崔珊 周鹏 周超(西安航空职业技术学院航空材料工程学院 陕西西安 710089)摘 要:热喷涂技术近年来发展迅速,热喷涂粉末在热喷涂过程中十分重要,除了需要满足涂层要求的功能,还必须要满足热喷涂工艺的需求。
本文主要对热喷涂粉末基本特性进行概述,粉末的流动性和松装密度受到粉末球化程度、粒度、表面粗糙度和粉末内部的孔洞等多种因素综合影响;而粉末球化程度也化学成分有关,粉末内部孔洞受到制备工艺影响。
关键词:热喷涂粉末 粒度分布 流动性 松装密度中图分类号:TQ174 文献标识码:A 文章编号:1672-3791(2018)10(b)-0066-02热喷涂是一种表面强化技术, 是通过某种热源(等离子体、电弧、燃烧火焰等)将涂层材料(粉末或丝材)熔化形成熔滴,并利用高速气流加速,令其喷射依次碰撞到基体材料表面,沉积形成涂层,从而使工件表面具有耐高温、耐腐蚀、绝缘、导电、抗辐射、抗氧化等优良性能[1]。
热喷涂技术,尤其是等离子喷涂技术,在航空航天、机械电子、通信、化工等众多领域受到广泛应用。
热喷涂粉末在热喷涂过程中占据极其重要的地位。
其制备方法多种多样,目前,常用的热喷涂粉末制备方法有:喷雾造粒法、球磨法、气体雾化法、烧结破碎法、包覆法等[2]。
不同的制备方法获得的粉末形貌不同,性质不同,从而影响涂层的质量和性能。
1 热喷涂粉末特性用于热喷涂的粉末不仅需要满足涂层要求的功能,还必须要满足热喷涂工艺的需求,要能保证粉体可以被流畅、稳定、均匀地输送到喷涂的焰流中,从而保证沉积效率及稳定且均匀的涂层质量。
因此,热喷涂用粉末的形貌、粒度分布、流动性及松装密度等粉末的基本特性,都会对热喷涂涂层的沉积效率和涂层的性能造成一定影响。
1.1 粉末的颗粒形貌热喷涂粉末的颗粒形貌主要是指粉体颗粒的几何形状和表面特征。
其中粉体的几何形状主要指粉末的球化程度,随着球形度的提高,粉体的固态流动性也越好。
热喷涂材料
热喷涂材料封严涂层粉末封严涂层粉末牌号名称化学成分%粒度范围典型应用LF105铝硅氮化硼粉APSAl8Si20BN 包覆80/325目优质可磨涂层,用于喷气发压气机,工作温度可达48LF106铝硅石墨粉CFS Al8Si23C 包覆115目/5μm 压气机可磨涂层,工作温度480℃LF107铝硅石墨粉APS Al7Si26C 包覆80目/8μm 工作温度315-425℃,压气涂层LF108铝硅石墨粉APS Al5Si45C 包覆100目/8μm 工作温度315-425℃,压气涂层LF109铝硅聚酯粉APS Al12Si40 聚酯包覆115目/10μm工作温度325℃,压气机可LF110铝硅聚酰亚胺粉CFSAl12Si48 聚酰亚胺复合170/16μm工作温度350℃,压气机可LF132铝青铜粉CFSAPSCu10Al 包覆150/325目活塞导轨,拔叉,压气机气LF134铝青铜粉CFSAPSCu11.5Al1.5Fe 包覆125/25μm拔叉,压力配合面、支撑面LF137铝青铜聚酯粉APSCu9.5Al1Fe10 聚酯混合125/10μm可磨涂层,工作温度650℃LF138铝青铜聚酯粉APSCu9.5Al1Fe14 聚酯包覆125/15μm可磨涂层,工作温度650℃LF139铝青铜聚酯粉APSCu9.5Al1Fe5 聚酯混合125/15μm可磨涂层,工作温度650℃LF140铜铝二硫化钼粉APSCu9.5Al7.5(MoS2)包覆115/325目自粘结,自润滑,轴承及铜金修复LF141铜包石墨粉APS Cu30C150/325目电触头材料及低摩擦材料LF226镍包石墨粉CFS Ni15C 包覆170目/30μm工作温度480℃,压气机级LF227镍包石墨粉CFS Ni20C 包覆150/325目压气机级间可磨涂层LF228镍包石墨粉CFS Ni25C 