高速铁路大断面深埋黄土隧道围岩压力计算方法
围岩压力计算方法概要课件
塑性力学解析法
考虑围岩的塑性变形,通 过求解塑性力学方程来计 算围岩压力。适用于高应 力、大变形的情况。
边界元法
将问题转化为边界积分方 程,通过离散化边界来求 解围岩压力。适用于复杂 形状和边界条件的围岩。
注浆加固适用于各种类型的围岩,尤其在软弱、破碎、节理裂隙发育的 围岩中效果更佳。
注浆加固可以有效控制围岩变形和破坏,提高围岩的整体性和稳定性, 降低对支护结构的依赖。
05
围岩压力计算的发展趋势
人工智能在围岩压力计算中的应用
机器学习算法
01
利用历史数据和现场监测数据,通过训练模型来预测围岩压力。
常见的算法包括支持向量机、神经网络等。
数据挖掘技术
02
通过分析大量的监测数据,发现围岩压力变化的规律和趋势,
为预测提供依据。
专家系统
03
利用专家知识和经验,建立围岩压力计算的决策支持系统,提
高计算精度和可靠性。
多物理场耦合的围岩压力计算方法
流固耦合
考虑地下水流动和围岩变形的相互影响,建立流固耦合模型来计 算围岩压力。
热固耦合
考虑温度变化和围岩变形的相互影响,建立热固耦合模型来计算 围岩压力。
经验公式法实例
朗肯公式
基于朗肯循环理论,通过经验公式来计算围岩压 力。适用于具有简单形状和边界条件的围岩。
布莱克公式
基于布莱克理论,通过经验公式来计算围岩压力。 适用于具有复杂形状和边界条件的围岩。
库仑公式
基于库仑理论,通过经验公式来计算围岩压力。 适用于具有简单形状和边界条件的围岩。
04
围岩压力控制措施
黄土隧道深、浅埋分界标准及荷载计算方法
黄土隧道深、浅埋分界标准及荷载计算方法黄土隧道浅埋和深埋的界定问题黄土隧道深埋和浅埋的分界标准对于判断隧道衬砌所受围岩压力的性质至关重要,目前工程界和学术界主要存在两种观点:一种观点认为,在施工中不能保证形成承载拱的深度就可定为深埋和浅埋的分界,这是从松弛荷载的角度进行确定的方法;另一种观点认为,隧道开挖所造成的围岩松弛影响范围不能达到地表的深度,可定义为深、浅埋的分界深度,这是从连续介质力学角度出发的分界标准。
举例分析说明:巉口至兰州高速公路新庄岭隧道穿越黄土地层,在设计、施工过程中进行了洞内围岩压力监控量测及计算分析,测试断面埋深82m,大于按上述两种观点所计算的分界标准(按公路隧道设计规范计算分界厚度:65.2m,铁路隧道设计规范计算分界厚度:40.0m,太沙基公式:59.5m)。
理应当属深埋隧道。
但在施工期间,开挖通过测试断面时,地表出现了两条沿隧道走向的纵向裂缝,无疑按照上述深浅埋分界标准的两种观点都不能划分为深埋隧道。
采用不同方法计算出的隧道垂直土压力(kPa)隧道计算方法太沙基公式谢家烋公式公路隧道设计规范实测计算结果新庄岭隧道346.5 803.5 733.5 424.1 新庄岭隧道按谢氏公式和《公路隧道设计规范》的计算结果远远超出了按实测值的推算结果,《公路隧道设计规范》只是在谢氏公式的基础上对某些参数进一步作了规定,本质上是一样的。
太沙基公式的计算结果要小于实测值的推算结果,从量测地表出现的两纵向裂缝间距看,隧道上方滑动楔体的宽度要大于按太沙基公式的计算值,致使确定的滑动土体的范围较小,主要由于太沙基公式假设土层侧压力系数为1,微土条单元的竖向力为均匀分布,才导致结果要偏离实际的压力值。
《公路隧道设计规范》的计算公式是借鉴铁路部门对铁路隧道的施工坍方统计推算出来的,认为坍方区域内岩土体的重量即为隧道衬砌所受的垂直压力,其理论本质和普氏理论是一致的。
如果黄土隧道的施工方法采用侧壁导坑先墙后拱法,并严格按照“管超前、少扰动、短进尺、强支护、留核心、勤量测、早封闭”的施工原则进行施工,则黄土隧道施工中坍落体和承载拱是不会出现的,隧道衬砌承受的是由于周围土体对衬砌的挤压而产生的形变压力。
围岩压力计算
1围岩压力计算深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。
按等效荷载高度计算公式如下:HP =(~)qh式中: Hp——隧道深浅埋的分界高度;hq ——等效荷载高度,qh=qγ;q——垂直均布压力(kN/m2);γ——围岩垂直重度(kN/m3)。
二次衬砌承受围岩压力的百分比按下表取值:表复合式衬砌初期支护与二次衬砌的支护承载比例浅埋隧道围岩压力的计算方法隧道的埋深H大于hq而小于Hp时,垂直压力QB Bt tqH==γH(1-λθ)浅浅tan。
表各级围岩的θ值及φ值2(tan 1)tan tan tan c cc ϕ+ϕβϕ+ϕ-θc tan =tan侧压力系数()tan tan tan tan tan tan tan tan cc c β-ϕλ=β1+βϕ-θ+ϕθ⎡⎤⎣⎦作用在支护结构两侧的水平侧压力为:e 1=γh λ ; e 2=γ(h+Ht)λ 侧压力视为均布压力时:Ⅴ级围岩的等效荷载高度hq=×24×[1+×(10-5)]= Hp==27m,H<Hq,故为浅埋。
