大学物理答案——热力学11
大学热力学基础习题答案
大学热力学基础习题答案大学热力学基础习题答案热力学是物理学中的重要分支,研究物质能量转化和能量守恒的规律。
在大学物理学课程中,热力学是一个重要的内容,学生通过习题练习可以更好地理解和掌握热力学的基本原理和计算方法。
下面将为大家提供一些大学热力学基础习题的答案,希望能够对大家的学习有所帮助。
1. 一摩尔理想气体在等温过程中,从体积V1膨胀到体积V2。
求气体对外界做功W。
答案:根据理想气体的状态方程PV=nRT,可以得到P1V1=P2V2,其中P1和P2分别为气体的初始和末态压强,R为气体常数,T为气体的温度。
由于等温过程中温度不变,所以P1V1=P2V2。
根据气体对外界做功的定义,W=PdV,其中P为气体的压强,dV为气体的体积变化。
将P1V1=P2V2代入上式,可以得到W=P1(V2-V1)。
2. 一个物体的内能U与温度T的关系为U=aT^3,其中a为常数。
求物体的热容C。
答案:热容C定义为物体单位温度变化时吸收或释放的热量与温度变化之比。
根据题目中给出的内能与温度的关系式,可以得到U=aT^3。
对该式两边求导,得到dU=3aT^2dT。
根据热容的定义,C=dU/dT,即C=3aT^2。
所以物体的热容C为3aT^2。
3. 一个物体从初始温度T1加热到温度T2,吸收的热量为Q。
如果将该物体再从温度T2降到温度T1,释放的热量是多少?答案:根据热力学第一定律,物体吸收的热量等于内能的增加,即Q=ΔU。
由于物体在加热过程中内能增加,所以ΔU>0。
而在降温过程中,物体内能减少,即ΔU<0。
根据热力学第一定律的表达式Q=ΔU+W,可以得到释放的热量为Q+W。
由于该物体在加热过程中对外界做正功,所以W>0。
因此,在降温过程中释放的热量为Q+W<0。
4. 一个物体的熵S与温度T的关系为S=bT^2,其中b为常数。
求物体的热容C。
答案:热容C定义为物体单位温度变化时吸收或释放的热量与温度变化之比。
《大学物理学》热力学基础练习题
合肥学院《大学物理Ⅰ》自主学习材料《大学物理学》热力学基础一、选择题13-1.如图所示,bca 为理想气体的绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是( )pa2(A)b1a 过程放热、作负功,b2a 过程放热、作负功;c(B)b1a 过程吸热、作负功,b2a 过程放热、作负功;1b(C)b1a 过程吸热、作正功,b2a 过程吸热、作负功;VO (D)b1a 过程放热、作正功,b2a 过程吸热、作正功。
【提示:体积压缩,气体作负功;三个过程中 a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b1a 过程作的负功比b2a 过程作的负功多,由Q W E 知b2a 过程放热,b1a 过程吸热】13-2.如图,一定量的理想气体,由平衡态 A 变到平衡态B,且他们的压强相等,即P P 。
A B问在状态 A 和状态 B 之间,气体无论经过的是什么过程,气体必然( )p (A)对外作正功;(B)内能增加;(C)从外界吸热;(D)向外界放热。
AB【提示:由于T T ,必有A B E E ;而功、热量是A BV 过程量,与过程有关】O13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气( 均视为刚性理想气体) ,开始时它们的压强和温度都相同,现将 3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为( )(A) 6 J ;(B)3 J ;(C)5 J ;(D)10 J 。
【提示:等体过程不做功,有Q E ,而M iE R TM 2mol,所以需传 5 J 】13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是()pp绝热等温绝热等体等温绝热Op 等()AV Op()B等压V 绝热绝热体等温绝热OOVV ()C()D【提示:(A) 绝热线应该比等温线陡,(B)和(C)两条绝热线不能相交】热力学基础-1合肥学院《大学物理Ⅰ》自主学习材料13-5.一台工作于温度分别为327℃和27℃的高温热源与低温热源之间的卡诺热机,每经历一个循环吸热2000J,则对外做功()(A)2000 J ;(B)1000 J ;(C)4000 J ;(D)500 J 。
昆明理工大学物理习题集(下)第十一章元答案
第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
大学物理学习指导详细答案
第十章 热力学【例题精选】例10-1两个完全相同的气缸内盛有同种气体,设其初始状态相同,今使它们分别作绝热压缩至相同的体积,其中气缸1内的压缩过程是非准静态过程,而气缸2内的压缩过程则是准静态过程.比较这两种情况的温度变化:(A) 气缸1和2内气体的温度变化相同. (B) 气缸1内的气体温度变化较大.(C) 气缸1内的气体的温度变化较小. (D) 两气缸内的气体的温度无变化. [ B ]例10-2 某理想气体状态变化时,内能随体积的变化关系如图中AB 直线所示.A →B 表示的过程是(A) 等压过程.(B) 等体过程.(C) 等温过程.(D) 绝热过程. [ A ] 例10-3用公式T C E V ∆=∆ν(式中V C 为定体摩尔热容量,视为常量,ν 为气体摩尔数)计算理想气体内能增量时,此式(A) 只适用于准静态的等体过程. (B) 只适用于一切等体过程.(C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程.[ D ]例10-4 如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是: (A) b 1a 过程放热,作负功;b 2a 过程放热,作负功.(B) b 1a 过程吸热,作负功;b 2a 过程放热,作负功.(C) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功.(D) b 1a 过程放热,作正功;b 2a 过程吸热,作正功. [ B ]例10-5 、一定量理想气体,从A 状态 (2p 1,V 1)经历如图所示的直线过程变到B 状态(2p 1,V 2),则AB 过程中系统作功W = ;内能改变∆E = . 1123V p 0 例10-6 一定量理想气体,从同一状态开始使其体积由V 1膨胀到2V 1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中: 过程气体对外作功最多; 过程气体内能增加最多.等压 等压例10-7 比热容比γ=的理想气体进行如图所示的循环.已知状态A 的温度为300 K .求:(1) 状态B 、C 的温度; (2) 每一过程中气体所吸收的净热量.(普适气体常量R = 11K mol J --⋅⋅)Vp p 2p 3)解:由图得 p A =400 Pa , p B =p C =100 Pa , V A =V B =2 m 3,V C =6 m 3.(1) C →A 为等体过程,据方程p A /T A = p C /T C 得 T C = T A p C / p A =75 KB →C 为等压过程,据方程V B /T B =V C T C 得 T B = T C V B / V C =225 K(2) 根据理想气体状态方程求出气体的物质的量(即摩尔数)ν 为ν = p A V A /RT A =0.321 mol由γ=知该气体为双原子分子气体,R C V 25=,R C P 27= B →C 等压过程吸热 1400)(272-=-=B C T T R Q ν J . C →A 等体过程吸热1500)(253=-=C A T T R Q ν J . 