包覆170目/30μm压气机级间涂层170目/20μmLF229镍铬铝包膨润土粉CFSNi4Cr4Al21 膨润土包覆100/325目可磨涂层,工作温度<815 LF230镍铬铝包膨润土粉CFSNi4Cr4Al21 膨润土100/200目可磨涂层,工作温度<815LF231镍铬铁铝氮化硼粉CFSNi14Cr8Fe5BN3.5 Al115/325目压气机,工作温度<480℃LF235镍包二硫化钼粉APSNi20-25(Mo S2 )200/400目动密封件,低摩擦材料纯金属粉末纯金属粉牌号名称化学成分粒度范围典型应用LF101铝粉CFS Al99依要求修复铝、镁基工件,屏蔽,抗蚀LF131铜粉CFS Cu99依要求修复铜基工件,屏蔽,导电LF145钼粉CFS Mo99.5170/400目活塞环,同步环,阀件,配合件LF152铬粉APS Cr99.5依要求靶材,抗蚀涂层LF225镍粉APS CFS Ni99.5200/325目修复镍基工件LF341钨粉APS W99200/325目-火箭发动机喷管、尾椎、耐火坩埚,抗金属熔涂层-也可用于靶材铁基粉铁基粉牌号名称化学成分粒度范围典型应用LF156铁铝钼粉APS Fe3Al3Mo3CB115/325目铁基体的修复,曲轴颈LF159铁铬钼粉HVOF Fe17Cr11Mo3Ni3Si3Cu4B45/6μm<650℃的条件下抗腐蚀涂层LF160铁钼碳粉CFS APS Fe18Mo3C170目/10μm硬面支撑涂层,低摩擦系数LF161铁钼碳粉HVOF Fe30Mo2C45/6μm 镀硬铬的低价代替品,耐磨损、硬支撑面微震LF162铁镍铝粉APS Fe37Ni6Al150/325目喷涂时放热反应,形成强冶金结合,涂加工,抗高温氧化LF163铁镍钼粉CFS Fe35NiMoAl115/325目柴油机点火板及气缸头LF165铁钨镍粉APS Fe14WNiCr115/325目剪切强度高,用于坦克与推土机的摩擦车同步器钼基粉钼基粉牌号名称化学成分粒度范围典型应用LF143钼碳粉APS Mo3C170/325目韧性好,硬度高,耐滑动磨损好LF144钼镍合金粉APS Mo25NiSF170/325目自熔性,耐磨性好,摩擦系数高低,抗擦伤,用塞环LF147钼镍合金粉APS Mo30NiSF170/325目自熔性,抗硬表面磨损,硬度高,抗擦伤镍基粉镍基粉牌号名称化学成分粒度范围典型应用LF201铝包镍粉CFS APS Ni5Al170/325目自粘打底粉,抗高温氧化,加工性能好,件LF203镍包铝粉APS Ni18Al115/325目抗氧化抗磨损,抗氧化涂层的打底层LF204镍包铝粉APS Ni20Al115/325目抗氧化涂层的打底层LF207镍铬粉APS Ni20Cr150/325目抗氧化抗腐蚀,陶瓷涂层打底粉LF210镍铬铁粉APS Ni16Cr8Fe150/325目修复抗蚀钢、镍基合金工件LF211镍铬铝钼粉CFS APS Ni9Cr5Al5Mo115/325目涂层自粘,加工性好,抗氧化抗腐蚀LF212镍铬铝粉APS(Ni20Cr)6Al115/325目抗氧化抗腐蚀,陶瓷涂层打底层LF213镍钴铬铝钇粉APS Ni17Cr5Al3CoY2O3115目/20μm自粘,抗氧化抗腐蚀,热障涂层打底层LF214镍铬铝钼粉CFS APS Ni18Cr7Al5Mo115/325目良好的抗氧化抗腐蚀性,自粘涂层LF223镍钼铝粉CFS APS Ni5Mo5.5Al170/325目自粘,韧性强,抗冲刷,抗冲击,保护机件承密封和阀件LF232镍硼碳粉HVOF Ni31B9C50/15μm 耐磨涂层,比Al2O3 Cr3C2及TiC所组成金属耐磨LF233镍包铜粉APS Ni30Cu150/325目耐腐蚀,耐高温,导热性好,用于机床导轨LF234镍包氧化铝粉APS