SC5387中文资料
SC5388资料
SilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.3115-MODE PRESET EQUALIZER ICDESCRIPTIONThe SC5388is a2-channel digital preset equalizer utilizingCMOS technology.It provides5different sound selections,namely:Flat/normal,rock,Pops,Classic and Jazz.A Bass Booster may beadded any of5sound selections,thereby creating more audioversatility.SC5388provides two types of key selection modenamely:the Direct and the Cyclic.Pin assignment and applicationcircuit are optimized for cost saving advantages and easy PCBlayout.FEATURES*Wide operating voltage range(V CC=5.0V~11.0V)*Low total harmonic distortion and high S/N ratio(THD+N<0.02%,S/N>95dB)*LED display output mode*Less external parts*5-sound selections provided*Bass booster function*Direct and cyclic key selection provided*2-Channel outputORDERING INFORMATIONSC5388SC5388SSDIP-24PackageSOP-24PackageAPPLICATIONS*Walkman*Car Audio*Fader and MPEG Card*Multimedia Audio componentsPIN CONFIGURATIONSIN LB L1B L2T LOUT LIN RB R1B R2T ROUT RV CCBIASGNDSELMUTECYCBB N.C.B LEDFLATROCKPOPSCLASSICJAZZSilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.312BLOCK DIAGRAMIN LB L1B L2T LRLT RMUTEN.C.IN RB R1B R2BIASBLEFlatRocPopClassiJazzCYCBBSELABSOLUTE MAXIMUM RATINGSCharacteristic Symbol Value UnitSupply Voltage V CC11.0VInput Voltage V IN0.3~V CC+0.3V VPower Dissipation P D200mW Operating Temperature Topr-20~+75°CStorage Temperature Tstg-40 +125°C ELECTRICAL CHARACTERISTICS(Tamb=25°C V CC=9.0V,Vi=1Vrms,f=1kHz,Unless otherwise specified)Parameter Symbol Test conditions Min Typ Max Unit Operating Supply Voltage V CC 5.09.011.0V Operating Supply Current I CC Vcc=9v,Vi=0,Flat Mode11mA Maximum Output Voltage V OM Vcc=9.0V 3.5Vrms Output Noise V NOVcc=9.0V,Vi=0,BW=400~30kHz,A-weighting20µVrms Total Harmonic Distortion THDVcc=9.0V,Vi=0.2Vrms,BW=400~30kHz,A-weighting0.02% Input impedance R IN Vcc=9.0V5060kΩOutput impedance R OUT Vcc=9.0V 5.5kΩMaximum Input Voltage V I(max)Vcc=9.0V 2.0VrmsSilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.313PIN DESCIPTIONPin No. Pin Name I/O Description1IN L I Left Channel Input.2B L1--Left Bass Control Pin1.A Capacitor may be Connected between this Pinand B L23B L2--Left Bass Control Pin2.A Capacitor may be Connected between this Pinand B L1.4T L--Left Treble Control Pin.A Capacitor may be Connected between this Pinand OUT L.5OUT L O Left Channel Output in.6V CC--Positive Supply Voltage.7BIAS--A capacitor may be connected between this Pin and GND.8GND--Ground.9SEL I Select Control Pin.10MUTE--Mute Pin.The Mute Pin can eliminate the noise when mode changingoccurs.A capacitor is connected between this Pin and GND.11CYC I Cyclic Select Pin.12BB I Bass Booster Control Input Pin.13NC--No Connected.14B LED O Bass Booster Control Input Pin.15FLAT I/O FLAT Mode Display&Control Input Pin.16ROCK I/O ROCK Mode Display&Control Input Pin.17POPS I/O POPS Mode Display&Control Input Pin.18CLASSIC I/O CLASSIC Mode Display&Control Input Pin.19JASS I/O JASS Mode Display&Control Input Pin.20OUT R O Right Channel Output in.21B R1--Right Bass Control Pin1.A Capacitor may be Connected between this Pinand B R2.22B R2--Right Bass Control Pin2.A Capacitor may be Connected between this Pinand B R1.23T R--Right Treble Control Pin.A Capacitor may be Connected between this Pinand OUT R.24IN R I Right Channel Input.FUNCTIONAL DESCRIPTIONThe SC5388is a2-channel and5-Mode digital preset equalizer with a Bass Booster function.It provides two types of key selection mode namely:the Direct and the Cyclic.These two key selection Modes are determined by SEL pin.Please refer to the table below:Key Selection Mode SEL Pin DescriptionPress FLAT key to activate Flat ModePress ROCK key to activate Rock ModePress POPS key to activate Pops ModePress CLASSIC key to activate Classic ModeDirect LowPress JAZZ key to activate Jazz ModeCyclic Floating/High...Flat→Rock→Pops→Classic→Jazz→Flat→Rock...Note:1).The Bass Booster can be controlled in the same manner under the Direct or the Cyclic Key selection Mode.To turn the Bass Booster ON or OFF,press the BB Key.2).Under the Cyclic Selection mode,press the CYC Key,to go to the next sound selection.SilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.3141. CYCLIC KEY SELECTION MODEAs seen in the table above,the cyclic key selection mode is active when the SEL pin is floating or“high”.Under this mode,any of the sound selections(Flat,Rock,Pops,classic,Jazz)may be selected by pressing the CYC key. The default value is the Flat Mode.This Means that when power is turned ON,the mode is active.Pressing the Cyclic Key lets you go from one sound selection to the other in the following order:Flat→Rock→Pops→Classic→Jazz.That is,press the CYC key to activate the next mode.The BB key controls the Bass Booster.When the power is turned ON,the bass Booster is OFF.2. DIRECT KEY SELECTION MODEThe direct key selection mode is active when the SEL pin is set to“LOW”.As the name implies,you can directly select the sound selection you like simply by pressing the respective keys.This means,that to select the JAZZ mode,press the JAZZ key,CLASSIC Mode,press the CLASSIC key and so forth.Take note that when the poweris turned On,the Flat Mode is active.The Bass Booster is independent of the key/sound mode selected and maybe turned ON or OFF at any time.3. FREQUENCY RESPONSEThe Fig.1~Fig.5illustrate the various frequency response under the various sound selection(Flat,Rock,Pops, Classic,Jazz,and Bass Booster).Different sound selections exhibit different frequency gains at different frequency levels.Please refer to the table below:TypicalSound Selectionf=80Hz f=1kHz f=10kHzUnitFlat 1.7-0.8-1.3Rock10.0 1.57.0Pops 6.50.57.0Classic 6.00.5 1.0Jazz10.0 1.2 3.3Flat+Bass Booster8.50.7 1.0Rock+Bass Booster11.0 2.07.0Pops+Bass Booster9.5 1.07.0Classic+Bass Booster9.5 1.0 1.0Jazz+Bass Booster11.0 2.0 2.5dBTREBLE AND BASS ADJUSTMENTSIt is general knowledge that different individuals have different listening preference.The application circuit ofSC5388included in this specification has been designed for the taste general listening public;however,you can make the necessary adjustment to suit your personal taste.Please refer to the Section below.1. TREBLE ADJUSTMENTThe Treble adjustment is made by changing the value of the2capacitors connected between T L-OUT L,T R-OUT R,Please refer to Fig.6.As the capacitor value becomes bigger,the treble of the gain frequency curve is shifted down.Likewise,as the capacitor value become smaller,the treble gain frequency curve shifts the opposite direction.Referring to the Fig.6. we see that at6dB,different capacitor values exhibit different frequency response.Capacitor value1800pF has a lower frequency gain response than1200pF capacitor.SilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.3152. BASS ADJUSTMENTBass adjustment can be made by changing the values of the capacitor connected between B L1~B L2andB R1~B R2.Please refer to Fig.7.The larger the capacitor value used,the frequency response curve shifts down.Like wise,the smaller the capacitor value,the frequency response curve shifts the opposite direction.In Fig.7,at9dB different capacitorvalue exhibit different frequency responses.A capacitor with a value of0.1µF has smaller frequency response than 0.56µF capacitor.Fig.1Flat Mode(Flat mode+Bass Booster)-224681012Gain(dB)Frequency(Hz)10100100010k100k-224681012Gain(dB)SilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.316Fig.3Pops Mode(Pops mode+Bass Booster)Frequency(Hz)10100100010k100k-224681012Gain(dB)Fig.4Classic mode(Classic mode+Bass Booster)-224681012Gain(dB)Frequency(Hz)10100100010k100k-224681012Gain(dB)SilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.317Fig.6T L-OUT L Capacitors vs.Frequency ResponseFrequency(Hz)10100100010k100k -224681012Gain(dB)Frequency(Hz)10100100010k100k -224681012Gain(dB)Fig.7B L1-B L2Capacitors vs.Frequency ResponseSilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.318APPLICATION CIRCUITNote:Please use0.068µF,1500pF Mylar Capacitors.Note:Please use0.068µF,1500pF Mylar Capacitors.SilanSemiconductorsSC5388HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTDRev:1.02000.12.319。