循环过程ΔE =0,整个循环过程净吸热 600))((21=--==C B C A V V p p W Q J . ∴ A →B 过程净吸热: Q 1=Q -Q 2-Q 3=500 J 例10-8 如图所示,体积为30L 的圆柱形容器内,有一能上下自由滑动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温度为127℃的单原子分子理想气体.若容器外大气压强为1标准大气压,气温为27℃,求当容器内气体与周围达到平衡时需向外放热多少?(普适气体常量 R = J ·mol -1·K -1)解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=400 K∴气体的压强为 p 1=RT 1/V 1 =×105 Pa 大气压p 0=×105 Pa , p 1>p 0可见,气体的降温过程分为两个阶段:第一阶段等体降温,直至气体压强p 2 = p 0,此时温度为T 2,放热Q 1;第二阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2(1) )(23)(21211T T R T T C Q V -=-= K∴ Q 1= 428 J(2) )(25)(32322T T R T T C Q p -=-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = ×103 J例10-9 一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000 J ,则此热机效率为 ;热机每一循环作功 J .20% 400例10-10 两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的 两个热源之间,已知这两个循环曲线所包围的面积相等.则:(A) 两个热机的效率一定相等.(B) 两个热机从高温热源所吸收的热量一定相等.(C) 两个热机向低温热源所放出的热量一定相等.(D) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等. [ D ] 活塞T 1 T 2 T 3 T 3 Vp O例10-11 温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为(A) 25% (B) 50% (C) 75% (D) % [ B ]例10-12 热力学第二定律表明:(A) 不可能从单一热源吸收热量使之全部变为有用的功.(B) 在一个可逆过程中,工作物质净吸热等于对外作的功.(C) 摩擦生热的过程是不可逆的.(D) 热量不可能从温度低的物体传到温度高的物体. [ C ]例10-13 “理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ C ]例10-14 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ A ]【练习题】10-1 质量为0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R = 11K mol J --⋅)解:氦气为单原子分子理想气体,3=i(1) 等体过程,V =常量,W =0据 Q =∆E +W 可知 )(12T T C M M E Q V mol-=∆==623 J(2) 定压过程,p = 常量, )(12T T C M M Q p mol-==×103 J ∆E 与(1) 相同. W = Q - ∆E =417 J(3) Q =0,∆E 与(1) 同 W = -∆E=-623 J (负号表示外界作功)10-2 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1) 计算这个过程中气体对外所作的功.(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? (普适气体常量R = 1--⋅⋅K mol J 1,ln 3=解:(1) 等温过程气体对外作功为 ⎰⎰===000333ln d d V V V V RT V VRT V p W =×298× J = ×103 J (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 00003003⎰⎰-==γγRT V p 1311131001--=--=--γγγγ=×103 J 10-3 ν 摩尔的某种理想气体,状态按p a V /=的规律变化(式中a 为正常量),当气体体积从V 1膨胀到V 2时,气体所作的功W = ;气体温度的变化T 1─T 2= .).V /1V /1(a 212- ).V 1V 1(R a 212-ν (SI) 10-4 一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = ×105 Pa ,体积为V 0 =4×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K ,再经绝热过程温度降回到T 2 = 300 K ,求气体在整个过程中对外作的功.解:等压过程末态的体积 1001T T V V = 等压过程气体对外作功 )1()(01000101-=-=T T V p V V p W =200 J 根据热力学第一定律,绝热过程气体对外作的功为 W 2 =-△E =-νC V (T 2-T 1) 这里 000RT V p =ν,R C V 25=,则500)(25120002==--=T T T V p W J 气体在整个过程中对外作的功为 W = W 1+W 2 =700 J .10-5 一定量的单原子分子理想气体,从A 态出发经等压过程膨胀到(m 3) p 1×4×B 态,又经绝热过程膨胀到C 态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.解:由图可看出 p A V A = p C V C 从状态方程 pV =νRT 可知T A =T C ,因此全过程A →B →C 的∆E =0.B →C 过程是绝热过程,有Q BC = 0.A →B 过程是等压过程,有 )(25)( A A B B A B p AB V p V p T T C Q -=-=ν=×105 J . 故全过程A →B →C 的 Q = Q BC +Q AB =×105 J . 根据热一律Q =W +∆E ,得全过程A →B →C 的 W = Q -∆E =×105 J .10-6 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=×106 Pa ,V 0=×10-3m 3,T 0=300K的初态,后经过一等体过程,温度升高到T 1=450K ,再经过一等温过程,压强降到p =p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p /C V =5/3.求:(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .(2) 气体从始态变到末态的全过程中从外界吸收的热量. (普适气体常量R = J·mol -1·K -1) 解:(1) 由 35=V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 23= (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =ν C V (T 1-T 2)=×103 J 全过程中气体对外作的功为 011lnp p RT W ν= 式中p 1 ∕p 0=T 1 ∕T 0 则 30111006.6ln ⨯==T T RT W ν J . 全过程中气体从外界吸的热量为 Q = △E +W =×104 J . 10-7 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及 所吸收的热量Q .