取φ0=45°,θ=φ0=27°,h=20m ,tan β=,λ=,tan θ=, 计算简图:()212+1e =e e垂直压力q=19×20×20×10)=mPg=πdγ=π××25=m地基反力P=me1=γhλ=19×20×=e2=γ(h+Ht)λ=19×(20+×=水平均布松动压力e=(e1+e2)/2=mⅤ级围岩二衬按承受50%围岩压力进行计算,则垂直压力为q×50%=m地基反力为P×50%=m水平压力为e×50%=m2衬砌结构内力计算表等效节点荷载表轴力、剪力、弯矩详细数据50+0557********51+05409972930652+05240502556953+052115954+0517015内力图分析(1)轴力:由ANSYS建模分析围岩衬砌内力得出轴力图如图,最大轴力出现在仰拱段,其值为。
隧道围岩压力计算公式
隧道围岩压力计算公式一、隧道围岩压力计算的基本原理地下隧道施工中,周围岩体对隧道的压力包括岩体重力及地表载荷对围岩的作用力两部分。
计算隧道围岩压力时需要考虑这两部分力的影响。
隧道围岩的重力即为岩体受重力作用的结果。
对于满足平衡条件的岩体,其重力可根据以下公式计算:G=γV其中,G为围岩重力,γ为围岩容重,V为岩体体积。
三、地表载荷计算公式地表载荷包括交通载荷、建筑物荷载等。
根据载荷的类型和特点,可以选取合适的计算公式进行计算。
例如,对于地面交通载荷,可以使用AASHTO公式、Burkill公式等进行计算。
根据隧道岩体的性质和周围环境的情况,可采用各种不同的计算公式。
下面列举几种常见的计算公式。
1. Culmann公式Culmann公式基于假设隧道周围岩体为弹性体,并假设岩体为各向同性的弹性体。
公式如下:P=2aγH/(√π)其中,P为围岩压力,a为自由差,γ为岩体容重,H为覆岩深度。
2. Moller公式Moller公式假设隧道周围岩体为半无限长的弹性体,该公式适用于围岩位于较深位置的隧道计算。
公式如下:P=(H/h)√πaγ其中,P为围岩压力,a为自由差,γ为岩体容重,H为覆岩深度,h 为地平面以上距离。
3.能量原理法能量原理法是根据岩体处于静力平衡状态时的能量等量原理得到的计算公式。
P = (2ah/V)∫(Fzdz)其中,P为围岩压力,a为自由差,V为岩体体积,F为岩体应力,z 为高度。
五、隧道围岩压力计算实例假设一个隧道,覆岩深度为H,岩体容重为γ,自由差为a。
根据Culmann公式,可计算出围岩压力:P=2aγH/(√π)六、综合考虑其他因素在实际工程中,还需要综合考虑其他因素,如地下水压力、地应力分布等。
这些因素会对计算结果产生一定的影响,需要在计算中进行相应的修正。
综上所述,隧道围岩压力计算涉及到地表载荷计算、岩体重力计算和计算公式的选择等多个方面。
在实际工程中,需要根据具体情况选取合适的计算公式,并综合考虑其他因素,以得到准确的围岩压力计算结果。
1围岩压力计算
1围岩压力计算1围岩压力计算深埋和浅埋情况下围岩压力的计算方式不同,深埋和浅埋的分界按荷载等效高度值,并结合地质条件、施工方法等因素综合判断。
按等效荷载高度计算公式如下:HP =(2~2.5)qh式中: Hp——隧道深浅埋的分界高度;hq ——等效荷载高度,qh=qγ;q——垂直均布压力(kN/m2);γ——围岩垂直重度(kN/m3)。
二次衬砌承受围岩压力的百分比按下表取值:表4.1 复合式衬砌初期支护与二次衬砌的支护承载比例围岩级别初期支护承载比例二次衬砌承载比例双车道隧道三车道隧道双车道隧道三车道隧道ⅠⅡ100 100 安全储备安全储备Ⅲ100 ≥80 安全储备≥20 Ⅳ≥70 ≥60 ≥30 ≥40 Ⅴ≥50 ≥40 ≥50 ≥60 Ⅵ≥30 ≥30 ≥80 ≥85浅埋地段≥50 ≥30~50≥60 ≥60~801.1 浅埋隧道围岩压力的计算方法隧道的埋深H 大于hq 而小于Hp 时,垂直压力Q B B t tq H==γH(1-λθ)浅浅tan 。
表4.3 各级围岩的θ值及0φ值围岩级别Ⅲ ⅣⅤθ0.90φ (0.7~0.9)0φ (0.5~0.7)0φ 0φ60°~70°50°~60°40°~50°2(tan 1)tan tan tan c cc ϕ+ϕβϕ+ϕ-θc tan =tan 侧压力系数()tan tan tan tan tan tan tan tan cc c β-ϕλ=β1+βϕ-θ+ϕθ⎡⎤⎣⎦作用在支护结构两侧的水平侧压力为:e 1=γh λ ; e 2=γ(h+Ht)λ 侧压力视为均布压力时:Ⅴ级围岩的等效荷载高度hq=0.45×24×[1+0.1×(10-5)]=10.8m Hp=2.5hq=27m,H<Hq,故为浅埋。