Ni20-75Al2O3150/325目耐腐蚀,耐高温,抗氧化,抗热震LF235镍包二硫化钼粉APS Ni25MoS2200/400目减磨涂层,润滑性好,化学及热稳定性好,于动密封,低摩擦材料LF236镍包金刚石粉APS Ni(20-25)金刚石200/400目高硬度、耐磨、耐冲刷,作磨损及切割材料LF237镍包铬粉APS Ni50Cr150/325目抗高温氧化,抗硫钒腐蚀,应用于燃油燃煤防蚀,抗蚀性比LX45更佳碳化铬基粉碳化铬基粉牌号名称化学成分粒度范围典型应用LF301F碳化铬粉HVOF APS Cr3C2325目/10μm涂层光滑致密,抗高温耐磨,但韧性LF302碳化铬-镍铬粉HVOF APS Cr3C2 7(Ni20Cr)325目/5μm抗高温,抗微震,抗磨损LF303碳化铬-镍铬粉HVOF Cr3C2 10(Ni20Cr)325目/10μm抗高温耐磨涂层,用于飞机涡轮机LF304镍包碳化铬粉HVOF APS Cr3C2 17Ni325目/10μm 耐严重磨损和微震磨损,良好的抗气抗冲蚀和抗滑动磨损LF305碳化铬-镍铬粉HVOF APS Cr3C2 20(Ni20Cr)325目/5μm 包覆型结构,抗高温,抗磨损性能优积效率高LF306碳化铬-镍铬粉HVOF APS Cr3C2 20(Ni20Cr)325目/10μm 团聚烧结型,抗高温抗磨损,抗气蚀气腐蚀LF307碳化铬-镍铬粉HVOF APS Cr3C2 25(Ni20Cr)325目/10μm 团聚烧结型,良好的耐滑动磨损和冲损,耐腐蚀LF308碳化铬-镍铬粉HVOF APS Cr3C2 25(Ni20Cr)150目/10μm 混合型,耐冲蚀、气蚀及微震磨损,于燃杆芯轴、热成型盘、泵件、机件LF309碳化铬-镍铬粉HVOF APS Cr3C2 35(Ni20Cr)325目/10μm 团聚型,涂层致密,硬度较低,耐磨损冲蚀性好LF310碳化铬-镍铬粉HVOF APS Cr3C2 50(Ni20Cr)250目/10μm混合型,抗高温腐蚀及侵蚀涂层LF311碳化铬-镍铬粉HVOF APS Cr3C2 50(Ni20Cr)170目/5μm 包覆型,韧性更好、抗硬面磨损及磨损LF312碳化铬-镍合金粉HVOFAPSCr3C2 25(NiCrAlY)325目/15μm烧结型,抗氧化性更好,用于炉内输涡轮机部件等LF313碳化铬-镍铬粉HVOFAPSCr39Ni7C170目/10μm雾化混合型,抗高温,耐磨耐蚀,用阀、液压杆、炉管、排气管、透平机LF314碳化铬-铁合金粉APS Cr3C215(FeCrAlY)150目/10μm结合强度高,蒸汽透平转子和静子碳化钨基粉碳化钨基粉牌号名称化学成分粒度范围典型应用LF321碳化钨-钴粉HVOF APS WC12Co250目/10μm 烧结型,镀硬铬的替代涂层,涂层光滑坚硬、耐磨、用于轧钢辊、锉棒LF322碳化钨-钴粉HVOF APS WC12Co270目/10μm 45/10μm 包覆型,镀硬铬的替代涂层,耐磨粒冲蚀磨损、滑动磨损,用于泵套、风件LF323碳化钨钴镍合金粉HVOF APS(WC12Co)35NiSF250目/15μm 170目/15μm混合型,涂层已部分自熔,致密、耐于玻璃模具、装甲部件、油田高压泵模具LF326碳化钨-钴粉HVOF APS WC12Co45/10μm 团聚烧结型,细晶WC,用于油田、拉用扇和压气机、泵件和机架,适用于LF328碳化钨-钴粉HVOF AP S WC10Co45/10μm 镀硬铬的替代品,用于油田设备、拉丝风扇及压力机LF329碳化钨-钴粉HVOF APS WC17Co45/10μm 团聚型,高韧性,压应力涂层,抗微侵蚀,用于飞机起落架、泵密封、挤拔叉、排放阀,抗氧化及抗蚀性较差LF331碳化钨-钴粉CFS APS WC20Co53/10μm 