正丙基三氯硅烷-危险化学品安全技术说明书中文MSDS文档16个部分(完整版)
化学品安全技术说明书正丙基三氯硅烷第一部分化学品及企业标识化学品中文名:正丙基三氯硅烷化学品英文名:n-propyl trichlorosilane;trichloropropylsilane供应商名称:天津****化工有限公司供应商地址:天津市**区**路**号**室供应商电话:4571-5858****邮编:248***供应商传真:4571-5858****电子邮件地址:4527**************产品推荐及限制用途:用作有机硅中间体。
第二部分危险性概述紧急情况概述:高度易燃液体和蒸气,吞咽有害,吸入会中毒,造成严重的皮肤灼伤和眼损伤。
GHS危险性类别:易燃液体-类别2;急性毒性-吸入-类别3;皮肤腐蚀/刺激-类别1;严重眼损伤/眼刺激-类别1标签要素:象形图:警示词:危险危险信息:H225:高度易燃液体和蒸气H331:吸入会中毒H314:造成严重的皮肤灼伤和眼损伤防范说明:预防措施:P210:远离热源/火花/明火/热表面。
禁止吸烟。
P233:保持容器密闭。
P240:容器和接收设备接地/等势联接。
P241:使用防爆的电气/通风/照明/设备。
P242:只能使用不产生火花的工具。
P243:采取防止静电放电的措施。
P280:戴防护手套/穿防护服/戴防护眼罩/戴防护面具。
P261:避免吸入粉尘/烟/气体/烟雾/蒸气/喷雾。
P271:只能在室外或通风良好之处使用。
P260:不要吸入粉尘/烟/气体/烟雾/蒸气/喷雾。
P264:作业后彻底清洗。
应急响应:P303+P361+P353:如皮肤(或头发)沾染:立即脱掉所有沾染的衣服。
用水清洗皮肤/淋浴。
P370+P378:火灾时,使用灭火。
P304+P340:如误吸入:将受害人转移到空气新鲜处,保持呼吸舒适的休息姿势。
P311:呼叫解毒中心/医生。
P321:具体治疗(见本标签上的)。
P301+P330+P331:如误吞咽:漱口。
不要诱导呕吐。
P363:沾染的衣服清洗后方可重新使用。
克罗韦尔CompactLogix 5380和Compact GuardLogix5380控制器说明书
CompactLogix 5380 和 Compact GuardLogix 5380 控制器产品目录号 5069-L306ER 、5069-L306ERM 、5069-L310ER 、5069-L310ERM 、5069-L310ER-NSE 、5069-L310ERS2、5069-L320ER 、5069-L320ERM 、5069-L330ER 、5069-L330ERM 、5069-L340ER 、5069-L340ERM 、5069-L350ERM 、5069-L380ERM 、5069-L3100ERM 、5069-L306ERS2、5069-L306ERMS2、5069-L310ERS2、5069-L310ERMS2、5069-L320ERS2、5069-L320ERS2K 、5069-L320ERMS2、5069-L320ERMS2K 、5069-L330ERS2、5069-L330ERS2K 、5069-L330ERMS2、5069-L330ERMS2K 、5069-L340ERS2、5069-L340ERMS2、5069-L350ERS2、5069-L350ERS2K 、5069-L350ERMS2、5069-L350ERMS2K 、5069-L380ERS2、5069-L380ERMS2、5069-L3100ERS2、5069-L3100ERMS2用户手册原版说明书的中文译本重要用户须知在安装、配置、操作或维护本产品前,请仔细阅读本文档以及其他资源部分列出的文档,以了解有关此设备的安装、配置和操作信息。
用户需熟悉所有适用准则、法律及标准要求以及安装和接线说明。
安装、调节、投入使用、操作、装配、拆卸和维护等活动均要求由经过适当培训的人员遵照适用法规执行。
如果未按照制造商指定的方式使用设备,其提供的保护可能会受影响。
对于由于使用或应用此设备而导致的任何间接损失或连带损失,罗克韦尔自动化在任何情况下都不承担任何责任。
ADL5387中文资料
50 MHz to 2 GHzQuadrature DemodulatorADL5387 Rev. 0Information furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.FEATURESOperating RF frequency50 MHz to 2 GHzLO input at 2 × f LO100 MHz to 4 GHzInput IP3: 31 dBm @ 900 MHzInput IP2: 62 dBm @ 900 MHzInput P1dB: 13 dBm @ 900 MHzNoise figure (NF)12.0 dB @ 140 MHz14.7 dB @ 900 MHzVoltage conversion gain > 4 dB Quadrature demodulation accuracy Phase accuracy ~0.4°Amplitude balance ~0.05 dB Demodulation bandwidth ~240 MHz Baseband I/Q drive 2 V p-p into 200 Ω Single 5 V supply APPLICATIONSQAM/QPSK RF/IF demodulatorsW-CDMA/CDMA/CDMA2000/GSM Microwave point-to-(multi)point radios Broadband wireless and WiMAX Broadband CATVs FUNCTIONAL BLOCK DIAGRAM6764-1Figure 1.GENERAL DESCRIPTIONThe ADL5387 is a broadband quadrature I/Q demodulator that covers an RF/IF input frequency range from 50 MHz to 2 GHz. With a NF = 13.2 dB, IP1dB = 12.7 dBm, and IIP3 = 32 dBm @ 450 MHz, the ADL5387 demodulator offers outstanding dynamic range suitable for the demanding infrastructure direct-conversion requirements. The differential RF/IF inputs provide a well-behaved broadband input impedance of 50 Ω and are best driven from a 1:1 balun for optimum performance. Ultrabroadband operation is achieved with a divide-by-2 method for local oscillator (LO) quadrature generation. Over a wide range of LO levels, excellent demodulation accuracy is achieved with amplitude and phase balances ~0.05 dB and~0.4°, respectively. The demodulated in-phase (I) and quadrature (Q) differential outputs are fully buffered and provide a voltage conversion gain of >4 dB. The buffered baseband outputs are capable of driving a 2 V p-p differential signal into 200 Ω. The fully balanced design minimizes effects from second-order distortion. The leakage from the LO port to the RF port is<−70 dBc. Differential dc-offsets at the I and Q outputs are<10 mV. Both of these factors contribute to the excellent IIP2 specifications > 60 dBm.The ADL5387 operates off a single 4.75 V to 5.25 V supply. The supply current is adjustable with an external resistor from the BIAS pin to ground.The ADL5387 is fabricated using the Analog Devices, Inc. advanced silicon-germanium bipolar process and is available in a 24-lead exposed paddle LFCSP.ADL5387Rev. 0 | Page 2 of 28TABLE OF CONTENTSFeatures..............................................................................................1 Applications.......................................................................................1 Functional Block Diagram..............................................................1 General Description.........................................................................1 Revision History...............................................................................2 Specifications.....................................................................................3 Absolute Maximum Ratings............................................................5 ESD Caution..................................................................................5 Pin Configuration and Function Descriptions.............................6 Typical Performance Characteristics.............................................7 Distributions for f RF = 140 MHz...............................................10 Distributions for f RF = 450 MHz...............................................11 Distributions for f RF = 900 MHz...............................................12 Distributions for f RF = 1900 MHz.............................................13 Circuit Description.........................................................................14 LO Interface.................................................................................14 V-to-I Converter.........................................................................14 Mixers..........................................................................................14 Emitter Follower Buffers...........................................................14 Bias Circuit..................................................................................14 Applications.....................................................................................15 Basic Connections......................................................................15 Power Supply...............................................................................15 Local Oscillator (LO) Input......................................................15 RF Input.......................................................................................16 Baseband Outputs......................................................................16 