取φ0=45°,θ=0.6φ0=27°,h=20m ,tan β=3.02,λ=0.224,tan θ=0.51, 计算简图:()212+1e =e e垂直压力q=19×20(1-0.224×20×0.51/10)=293.18KN/mPg=πdγ=π×0.4×25=31.4KN/m地基反力P=324.58KN/me1=γhλ=19×20×0.224=85.12e2=γ(h+Ht)λ=19×(20+8.17)×0.224=119.89水平均布松动压力e=(e1+e2)/2=102.51KN/mⅤ级围岩二衬按承受50%围岩压力进行计算,则垂直压力为q×50%=146.59KN/m地基反力为P×50%=162.29KN/m水平压力为e×50%=51.255KN/m2衬砌结构内力计算表4.7 等效节点荷载节点号X Y Fx FY1 2072.742591 1544.439864 31304.66167 2146.3194733 2072.757146 1543.972843 26425.97397 4953.6865524 2072.800753 1543.507634 26256.11233 9886.1615315 2072.873244 1543.046044 25973.81825 14776.30132 2 2072.974338 1542.589864 24195.36508 23664.97654 7 2073.219875 1542.146273 20103.90754 40260.144586 2073.651412 1541.88012 14076.90744 57497.450139 2074.154041 1541.73685 8935.043764 69728.9710410 2074.661668 1541.61244 6853.524396 83279.0729311 2075.173585 1541.507065 5880.169138 84021.8174612 2075.689079 1541.42087 4898.834757 84650.5451413 2076.20743 1541.353977 3910.852859 85164.4039714 2076.727917 1541.306479 2917.564275 85562.6960915 2077.249814 1541.27844 1920.316498 85844.8859416 2077.772394 1541.269902 920.4626612 86010.5840317 2078.294929 1541.280875 80.64000409 86059.5712718 2078.81669 1541.311344 -1081.63324 85991.7746219 2079.33695 1541.361267 -2081.158789 85807.2914620 2079.854984 1541.430575 -3077.860187 85506.3814621 2080.37007 1541.51917 -4070.385072 85089.4259922 2080.88149 1541.626929 -5057.386718 84557.009323 2081.388532 1541.753702 -6037.525576 83909.86178 2081.890488 1541.899313 -7009.471578 83148.84332 25 2082.285648 1542.168245 -9244.515303 74199.42618 24 2082.510844 1542.589864 -14047.47015 52646.5891327 2082.611937 1543.046044 -19236.06506 36865.6479128 2082.684429 1543.507634 -23588.83673 22476.6373729 2082.728036 1543.972843 -25973.81825 14776.30132 26 2082.742591 1544.439864 -26256.11233 9886.16153130 2082.706135 1545.042547 -26425.97397 4953.68655231 2082.5973 1545.636442 -31304.66167 2146.31214432 2082.417672 1546.212888 -35817.57933 -13486.3166533 2082.169871 1546.76348 -34895.66231 -26741.8859834 2081.85751 1547.280188 -33376.67067 -39539.8892835 2081.485145 1547.755477 -31286.59479 -51661.3504136 2081.058204 1548.182418 -28661.19683 -62898.8811837 2080.582915 1548.554783 -25545.39795 -73060.1921438 2080.066207 1548.867144 -21992.50975 -81971.412939 