烧结型,涂层致密,适用于牵引涂层辊LF332碳化钨-镍粉HVOF APS WC17Ni45/10μm包覆型,耐磨涂层,抗蚀性好于WC-LF334(碳化钨-钴)镍基合金粉APS(WC12Co)25NiSF75/45μm混合型,抗磨损抗冲蚀、排风机叶片LF335碳化钨-碳化铬粉HVOFAPSWC20Cr3C27Ni45/10μm团聚型,抗氧化性和耐蚀性高于WC-度高,微观结构好,用于闸门及阀件LF337碳化钨-碳化铬-镍铬粉HVOF APS(WC12Co)35(Cr3C220NiCr )45/6μm镀硬铬的替代品,抗蚀性耐磨、抗冲微震LF338碳化钨-钴-铬粉HVOFAPSWC10Co4Cr53/10μm团聚型,镀硬铬的替代品,涂层应压好的抗蚀性、耐磨性及耐冲蚀性,表度高,应用于湿的腐蚀环境、飞机起造纸工业、液压缸LF339碳化钨-钴-铬粉HVOFAPSWC10Co4Cr53/10μm烧结型,镀硬铬的替代品,抗腐蚀、耐抗湿环境腐蚀、适用于造纸工业等LF340碳化钨-钴-镍合粉APS(WC17Co)50NiSF63/33μm 混合型,耐侵蚀,耐磨损,用于玻璃杆、泵件、活塞、套筒、挤出螺杆、辊LF342碳化钨-铬-镍粉HVOFAPSWC20Cr7Ni45/10μm团聚型,涂层致密,高硬度,强韧性机酸及碱液有良好的抗蚀性,抗磨损油田设备、化工、压气机轴、液压机纸辊、气体输送设备LX343镍包铸造碳化钨WC/W2C12Ni200/325目与镍基自熔合金粉混合喷焊,焊层中分布均匀,耐磨性明显提高氧化铝基粉氧化铝基粉牌号名称化学成分粒度范围典型应用LF401SF氧化铝粉APS99.5Al2O333/5μm介电性强,耐酸碱、抗热、耐磨、抗高温侵蚀,磨损LF401氧化铝粉APS98Al2O345/15μmLF403F氧化铝-氧化钛粉APS Al2O3 3TiO222/5μm抗磨粒磨损、微震磨损、抗高温氧化,用于纺织人造纤维工业、酸碱介质中及造纸辊类LF403氧化铝-氧化钛粉APS Al2O3 3TiO245/15μmLF403C氧化铝-氧化钛粉APS Al2O3 3TiO275/33μmLF406氧化铝-氧化钛粉APS Al2O3 13TiO245/15μm类似于403,但介电性能及抗蚀性较差,用于纺织造纤维工业中引线辊、造纸辊类LF406C氧化铝-氧化钛粉APS Al2O3 13TiO275/30μmLF407氧化铝-氧化钛粉APS Al2O3 40TiO245/15μm 耐磨性及抗蚀性略低于LF406,抛光性好,抗纤维家用平底锅LF408氧化铝-氧化锆粉APS Al2O3 40ZrO245/15μm涂层韧性好,耐磨耐侵蚀,用于造纸工业氧化铬基粉氧化铬基粉牌号名称化学成分粒度范围典型应用LF417氧化铬-氧化钛粉APS Cr2O32TiO275/15μm 涂层致密,耐磨粒磨损、硬面磨损、颗粒冲蚀和损,不溶于酸类、碱类和醇类溶液,用于泵密封耐磨环、印刷花纹辊LF418氧化铬-氧化硅-氧化钛粉APSCr2O35SiO23TiO290/10μm韧性好,低摩擦特性及更高的耐机械冲击,高耐蚀性LF419氧化铬-氧化钛粉APS Cr2O3 25TiO245/15μm硬度较低、韧性好,用于对韧性高的磨损工件氧化钛基粉氧化钛基粉牌号名称化学成分粒度范围典型应用LF425氧化钛粉APS99TiO290/10μm 中等耐磨性,硬度较低,对酸碱之外的溶液保持稳不堆积静电LF426氧化钛-氧化铬粉APS TiO2 45Cr2O3115目/10μm耐磨性好,抗热抗腐蚀,用于电池、转鼓刮浆刀氧化锆基粉氧化锆基粉牌号名称化学成分粒度范围典型应用LF435氧化钙稳定型氧化锆粉APSZrO25Ca O90/30μm热障涂层,熔融金属液中抗腐蚀抗润于柴油机柱塞、阀门缸套头、铸模涂LF436氧化镁稳定型氧化锆粉APSZrO224Mgo90/10μm 