Error Vector Magnitude (EVM) Performance.......................17 Low IF Image Rejection.............................................................18 Example Baseband Interface.....................................................18 Characterization Setups.................................................................21 Evaluation Board............................................................................23 Outline Dimensions.......................................................................26 Ordering Guide.. (26)REVISION HISTORY10/07—Revision 0: Initial VersionADL5387Rev. 0 | Page 3 of 28SPECIFICATIONSV S = 5 V , T A = 25°C, f RF = 900 MHz, f IF = 4.5 MHz, P LO = 0 dBm, BIAS pin open, Z O = 50 Ω, unless otherwise noted, baseband outputs differentially loaded with 450 Ω. Table 1.Parameter Condition Min Typ Max Unit OPERATING CONDITIONS LO Frequency Range External input = 2xLO frequency 0.1 4 GHz RF Frequency Range 0.05 2 GHz LO INPUT LOIP , LOIN Input Return LossAC-coupled into LOIP with LOIN bypassed,measured at 2 GHz−10 dB LO Input Level −6 0+6 dBm I/Q BASEBAND OUTPUTS QHI, QLO, IHI, ILOVoltage Conversion Gain 450 Ω differential load on I and Q outputs(@ 900 MHz)4.3 dB 200 Ω differential load on I and Q outputs(@ 900 MHz)3.2dBDemodulation Bandwidth 1 V p-p signal 3 dB bandwidth 240 MHz Quadrature Phase Error @ 900 MHz 0.4 Degrees I/Q Amplitude Imbalance 0.1 dB Output DC Offset (Differential) 0 dBm LO input ±5 mV Output Common-Mode VPOS − 2.8 V 0.1 dB Gain Flatness 40 MHz Output Swing Differential 200 Ω load 2 V p-p Peak Output Current Each pin 12 mA POWER SUPPLIES VPA, VPL, VPB, VPXVoltage 4.75 5.25 V Current BIAS pin open 180 mA RBIAS = 4 kΩ 157 mA DYNAMIC PERFORMANCE @ RF = 140 MHz RFIP , RFIN Conversion Gain 4.7 dB Input P1dB (IP1dB) 13 dBm Second-Order Input Intercept (IIP2) −5 dBm each input tone 67 dBm Third-Order Input Intercept (IIP3) −5 dBm each input tone 31 dBmLO to RF RFIN, RFIP terminated in 50 Ω, 1xLOappearing at the RF port−100 dBm RF to LO LOIN, LOIP terminated in 50 Ω −95 dBc I/Q Magnitude Imbalance 0.05 dB I/Q Phase Imbalance 0.2Degrees LO to I/Q RFIN, RFIP terminated in 50 Ω, 1xLOappearing at the BB port−39 dBm Noise Figure 12.0 dB Noise Figure under Blocking Conditions With a −5 dBm interferer 5 MHz away14.4dBADL5387Rev. 0 | Page 4 of 28Parameter Condition Min Typ Max Unit DYNAMIC PERFORMANCE @ RF = 450 MHz Conversion Gain 4.4 dB Input P1dB (IP1dB) 12.7 dBm Second-Order Input Intercept (IIP2) −5 dBm each input tone 69.2 dBm Third-Order Input Intercept (IIP3) −5 dBm each input tone 32.8 dBm LO to RF RFIN, RFIP terminated in 50 Ω, 1xLOappearing at the RF port−87 dBm RF to LO LOIN, LOIP terminated in 50 Ω −90 dBc I/Q Magnitude Imbalance 0.05 dB I/Q Phase Imbalance 0.6 Degrees LO to I/Q RFIN, RFIP terminated in 50 Ω, 1xLOappearing at the BB port−38 dBm Noise Figure 13.2 dB DYNAMIC PERFORMANCE @ RF = 900 MHz Conversion Gain 4.3 dB Input P1dB (IP1dB) 12.8 dBm Second-Order Input Intercept (IIP2) −5 dBm each input tone 61.7 dBm Third-Order Input Intercept (IIP3) −5 dBm each input tone 31.2 dBm LO to RF RFIN, RFIP terminated in 50 Ω, 1xLOappearing at the RF port−79 dBm RF to LO LOIN, LOIP terminated in 50 Ω −88 dBc I/Q Magnitude Imbalance 0.05 dB I/Q Phase Imbalance 0.2 Degrees LO to I/Q RFIN, RFIP terminated in 50 Ω,1XLO appearing at the BB port−41 dBm Noise Figure 14.7 dB Noise Figure under Blocking Conditions With a −5 dBm interferer 5 MHz away 15.8 dB DYNAMIC PERFORMANCE @ RF = 1900 MHzConversion Gain 3.8 dB Input P1dB (IP1dB)12.8 dBm Second-Order Input Intercept (IIP2) −5 dBm each input tone 59.8 dBm Third-Order Input Intercept (IIP3) −5 dBm each input tone27.4dBmLO to RFRFIN, RFIP terminated in 50 Ω, 1xLO appearing at the RF port−75 dBm RF to LOLOIN, LOIP terminated in 50 Ω −70 dBc I/Q Magnitude Imbalance 0.05 dB I/Q Phase Imbalance0.3Degrees LO to I/QRFIN, RFIP terminated in 50 Ω, 1xLO appearing at the BB port −43 dBm Noise Figure16.5 dB Noise Figure under Blocking ConditionsWith a −5 dBm interferer 5 MHz away18.7dBADL5387Rev. 0 | Page 5 of 28ABSOLUTE MAXIMUM RATINGSTable 2.Parameter Rating Supply Voltage VPOS1, VPOS2, VPOS3 5.5 V LO Input Power 13 dBm (re: 50 Ω) RF/IF Input Power 15 dBm (re: 50 Ω) Internal Maximum Power Dissipation 1100 mW θJA 54°C/WMaximum Junction Temperature 150°COperating Temperature Range −40°C to +85°CStorage Temperature Range −65°C to +125°CStresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTIONADL5387Rev. 0 | Page 6 of 28PIN CONFIGURATION AND FUNCTION DESCRIPTIONS124CMRF CMRF RFIP ADL5387TOP VIEW(Not to Scale)RFIN CMRF VPX CML VPA COM BIASVPL VPL VPL VPB VPB QHI QLO IHI ILO LOIP LOIN CML CML COM232221201978910111223456181716151********-002Figure 2. Pin ConfigurationTable 3. Pin Function DescriptionsPin No. MnemonicDescription1, 4 to 6,17 to 19VPA, VPL, VPB, VPX Supply. Positive supply for LO, IF, biasing and baseband sections, respectively. These pins should be decoupled to board ground using appropriate sized capacitors. 2, 7, 10 to 12, 20, 23, 24COM, CML, CMRF Ground. Connect to a low impedance ground plane.3 BIAS Bias Control. A resistor can be connected between BIAS and COM to reduce the mixer core current. The default setting for this pin is open.8, 9LOIP , LOINLocal Oscillator. External LO input is at 2xLO frequency. A single-ended LO at 0 dBm can be applied through a 1000 pF capacitor to LOIP . LOIN should be ac-grounded, also using a 1000 pF. These inputs can also be driven differentially through a balun (recommended balun is M/A-COM ETC1-1-13). 13 to 16 ILO, IHI, QLO, QHII-Channel and Q-Channel Mixer Baseband Outputs. These outputs have a 50 Ω differential output impedance (25 Ω per pin). The bias level on these pins is equal to VPOS − 2.8 V. Each output pair can swing 2 V p-p (differential) into a load of 200 Ω. Output 3 dB bandwidth is 240 MHz.21, 22 RFIN, RFIPRF Input. A single-ended 50 Ω signal can be applied to the RF inputs through a 1:1 balun (recommended balun is M/A-COM ETC1-1-13). Ground-referenced inductors must also be connected to RFIP and RFIN (recommended values = 120 nH).EPExposed Paddle. Connect to a low impedance ground planeADL5387Rev. 0 | Page 7 of 28TYPICAL PERFORMANCE CHARACTERISTICSV S = 5 V , T A = 25°C, LO drive level = 0 dBm, R BIAS = open, unless otherwise noted.20151050200400600800100012001400160018002000G A I N (d B ), I P 1d B (d B m )RF FREQUENCY (MHz)06764-003Figure 3. Conversion Gain and Input 1 dB Compression Point (IP1dB) vs.RF Frequency80705030604020100200400600800100012001400160018002000I I P 2, I I P 3 (d B m )RF FREQUENCY (MHz)06764-004Figure 4. Input Third-Order Intercept (IIP3) andInput Second-Order Intercept Point (IIP2) vs. RF Frequency2.01.51.00.50–0.5–1.0–1.5–2.00200400600800100012001400160018002000M A G N I T U D E E R R O R (d B )RF FREQUENCY (MHz)06764-005Figure 5. I/Q Gain Mismatch vs. RF Frequency5–30–25–20–15–10–501100010010B B R E S P O N S E (d B )BB FREQUENCY (MHz)06764-006Figure 6. Normalized I/Q Baseband Frequency Response1917151311970200400600800100012001400160018002000N O I S E F I G U R E (d B )RF FREQUENCY (MHz)06764-007Figure 7. Noise Figure vs. RF Frequency43210–1–2–3–40200400600800100012001400160018002000Q U A D R A T U R E P H A S E E R R O R (D e g r e e s )RF FREQUENCY (MHz)06764-008Figure 