2079.515615 1549.114945 -18063.32375 -89480.0825240 2078.939169 1549.294573 -13825.06958 -95457.7295441 2078.345274 1549.403408 -9350.264619 -99802.0707842 2077.742591 1549.439864 -4715.473839 -102438.770543 2077.139908 1549.403408 0 -103322.708244 2076.546013 1549.294573 4715.473839 -102438.763145 2075.969566 1549.114945 9350.264619 -99802.0707846 2075.418975 1548.867144 13825.06984 -95457.7368747 2074.902267 1548.554783 18063.324 -89480.0898548 2074.426978 1548.182418 21992.50975 -81971.412949 2074.000037 1547.755477 25545.39769 -73060.1848150 2073.627672 1547.280188 28661.19683 -62898.8811851 2073.315311 1546.76348 31286.59505 -51661.3504152 2073.06751 1546.212888 33376.67067 -39539.8819553 2072.887882 1545.636442 34895.66205 -26741.8859854 2072.779047 1545.042547 35817.57908 -13486.32398表4.8 轴力、剪力、弯矩详细数据节点号轴力弯矩剪力1 -8.92E+05 -13456 -109952 -8.83E+05 -8352.6 -638913 -8.73E+05 21398 -1.19E+054 -8.61E+05 76686 -1.72E+055 -8.69E+05 1.57E+05 -252076 -7.80E+05 1.69E+05 3.16E+057 -2.08E+06 7906.2 339838 -2.06E+06 -11168 325749 -2.05E+06 -29519 2963810 -2.04E+06 -46347 2539511 -2.03E+06 -60967 2007312 -2.02E+06 -72813 1390913 -2.02E+06 -81442 7144.714 -2.02E+06 -86540 26.68815 -2.02E+06 -87920 -7193.616 -2.02E+06 -85526 -1426717 -2.02E+06 -79433 -2094718 -2.03E+06 -69844 -2698819 -2.04E+06 -57093 -3214820 -2.05E+06 -41637 -3619121 -2.07E+06 -24058 -3889122 -2.08E+06 -5056.4 -4002923 -7.88E+05 14553 -3.07E+0524 -8.72E+05 1.60E+05 1869325 -8.67E+05 1.51E+05 1.61E+0526 -8.78E+05 75321 1.12E+0527 -8.89E+05 22802 6085928 -8.97E+05 -5736 1042929 -9.06E+05 -10643 -1582730 -9.04E+05 -976.56 -1884631 -8.96E+05 10731 -2262932 -8.82E+05 24936 -2597333 -8.61E+05 41366 -2494434 -8.33E+05 57370 -1258435 -7.99E+05 66092 2076436 -7.60E+05 54844 4538037 -7.22E+05 28879 5781438 -6.87E+05 -4468.5 5896639 -6.58E+05 -38409 5047240 -6.38E+05 -67143 3459441 -6.27E+05 -86237 1407042 -6.26E+05 -92913 -8065.143 -6.37E+05 -86224 -2867644 -6.57E+05 -67117 -4472845 -6.85E+05 -38371 -5348046 -7.19E+05 -4418.2 -5266647 -7.57E+05 28940 -4064448 -7.94E+05 54916 -1651049 -8.29E+05 66173 1653250 -8.56E+05 57316 2859051 -8.76E+05 40997 2930652 -8.90E+05 24050 2556953 -8.98E+05 9154.2 2115954 -8.99E+05 -3292.6 17015内力图分析(1)轴力:由ANSYS建模分析围岩衬砌内力得出轴力图如图,最大轴力出现在仰拱段,其值为626.383kN。