(2)整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J .B →C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J .C →A : W 3 = p A (V A -V C )=-100 J . 150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J(2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J1231 2 O V (10-3 m 3) 5 A B C10-8 一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K .500 10010-9 有一卡诺热机,用290 g 空气为工作物质,工作在27℃的高温热源与 -73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大到倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3 kg/mol ,普适气体常量R = 11K mol J --⋅⋅)% ×103 J10-10 1mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各过程系统吸收的热量;(2) 经一循环系统所作的净功;(3) 循环的效率. (循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=解:(单原子分子的自由度i =3.从图可知,ab 是等压过程, V a /T a = V b /T b ,T a =T c =600 K T b = (V b /V a )T a =300 K(1) )()12()(c b c b p ab T T R iT T C Q -+=-= =-×103 J (放热))(2)(b c b c V bc T T R i T T C Q -=-= =×103 J (吸热) Q ca =RT c ln(V a /V c ) =×103 J (吸热)(2) W =( Q bc +Q ca )-|Q ab |=×103 J(3) Q 1=Q bc +Q ca , η=W / Q 1=%10-11 1 mol 单原子分子的理想气体,经历如图所示的可逆循环,联结ac 两点的曲线Ⅲ的方程为2020/V V p p =, a 点的温度为T 0 试以T 0 , 普适气体常量R 表示Ⅰ、Ⅱ、Ⅲ过程中气体吸收的热量。
大学物理热学习题附答案11
一、选择题1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32=v (B)m kT x 3312=v (C) m kT x /32=v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8=x v (B) m kT π831=x v (C) m kT π38=x v (D) =x v 0 [ ]3.4014:温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系: (A) ε和w 都相等 (B) ε相等,而w 不相等 (C) w 相等,而ε不相等 (D) ε和w 都不相等4.4022:在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为:(A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 35.4023:水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)?(A) 66.7% (B) 50% (C) 25% (D) 06.4058:两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同(C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同7.4013:一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A) 温度相同、压强相同 (B) 温度、压强都不相同(C) 温度相同,但氦气的压强大于氮气的压强(D) 温度相同,但氦气的压强小于氮气的压强8.4012:关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。
《大学物理》热力学基础练习题及答案解析
《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
大学物理答案(湖南大学版)
第11章 热力学基本原理11.1 一系统由如图所示的状态a 沿abc 到达c ,有350J 热量传入系统,而系统对外做功126J .(1)经adc ,系统对外做功42J ,问系统吸热多少?(2)当系统由状态c 沿曲线ac 回到状态a 时,外界对系统做功为84J ,问系统是吸热还是放热,在这一过程中系统与外界之间的传递的热量为多少?解:(1)当系统由状态a 沿abc 到达c 时,根据热力学第一定律,吸收的热量Q 和对外所做的功A 的关系是Q = ΔE + A ,其中ΔE 是内能的增量.Q 和A 是过程量,也就是与系统经历的过程有关,而ΔE 是状态量,与系统经历的过程无关.当系统沿adc 路径变化时,可得Q 1 = ΔE 1 + A 1, 这两个过程的内能的变化是相同的,即ΔE 1 = ΔE ,将两个热量公式相减可得系统吸收的热量为Q 1 = Q + A 1 - A = 266(J). (2)当系统由状态c 沿曲线ac 回到状态a 时,可得Q 2 = ΔE 2 + A 2, 其中,ΔE 2 = -ΔE ,A 2 = -84(J),可得Q 2 = -(Q – A ) + A 2 = -308(J), 可见:系统放射热量,传递热量的大小为308J .11.2 1mol 氧气由状态1变化到状态2,所经历的过程如图,一次沿1→m →2路径,另一次沿1→2直线路径.试分别求出这两个过程中系统吸收热量Q 、对外界所做的功A 以及内能的变化E 2 -E 1.解:根据理想气体状态方程pV = RT ,可得气体在状态1和2的温度分别为T 1 = p 1V 1/R 和T 2 = p 2V 2. 氧气是双原子气体,自由度i = 5,由于内能是状态量,所以其状态从1到2不论从经过什么路径,内能的变化都是212211()()22i iE R T T p V p V ∆=-=-= 7.5×103(J). 系统状态从1→m 的变化是等压变化,对外所做的功为2121d ()V V A p V p V V ==-⎰= 8.0×103(J).系统状态从m →2的变化是等容变化,对外不做功.因此系统状态沿1→m →2路径变化时,对外做功为8.0×103J ;吸收的热量为Q = ΔE + A = 1.55×104(J).系统状态直接从1→2的变化时所做的功就是直线下的面积,即21211()()2A p p V V =+-= 6.0×103(J).吸收的热量为Q = ΔE + A = 1.35×104(J).11.3 1mol 范氏气体,通过准静态等温过程,体积由V 1膨胀至V 2,求气体在此过程中所做的功?解:1mol 范氏气体的方程为2()()ap v b RT v +-=, 通过准静态等温过程,体积由V 1膨胀至V 2时气体所做的功为图11.12×图11.222112d ()d V V V V RT a A p v v v b v==--⎰⎰21ln()V V a RT v b v =-+212111ln()V b RT a V b V V -=+--.11.4 1mol 氢在压强为1.013×105Pa ,温度为20℃时的体积为V 0,今使其经以下两种过程达同一状态:(1)先保持体积不变,加热使其温度升高到80℃,然后令其作等温膨胀,体积变为原体积的2倍;(2)先使其作等温膨胀至原体积的2倍,然后保持体积不变,升温至80℃.