70/10μm性能与LF435相近LF438氧化锆氧化钇氧化铈粉APSZrO225CeO2 2.5Y2O390/10μm热障性能更好,在钠、硫和氯的环境性更佳,抗高温性更好LF439氧化锆氧化钛氧化钇粉APSZrO218TiO210Y2O380/10μm抗擦伤性好、红硬性好、抗热冲性强,钠及氯的抗腐蚀性好LF440氧化钇稳定型氧化锆粉APSZrO28Y2O3125目/16μm只有在喷涂后,ZrO2才被Y2O3稳定热障涂层LF441氧化钇稳定型氧化锆粉APSZrO28Y2O3200目/45μm 200目/15μm球形,流动性好,化学均质行好,纯纳米结构,空芯形态,具有良好的热缘特性,用于透平燃烧室及机翼组件涂层LF442氧化钇稳定型氧化锆APSZrO220Y2O3150目/15μm适用于更高的温度,推荐用于845℃抗冲蚀,适用于火箭及喷气发动机的层LF443氧化锆氧化钇粉APS ZrO212Y2O3200目/15μm隔热性良好,热障涂层氧化钇基粉氧化钇基粉牌号名称化学成分粒度范围典型应用LF456氧化钇粉APS99.9 Y2O3250目/10μm耐高温、抗氧化,用于电子工业及硬质合金石墨其它金属陶瓷粉其它金属陶瓷粉牌号名称化学成分粒度范围典型应用LF461镍包碳化硼粉APS Ni75(B4C)170/325目涂层硬度高,比Al2O3、TiC、Cr2O3更耐磨,用磨损工件(泥砂泵柱塞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
第二节 热喷涂技术概述 一、热喷涂概念
热喷涂----利用某种热源,如电弧、等离子弧或燃烧 火焰等将粉未状或丝状的金属或非金属材料加热熔化或 软化形成熔滴、并以一定速度射向预处理过的基体表面、 形成具有一定结合强度涂层的工艺方法。
喷焊---是指用热源将喷涂层加热到熔化,使喷 涂层的熔融合金与基材金属互溶、扩散,形成类 似钎焊的冶金结合,这样所得到的涂层称为喷焊 层。
工艺灵活
工件受热温度可控 涂层容易控制 成本低
LEE MAN (SCETC)
在喷涂过程中可使基体保持较低温度,基体变形小,一般 温度可控制在 30~200℃,从而保证基体不变形、不弱化。
涂层厚度由几十微米到几毫米,涂层表面光滑,加工余量少。
但目前该技术仍存在着结合力低、孔隙率较高、均匀性差 等缺点,有待于进一步发展。
LEE MAN (SCETC)
LEE MAN (SCETC)
表面工程与热喷涂
7
涂层的特点:
涂层的性能具有方向性
垂直和平行涂层方向上的性能是不一致的。
有孔隙或空洞
涂层中颗粒与颗粒之间不可避免地存在一部分孔隙或空 洞,其孔隙率一般在 0.025%~20%之间,涂层中还伴有 氧化物等夹杂。
涂层结构可改变
涂层经适当处理后,结构会发生变化。如涂层经重熔处理, 可消除涂层中氧化物夹杂和孔隙,层状结构变成均质结构, 与基体表面的结合状态也发生变化。 残留应力是由于撞击基体表面的熔融态变形颗粒在冷 凝收缩时产生的微观应力的累积造成的,涂层的外层 受拉应力,而基体或涂层的内侧受压应力。
表面工程与热喷涂 涂层中颗粒与基体表面之间的结合以及颗粒之间的结 合机理目前尚无定论,通常认为有三种结合:
碰撞成扁平状并随基体表面起伏的颗粒,由于和凹凸不平的 表面相互嵌合(即抛锚效应), 形成机械钉扎而结合。一般 来说,涂层与基体的结合以机械结合为主。 这是当涂层和基体表面产生冶金反应的一种结合类型,如 出现扩散和合金化,包括在结合面上形成金属化合物或固溶 体。当喷涂后进行重熔即喷焊时,喷焊层与基体的结合主要 是冶金结合。
LEE MAN (SCETC)
表面工程与热喷涂
10
三、 热喷涂技术分类及特点
1.热喷涂技术的分类
热源
喷涂方法
线材火焰喷涂
火焰
粉末火焰喷涂 高速火焰喷涂 爆炸喷涂 电弧喷涂
自由电弧 等离子弧