隧道工程-围岩压力及计算
围岩竖向的匀布松动压力,则为:
q hh
围岩水平的匀布松动压力按朗肯公式计算:
e q 1 H tg 2 45 0
2
2
松动压力的计算
③ 太沙基理论
深埋隧道松动压力计算
V
bt
tan 0
取 =1, tan 0 fm
则与普氏理论的公式 一致
松动压力的计算
➢由埋深经验判定:
浅埋隧道松动压力计算 先来说说深、浅埋的判别
② 普氏理论
坚硬岩体中, 坑道侧壁稳定, 天然拱跨度就是 隧道宽度
b=bt
(bt为隧道的净宽度的一半)
深埋隧道松动压力计算
松散和破碎岩体 中,坑道侧壁受 扰动而滑移,天 然拱跨度也相应 加大
b
bt
H
tg 45 0
2
松动压力的计算
深埋隧道松动压力计算
② 普氏理论 天然拱高度的计算:
hh
b fm
✓最小围岩压力和围岩允许位移是等 价的。目前对于两者都没有较好的计 算方法;
✓对于
的情况,我们提出一种估
算方法。
形变压力的计算
最小围岩(形变)压力的计算
分析过程
p a min b=W
实际作用在支护上的压力应该是重力和形 变压力的叠加,故
p a min b=2W
W b(Rmax r0 )(按三角形面积计)
① 统计法——我国《铁路隧道设计规范》推荐方法 ② 普氏理论 ③ 太沙基理论
松动压力的计算
深埋隧道松动压力计算
① 统计法——我国《铁路隧道设计规范》推荐方法
松动压力的计算
深埋隧道松动压力计算
① 统计法——我国《铁路隧道设计规范》推荐方法
松动压力的计算
隧道深浅埋压力计算公式
隧道深浅埋压力计算公式隧道工程是指在地下或水下开挖、建设的一种交通工程,是连接两个地区或隔离两个地区的通道。
隧道工程的深浅埋深度和埋深对隧道的设计和施工都有很大的影响。
在隧道工程中,埋深越深,地下水压力就越大,对隧道的稳定性和安全性就会产生更大的影响。
因此,对隧道深浅埋压力进行准确的计算和分析是非常重要的。
隧道深浅埋压力计算公式是指根据隧道的埋深、地下水位、地下水压力等因素,通过数学模型和力学原理推导出的计算公式。
这些公式可以用来计算隧道深浅埋压力,为隧道的设计和施工提供科学依据。
隧道深浅埋压力计算公式的推导是建立在一定的假设和简化条件下的。
在实际工程中,需要根据具体的情况和要求进行修正和适当的调整。
下面我们将介绍一些常用的隧道深浅埋压力计算公式。
一、埋深对地下水压力的影响。
隧道的埋深对地下水压力有很大的影响。
通常情况下,隧道的埋深越深,地下水压力就越大。
地下水压力可以通过以下公式进行计算:P = γh。
其中,P为地下水压力,γ为水的密度,h为地下水的深度。
二、隧道深浅埋压力计算公式。
1. 埋深较浅的情况。
当隧道的埋深较浅时,地下水压力对隧道的影响较小,可以采用以下公式进行计算:P = γh + K。
其中,P为地下水压力,γ为水的密度,h为地下水的深度,K为地下水对隧道的有效压力系数。
2. 埋深较深的情况。
当隧道的埋深较深时,地下水压力对隧道的影响较大,需要考虑地下水的渗流压力。
可以采用以下公式进行计算:P = γh + K + αh。
其中,P为地下水压力,γ为水的密度,h为地下水的深度,K为地下水对隧道的有效压力系数,α为地下水的渗流系数。
三、应用举例。
现假设某隧道的埋深为100米,地下水位距离隧道顶部20米,地下水的密度为1000kg/m³,地下水对隧道的有效压力系数为10kPa/m,地下水的渗流系数为5kPa/m。
1. 当隧道的埋深较浅时,地下水压力的计算公式为:P = γh + K。
考虑黄土垂直裂隙发育的隧道围岩压力算法
使埋深超过百米, 远大于普通地层中的深浅埋划分标
准, 依然出现裂缝贯穿至地表的情况 [5] , 此时作用
在隧道衬砌结构上的围岩压力与按规范中深埋隧道围
况如表 1 所列 [10] , 可以看出, 实测得到的破裂角普
遍大于 70°, 最大可达 76°, 若按一般 Q 3 黄土内摩擦
定围岩破裂面沿隧道拱脚或拱腰斜向贯穿至地表, 根
厚度的增大, 深部土层的原生节理裂隙在较大荷载作
据地表纵向裂缝距隧道中线距离及隧道埋深关系估算
用下逐渐闭合, 但仍是潜在软弱面, 而浅埋黄土地层
破裂角 β。 郑西客运专线部分黄土隧道破裂角统计情
存在大量可肉眼观测的明显裂隙。 黄土地层具有的这
一特性, 给地下工程暗挖施工带来许多问题。
Geotechnical Engineering, Xi’ an University of Technology, Xi’ an 710048, Shaanxi, China)