试分别计算以上两过程中吸收的热量,气体所做的功和内能增量.将上述两过程画在同一p-V 图上并说明所得结果.解:氢气是双原子气体,自由度i = 5,由于内能是状态量,所以不论从经过什么路径从初态到终态,内能的增量都是21()2iE R T T ∆=-= 1.2465×103(J). (1)气体先做等容变化时,对外不做功,而做等温变化时,对外所做的功为2211221d d V V V V A p V RT V V==⎰⎰2ln 2RT == 2.0333×103(J), 所吸收的热量为Q 2 = ΔE + A 2 = 3.2798×103(J). (2)气体先做等温变化时,对外所做的功为2211111d d V V V V A p V RT V V==⎰⎰1ln 2RT == 1.6877×103(J), 所吸收的热量为Q 1 = ΔE + A 1 = 2.9242×103(J).如图所示,气体在高温下做等温膨胀时,吸收的热量多些,曲线下的面积也大些.11.5 为了测定气体的γ(γ=C p /C V ),可用下列方法:一定量气体,它的初始温度、体积和压强分别为T 0,V 0和p 0.用一根通电铂丝对它加热,设两次加热电流和时间相同,使气体吸收热量保持一样.第一次保持气体体积V 0不变,而温度和压强变为T 1,p 1;第二次保持压强p 0不变,而温度和体积则变为T 2,V 2,证明:100200()()p p V V V p γ-=-.证:定容摩尔热容为(d )d VV Q C T=,在本题中为C V = ΔQ /(T 1 – T 0);定压摩尔热容为(d )d pp Q C T=,在本题中为C p = ΔQ /(T 2 – T 0).对于等容过程有p 1/T 1 = p 0/T 0,所以T 1 = T 0p 1/p 0;对于等压过程有V 2/T 2 = V 0/T 0,所以T 2 = T 0V 2/V 0. 因此100100200200//p VC T T T p p T C T T T V V T γ--===--100200()()p p V V V p -=-. 证毕.11.7 理想气体的既非等温也非绝热的过程可表示为pV n = 常数,这样的过程叫多方过程,n 叫多方指数.(1)说明n = 0,1,γ和∞各是什么过程. (2)证明:多方过程中理想气体对外做功:11221p V p V A n -=-.(3)证明:多方过程中理想气体的摩尔热容量为:()1V nC C nγ-=-,并就此说明(1)中各过程的值.(1)说明:当n = 0时,p 为常数,因此是等压过程;当n = 1时,根据理想气体状态方程pV = RT ,温度T 为常数,因此是等温过程; 当n = γ时表示绝热过程;当n =∞时,则有p 1/n V = 常数,表示等容过程.(2)证:对于多方过程有pV n = p 1V 1n = p 2V 2n = C (常数), 理想气体对外所做的功为2211d d V V n V V A p V CV V -==⎰⎰11112221()11n n pV p V CV V n n ---=-=--.证毕. (2)[证明]对于一摩尔理想气体有pV = RT ,因此气体对外所做的功可表示为121RT RT A n -=-,气体吸收的热量为Q = ΔE + A = 21211()()21i R T T R T T n-+--,摩尔热容量为2112()212(1)Q i i in C R R T T n n +-==+=---(2)/121Vi i n i nR C n nγ+--=⋅=--.证毕.11.8 一气缸内贮有10mol 的单原子理想气体,在压缩过程中,外力做功209J ,,气体温度升高1℃.试计算气体内能增量和所吸收的热量,在此过程中气体的摩尔热容是多少? 解:单原子分子的自由度为i = 3,一摩尔理想气体内能的增量为2iE R T ∆=∆= 12.465(J),10mol 气体内能的增量为124.65J . 气体对外所做的功为A = - 209J ,所以气体吸收的热量为Q = ΔE + A = -84.35(J). 1摩尔气体所吸收的热量为热容为-8.435J ,所以摩尔热容为C = -8.435(J·mol -1·K -1).11.9 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压过程回到状态A . (1)A →B ,B →C ,C →A ,各过程中系统对外所做的功A ,内能的增量ΔE 以及所吸收的热量Q . (2)整个循环过程中系统对外所做的总功以及从外界吸收的总热量(各过程吸热的代数和).解:单原子分子的自由度i = 3.(1)在A →B 的过程中,系统对外所做的功为AB 直线下的面积,即A AB = (p A + p B )(V B – V A )/2 = 200(J), 内能的增量为()2AB B A i M E R T T μ∆=-()2B B A A ip V p V =-= 750(J). 吸收的热量为Q AB = ΔE AB + A AB = 950(J).B →C 是等容过程,系统对外不做功.内能的增量为()2BC C B i M E R T T μ∆=-()2C C B B ip V p V =-= -600(J). 吸收的热量为Q BC = ΔE BC + A BC = -600(J),就是放出600J 的热量.C →A 是等压过程,系统图11.9对外做的功为A CA = p A (V A – V C ) = -100(J).内能的增量为 ()2CA A C i M E R T T μ∆=-()2A A C C ip V p V =-= -150(J). 吸收的热量为Q CA = ΔE CA + A CA = -250(J),也就是放出250J 的热量.(2)对外做的总功为A = A AB + A BC + A CA = 100(J).吸收的总热量为Q = Q AB + Q BC + Q CA = 100(J).由此可见:当系统循环一周时,内能不变化,从外界所吸收的热量全部转化为对外所做的功.11.10 1mol 单原子分子的理想气体,经历如图所示的的可逆循环,连接ac 两点的曲线Ⅲ的方程为p = p 0V 2/V 02,a 点的温度为T 0.(1)以T 0,R 表示Ⅰ,Ⅱ,Ⅲ过程中气体吸收的热量. (2)求此循环的效率. 解:由题可知:p 0V 0 = RT 0.(1)I 是等容过程,系统不对外做功,内能的变化为I 00()()22b a b i i E R T T p V RT ∆=-=-0000(9)122ip V RT RT =-=. 吸收的热量为Q I = ΔE I = 12RT 0.II 是等容过程,根据III 的方程,当p c = 9p 0时,V c = 3V 0.系统对外所做的功为 A II = p b (V c - V b ) = 9p 02V 0 = 18RT 0. 内能的变化为II ()()22c b c c b b i iE R T T p V p V ∆=-=-00092272i p V RT ==.吸收的热量为Q II = ΔE II + A II = 45RT 0.在过程III 中,系统对外所做的功为20III 20d d aa ccV VV V p A p V V V V ==⎰⎰33002026()33a c p V V RT V =-=-.内能的变化为III 0()()22a c c c i iE R T T RT p V ∆=-=-0000(93)392i RT p V RT =-=-.吸收的热量为Q III = ΔE III + A III = -143RT 0/3.(2)系统对外做的总功为A = A I + A II + A III = 28RT 0/3, 系统从高温热源吸收的热量为Q 1 = Q I + Q II = 57RT 0, 循环效率为1AQ η== 16.37%.11.11 1mol 理想气体在400K 和300K 之间完成卡诺循环.