8. I/Q Quadrature Phase Error vs. RF FrequencyADL5387Rev. 0 | Page 8 of 2820151050–6–5–4–3–2–10123456G A I N (d B ), I N P U T P 1d B (d B m ), N O I S E F I G U R E (d B )8065503520I N P U T I P 2, I N P U T I P 3 (d B m )LO LEVEL (dBm)06764-009Figure 9. Conversion Gain, Noise Figure, IIP3, IIP2, and IP1dB vs.LO Level, f RF = 140 MHz3228242016128110100I I P 3 (d B m ) A N D N O I S E F I G U R E (d B )S U P P L Y C U R R E N T (m A )R BIAS (k Ω)06764-010Figure 10. Noise Figure, IIP3, and Supply Current vs. R BIAS , f RF= 140 MHz2520151050–3050–5–10–15–20–25N O I S E F I G U R E (d B )RF BLOCKER INPUT POWER (dBm)06764-011Figure 11. Noise Figure vs. Input Blocker Level, f RF = 900 MHz(RF Blocker 5 MHz Offset)20151050–6–5–4–3–2–1123456G A I N (d B ), I N P U T P 1d B (d B m ), N O I S E F I G U R E(d B )I N P U T I P 2, I N P U T I P 3 (d B m )LO LEVEL (dBm)06764-012Figure 12. Conversion Gain, Noise Figure, IIP3, IIP2, and IP1dB vs.LO Level, f RF = 900 MHz3228242016128110I I P 3 (d B m ) A N D N O I S E F I G U R E (d B )R BIAS (k Ω)10006764-013Figure 13. IIP3 and Noise Figure vs. R BIAS , f RF = 900 MHz80706050403020100110G A I N (d B ), IP 1d B , I I P 2, I A N D Q C H A N N E L S (d B m )R BIAS (k Ω)10006764-014Figure 14. Conversion Gain, IP1dB, IIP2 I Channel, and IIP2 Q Channel vs. R BIASADL5387Rev. 0 | Page 9 of 28353025201510505045403530252015105I P 1d B , I I P 3 (d B m )IN P U T I P 2, I A N D Q C H A N N E L S (d B m )BB FREQUENCY (MHz)–20–30–40–50–60–70–80–90–1000200018001600140012001000800600400200L O L E A K A G E (d B m )INTERNAL 1xLO FREQUENCY (MHz)06764-01506764-018Figure 15. IIIP3, IIP2, IP1dB vs. Baseband Frequency0–10–20–30–40–50–60–70–800200018001600140012001000800600400200F E E D T H R O U G H (d B m )INTERNAL 1xLO FREQUENCY (MHz)06764-016Figure 16. LO-to-BB Feedthrough vs. 1xLO Frequency (Internal LO Frequency)–25–20–15–10–50200018001600140012001000800600400200R E T U R N L O S S (d B )RF FREQUENCY (MHz)06764-017Figure 17. RF Port Return Loss vs. RF Frequency, Measured onCharacterization Board through ETC1-1-13 Balun with 120 nH Bias InductorsFigure 18. LO-to-RF Leakage vs. Internal 1xLO Frequency–20–40–60–80–100–1200200018001600140012001000800600400200L E A K A G E (d B c )RF FREQUENCY (MHz)06764-019Figure 19. RF-to-LO Leakage vs. RF Frequency–30–25–20–15–10–504000350030002500200015001000500R E T U R N L O S S (d B )FREQUENCY (MHz)06764-020Figure 20. Single-Ended LO Port Return Loss vs. LO Frequency, LOIN AC-Coupled to GroundADL5387Rev. 0 | Page 10 of 28DISTRIBUTIONS FOR f RF = 140 MHz100020406080283330293231P E R C E N T A G E (%)INPUT IP3 (dBm)06764-021Figure 21. IIP3 Distributions100020406080101512111413P E R C E N T A G E (%)INPUT P1dB (dBm)06764-022Figure 22. IP1dB Distributions100020406080–0.20.2–0.10.1P E R C E N T A G E (%)I/Q GAIN MISMATCH (dB)06764-023Figure 23. I/Q Gain Mismatch Distributions10002040608060756570P E R C E N T A G E (%)INPUT IP2 (dBm)06764-024Figure 24. IIP2 Distributions for I Channel and Q Channel10002040608010.513.513.012.512.011.511.0P E R C E N T A G E(%)NOISE FIGURE (dB)06764-025Figure 25. Noise Figure Distributions100020406080–1.01.00.50–0.5P E R C E N T A G E(%)QUADRATURE PHASE ERROR (Degrees)06764-026Figure 26. I/Q Quadrature Error DistributionsADL5387DISTRIBUTIONS FOR f RF = 450 MHz100020406080303534333231P E R C E N T A G E (%)INPUT IP3 (dBm)06764-027Figure 27. IIP3 Distributions100020406080101514131211P E R C E N T A G E (%)INPUT P1dB (dBm)06764-028Figure 28. IP1dB Distributions100020406080–0.20.20.10–0.1P E R C E N T A G E (%)I/Q GAIN MISMATCH (dB)06764-029Figure 29. I/Q Gain Mismatch Distributions10002040608060756570P E R C E N T A G E (%)INPUT IP2 (dBm)06764-030Figure 30. IIP2 Distributions for I Channel and Q Channel10002040608012.015.014.514.013.513.012.5P E R C E N TA G E (%)NOISE FIGURE (dB)06764-031Figure 31. Noise Figure Distributions100020406080–1.0–0.500.5 1.0P E R C E N T A G E(%)QUADRATURE PHASE ERROR (Degrees)06764-032Figure 32. I/Q Quadrature Error DistributionsADL5387DISTRIBUTIONS FOR f RF = 900 MHz100020406080303133323435P E R C E N T A G E (%)INPUT IP3 (dBm)06764-033Figure 33. IIP3 Distributions100020406080101113121415P E R C E N T A G E (%)INPUT P1dB (dBm)06764-034Figure 34. IP1dB Distributions100020406080–0.2–0.100.10.2P E R C E N T A G E (%)I/Q GAIN MISMATCH (dB)06764-035Figure 35. I/Q Gain Mismatch Distributions1000204060805575656070P E R C E N T A G E (%)INPUT IP2 (dBm)06764-036Figure 36. IIP2 Distributions for I Channel and Q Channel10002040608013.013.514.014.515.015.516.0P E R C E N T AG E (%)NOISE FIGURE (dB)06764-037Figure 37. Noise Figure Distributions100020406080–1.01.00.50–0.5P E R C E N TA G E (%)QUADRATURE PHASE ERROR (Degrees)06764-038Figure 38. I/Q Quadrature Error DistributionsADL5387DISTRIBUTIONS FOR f RF = 1900 MHz100020406080263129302827P E R C E N T A G E (%)INPUT IP3 (dBm)06764-039Figure 39. IIP3 Distributions100020406080101513141211P E R C E N T A G E (%)INPUT P1dB (dBm)06764-040Figure 40. IP1dB Distributions100020406080–0.20.20.10–0.1P E R C E N T A G E (%)I/Q GAIN MISMATCH (dB)06764-041Figure 41. I/Q Gain Mismatch Distributions100020406080526866646260585654P E R C E N T A G E (%)INPUT IP2 (dBm)06764-042Figure 42. IIP2 Distributions for I Channel and Q Channel10002040608015.018.017.517.016.516.015.5P E R C E N T AG E (%)NOISE FIGURE (dB)06764-043Figure 43. Noise Figure Distributions100020406080–1.01.00.50–0.5P E R C E N T AG E (%)QUADRATURE PHASE ERROR (Degrees)06764-044Figure 44. I/Q Quadrature Error DistributionsADL5387CIRCUIT DESCRIPTIONThe ADL5387 can be divided into five sections: the local oscillator (LO) interface, the RF voltage-to-current (V-to-I) converter, the mixers, the differential emitter follower outputs, and the bias circuit. A detailed block diagram of the device is shown in Figure 45.RFIP RFIN06764-045Figure 45. Block DiagramThe LO interface generates two LO signals at 90° of phase difference to drive two mixers in quadrature. RF signals are converted into currents by the V-to-I converters that feed into the two mixers. The differential I and Q outputs of the mixers are buffered via emitter followers. Reference currents to each section are generated by the bias circuit. A detailed description of each section follows.LO INTERFACEThe LO interface consists of a buffer amplifier followed by a frequency divider that generate two carriers at half the input frequency and in quadrature with each other. Each carrier is then amplified and amplitude-limited to drive the double-balanced mixers. V-TO-I CONVERTERThe differential RF input signal is applied to a resistivelydegenerated common base stage, which converts the differential input voltage to output currents. The output currents thenmodulate the two half-frequency LO carriers in the mixer stage.MIXERSThe ADL5387 has two double-balanced mixers: one for the in-phase channel (I channel) and one for the quadrature channel (Q channel). These mixers are based on the Gilbert cell design of four cross-connected transistors. The output currents from the two mixers are summed together in the resistive loads that then feed into the subsequent emitter follower buffers.EMITTER FOLLOWER BUFFERSThe output emitter followers drive the differential I and Q signals off-chip. The output impedance is set by on-chip 