Abstract: Aiming at the problem that the surrounding rock crack of loess tunnel is still prone to penetrate to the ground surface
稳定, 尚未闭合及在外部扰动作用下能够重新发育的
考虑黄土竖向裂隙间的力学作用, 对合理确定埋深较
原生竖向节理裂隙主要分布在浅层新黄土之中 [11] 。
大黄土隧道的围岩压力起着关键作用。 而以往对相关
因此, 对于隧道洞身位于老黄土中的情况, 假定老黄
问题的研究, 主要集中于黄土隧道地表裂缝分布特征
及经典
围岩压力计算方法
IV~VI级围岩取 Hp=2.5hq
当隧道覆盖层厚度H≥Hp时为深埋, H<Hp
时为浅埋
计算公式
1、埋深(H)小于或等于等效荷载高度hq时, 荷载视为均布竖向压力
q = γH 式中: q—匀布布竖向压力;
γ—深度上覆围岩容重; H—隧道埋深,抬隧道顶至地面的距离。
计算公式
其他一些确定围岩压力的方法
1、以坑道上方形成平衡拱为基础的方法
普氏理论:在松散介质中开挖隧道,在其上方会
形成一抛物线平衡拱,这个平衡拱实际上就是破
坏范围,这个范围内的围岩重量就是隧道支护结
构所要承受的荷载
q h
h b f kp
ey
q ytg 2 450
g
2
围岩压力的概念
3、围岩松散压力的产生 开挖隧道所引起的围岩松动和破坏的范围
有大有小,对于一般裂隙岩体中的深埋隧道,其 波及范围仅局限在隧道周围一定深度,作用在支 护结构上的围岩松散压力远远小于其上覆岩层自 重所造成的压力,这可用围岩的“成拱作用”来 解释。
围岩压力的概念
(1)阶段的划分
隧道开挖后,在围岩应力重分布过程中,顶板开 始沉陷,并出现拉断裂纹,可视为变形阶段; 顶板的裂纹继续发展并且张开,由于结构面切割 等原因,逐渐转变为松动,可视为松动阶段; 顶板岩体视其强度的不同而逐步坍塌,可视为坍 塌阶段; 顶板塌落停止,达到新的平衡,此时其界面形成 一近似的拱形,可视为成拱阶段。
侧向压力e,按匀布考虑时,其值为: e = γ(H + 1/2 Hi)tg2(450 – Φ/2)
式中: e —侧向匀布压力; γ —围岩容重,以kN/m3计; H —隧道埋深,以m计; Hi —隧道高度,以m计; Φ 一围岩计算摩擦角,可查有关规范。
杨鸿玮--隧道围岩压力计算方法及其适用范围
隧道围岩压力计算方法及其适用范围摘要:在今天的城市和农村经济的发展,交通的基本措施是建设不断加强,高速公路的水平越来越高,公路隧道建设越来越关注。
但是,总体而言,我国公路隧道建设起步较晚,开发程度不高,很多技术和研究与西方发达国家相比仍有很长的路要走。
在本文中,作者结合理论和实践,通过使用地球物理学的基本原理,环隧道的围岩地应力推导出计算表达式。
表达复杂的隧道模型压缩成为一个拱计算,同时也有效的隧道工程实例实践检验。
把理论应用于实际。
关键词:隧道工程;连拱隧道;围岩压力;中间墙引言作为国家重点城市和农村经济,给很多公路建设和技术支持,呈现良好的发展势头趋势的公路隧道。
公路隧道状态不仅是数量的需要,而且还要求的品质。
然而,隧道施工的安全是最重要的,要做到这一点,首先,是开发更有效的设计,隧道,隧道的设计采用的方法通常是隧道衬砌计算,但随着科学技术的发展,各种先进的计算方法引入这一领域,如连续介质力学方法,数值分析方法得到了广泛的传播,逐渐取代结构力学的方法。
当然,传统的或先进的隧道施工方法必须匹配的计算模型准确的负荷计算。
作者在本文主要结合了地球物理的基本理论和围岩地应力的计算表达式,将简化拱隧道模型来计算。
1 公路隧道围岩压力计算1.1 计算基本思路应该沿着公路隧道行驶方向每隔距离W(作者在本文中称为“部分)做一个代表性的横截面。
部分W和横截面成反比的关系,部分长度主要取决于隧道的地形条件和隧道的具体设计,以及中间的部分横截面是最具代表性的一部分。
横截面的短节,如果表示更好,这是可以用来计算压力隧道拱周。
在正常情况下,公路隧道的断面尺寸只有两米到五米的范围内波动。
图1是代表的一段隧道横截面的选区。
在图1中BO3GFO2隧道横截面,DO5IGO3B区域随着隧道拱顶(BO3G)压力区。
问里面的库(BO3G)压力区微元,微元质量为dn,重力垂直分量dn dn的微元问隧道拱顶的正压。
因为dε很小,ε因为d = 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第30卷,第5期 中国铁道科学Vo l 130No 152009年9月 CH INA RAILWAY SCIEN CESeptember,2009文章编号:1001-4632(2009)05-0053-06高速铁路大断面深埋黄土隧道围岩压力计算方法王明年1,郭 军1,罗禄森1,2,杨建民2,喻 渝2,谭忠盛3(1.西南交通大学土木工程学院,四川成都 610031; 2.中铁二院工程集团有限责任公司,四川成都 610031;31北京交通大学土木建筑工程学院,北京 100044)摘 要:依托郑西铁路客运专线大断面深埋黄土隧道洞群,进行现场围岩压力量测试验,得到不同黄土地层的围岩压力,发现围岩压力沿隧道全断面分布相对较为均匀。