在400K 等温线上,初始体积为1×10-3m 3,最后体积为5×10-3m 3.试计算气体在此循环中所做的功及从高温热源所吸收的热量和向低温热源放出的热量.解:卡诺循环由气体的四个变化过程组成,等温膨胀过程,绝热膨胀过程,等温压缩过程,绝热压缩过程.气体在等温膨胀过程内能不改变,所吸收的热量全部转化为对外所做的功,即22111111d d V V V V Q A p V RT V V ===⎰⎰211ln VRT V == 5.35×103(J).气体在等温压缩过程内能也不改变,所放出的热量是由外界对系统做功转化来的,即90图11.1044332221d d V V V V Q A p V RT V V ===⎰⎰423ln V RT V =,利用两个绝热过程,可以证明V 4/V 3 = V 2/V 1,可得Q 2 = 4.01×103(J).气体在整个循环过程中所做的功为A = Q 1 - Q 2 = 1.34×103(J).11.13 一热机在1000K 和300K 的两热源之间工作,如果 (1)高温热源提高100K , (2)低温热源降低100K ,从理论上说,哪一种方案提高的热效率高一些?为什么? 解:(1)热机效率为η = 1 – T 2/T 1,提高高温热源时,效率为η1 = 1 – T 2/(T 1 + ΔT ), 提高的效率为221111T T T T T ηηη∆=-=-+∆ 2113()110T T T T T ∆==+∆= 2.73%. (2)降低低温热源时,效率为η2 = 1 – (T 2 - ΔT )/T 1, 提高的效率为222211T T T T T ∆ηηη-∆=-=- = ΔT /T = 10%. 可见:降低低温热源更能提高热机效率.对于温度之比T 2/T 1,由于T 2 < T 1,显然,分子减少一个量比分母增加同一量要使比值降得更大,因而效率提得更高.11.14 使用一制冷机将1mol ,105Pa 的空气从20℃等压冷却至18℃,对制冷机必须提供的最小机械功是多少?设该机向40℃的环境放热,将空气看作主要由双原子分子组成. 解:空气对外所做的功为2211d d V V V V A p V p V ==⎰⎰= p (V 2– V 1) = R (T 2– T 1),其中T 2 = 291K ,T 1 = 293K .空气内能的增量为21()2iE R T T ∆=-, 其中i 表示双原子分子的自由度:i = 5.空气吸收的热量为Q = ΔE + A =212()2i R T T +-= -58.17(J). 负号表示空气放出热量.因此,制冷机从空气中吸收的热量为Q 2 = -Q = 58.17(J).空气是低温热源,为了简化计算,取平均温度为T`2 = (T 2 + T 1)/2 = 292(K); 环境是高温热源,温度为T`1 = 313(K).欲求制冷机提供的最小机械功,就要将制冷当作可逆卡诺机, 根据卡诺循环中的公式1122Q T Q T =, 可得该机向高温热源放出的热量为`112`2T Q Q T == 62.35(J),因此制冷机提供的最小机械功为W = Q 1 - Q 2 = 4.18(J).[注意]由于低温热源的温度在变化,所以向高温热源放出的热量的微元为`112`2d d T Q Q T =,其中`222d d d 2i Q Q R T +=-=-,因此``211`2d 2d 2T i Q RT T +=-,积分得制冷机向高温热源放出的热量为`21112ln 2T i Q RT T +=-= 62.35(J), 与低温热源取温度的平均值的计算结果相同(不计小数点后面2位以后的数字).。
《大学物理AII》作业 No.11 热力学第一定律(参考答案)
V2
V1
ò p d V 来直接求解做功,但可以
答: (1)不可能。等容加热过程中,系统吸热且不对外做功,根据热力学第一定律其内能一 定增加。 (2)不可能。等温压缩过程中,系统内能不变,对外做负功,根据热力学第一定律系统一 定是经历放热过程。 (3)不可能。等压压缩过程中,系统温度降低,内能减少,同时对外做负功,根据热力学 第一定律系统一定是经历放热过程。 (4)可能。绝热压缩过程,吸热为零,外界对系统做功,系统内能一定增加。
氢气是双原子分子,其自由度为 5,而氦气是单原子分子,其自由度为 3,因此氢气与氦气
5 RT 2 ,所以 3 2 E2 = m RT 4 2 E1 =
m1 2
的内能分别为:
E1 = 5/ 3 E2 ;
7 R 2 ,当它们吸收相同的热量,意味着它们的温度变 5 = R 2
氢气与氦气的等压热容分别为:
Aab = 0
b—c 等压过程: Qbc =
m i+2 3 CP (Tc - Tb ) = ( PcVc - PbVb ) = (i + 2) P 1V1 M 2 8
Abc =
1 3 P1 ( Vc - Vb ) = P1V1 4 4
m V 1 RTa ln A = PaVa ln = - P 1V1ln 4 M VC 4
大学物理习题详解No.11 热力学第一定律
《大学物理AII 》作业 No.11 热力学第一定律一、判断题:(用“T ”和“F ”表示)[ F ] 1.热力学第一定律只适用于热力学系统的准静态过程。
解:P284我们把涉及热运动和机械运动范围的能量守恒定律称为热力学第一定律。
无论是准静态过程还是非静态过程均是适用的,只是不同过程的定量化的具体形式不同[ F ] 2.平衡过程就是无摩擦力作用的过程。
解:平衡过程即是过程中的中间状态均视为平衡态,与是否存在摩擦无关。
[ T ] 3.在p -V 图上任意一线段下的面积,表示系统在经历相应过程所作的功。
解:P281,根据体积功的定义。
[ F ] 4.置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态一定都是平衡态。
解:P253平衡态就是系统的宏观量具有稳定值的状态。
[ T ] 5.热力学第一定律表明:对于一个循环过程,外界对系统作的功一定等于系统传给外界的热量。
解:P294二、选择题:1.一定量的理想气体,开始时处于压强、体积、温度分别为1p 、1V 、1T 的平衡态,后来变到压强、体积、温度分别为2p 、2V 、2T 的终态,若已知12V V >,且12T T =,则以下各种说法中正确的是:[ D ] (A) 不论经历的是什么过程,气体对外所作的净功一定为正值(B) 不论经历的是什么过程,气体从外界所吸的净热量一定为正值(C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少(D) 如果不给定气体所经历的是什么过程,则气体在过程中对外所作的净功和从外界吸热的正负皆无法判断解:⎰=21d V V V p A 只适用于准静态过程,对于任意过程,无法只根据12V V >,12T T =判断A 和Q 的正负。
2.一定量的理想气体,经历某过程后,它的温度升高了。
则根据热力学定律可以断定:(1) 该理想气体系统在此过程中吸了热;(2) 在此过程中外界对该理想气体系统作了正功。
大学物理下册第十一章 热力学基础
1. 定义:系统经历一系列变化后又回到初始状态的整 个过程。
准静态循环过程 ~ p-V图中的闭合曲线
p 正
O 2. 共同特征
E0
顺时针:正循环 逆
逆时针:逆循环 V
热力学第一定律: Q净 W净
3. 正循环及其效率
p
b
T1
a 净正正功 c
负功d功
W
O V1
V2
V
特征:
T2
Q净Q吸Q放
W净W对外 W外对系
第十一章 热力学基础
§11—1 内能 功 热量 一.热力学系统(系统)
需研究的对象——气、液、固,也称为工作物质。 以理想气体为系统,与之相互作用的环境称为外界。
二、内能
1.内能:大量分子的平均动能与分子间相互作用 的势能的总和.
实际气体:E=E (T,V )
对于理想气体,由于分子间无相互作用力,所以,理想气体
a. EM mCVT0
V2
m V 2
dV
b .