25 Ω series resistors that yield a 50 Ω differential output impedance for each baseband port. The fixed output impedance forms a voltage divider with the load impedance that reduces the effective gain. For example, a 500 Ω differential load has 1 dB lower effective gain than a high (10 kΩ) differential load impedance.BIAS CIRCUITA band gap reference circuit generates the proportional-to-absolute temperature (PTAT) as well as temperature-independent reference currents used by different sections. The mixer current can be reduced via an external resistor between the BIAS pin and ground. When the BIAS pin is open, the mixer runs at maximum current and hence the greatest dynamic range. The mixer current can be reduced by placing a resistance to ground; therefore, reducing overall power consumption, noise figure, and IIP3. The effect on each of these parameters is shown in Figure 10, Figure 13, and Figure 14.ADL5387APPLICATIONS INFORMATIONBASIC CONNECTIONSFigure 47 shows the basic connections schematic for the ADL5387.POWER SUPPLYThe nominal voltage supply for the ADL5387 is 5 V and is applied to the VPA, VPB, VPL, and VPX pins. Ground should be connected to the COM, CML, and CMRF pins. Each of the supply pins should be decoupled using two capacitors; recommended capacitor values are 100 pF and 0.1 μF .LOCAL OSCILLATOR (LO) INPUTThe LO port is driven in a single-ended manner. The LO signal must be ac-coupled via a 1000 pF capacitor directly into LOIP , and LOIN is ac-coupled to ground also using a 1000 pF capacitor. The LO port is designed for a broadband 50 Ω match andtherefore exhibits excellent return loss from 100 MHz to 4 GHz. The LO return loss can be seen in Figure 20. Figure 46 shows the LO input configuration.06764-047Figure 46. Single-Ended LO DriveThe recommended LO drive level is between −6 dBm and+6 dBm. The LO frequency at the input to the device should be twice that of the desired LO frequency at the mixer core. The applied LO frequency range is between 100 MHz and 4 GHz.0.1µFV POSV POS06764-046ADL5387RF INPUTThe RF inputs have a differential input impedance ofapproximately 50 Ω. For optimum performance, the RF port should be driven differentially through a balun. The recommended balun is M/A-COM ETC1-1-13. The RF inputs to the device should be ac-coupled with 1000 pF capacitors. Ground-referenced choke inductors must also be connected to RFIP and RFIN (recommended value = 120 nH, Coilcraft 0402CS-R12XJL) for appropriate biasing. Several important aspects must be taken into account when selecting an appropriate choke inductor for this application. First, the inductor must be able to handle the approximately 40 mA of standing dc current being delivered from each of the RF input pins (RFIP , RFIN). (The suggested 0402 inductor has a 50 mA current rating). The purpose of the choke inductors is to provide a very low resistance dc path to ground and high ac impedance at the RF frequency so as not to affect the RF input impedance. A choke inductor that has a self-resonant frequency greater than the RF input frequency ensures that the choke is still looking inductive and therefore has a more predictable ac impedance (jωL) at the RF frequency. Figure 48 shows the RF input configuration.06764-048Figure 48. RF InputThe differential RF port return loss has been characterized as shown in Figure 49.–10–12–14–16–18–20–22–24–26–2800.20.40.60.8 1.0 1.2 1.4 1.6 1.8 2.0S (1, 1) (d B )FREQUENCY (GHz)06764-049Figure 49. Differential RF Port Return LossBASEBAND OUTPUTSThe baseband outputs QHI, QLO, IHI, and ILO are fixed impedance ports. Each baseband pair has a 50 Ω differential output impedance. The outputs can be presented with differential loads as low as 200 Ω (with some degradation in linearity and gain) or high impedance differential loads (500 Ω or greater impedance yields the same excellent linearity) that is typical of an ADC. The TCM9-1 9:1 balun converts the differential IF output to single-ended. When loaded with 50 Ω, this balun presents a 450 Ω load to the device. The typical maximum linear voltage swing for these outputs is 2 V p-p differential. The bias level on these pins is equal to VPOS − 2.8 V . The output 3 dB bandwidth is 240 MHz. Figure 50 shows the baseband output configuration.QHIQLOIHIILOQHI QLO IHI ILO 06764-050Figure 50. Baseband Output ConfigurationADL5387ERROR VECTOR MAGNITUDE (EVM) PERFORMANCEEVM is a measure used to quantify the performance of a digital radio transmitter or receiver. A signal received by a receiver would have all constellation points at the ideal locations; however, various imperfections in the implementation (such as carrier leakage, phase noise, and quadrature error) cause the actual constellation points to deviate from the ideal locations. The ADL5387 shows excellent EVM performance for various modulation schemes. Figure 51 shows typical EVM performance over input power range for a point-to-point application with 16 QAM modulation schemes and zero-IF baseband. The differential dc offsets on the ADL5387 are in the order of a few mV . However, ac coupling the baseband outputs with 10 μF capacitors helps to eliminate dc offsets and enhances EVM performance. With a 10 MHz BW signal, 10 μF ac coupling capacitors with the 500 Ω differential load results in a high-pass corner frequency of ~64 Hz which absorbs an insignificant amount of modulated signal energy from the baseband signal. By using ac coupling capacitors at the baseband outputs, the dc offset effects, which can limit dynamic range at low input power levels, can be eliminated.0–50–45–40–35–30–25–20–15–10–5–7010–10–20–30–40–50–60E V M (d B )INPUT POWER (dBm)06764-051Figure 51. RF = 140 MHz, IF = 0 Hz, EVM vs. Input Power for a 16 QAM10 Msym/s Signal (AC-Coupled Baseband Outputs)Figure 52 shows the EVM performance of the ADL5387 when ac-coupled, with an IEEE 802.16e WiMAX signal.0–50–45–40–35–30–25–20–15–10–5–502010–10–20–30–40E V M (d B )INPUT POWER (dBm)06764-052Figure 52. RF = 750MHz MHz, IF = 0 Hz, EVM vs. Input Power for a 16 QAM 10 MHz Bandwidth Mobile WiMAX Signal (AC-Coupled Baseband Outputs)Figure 53 exhibits the zero IF EVM performance of a WCDMA signal over a wide RF input power range.0–45–40–35–30–25–20–15–10–5–70–60100–10–20–30–40–50E V M (d B)INPUT POWER (dBm)06764-053Figure 53. RF = 1950 MHz, IF = 0 Hz, EVM vs. Input Power for a WCDMA(AC-Coupled Baseband Outputs)。
SC三级管参数