采用太沙基松散体围岩压力理论、铁路隧道设计规范深埋围岩压力公式、普氏理论、卡柯理论4种方法分别计算围岩压力,并与实测值对比。
结果表明,基于太沙基理论的计算值最接近实测值,且具有一定的安全余量,因此推荐采用太沙基理论计算大断面深埋黄土隧道的围岩压力量值。
依据实测围岩压力的垂直与水平分量沿隧道跨度与高度方向的统计规律,确定垂直方向与水平方向围岩压力的计算图式。
分析指出,垂直方向围岩压力计算图式可采用均匀分布或/尖峰0形分布,水平方向围岩压力计算图式可采用/鼓肚子0形分布。
关键词:黄土隧道;大断面;围岩压力;计算方法 中图分类号:U 45112;U 452112 文献标识码:A收稿日期:2008-07-10;修订日期:2009-04-14基金项目:铁道部科技研究开发计划项目(2005K001-D(G)-2) 作者简介:王明年(1965)),男,安徽舒城人,教授。
郑州)西安铁路客运专线(以下简称郑西线)穿越河南与陕西两省,该地区是我国黄土分布的主要区域之一。
沿线黄土隧道总延长约50km,占全线隧道总长的65%,隧道开挖面积大于160m 2,部分大于170m 2,跨度大于15m,属于超大断面隧道。
由于跨度及断面面积的增加,导致围岩压力发生较大变化,而黄土是一种特殊性质的土,该类型隧道围岩压力的变化规律与普通岩土不同,尤其是深埋条件下围岩压力大小与规律尚不为人所知。
既有的研究成果[1-7]已经不能满足现实的需要,现行规范[8]也没有给出深埋黄土隧道荷载大小的计算方法。
因此,需要对大断面深埋黄土隧道的围岩压力进行系统的研究,以便更好地指导支护的设计与计算。
本文依托郑西线黄土隧道洞群,进行现场量测试验,得到大量深埋黄土隧道的围岩压力数据,将实测围岩压力值与4种理论计算值对比,分析现行4种围岩压力计算理论的适用性;对实测围岩压力分布规律进行统计分析,给出大断面深埋黄土隧道围岩压力垂直方向与水平方向分量的计算图式。
研究成果对大断面深埋黄土隧道的支护设计具有重要的参考意义。
1 现场围岩压力量测方案根据郑西线沿线老黄土(Q 1,Q 2)、新黄土(Q 3)的分布状况及埋深情况,设计了现场量测试验方案。
选择涵盖Q 1,Q 2,Q 33种黄土地层的张茅、贺家庄、函谷关等3座隧道进行围岩压力量测,共计布置10个量测断面,每个断面在初支)围岩间布置11个测点,采用双模压力盒量测。
量测断面的布置详见表1,量测点布置如图1所示。
实测中,由于个别测点被破坏,没有取得相应实测数据,下文的分析仅对有实测数据的观测点进行。
表1 围岩压力量测断面隧道黄土地层埋深/m 断面个数断面里程张茅洞身 Q 1952DK225+145,DK225+965贺家庄进口Q 2434DK241+962,DK241+980DK242+063,DK242+073函谷关洞身Q 31104DK273+005,DK273+015DK273+040,DK273+055图1量测点布置示意图2实测围岩压力及其分布实测各断面围岩压力及其分布如图2)图4所示。
图4张茅隧道围岩压力(单位:kP a)各断面实测围岩压力的垂直方向分量与水平方向分量的最大值见表2。
表2实测围岩压力各方向分量最大值隧道断面里程围岩压力分量最大值/kPa垂直方向分量水平方向分量张茅洞身DK225+145DK225+965238162236179302197195137贺家庄进口DK241+962DK241+980DK242+063DK242+073631397011849102881461451867613089112125193函谷关洞身DK273+005DK273+015DK273+040DK273+05521318190113104125155153166120184186175168111183由图2)图4及表2可知,大断面深埋黄土隧道围岩压力在其全断面上分布相对较为均匀;拱部围岩压力的垂直方向分量不大,边墙围岩压力的水平方向分量不小,两者量值相当。
3深埋隧道围岩压力计算方法目前,常用的深埋隧道的围岩压力计算方法有太沙基松理论、普氏理论、铁路隧道设计规范[2] (以下简称/隧规0)和卡柯理论4种。
由于本文在现场未发现明显的围岩破坏迹象,故较难判断围岩属于哪种理论框架下的破坏形式。
本节主要依据实测围岩压力值,对上述4种理论进行比选,推荐适用于大断面深埋黄土隧道的理论方法。
理论计算参数依据现场土样的三轴试验确定,见表3。
表3围岩力学参数取值隧道围岩埋深/m界定类别密度Q/g#cm-3黏聚力c/k Pa摩擦角U/(b)张茅洞身Q195深埋211015533贺家庄进口Q243深埋118014524函谷关洞身Q3110深埋118115526太沙基围岩压力理论的计算值与实测各分量最大值的对比见表4,分析可知,理论计算值除个别54中国铁道科学第30卷点小于实测值外,其余均大于实测值,二者比值在1110~2145之间。