W p pdV
V1
M V 1
RT
V
m RT ln V 2 m RT ln p1
M
V1 M
p2
T Q
恒温热源 T
p
p1
(p1,V1,T)
P1V 1
ln
V2 V1
P2V 2
ln
V2 V1
P1V 1 ln
P1 P2
P2V 2 ln
P1 P2
(p2,V2,T)
PdVP1V1P2V2
1
系统要对外做功,必须以牺牲自身的内 能为代价.
p
4.P-V 图: 一条曲线.
绝热线比等温线陡.
绝热线 A
《大学物理AII》作业 No.11热力学第一定律
《大学物理AII 》作业No.11热力学第一定律一、选择题1.置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[B](A)一定都是平衡态。
(B)不一定都是平衡态。
(C)前者一定是平衡态,后者一定不是平衡态。
.(D)后者一定是平衡态,前者一定不是平衡态。
解:气体内各处压强相等或温度相等,都不一定是平衡态。
2.一定量的理想气体,开始时处于压强、体积、温度分别为1p 、1V 、1T 的平衡态,后来变到压强、体积、温度分别为2p 、2V 、2T 的终态,若已知12V V >,且12T T =,则以下各种说法中正确的是:[D](A)不论经历的是什么过程,气体对外所做的净功一定为正值。
(B)不论经历的是什么过程,气体从外界所吸的净热量一定为正值。
(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少。
(D)如果不给定气体所经历的是什么过程,则气体在过程中对外所做的净功和从外界吸热的正负皆无法判断。
解:∫=21d V V V p A 只适用于准静态过程,对于任意过程,无法只根据12V V >,12T T =判断A 和Q 的正负。
3.一定量的理想气体,经历某过程后,它的温度升高了。
则根据热力学定律可以断定:(1)该理想气体系统在此过程中吸了热。
(2)在此过程中外界对该理想气体系统做了正功。
(3)该理想气体系统的内能增加了。
(4)在此过程中理想气体系统既从外界吸了热,又对外做了正功。
以上正确的断言是:[C ](A)(1)、(3)。
(B)(2)、(3)。
(C)(3)。
(D)(3)、(4)。
(E)(4)解:内能是温度的单值函数,温度升高只能说明内能增加了,而功和热量都与过程有关,不能只由温度升降而判断其正负。
4.热力学第一定律表明:[C ](A)系统对外做的功不可能大于系统从外界吸收的热量。
(B)系统内能的增量等于系统从外界吸收的热量。
(C)不可能存在这样的循环过程,在此循环过程中,外界对系统做的功不等于系统传给外界的热量。
第11章 大学物理热力学基础
例: 一卡诺循环热机,高温热源的温度是400K,每一循 环从此热源吸进100J热量并向一低温热源放出80J热量。 求(1)这循环的热机的效率;(2)低温热源的温度。 解:(1)这循环的热机的效率为:
Q放 % Q吸
(2)设低温热源的温度T2,有
Q放 T % Q吸
(2)每一循环中外界必须作的功 Q吸 T2 w T1 T2 A
A 200J
22
§11.7 热力学第二定律的统计意义
一、热力学第二定律的微观解释
1、宏观状态与微观状态 宏观看:
左、右两部分各有多少粒子 而不去区分究竟是哪个粒子 微观上看: 具体哪个粒子在哪? 编号为 a b c d
左
宏观态
20世纪六七十年代以后,自从“大爆炸”宇宙模型 逐渐得到天体物理学界公认以来,“热寂”说这朵 漂浮在物理学上空的“乌云”逐渐云开雾散,人类 曾一度阴霾笼罩的心头终于迎来了一片朗朗晴空。
33
“大爆炸”宇宙模型
该理论认为,宇宙大约是在100—200亿年以前,从 高温高密的物质与能量的“大爆炸”而形成。随着 宇宙的不断膨胀,其中的温度不断降低,物质密度 也不断减小,逐渐衍生成众多的星系、星体、行星 等,直至出现生命。宇宙大爆炸理论是20世纪科学 研究的重大成就,是基于几十年的创新实验与理论 研究的结果。因而获得了科学界的公认,并成为现 代宇宙学的标准模型。
几率大的宏观态最易出现。 (平衡态)
1 4 6 4 1
1 4 6 4 1
在一孤立系统内,一切实际过程都是从概率小(微 观态小)的状态向概率大的宏观态(微观态多)进 行的 ——为热力学第二定律的统计意义
25
4. 热二律的微观解释 自发过程的方向性 如 自由膨胀
大学物理习题解答第三章热力学
第三章热力学本章提要1.准静态过程系统连续经过得每个中间态都无限接近平衡态得一种理想过程。
准静态过程可以用状态图上得曲线表示。
2.内能系统内所有分子热运动动能与分子之间相互作用势能得与,其数学关系式为内能就是态函数。
3.功功就是过程量。
微分形式:积分形式:4.热量两个物体之间或物体内各部分之间由于温度不同而交换得热运动能量。
热量也就是过程量。
5.热力学第一定律热力学第一定律得数学表达式:热力学第一定律得微分表达式:由热力学第一定律可知,第一类永动机就是不可能造成得。
6.理想气体得热功转换(1)等体过程:热量增量为或(2)等压过程:热量增量为因则(3)等温过程:热量增量为因则(4)绝热过程:根据热力学第一定路可得则或在绝热过程中理想气体得p、V、T三个状态参量之间满足如下关系:7.热容量等体摩尔热容量:等压摩尔热容量:对于理想气体,若分子自由度为i,则迈耶公式:比热容比:8.焓在等压过程中,由热力学第一定律可得由于,上式可写为如果令焓就是一个态函数。
9.循环过程正循环得热机效率逆循环得致冷系数10.卡诺循环由两个等温过程与两个绝热过程构成得循环。
正循环得效率逆循环得效率11.热力学第二定律开尔文表述:不可能制成一种循环动作得热机,只从单一热源吸收热量,使之全部转变为有用得功,而其她物体不发生任何变化。
克劳修斯表述:热量不可能自动地从低温物体传向高温物体,而不引起其她得变化。
统计意义:一个不受外界影响得孤立系统,其内部所发生得过程总就是由热力学概率小得宏观状态向热力学概率大得宏观状态进行,即从有序向无序得状态发展。
12.克劳修斯熵克劳修斯熵表达式熵增加原理:在孤立系统内,当热力学系统从一个平衡态到达另一个平衡态时,它得熵永远不减少。
如果过程不可逆,系统得熵增加;如果过程可逆,系统得熵不变。
13.玻耳兹曼熵玻耳兹曼熵表达式熵得微观本质:熵得多少就是系统微观状态数目多寡得标志。
思考题3-1 (1)热平衡态与热平衡有何不同?(2)热平衡与力学中得平衡有何不同?答:(1)一个孤立系统得各种宏观性质(如温度、压强、密度等)在长时间内不发生任何变化,这样得状态称为热平衡态。
大学物理习题集(气体动力论_热力学基础)11 (2)
第六章热力学第二定律6-1 一致冷机工作在t2=-10℃和t1=11℃之间,若其循环可看作可逆卡诺循环的逆循环,则每消耗1.00KJ的功能由冷库取出多少热量?解:可逆制冷机的制冷系数为ε=Q2/A=T1/(T1-T2)∴从冷库取出的热量为:Q2=AT2/(T1-T2)=103×263/(284-263)=1.25×104J6-2 设一动力暖气装置由一热机和一致冷机组合而成。
热机靠燃料燃烧时放出热量工作,向暖气系统中的水放热,并带动致冷机,致冷机自天然蓄水池中吸热,也向暖气系统放热。