SC三级管参数型号参数型号2SC1000SI-N 55V 0.1A 0.2W 80MHz2SC9822SC1008SI-N 80V 0.7A 0.8W 75MHz2SC1012A 2SC1014SI-N 50V 1.5A 7W2SC1017 2SC1030SI-N 150V 6A 50W2SC1046 2SC1047SI-N 30V 20mA 0.4W 650MHz2SC1050 2SC1051SI-N 150V 7A 60W 8MHz2SC1061 2SC1070SI-N 30V 20mA 900MHz2SC1080 2SC109SI-N 50V 0.6A 0.6W2SC1096 2SC1106SI-N 350V 2A 80W2SC1114 2SC1115SI-N 140V 10A 100W 10MHz2SC1116 2SC1161SI-P 160V 12A 120W2SC1162 2SC1172SI-N 1500V 5A 50W2SC1195 2SC1213C SI-N 50V 0.5A0.4W UNI2SC1214 2SC1215SI-N 30V 50mA 0.4W1.2GHZ2SC1216 2SC1226SI-N 40/50V 2A 10W 150MHz2SC1238 2SC1247A SI-N 50V 0.5A 0.4W 60MHz2SC1308 2SC1312SI-N 35V 0.1A 0.15W 100MHz2SC1318 2SC1343SI-N 150V 10A 100W 14MHz2SC1345 2SC1359SI-N 30V 30mA 0.4W 250MHz2SC1360 2SC1362SI-N 50V 0.2A 0.25W 140MHz2SC1368 2SC1382SI-N 80V 0.75A 5W 100MHz2SC1384 2SC1393SI-N 30V 20mA 250 mW 700MHz2SC1398 2SC1413A SI-N 1200V 5A 50W2SC1419 2SC1426SI-N 35V 0.2A2.7GHz2SC1431 2SC1432N-DARL 30V 0.3A 0.3W B=402SC1439 2SC1445SI-N 100V 6A 40W 10MHz2SC1446 2SC1447SI-N 300V 0.15A 20W 80MHz2SC1448 2SC1449SI-N 40V 2A 5W 60MHz2SC1450 2SC1454SI-N 300V 4A 50W 10MHz2SC1474-4 2SC1501SI-N 300V 0.1A 10W 55MHz2SC1505 2SC1507SI-N 300V 0.2A 15W 80MHz2SC1509 2SC1515SI-N 200V 0.05A 0.2W 110MHz2SC1520 2SC1545N-DARL 40V 0.3A 0.3W B=1K2SC1567 2SC1570SI-N 55V 0.1A 0.2W 100MHz2SC1571 2SC1573SI-N 200V 0.1A 1W 80MHz2SC1577 2SC1583SI-N 50V 0.1A 0.4W 100MHz2SC1619 2SC1623SI-N 60V0.1A 0.2W 250MHz2SC1624 2SC1627SI-N 80V 0.4A 0.8W 100MHz2SC1674 2SC1675SI-N 50V .03A 0.25W2SC1678 2SC1685SI-N 60V 0.1A 150MC UNI2SC1688 2SC1708A SI-N 120V 50mA 0.2W 150MHz2SC1729 2SC1730SI-N 30V 0.05A 1.1GHz UHF2SC1740 2SC1741SI-N 40V 0.5A 0.3W 250MHz2SC1756 2SC1760SI-N 100V 1A 7.9W 80MHz2SC1775A 2SC1781SI-N 50V0.5A 0.35W2SC1815 2SC1815BL SI-N 60V 0.15A 0.4WB>3502SC1815GR2SC1815Y SI-N 60V 0.15A 0.4W B>1202SC1827 2SC1832N-DARL 500V 15A 150W B>102SC1841 2SC1844SI-N 60V 0.1A 0.5W 100MHz2SC1845 2SC1846SI-N 120V 0.05A 0.5W2SC1847 2SC1855SI-N 20V 20mA 0.25W 550MHz2SC1871 2SC1879N-DARL+D 120V 2A 0.8W B>12SC1890 2SC1895SI-N 1500V 6A 50W 2MHz2SC1906 2SC1907SI-N 30V 0.05A 1100MHz2SC1913 2SC1914SI-N 90V 50mA 0.2W 150MHz2SC1921 2SC1922SI-N 1500V 2.5A 50W2SC1923 2SC1929SI-N 300V 0.4A 25W 80MHz2SC1941 2SC1944SI-N 80V 6A PQ=16W2SC1945 2SC1946A SI-N 35V 7A 50W2SC1947 2SC1953SI-N 150V 0.05A 1.2W 70MHz2SC1957 2SC1959SI-N 30V 0.5A 0.5W 200MHz2SC1967 2SC1968SI-N 35V 5A 3W 470MHz2SC1969 2SC1970SI-N 40V 0.6A 5W2SC1971 2SC1972SI-N 35V 3.5A 25W2SC1975 2SC1980SI-N 120V 20mA 0.25W 200MHz2SC1984 2SC1985SI-N 80V 6A 40W 10MHz2SC2023 2SC2026SI-N 30V 0.05A 0.25W2SC2027 2SC2036SI-N 80V 1A PQ=1..4W2SC2053 2SC2055SI-N 18V 0,3A 0,5W2SC2058 2SC2060SI-N 40V 0.7A 0.75W 150MHz2SC2061 2SC2068SI-N 300V 0.05A 95MHz2SC2073 2SC2078SI-N 80V 3A 10W 150MHz2SC2086 2SC2092SI-N 75V 3A 5W 27MHz2SC2094 2SC2097SI-N 50V 15A PQ=85W2SC2120 2SC2122SI-N 800V 10A 50W2SC2166 2SC2168SI-N 200V 2A 30W 10MHz2SC2200 2SC2209SI-N 50V1.5A 10W 150MHz2SC2216 2SC2228SI-N 160V 0.05A 0.75W >502SC2229 2SC2230SI-N 200V 0.1A 0.8W 50MHz2SC2233 2SC2235SI-N 120V 0.8A 0.9W 120MHz2SC2236 2SC2237SI-N 35V 2A PQ>7.5W 175MHz2SC2238 2SC2240SI-N 120V 50mA .3W 100MHz2SC2261 2SC2267SI-N 400/360V 0.1A 0.4W2SC2270 2SC2271SI-N 300V 0.1A 0.9W 50MHz2SC2275 2SC2283SI-N 38V 0.75A2.8W(500MHz2SC2287 2SC2295SI-N 30V 0.03A 0.2W 250MHz2SC2307 2SC2308SI-N 55V 0.1A 0.2W 230MHz2SC2310 2SC2312SI-N 60V 6A 18.5W/27MHz2SC2314 2SC2320SI-N 50V 0,2A 0,3W2SC2329 2SC2331SI-N 150V 2A 15W POWER2SC2333 2SC2334SI-N 150V 7A 40W POWER2SC2335 2SC2336B SI-N 250V 1.5A 25W 95MHz2SC2344 2SC2347SI-N 15V 50mA 250mW 650MHz2SC23622SC2363SI-N 120V 50mA 0.5W 130MHz2SC2365 2SC2369SI-N 25V 70mA 0.25W 4.5GHz2SC2383 2SC2389SI-N 120V 50mA 0.3W 140MHz2SC2407 2SC2412SI-N 50V 0.1A 180MHz2SC2433 2SC2440SI-N 450V 5A 40W2SC2458 2SC2466SI-N 30V 0.05A 2.2GHz2SC2482 2SC2485SI-N 100V 6A 70W 15MHz2SC2486 2SC2491SI-N 100V 6A 40W 15MHz2SC2497 2SC2498SI-N 30V 0.05A 0.3W 3.5GHz2SC2508 2SC2510SI-N 55V 20A 250W(28MHz)2SC2512 2SC2516SI-N 150V 5A 30W <0.5/2us2SC2517 2SC2538SI-N 40V 0.4A 0.7W2SC2539 2SC2542SI-N 450V 5A 40W2SC2547 2SC2551SI-N 300V 0.1A 0.4W 80MHz2SC2552 2SC2553SI-N 500V 5A 40W 1us2SC2562 2SC2563SI-N 120V 8A 80W 90MHz2SC2570A 2SC2579SI-N 160V 8A 80W 20MHz2SC2581 2SC2590SI-N 120V 0.5A 5W 250MHz2SC2592 2SC2603SI-N 50V 0.2A 0.3W2SC2610 2SC2611SI-N 300V 0.1A 0.8W 80MHz2SC2621E 2SC2625SI-N 450V 10A 80W2SC2630 2SC2631SI-N 150V 50mA 0,75W 160MHz2SC2632 2SC2634SI-N 60V 0.1A 0.4W 200MHz2SC26532SC2654SI-N 40V 7A 40W2SC2655 2SC2656SI-N 450V 7A 80W <1.5/4.52SC2660 2SC2668SI-N 30V 20mA 0.1W 550MHz2SC2671 2SC2682SI-N 180V 0.1A 8W 180MHz2SC2690 2SC2694SI-N 35V 20A 140W2SC2705 2SC2706SI-N 140V 10A 100W 90MHz2SC2712 2SC2714SI-N 30V 20mA 0.1W 550MHz2SC2717 2SC2724SI-N 30V 30mA 200MHz2SC2749 2SC2750SI-N 150V 15A 100W POWER2SC2751 2SC2752SI-N 500V 0.5A 10W <1/3.52SC2753 2SC2759SI-N 30V 50mA 0.2W 2.3GHz2SC2786 2SC2787SI-N 50V 30mA 0.3W 250MHz2SC2791 2SC2792SI-N 850V 2A 80W2SC2793 2SC2802SI-N 300V 0.2A 10W 80MHz2SC2808 2SC2810SI-N 500V 7A 50W 18MHz2SC2812 2SC2814SI-N 30V 0.03A 320MHz F2SC2825 2SC2837SI-N 150V 10A 100W 70MHz2SC2839 2SC2851SI-N 36V 0.3A 1W 1.5GHz2SC2873 2SC2878SI-N 20V 0.3A 0.4W 30MHz2SC2879 2SC2882SI-N 90V 0.4A 0.5W 100MHz2SC288A 2SC2898SI-N 500V 8A 50W2SC2901 2SC2908SI-N 200V 5A 50W 50MHz2SC2910 2SC2911SI-N 180V 140mA 10W 150MHz2SC2912 2SC2922SI-N 180V 17A 200W 50MHz2SC2923 2SC2928SI-N 1500V 5A 50W2SC2939 2SC2958SI-N 160V 0.5A 1W2SC2979 2SC2987SI-N 140V 12A 120W 60MHz2SC2988 2SC2999SI-N 20V 30mA 750MHz2SC3001 2SC3019SI-N 35V 0.4A 0.6W 520MHz2SC3020 2SC3022SI-N 35V 7A 50W2SC3026 2SC3030N-DARL 900V 7A 80W2SC3039 2SC3042SI-N 500/400V 12A 100W2SC3052F 2SC3063SI-N 300V 0.1A 1.2W 140MHz2SC3067 2SC3068SI-N 30V 0.3A Ueb=15V B>82SC3071 2SC3073SI-N 30V 3A 15W 100MHz2SC3074 2SC3075SI-N 500V 0.8A 10W 1/1.5us2SC3089 2SC3101SI-N 250V 30A 200W 25MHz2SC3102 2SC3112SI-N 50V 0.15A 0.4W 100MHz2SC3116 2SC3117SI-N 180V 1.5A 10W 120MHz2SC3133 2SC3148SI-N 900V 3A 40W 1us2SC3150 2SC3153SI-N 900V 6A 100W2SC31572SC3158SI-N 500V 7A 60W2SC3164 2SC3169SI-N 500V 2A 25W >8MHz2SC3175 2SC3178SI-N 1200V 2A 60W2SC3179 2SC3180N SI-N 80V 6A 60W 30MHz2SC3181N 2SC3182N SI-N 140V 10A 100W 30MHz2SC3195 2SC3199SI-N 60V 0.15A 0.2W 130MHz2SC3200 2SC3202SI-N 35V 0.5A 0.5W 300MHz2SC3203 2SC3205SI-N 30V 2A 1W 120MHz2SC3206 2SC3210SI-N 500V 10A 100W 1us2SC3211 2SC3212SI-N 800V 7A 3W 3.5MHz2SC3225 2SC3231SI-N 200V 4A 40W 8MHz2SC3240 2SC3242SI-N 20V 2A 0.9W 80MHz2SC3244E 2SC3245A SI-N 150V 0.1A 0.9W 200MHz2SC3246 2SC3247SI-N 50V 1A .9W 130MHz B>2SC3257 2SC3258SI-N 100V 5A 30W 120MHz2SC3260 2SC3262N-DARL 800V 10A 100W2SC3263 2SC3264SI-N 230V 17A 200W 60MHz2SC3271 2SC3277SI-N 500V 10A 90W 20MHz2SC3279 2SC3280SI-N 160V 12A 120W 30MHz2SC3281 2SC3284SI-N 150V 14A 125W 60MHz2SC3293 2SC3297SI-N 30V 3A 15W 100MHz2SC3299 2SC3300SI-N 100V 15A 100W2SC3303 2SC3306SI-N 500V 10A 100W 1us2SC3307 2SC3309SI-N 500V 2A 20W 1us2SC3310 2SC3311SI-N 60V 0.1A 0.3W 150MHz2SC3320 2SC3326SI-N 20V 0.3A 0.15W 30MHz2SC3327 2SC3328SI-N 80V 2A 0.9W 100MHz2SC3330 2SC3331SI-N 60V 0.2A 0.5W 200MHz2SC3332 2SC3334SI-N 250V 50mA 0.9W 100MHz2SC3345 2SC3346SI-N 80V 12A 40W 0.2us2SC33552SC3356SI-N 20V 0.1A 0.2W 7GHz2SC3377 2SC3378SI-N 120V 0.1A 0.2W 100MHz2SC3379 2SC33812xSI-N 80V 0.1A 0.4W 170MHz2SC3383 2SC3397SI-N 50V 0.1A 250MHz 46K/2SC3399 2SC3400SI-N 50V 0.1A 250MHz 22K/2SC3401 2SC3402SI-N 50V 0.1A 250MHz 10K/2SC3405 2SC3409SI-N 900V 2A 80W .8uS2SC3416 2SC3419SI-N 40V 0.8A 5W 100MHz2SC3420 2SC3421O SI-N 120V 1A 1.5W BJT O-G2SC3421Y 2SC3422Y SI-N40V 3A 10W 100MHz2SC3423 2SC3425SI-N 500V 0.8A 10W2SC3446 2SC3447SI-N 800V 5A 50W 18MHz2SC3456 2SC3457SI-N 1100V 3A 50W2SC3460 2SC3461SI-N 1100/800V 8A 120W2SC3466 2SC3467SI-N 200V 0.1A 1W 150MHz2SC3468 2SC3486SI-N 1500V 6A 120W2SC3502 2SC3503SI-N 300V 0.1A 7W 150MHz2SC3504 2SC3505SI-N 900V 6A 80W2SC3507 2SC3509N-DARL+D 900V 10A 100W 0.2SC3514 2SC3518SI-N 60V 5A 10W2SC3520 2SC3526SI-N 110V 0.15A 7A 30W 1us2SC3528 2SC3549SI-N 900V 3A 40W2SC3552 2SC3568SI-N 150V 10A 30W2SC3571 2SC3577SI-N 850V 5A 80W 6MHz2SC3581 2SC3591SI-N 400V 7A 50W2SC3595 2SC3596SI-N 80V 0.3A 8W 700MHz2SC3597 2SC3599SI-N 120V 0.3A 8W 500MHz2SC3600 2SC3601SI-N 200V 0.15A 7W 400MHz2SC3608 2SC3611SI-N 50V 0.15A 4W 300MHz2SC3616 2SC3621SI-N 150V 1.5A 10W 100MHz2SC3623 2SC3632SI-N 600V 1A 10W 30MHz2SC3636 