基于太沙基理论、隧规、普氏理论、卡柯理论的围岩压力计算值与实测值的对比见表5。
可以看出,与实测围岩压力各分量的最大值相比,卡柯理论与隧规的计算值显著偏小,而普氏理论计算值显著偏大,该3种理论的计算值与实际情况偏离程度较大。
相比较而言,太沙基理论计算值与实测最大值最为接近,因此,推荐采用该理论计算大断面深埋黄土隧道的围岩压力。
从表5还可以看出,采用太沙基理论进行计算时,围岩压力尚存在一定的安全余量。
表4太沙基围岩压力理论计算值与实测最大值对比隧道围岩压力垂直方向分量/k Pa实测最大值太沙基理论理论/实测围岩压力水平方向分量/kPa实测最大值太沙基理论理论/实测张茅洞身23816226219111103021971551070151贺家庄进口8814621711421451451861881341129函谷关洞身21318130015111411841862081981113表5围岩压力垂直方向分量各理论计算值与实测最大值的比值隧道围岩压力垂直方向分量太沙基理论/实测隧规理论/实测普氏理论/实测卡柯理论/实测围岩压力水平方向分量太沙基理论/实测隧规理论/实测普氏理论/实测卡柯理论/实测张茅洞身11101123116301210151014801510112贺家庄进口21451144516211091129012611770150函谷关洞身114101602112013311130121112101284大断面深埋黄土隧道围岩压力分布规律确定围岩压力大小的计算方法后,还应确定围岩压力在隧道高度与跨度上的分布规律,即计算图式问题。
411垂直方向围岩压力计算图式将图2-图4所示的实测径向压力分解为垂直方向分量与水平方向分量,可以观察其分布规律。
以贺家庄隧道DK241+962断面为例,各测点围岩压力的垂直方向分量及其与拱顶处垂直压力(等于该点的径向压力)的比例关系见表6。
由表6可知,垂直方向围岩压力的最大值并非处在拱顶位置,而是出现在隧道中线左侧(或右侧)30b~60b的范围。
表6DK241+962断面围岩压力位置测点径向围岩压力/kPa径向围岩压力垂直方向分量/kPa围岩压力垂直方向分量之比(各测点/拱顶)拱顶Y139131391311100左侧30b Y255119471801122右侧30b Y344151381550198左侧60b Y455196271980171右侧60b Y5126178631391161左侧75b Y6124177321290182右侧75b Y7151101391080199将贺家庄隧道的4个量测断面各测点实测径向围岩压力分解得到其垂直方向分量,将该分量与拱顶处垂直压力的比值列于表7中。
由表7可知,垂直方向围岩压力的最大值出现在隧道中线左侧(或右侧)30b~60b的范围,该范围内各点的压力值与拱顶处接近,比值接近110,差距不大。
表7贺家庄隧道各测点经向围岩压力垂直方向分量与拱顶处垂直压力的比值监测断面左右30bY2Y3左右60bY4Y5左右75bY6Y7 DK241+962112201980171116101820199DK241+980216911211155116901220143DK242+0730127018201260108DK243+005013711780116012501150126平均值110701880137由于每个点所在位置的实测压力具有一定的离散性,而多样本统计方法应能描述其分布规律。
在此对3座隧道10个断面各测点的压力比值(即该点与所在断面拱顶处的垂直压力的比值)进行统计分析,其中,左右30b位置的Y2与Y3测点、左右60b位置的Y4与Y5测点、左右75b位置的Y6与Y7测点分别合并在一起考虑。
例如,对于位于隧道中心线左右侧30b的Y2与Y3测点,10个断面合计共20个压力观测数据(去掉仪器损坏的测点,实际所得观察数据小于该值),对这20个压力数据进行压力比值的统计,便可得到压力比值的平均值及其在各比值区间的分布个数,详见表8。
55第5期高速铁路大断面深埋黄土隧道围岩压力计算方法表83座隧道各测点垂直围岩压力比值的均值及其在各比例区间的分布个数区间范围测点比值的平均值不同分布区间的量测数据的个数<110110~115115~210210~215215~310>310个数分布所占比例/%<110>110左右30b Y2,Y3116882301347115219左右60b Y4,Y50180131400072122718左右75b Y6,Y701421600000100100注:¹上述比值的分母为各断面拱顶处的垂直方向围岩压力;º/个数分布所占比例0一栏为压力比值小于或超出110的观测数据占各点观测数据总量的比例。
分析表8可知,隧道中线左右侧30b处压力比值的均值为1168,比值大于110以上的观测数据个数占总数的比例为5219%;左右侧60b处压力比值的均值为0180,比值小于110以上的观测数据个数占总数的比例为7212%;左右侧75b处压力比值的均值为0142,比值小于110以上的个数占比为100%。