设热机锅炉的温度为t1=210℃,天然水的温度为t2=15℃,暖气系统的温度为t3=60℃,燃料的燃烧热为5000Kcal·Kg-1,试求燃烧1.00Kg燃料,暖气系统所得的热量。
假设热机和致冷机的工作循环都是理想卡诺循环。
解:动力暖气装置示意如图,T1=273+210=483K,T3=273+60=333K,T2=273+15=288K。
I表热机,Ⅱ表致冷机。
热机效率η=A/Q1=1-T3/T1=0.31∴ A=ηQ1=0.31Q1致冷机的致冷系数ε=Q2/A=T2/(T3-T2)∴Q2=A·T2/(T3-T2)=0.31Q1288/(333-288)=1.984Q1而Q1=qM=5000×1Kcal ∴暖气系统得到的热量为:Q=Q3+Q4=(Q1-A)+(A+Q2)=Q1+Q2=Q1+1.984Q1=2.984×5000=1.492×104 Kcal=6.24×104 KJ6-3 一理想气体准静态卡诺循环,当热源温度为100℃,冷却器温度为0℃时,作净功800J,今若维持冷却器温度不变,提高热源温度,使净功增加为 1.60×103 J,则这时:(1)热源的温度为多少?(2)效率增大到多少?设这两个循环都工作于相同的两绝热线之间。
2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载
2023年热力学统计物理第五版(汪志诚著)课后答案下载热力学统计物理第五版(汪志诚著)内容简介导言第一章热力学的基本规律1.1 热力学系统的平衡状态及其描述1.2 热平衡定律和温度1.3 物态方程1.4 功1.5 热力学第一定律1.6 热容和焓1.7 理想气体的内能1.8 理想气体的绝热过程附录1.9 理想气体的卡诺循环1.10 热力学第二定律1.11 卡诺定理1.12 热力学温标1.13 克劳修斯等式和不等式1.14 熵和热力学基本方程1.15 理想气体的熵1.16 热力学第二定律的数学表述1.17 熵增加原理的简单应用1.18 自由能和吉布斯函数习题第二章均匀物质的热力学性质2.1 内能、焓、自由能和吉布斯函数的全微分 2.2 麦氏关系的简单应用2.3 气体的节流过程和绝热膨胀过程2.4 基本热力学函数的确定2.5 特性函数2.6 热辐射的热力学理论2.7 磁介质的.热力学2.8 获得低温的方法习题第三章单元系的相变3.1 热动平衡判据3.2 开系的热力学基本方程3.3 单元系的复相平衡条件3.4 单元复相系的平衡性质3.5 临界点和气液两相的转变3.6 液滴的形成3.7 相变的分类3.8 临界现象和临界指数3.9 朗道连续相变理论习题第四章多元系的复相平衡和化学平衡热力学第三定律 4.1 多元系的热力学函数和热力学方程4.2 多元系的复相平衡条件4.3 吉布斯相律4.4 二元系相图举例附录4.5 化学平衡条件4.6 混合理想气体的性质4.7 理想气体的化学平衡4.8 热力学第三定律习题第五章不可逆过程热力学简介5.1 局域平衡熵流密度与局域熵产生率 5.2 线性与非线性过程昂萨格关系5.3 温差电现象5.4 最小熵产生定理5.5 化学反应与扩散过程5.6 非平衡系统在非线性区的发展判据 5.7 三分子模型与耗散结构的概念习题第六章近独立粒子的最概然分布6.1 粒子运动状态的经典描述6.2 粒子运动状态的量子描述6.3 系统微观运动状态的描述6.4 等概率原理6.5 分布和微观状态6.6 玻耳兹曼分布6.7 玻色分布和费米分布……第七章玻耳兹曼统计第八章玻色统计和费米统计第九章系综理论第十章涨落理论第十一章非平衡态统计理论初步附录A 热力学常用的数学结果B 概率基础知识C 统计物理学常用的积分公式索引参考书目物理常量表热力学统计物理第五版(汪志诚著)图书目录《“十二五”普通高等教育本科国家级规划教材:热力学统计物理(第5版)》是“十二五”普通高等教育本科国家级规划教材,是作者在第四版的基础上全面修订而成的。
大学物理热力学基础知识点及试题带答案
热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。
2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。
3. 了解可逆过程、不可逆过程及卡诺定理。
4. 了解热力学第二定律及其统计意义。
二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。
准静态过程可以用状态图上的曲线表示。
2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。
(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。
一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。
摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。
卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。
大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案
第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。
答:内能是组成物体的所有分子的动能与势能的总和。
热量是热传递过程中所传递的能量的量度。
内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。
(1) 错。
热量是过程量,单一状态的热量无意义。
(2) 对。
物体的内能与温度有关。
2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程 012=+∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvR p = 故bc 过程为等压过程ca 是等温过程(2)V p -图如图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形. (5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。
大学物理单元习题及答案(热学部分)
单元习题热学模块一、 判断题: 1、 只有处于平衡状态的系统才可用状态参数来表述。
( √ ) 2、温度是标志分子热运动激烈程度的物理量,所以某个分子运动越快,说明该分子温度越高。
( × ) 3、某理想气体系统内分子的自由度为i ,当该系统处于平衡态时,每个分子的能量都等于kT i2。
( × )4、单原子分子的自由度为3,刚性双原子分子的自由度为5,刚性多原子分子的自由度为6。
( √ ) 5、 理想气体物态方程nkT p =中,n 代表物质的量。
( × ) 6、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们的温度、压强都相同。