2SC3642SI-N 1200V 6A 100W 200ns2SC3655 2SC3656SI-N 50V 0.1A 0.4W 10K/102SC3659 2SC3668SI-N 50V 2A 1W 100MHz2SC3669 2SC3675SI-N 1500/900V 0.1A 10W2SC3678 2SC3679SI-N 900/800V 5A 100W2SC3680 2SC3684SI-N+D 1500V 10A 150W2SC3688 2SC3692SI-N 100V 7A 30W <300/1802SC373 2SC3746SI-N 80V 5A 20W 100MHz2SC3748 2SC3752SI-N 1100/800V 3A 30W2SC3781 2SC3782SI-N 200V 0.2A 15W 400MHz2SC3783 2SC3787SI-N 180V 0.14A 10W 150MHz2SC3788 2SC3789SI-N 300V 0.1A 7W 70MHz2SC3790 2SC3792SI-N 50V 0.5A 0.5W 250MHz2SC3795A 2SC3807SI-N 30V 2A 15W 260MHz2SC3808 2SC380TM SI-N 30V 50mA 0.3W 100MHz2SC3811 2SC3831SI-N 500V 10A 100W2SC38332SC3851SI-N 80V 4A 25W 15MHz2SC3852 2SC3855SI-N 200V 10A 100W 20MHz2SC3857 2SC3858SI-N 200V 17A 200W20MHz2SC3866 2SC3868SI-N 500V 1.5A 25W 0.7us2SC3883 2SC3884A SI-N 1500V 6A 50W2SC3886A 2SC388A SI-N 25V 50mA 0.3W 300MHz2SC3890 2SC3892A SI-N+D 1500V 7A 50W 0.4us2SC3893A 2SC3895SI-N 1500/800V 8A 70W2SC3896 2SC3897SI-N 1500V 10A 70W2SC3902 2SC3907SI-N 180V 12A 130W 30MHz2SC3927 2SC394SI-N 25V 0.1A 200MC RF2SC3940 2SC3943SI-N 110V 0.15A 2W 300MHz2SC3944 2SC3948SI-N 850V 10A 75W 20MHz2SC3950 2SC3952SI-N 80V 0.5A 10W 700MHz2SC3953 2SC3954SI-N 120V 0.3A 8W 400MHz2SC3955 2SC3956SI-N 200V 0.2A 7W 70MHz2SC3964 2SC3972SI-N 800/500V 5A 40W2SC3973A 2SC3979A SI-N 800V 3A 2W 10MHz2SC3987 2SC3996SI-N 1500/800V 15A 180W2SC3998 2SC3999SI-N 300V 0.1A 0.75W 300MHz2SC4004 2SC4020SI-N 900V 3A 50W 1us2SC4024 2SC4029SI-N 230V 15A 150W 30MHz2SC4043 2SC4046SI-N 120V 0.2A 8W 350MHz2SC4052 2SC4056SI-N 600V 8A 45W2SC4059 2SC4064SI-N 50V 12A 35W 40MHz2SC4107 2SC4119N-DARL+D 1500V 15A 250W B2SC4123 2SC4125SI-N+D 1500/800V 10A 70W2SC4131 2SC4135SI-N 120V 2A 15W 200MHz2SC4137 2SC4138SI-N 500V 10A 80W <1/3.5us2SC4153 2SC4157SI-N 600V 10A 100W2SC4159 2SC4161SI-N 500V 7A 30W2SC4169 2SC4199SI-N 1400V 10A 100W2SC4200 2SC4204SI-N 30V 0.7A 0.6W2SC4231 2SC4235SI-N 1200/800V 3A 80W2SC4236 2SC4237SI-N 1200/800V 10A 150W2SC4242 2SC4256SI-N 1500V 10A 175W 6MHz2SC4278 2SC4288A SI-N1600/600V 12A 200W2SC4289A 2SC4290A SI-N 1500V 20A 200W2SC4297 2SC4298SI-N 500V 15A 80W 10MHz2SC4300 2SC4304SI-N 800V 3A 35W2SC4308 2SC4313SI-N 900V 10A 100W 0.5us2SC4381 2SC4382SI-N 200V 2A 25W 15MHz2SC4386 2SC4387SI-N 200V 10A 80W 20MHz2SC4388 2SC4408SI-N 80V 2A 0.9W 100/600ns2SC4429 2SC4430SI-N1100V 12A 65W 15MHz2SC4431 2SC4439SI-N 180V 0.3A 8W 400MHz2SC44672SC4488SI-N 120V 1A 1W 120MHz2SC4511 2SC4512SI-N 120V 6A 50W 20MHz2SC4517 2SC4517A SI-N 1000V 3A 30W 0.5us2SC4531 2SC4532SI-N 1700V 10A 200W 2uS2SC4538 2SC454SI-N 30V 0.1A 230MHz2SC4542 2SC4547N-DARL+D 85V 3A 30W B>2K2SC4557 2SC4560SI-N 1500V 10A 80W2SC458 2SC4582SI-N 600V 100A 65W 20MHz2SC460 2SC461SI-N 30V 0.1A 0.2W 230MHz2SC4744 2SC4745SI-N 1500V 6A2SC4747 2SC4758SI-N 1500V 8A 50W HI-RES2SC4769 2SC4770SI-N 1500/800V 7A 60W2SC4793 2SC4804SI-N 900V 3A 30W 0.3us2SC4820 2SC4826SI-N 200V 3A 1.3W 300MHz2SC4834 2SC4883A SI-N 180V 2A 20W 120MHz2SC4891 2SC4908SI-N 900V 3A 35W 1us2SC4924 2SC4977SI-N 450V 7A 40W2SC5002 2SC5003SI-N+D 1500V 7A 80W2SC5027 2SC5030SI-N 50V 5A 1.3W 150MHz2SC5045 2SC5047SI-N 1600V 25A 250W2SC5048 2SC5070SI-N 30V 2A 1.5W B>8002SC5086 2SC509SI-N 35V 0.5A 0.6W 60MHz2SC5144 2SC5148SI-N 1500V 8A 50W 0.2us2SC5149 2SC5150SI-N 1700V 10A 50W 03us2SC5171 2SC5198SI-N 140V 10A 100W 30MHz2SC5207 2SC5242SI-N 230V 15A 130W 30MHz2SC5244A 2SC5296SI-N+D 1500V 8A 60W2SC5297 2SC5299SI-N 1500V 10A 70W 0.2US2SC535 2SC536SI-N 40V 0.1A 180MC UNI2SC620 2SC643SI-N 1100V 2.5A 50W2SC644 2SC645SI-N 30V 30mA 0.14W 200MHz2SC710 2SC711SI-N 30V 0.05A 150MHz2SC712 2SC717SI-N 30V 50mA 0.2W 600MHz2SC730 2SC732SI-N 50V 0.15A 0.4W 150MHz2SC735 2SC752SI-N 15V 100mA 0.1W2SC756 2SC784SI-N 40V 0.02A 500MC RF2SC815 2SC828SI-N 30V 0.05A 0.25W UNI2SC829 2SC839SI-N 50V 0.03A 250MHz2SC867 2SC869SI-N 160V 30mA 0.2W 150MHz2SC898A 2SC900SI-N 30V 0.03A100MHz2SC930 2SC936SI-N 1000V 1A 22W POWER2SC941 2SC943SI-N 60V 0.2A 0.3W 220MHz2SC945参数N-DARL 40V 0.3A 0.4WSI-N 250V 60mA 0.75W >80MHz SI-N 75V 1A 60mW 120MHzSI-N 1000V 3A 25WSI-N 300V 1A 40WSI-N 50V 3A 25W 8MHz=H106 SI-N 110V 12A 100W 4MHz SI-N 40V 3A 10W 60MHzSI-N 300V 4A 100W 10MHzSI-N 180V 10A 100W 10MHzSI-N 35V 1.5A 10W 180MHzSI-N 200V 2.5A 100WSI-N 50V 0.5A 0.6W 50MHzSI-N 40V 0.2A 0.3W <20/40 SI-N 35V 0.15A 5W 1.7GHzSI-N 1500V 7A 50WSI-N 60V 0.5A 0.6W 200MHz SI-N 55V 0.1A 0.1W 230MHz SI-N 50V 0.05A 1W >300MHz SI-N 25V 1.5A 8W 180MHz SI-N 60V 1A 1W 200MHzSI-N 70V 2A 15WSI-N 50V 2A 20W 5MHzSI-N 110V 2A 23W 80MHzSI-N 150V 50mA 0.5W 130MHz SI-N 300V 0.1A 10W 55MHz SI-N 150V 1.5A 25W 3MHzSI-N 150V 0.4A 20WSI-N 20V 2A 0.75W 80MHzSI-N 300V 0.2A 15WSI-N 80V 0.5A 1W 120MHzSI-N 300V 0.2A 12,5WSI-N 100V 0.5A 5W 120MHzSI-N 40V 0.1A 0.2W 100MHz SI-N 500V 8A 80W 7MHzSI-N 100V 6A 50W 10MHzSI-N 120V 1A 15W 30MHzSI-N 30V .02A 600MC RF/IF SI-N 65V 3A 3WSI-N 50V 30mA 0.4W 550MHz SI-N 35V 3.5A 16W 500MHz SI-N 40V 100mA 0.3WSI-N 300V 0.2A >50MHzSI-N 120V 0.05A 0.2W UNISI-N 50V 0.15A 0.4W 80MHz SI-N 60V 0.15A 0.4W B>200SI-N 120V 0.05A 0.5WSI-N 120V 0.05A 0.5WSI-N 50V 1.5A 1.2WSI-N 450V 15A 150W <1/3us SI-N 90V 0.05A 0.3W 200MHz SI-N 19V 0.05A 0.3WSI-N 150V 1A 15W 120MHzSI-N 250V 0.05A 0.6WSI-N 30V 20mA 10mW 550MHz SI-N 160V 50mA 0.8WSI-N 80V 6A 20WSI-N 35V 1A 4W/175MHzSI-N 40V 1A 1.8W/27MHzSI-N 35V 2A 8W 470MHzSI-N 60V 6A 20WSI-N 35V 2A 12.5WSI-N 120V 2A 3.8W 50MHzSI-N 100V 3A 30W B=700SI-N 300V 2A 40W 10MHzSI-N 1500/800V 5A 50WSI-N 40V 0.3A 0.6W 500MHz SI-N 40V 0.05A 0.25WSI-N 80V 1A 0.75W 120MHzSI-N 150V 1.5A 25W 4MHzSI-N 75V 1A 0.45W/27MHzSI-N 40V 3.5A PQ>15W 175MHz SI-N 30V 0.8A 0.6W 120MHz SI-N 75V 4A 12.5W RFPOWER SI-N 500V 7A 40W 1US SI-N 45V 50mA 0.3W 300MHz SI-N 200V 50mA 0.8W 120MHz SI-N 200V 4A 40W 8MHzSI-N 30V 1.5A 0.9W 120MHz SI-N 160V 1.5A 25W 100MHz SI-N 180V 8A 80W 15MHzSI-N 50V 5A 10W 100MHzSI-N 120V 1.5A 25W 200MHz SI-N 38V 1.5A 7.1W 175MHz SI-N 500V 12A 100W 18MHzSI-N 55V 0.1A 0.2W 230MHz SI-N 45V 1A 5WSI-N 38V 0.75A 2W 175MHzSI-N 500/400V 2A 40WSI-N 500V 7A 40W POWERSI-N 180V 1.5A 25W 120MHz SI-N 120V 50mA 0.4W 130MHz SI-N 160V 1A 0.9W 100MHzSI-N 35V 0.15A 0.16W 500MHz SI-N 120V 30A 150W 80MHz SI-N 50V 0.15A 0.2W 80MHz SI-N 300V 0.1A 0.9W 50MHz SI-N 120V 7A 80W 15MHzSI-N 70V 1.5A 5W 150MHzSI-N 40V 6A 50W 175MHzSI-N 30V 50mA 900MHz TUNE SI-N 150V 5A 30W <0.5/2us SI-N 35V 4A 17W 175MHzSI-N 120V 0.1A 0.4WSI-N 500V 2A 20WSI-N 60V 5A 25W 0.1usSI-N 25V 70mA 0.6WSI-N 200V 10A 100WSI-N 180V 1A 20W 250MHzSI-N 300V 0.1A 0.8W 80MHz SI-N 300V 0.2A 10W >50MHz SI-N 35V 14A 100WSI-N 150V 50mA 1W 160MHzSI-N 350V 0.2A 15W >50MHz SI-N 50V 2A 0.9W 0.1usSI-N 200V 2A 30W 30MHzSI-N 15V 80mA 0.6W 5.5GHz SI-N 120V 1.2A 20W 160MHz SI-N 150V 50mA 0.8W 200MHz SI-N 50V 0.15A 0.15W 80MHz SI-N 30V 50mA 0.3W 300MHz SI-N 500V 10A 100W 50MHz SI-N 500V 15A 120W 50MHzSI-N 17V 0.07A 0.3W 5GHzSI-N 20V 20mA 600MHzSI-N 900V 5A 100WSI-N 900V 5A 100WSI-N 100V 50mA 0.5W 140MHz SI-N 55V 0.15A 0.2W 100MHz SI-N 80V 6A 70W B>500SI-N 20V 30mA 0.15W 320MHz SI-N 50V 2A 0.5W 120MHz SI-N 45V 25A PEP=100W 28MHz SI-N 35V 20mA 0.15WSI-N 40V 0.2A 0.6W <12/18 SI-N 160V 70mA 0.9W 150MHz SI-N 200V 140mA 10W 150MHz SI-N 300V 0.1A 140MHz SI-N 800V 3A 40WSI-N 36V 0.5A 175MHzSI-N 20V 3A PQ=7W(175MHz) SI-N 35V 1A 10WSI-N 1700V 5A 50W POWERSI-N 500V 7A 52WSI-N 50V 0.2A 0.15W 200MHz 2xSI-N 130V 50mA 0.5W 160 SI-N 120V 0.2A Ueb=15V B> SI-N 60V 5A 20W 120MHz SI-N 800V 7A 80WSI-N 35V 18A 170W 520MHz SI-N 180V 0.7A 10W 