LEE MAN (SCETC)
大气等离子弧喷涂(APS)
低压等离子弧喷涂(LPPS) 水稳等离子弧喷涂
表面工程与热喷涂
5
机械结合
冶金-化学结合
物理结合
颗粒与基体表面间由范德华力或其他次价键力形成的结合。
范德华力是存在于分子间的一种吸引力,它比化学键弱得多。
LEE MAN (SCETC)
表面工程与热喷涂
6
(二)热喷涂涂层结构
• 喷涂层的形成 过程决定了涂 层的结构,喷 涂层是由无数 变形粒子互相 交错呈波浪式 堆叠在一起的 层状组织结构。
喷涂材料在热源中被加热的过程和颗粒与基体表面的 结合过程是热喷涂涂层制备的关键环节。 (一)涂层的形成过程及特点
热喷涂的工艺过程:
喷涂材料加热熔化 粒子喷涂 涂层形成 熔滴雾化 粒子飞行
LEE MAN (SCETC)
表面工程与热喷涂
4
热源温度越高,熔滴冲击速度越大,形成的涂层越致密。
LEE MAN (SCETC)
表面工程与热喷涂
13
第三节 热喷涂材料
一、热喷涂材料的性能和分类
1.热喷涂材料必须满足的性能:
稳定性好 使用性能好 润湿性好 固态流动性好 热膨胀系数合适
热喷涂材料在喷涂过程中,必须能够耐高温,具有良好的化学稳定性 和热稳定性,即在高温下不发生有毒的化学反应及性能上的转变。
根据工件的要求,所得涂层应该满足各种使用要求,即喷涂材料也必 须具有相应的性能,如耐磨、耐蚀、导电、绝缘等。 润湿性好,则得到的涂层与基体的结合强度高;自身密度好,且涂层 平整。 固体粉末的流动性与粉末形状、湿度和粒度有关。流动性好,才能 保证送粉的均匀性。 若涂层与工件的热膨胀系数相差甚远,则可能导致工件在喷涂 后的冷却过程中引起涂层龟裂。
LEE MAN (SCETC)
表面工程与热喷涂
1
热喷涂技术的目的:
热喷涂的目的:是提高工件的耐蚀、耐磨、耐高温等 性能,亦可用于修复因磨损或加工失误造成尺寸超差的零 部件。
LEE MAN (SCETC)
表面工程与热喷涂
2
热喷涂生产实例
录相
LEE MAN (SCETC)
表面工程与热喷涂
3
二、热喷涂的原理
火焰喷涂 高速火焰喷涂 爆炸喷涂 电弧喷涂 等离子弧喷涂
LEE MAN (SCETC)
表面工程与热喷涂
12
2. 热喷涂技术的特点
可喷涂的材料广泛 基体不受限制
几乎所有的金属、合金、陶瓷都可以作为喷涂材料,塑 料、尼龙等有机高分子材料也可以作为喷涂材料。
在金属、陶瓷器具、玻璃、石膏,甚至布、纸等固体上都 可以进行喷涂。 既可对大型设备进行大面积喷涂,也可对工件的局部进行喷涂;既 可喷涂零件,又可对制成后的结构物进行喷涂。室内或露天均可进 行喷涂,工序少,功效高,大多数工艺的生产率可达到每小时喷涂 数千克喷涂材料。如对同样厚度的涂层,时间比电镀用的少得多。
涂层中存在残留应力
LEE MAN (SCETC)
Ni-Cr-B-Si火焰喷涂组织
表面工程与热喷涂
9
涂层的残留应力:
涂层中存在的残留应力会影响涂层的质量,残留应力的大小与涂层的厚 度成正比,限制了涂层的厚度。因此,薄涂层一般比厚涂层具有更好的结合 强度,受残留应力的限制,热喷涂层的最佳厚度一般不超过 0.5 mm。 热喷涂层残留应力的大小可通过调整喷涂工艺参数进行控制,但更有效的 方法是通过涂层结构设计,采用梯度过渡层缓和涂层残留应力。
11
各种热喷涂技术的典型特征参数
喷涂方法 温度 /℃ 3000 3000 4000 5000 >10000 粒子速度 /m.s-1 40 800~1700 800 100 200~400 结合强度 / MPa 8~20 70~110 >70 12~25 60~80 气孔率 /( %) 10~15 <0.5 1~2 10 <0.5 喷涂效率 /kg·h-1 2~6 1~5 1 10~25 2~10 相对 成本 1 2~3 4 2 4