( √ ) 7、两种理想气体温度相等,则分子的平均平动动能不一定相等。
( × ) 8、 对给定理想气体,其内能只是温度的函数。
( √ ) 9、热力学第一定律是能量转换和守恒定律,所以凡是满足热力学第一定律的热力学过程都能够实现。
( × ) 10、 可逆过程一定是准静态过程,反之亦然。
( × )11、 热力循环过程中只要给出高温热源的温度和低温热源的温度,都可以用公式121T T -=η来计算热机效率。
( × )12、 循环输出净功越大,则热效率越高。
( × ) 13、 可逆循环的热效率都相等。
( × )14、 不可逆循环的热效率一定小于可逆循环的热效率。
( × ) 15、 从增加内能的角度来说,作功和热传递是等效的,在本质上无差别。
( × )16、 不可逆过程是不能回到初态的热力过程。
( × ) 17、 热机的循环效率不可能大于1。
( √ ) 18、 气体膨胀一定对外做功。
( × ) 二、 计算题1、 一容器内储有氧气,其压强为atm p 0.1=,温度为27℃。
求:(1)分子数密度; (2)氧分子质量; (3)氧气密度;(4)分子的平均平动动能; (5)分子间的平均距离。
大学热力学统计物理第四版汪志诚答案
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.8 满足npVC =的过程称为多方过程,其中常数n 名为多方指数。
试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n nnQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭ 所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2) 将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。
(3)将上式微分,有12(1)0,n n V dT n V TdV --+-=所以.(1)nV V T n T ∂⎛⎫=- ⎪∂-⎝⎭ (4) 代入式(2),即得,(1)1n V V pV n C C C T n n γ-=-=-- (5) 其中用了式(1.7.8)和(1.7.9)。
1.9 试证明:理想气体在某一过程中的热容量nC如果是常数,该过程一定是多方过程,多方指数n p n VC C n C C -=-。
假设气体的定压热容量和定容热容量是常量。
解:根据热力学第一定律,有đđ.dU Q W =+ (1)对于准静态过程有đ,W pdV =-对理想气体有,V dU C dT =气体在过程中吸收的热量为đ,n Q C dT =因此式(1)可表为().n V C C dT pdV -= (2)用理想气体的物态方程pV vRT =除上式,并注意,p V C C vR -=可得()().n V p V dT dVC C C C T V-=- (3) 将理想气体的物态方程全式求微分,有.dp dV dT p V T+= (4) 式(3)与式(4)联立,消去dTT,有 ()()0.n V n p dp dV C C C C p V-+-= (5)令n p n VC C n C C -=-,可将式(5)表为0.dp dV n p V+= (6) 如果,p V C C 和n C 都是常量,将上式积分即得n pV C =(常量)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六次作业 热力学
一、选择题
⒈ ABCD ;⒉ B ;⒊ B ;⒋ B ;⒌ B ;⒍ C ;⒎ C ;⒏ A ;9.CDF ;10. A 。
二、填空题
⒈ 包括热现象在内的能量转化与守恒定律;热力学过程进行的方向和条件。
⒉ )
()
(010010v p
V V p p p V C C --= 。
⒊ ① 260J ;② 280-J 。
4. 如右边表格 5. K 95 。
三、问答题
答:不矛盾。
致冷机的致冷系数是一个表征能量转移效率的物理量,而不是能量转换的效率。
致冷机的致冷系数大于1,意味着可以花较少的功,传输较多的热量,它并不违反能量守恒定律。
四、计算与证明
1. 解: ① a →b 过程, 2ln 00V p A ab =
b →
c 过程, 005.0V p A bc -= c →a 过程, 0=ca A
净功: 00005.02ln V p V p A A A A ca bc ab -=++=00)5.02(ln V p -= ② a →b 过程,吸热 2ln 00V p A Q ab ab ==
c →a 过程,吸热 0045
)(25V p T T R Q c a ca =-=
总吸热:0000001)25.12(ln 4
5
2ln V p V p V p Q Q Q ca ab +=+=+=
热机效率: %8.925
.12ln 5.02ln )25.12(ln )5.02(ln 001=+-=+-==
V p V p Q A η 或者:b →c 过程,放热 004
7
)(27V p T T R Q b c bc -=-=
总放热:0024
7
V p Q Q bc -
== a →b 过程,吸热 2ln 00V p A Q ab ab ==
c →a 过程,吸热 0045
)(25V p T T R Q c a ca =-=
总吸热:001)4
5
2(ln V p Q Q Q ca ab +=+=
所以: %8.925
.12ln 5
.02ln )25.12(ln )5.02(ln 1001
2=+-=+-=
-=V p V p Q Q η
2. 用反证法:
若一条等温线与一条绝热线有两个交点,则可以以此闭合回路设计一可逆循环,由可逆等温过程实现从单一热源吸热,再通过可逆绝热过程做功回到初始状态,将单一热源吸收的热量完全变成功,而没有引起其它变化。
这一假设过程违反热力学第二定律的开尔文表示,所以是不可能发生的。
结论,一条等温线与一条绝热线不能有两个交点。
3. 解:① 空调制冷,室内为低温热源K 3002=T 室外为高温热源K 3101=T
2
12
2T T T t P t P A Q c -=∆∆==
空吸ω, s /J 7.66300
300
3102000221=-⨯=-⋅=T T T P P 吸空
② 空调制热---热泵,室外为低温热源K 2702=T 室内为高温热源K 3001=T
空
2
12
2T T T t P t P A Q c -=∆∆==
空吸ω s /J 3.600270
300270
7.66212=-⨯=-⋅
=T T T P P 空吸 所以,传入房间的热量为 21Q A Q += 每秒传入的热量,即功率:
J/s 6673.6007.662
1=+=+=∆+=
∆=
吸空P P t
Q A t Q P
五、附加题 1.
2. 解:环境温度为K 882C 1501==T ,人体温度恒定为310K C 3702==T ,则
K /J 1092.131012881108)11(3
6122121⨯=⎪⎭
⎫ ⎝⎛-⨯⨯=-⋅=+-
=∆+∆=∆T T Q T Q T Q S S S。