120MHz SI-N 60V 6A 1.5W 27MHzSI-N 900V 3A 50W 15MHzSI-N 150V 10A 60WSI-N 500V 10A 100WSI-N 400V 7A 50W 40MHzSI-N 60V 4A 30W 15MHzSI-N 120V 8A 80W 30MHzSI-N 30V 20mA 0.1W 550MHz SI-N 120V 0.1A 0.3W 100MHz SI-N 35V 0.8A 0.6W 120MHz SI-N 150V 0.5A 0.8W 120MHz SI-N 800V 5A 70W >3MHzSI-N 40V 2A 0.9W 1usSI-N 50V 25A 110W 30MHzSI-N 100V 0.5A 0.9W 130MHz SI-N 30V 1.5A 0.9W 130MHz SI-N 250V 10A 40W 1/3.5us N-DARL 800V 3A 50W B>10 SI-N 230V 15A 130WSI-N 300V 1A 5W 80MHzSI-N 10V 2A 0.75W 150MHz SI-N 200V 15A 150W 30MHz N-DARL+D 50V 1.2A 20W 180 SI-N 60V 5A 20W 0.1usSI-N 100V 5A 20W 0.2usSI-N 900V 10A 150W 1usSI-N 500V 5A 30W 1usSI-N 500V 15A 80WSI-N 50V 0.3A 0.2W 30MHz SI-N 60V 0.2A 0.3W 200MHz SI-N 180V 0.7A 0.7W 120MHz SI-N 60V 12A 40W 90MHz SI-N 20V 0.1A 0.6W 6.5GHzSI-N 20V 1.5A PQ=3WSI-N 60V 0.2A 0.5W 250MHz SI-N 50V 0.1A 250MHzSI-N 50V .1A 46K/23KOHMSI-N 900V 0.8A 20W 1usSI-N 200V 0.1A 5W 70MHzSI-N 50V 5A 10W 100MHzSI-N 120V 1A 10W 120MHzSI-N 150V 50mA 5W 200MHz SI-N 800V 7A 40W 18MHzSI-N 1100/800V 1.5A 40WSI-N 1100V 6A 100WSI-N 1200/650V 8A 120WSI-N 300V 0.1A 1W 150MHz SI-N 200V 0.1A 1.2WSI-N 70V 0.05A 0.9W 500MHz SI-N 1000/800V 5A 80WSI-N 180V 0.1A 10W 200MHz SI-N 500V 18A 130W 18MHz SI-N 500V 20A 125WSI-N 1100V 12A 150W 15MHz SI-N 500V 7A 30WSI-N 55V 0.4A 0.9W 150MHz SI-N 30V 0.5A 5W 2GHzSI-N 80V 0.5A 10W 800MHz SI-N 200V 0.1A 7W 400MHz SI-N 20V 0.08A 6.5GHzSI-N 25V 0.7A 250MHzSI-N 60V 0.15A 0.25W B=1K SI-N 900/500V 7A 80WSI-N 50V 0.1A 0.4W 46/23K SI-N+D 1700/800V 5A 50WSI-N 80V 2A 1W 0.2usSI-N 900V 3A 80WSI-N 900/800V 7A 120W 6MHz SI-N 1500V 10A 150W 0.2us SI-N 35V 0.1A 0.2W B>200 SI-N 80V 10A 30W 100/600ns SI-N 120V 0.4A 15W 500MHz SI-N 800V 5A 100WSI-N 200V 0.1A 5W 150MHz SI-N 300V 0.1A 7W 150MHz SI-N 900V 5A 40WN-DARL 80V 2A 170MHz B>80 SI-N 40V 0.1A 0.4W 450MHz SI-N 500/400V 12A 100WSI-N 80V 3A 25W 15MHzSI-N 200V 15A 150W 20MHz SI-N 900V 3A 40WSI-N+D 1500V 6A 50WSI-N 1500V 8A 50W 0.1usSI-N 500V 7A 30W 500NSSI-N+D 1500V 8A 50WSI-N 1500V 8A 70WSI-N 180V 1.5A 10W 120MHz SI-N 900V 10A 120WSI-N 30V 1A 1W 200MHzSI-N 150V 1A 40W 300MHzSI-N 30V 0.5A 5WSI-N 120V 0.2A 8W 400MHz SI-N 200V 0.1A 7W 300MHz SI-N 40V 2A 1.5W 1usSI-N 900V 7A 45WN-DARL+D 50V 3A 15WSI-N 1500V 25A 250W POWER SI-N 900/800V 1A 30W <1/4 SI-N 100V 10A 35W B>300SI-N 20V 50mA 0.15W 3.2GHz SI-N 600V 3A 40W 20MHzSI-N 600/450V 15A 130WSI-N 500/400V 10A 60WSI-N+D 1500V 7A 60WSI-N 100V 15A 60W 18MHzSI-N 25V 0.1A 300MHzSI-N 200V 7A 30W 0.5usSI-N 180V 1.5A 15W 100MHz N-DARL+D 50V 1.2A 1W B=4K SI-N 20V 0.6A 5W 2.5GHzSI-N 1200/800V 2A 30WSI-N 1200/800V 6A 100WSI-N 450/400V 7A 40WSI-N 150V 10A 100W 30MHz SI-N 1500V 16A 200WSI-N 500V 12A 75W 10MHzSI-N 900V 5A 75W 1/6usSI-N 30V 0.3A 0.6W 2.5GHz SI-N 150V 2A 25W 15MHzSI-N 160/120V 8A 75W 20MHz SI-N 200V 15A 85W 20MHz SI-N 1100/800V 8A 60WSI-N 120V 1.5A 20W 150MHz SI-N 160/120V 8A 80W 20MHzSI-N 120V 6A 30W 20MHzSI-N 900V 3A 30W 6MHzSI-N+D 1500V 10A 50WSI-N 900V 5A 80WSI-N 1500V 10A 50WSI-N 900V 10A 80W <1/5.5us SI-N 30V 0.1A 230MC UNISI-N 30V 0.1A 0.2W 230MHz SI-N 1500V 6A POWERSI-N 1500V 10A 50W 0.3us SI-N+D 1500V 7A 60WSI-N 230V 1A 2W 100MHzSI-N 450V 6A 30W 12MHzSI-N 500V 8A 45W <0.3/1.4 SI-N 1500V 15A 75WSI-N 800V 10A 70WSI-N 1500V 7A 80WSI-N 1100V 3A 50W 0.3usSI-N 1600V 15A 75WSI-N 1500V 12A 50W 0.3us SI-N 20V 80MA 7GHZSI-N 1700V 20A 200WSI-N+D 1500V 8A 50W 0.2us SI-N 180V 2A 20W 200MHzSI-N 1500V 10A 50W 0.4us SI-N 1600V 30A 200WSI-N 1500V 8A 60WSI-N 20V 20mA 0.1W 0.700M SI-N 50V 0.2A 0.25W UNISI-N 30V 50mA 0.25WSI-N 30V 0.03A 200MHzSI-N 30V 0.5A 150MHzSI-N 40V 0.4A PQ=1.5WSI-N 35V 0.4A 0.3W UNISI-N 40V 4A 10W 65MHzSI-N 60V 0.2A 0.25W 200MHz SI-N 30V 30mA 0.4W 230MHz SI-N 400V 1A 23W 8MHzSI-N 150V 7A 80W 15MHzSI-N 15V 0.03A 300MC RFSI-N 35V 20mA 0.2W 120MHz SI-N 50V 0.1A 250MC UNI。
(整理)享受税收优惠集成电路产品名录第一批
SC91710A/B SC9235 SC9243 SC9270D SC9302
-------------
储器的音频/脉冲拨号电 路
102
数字调谐系统
二功能遥控玩具车接收电
103
路
五功能遥控玩具车接收电
104
路
105 五功能玩具遥控发射
106 7 功能遥控玩具车电路
107 九功能遥控玩具车电路
181
路
带有 60 路 PCM 复用结构的
182 120 路光端机专用集成电路
183 2MB/S PCM 成帧器
184 E3 多功能综合复用器
185 微波路旁业务专用集成电路
186
SIM 卡
187
SIM 卡模块
188
UIM 卡
189
双界面卡模块
190
双界面卡芯片
191
IC 帐号卡芯片
192
IC 帐号卡模块
-------------
SC9318
RX-3
RX-2
TX-2 RX-5/TX-5 TX-6/RX-6 SCE7755(SC8123)
SA5810
SA5954
SC75823E/W
SC9256/7
SD0121 EOS10/100
SE0141 OHP622
SE0111 ADMA21
SE0131 Tupp622 CIU92A08V30C CIU92A08V28M CIU92A08V30M CIU92A08V28C
术开发 有限责任公司
北京中庆微数字设 备开发 有限公司
北京协同伟业信息 技术
有限公司
大唐微电子技术有 限公司
北京中星微电子有 限公司
SC系列三极管参数
2SC系列三极管参数2SC1000 SI-N 55V 80MHz2SC1008 SI-N 80V 75MHz2SC1012A SI-N 250V 60mA >80MHz2SC1014 SI-N 50V 7W2SC1017 SI-N 75V 1A 60mW 120MHz2SC1030 SI-N 150V 6A 50W | 2SC1046 SI-N 1000V 3A 25W2SC1047 SI-N 30V 20mA 650MHz |2SC1050 SI-N 300V 1A 40W2SC1051 SI-N 150V 7A 60W 8MHz |2SC1061 SI-N 50V 3A 25W 8MHz=H1062SC1070 SI-N 30V 20mA 900MHz |2SC1080 SI-N 110V 12A 100W 4MHz2SC109 SI-N 50V |2SC1096 SI-N 40V 3A 10W 60MHz2SC1106 SI-N 350V 2A 80W | 2SC1114 SI-N 300V 4A 100W 10MHz2SC1115 SI-N 140V 10A 100W 10MHz |2SC1116 SI-N 180V 10A 100W 10MHz2SC1161 SI-P 160V 12A 120W | 2SC1162 SI-N 35V 10W 180MHz2SC1172 SI-N 1500V 5A 50W | 2SC1195 SI-N 200V 100W2SC1213C SI-N 50V UNI |2SC1214 SI-N 50V 50MHz2SC1215 SI-N 30V 50mA |2SC1216 SI-N 40V <20/402SC1226 SI-N 40/50V 2A 10W 150MHz |2SC1238 SI-N 35V 5W2SC1247A SI-N 50V 60MHz |2SC1308 SI-N 1500V 7A 50W2SC1312 SI-N 35V 100MHz |2SC1318 SI-N 60V 200MHz2SC1343 SI-N 150V 10A 100W 14MHz |2SC1345 SI-N 55V 230MHz2SC1359 SI-N 30V 30mA 250MHz |2SC1360 SI-N 50V 1W >300MHz2SC1362 SI-N 50V 140MHz |2SC1368 SI-N 25V 8W 180MHz2SC1382 SI-N 80V 5W 100MHz |2SC1384 SI-N 60V 1A 1W 200MHz2SC1393 SI-N 30V 20mA 250 mW 700MHz |2SC1398 SI-N 70V 2A 15W2SC1413A SI-N 1200V 5A 50W | 2SC1419 SI-N 50V 2A 20W 5MHz2SC1426 SI-N 35V |2SC1431 SI-N 110V 2A 23W 80MHz2SC1432 N-DARL 30V B=40 |2SC1439 SI-N 150V 50mA 130MHz2SC1445 SI-N 100V 6A 40W 10MHz |2SC1446 SI-N 300V 10W 55MHz2SC1447 SI-N 300V 20W 80MHz |2SC1448 SI-N 150V 25W 3MHz2SC1449 SI-N 40V 2A 5W 60MHz | 2SC1450 SI-N 150V 20W2SC1454 SI-N 300V 4A 50W 10MHz | 2SC1474-4 SI-N 20V 2A 80MHz2SC1501 SI-N 300V 10W 55MHz |2SC1505 SI-N 300V 15W2SC1507 SI-N 300V 15W 80MHz |2SC1509 SI-N 80V 1W 120MHz2SC1515 SI-N 200V 110MHz |2SC1520 SI-N 300V 12,5W2SC1545 N-DARL 40V B=1K |2SC1567 SI-N 100V 5W 120MHz2SC1570 SI-N 55V 100MHz |2SC1571 SI-N 40V 100MHz2SC1573 SI-N 200V 1W 80MHz |2SC1577 SI-N 500V 8A 80W 7MHz2SC1583 SI-N 50V 100MHz |2SC1619 SI-N 100V 6A 50W 10MHz2SC1623 SI-N 60V 250MHz |2SC1624 SI-N 120V 1A 15W 30MHz2SC1627 SI-N 80V 100MHz |2SC1674 SI-N 30V .02A 600MC RF/IF2SC1675 SI-N 50V .03A |2SC1678 SI-N 65V 3A 3W2SC1685 SI-N 60V 150MC UNI | 2SC1688 SI-N 50V 30mA 550MHz2SC1708A SI-N 120V 50mA 150MHz |2SC1729 SI-N 35V 16W 500MHz2SC1730 SI-N 30V UHF |2SC1740 SI-N 40V 100mA2SC1741 SI-N 40V 250MHz |2SC1756 SI-N 300V >50MHz2SC1760 SI-N 100V 1A 80MHz | 2SC1775A SI-N 120V UNI2SC1781 SI-N 50V |2SC1815 SI-N 50V 80MHz2SC1815BL SI-N 60V B>350 |2SC1815GR SI-N 60V B>2002SC1815Y SI-N 60V B>120 |2SC1827 SI-N 100V 4A 30W 10MHz2SC1832 N-DARL 500V 15A 150W B>10 | 2SC1841 SI-N 120V2SC1844 SI-N 60V 100MHz |2SC1845 SI-N 120V2SC1846 SI-N 120V |2SC1847 SI-N 50V2SC1855 SI-N 20V 20mA 550MHz |2SC1871 SI-N 450V 15A 150W <1/3us2SC1879 N-DARL+D 120V 2A B>1 |2SC1890 SI-N 90V 200MHz2SC1906 SI-N 19V2SC1907 SI-N 30V 1100MHz |2SC1913 SI-N 150V 1A 15W 120MHz2SC1914 SI-N 90V 50mA 150MHz |2SC1921 SI-N 250V2SC1922 SI-N 1500V 50W |2SC1923 SI-N 30V 20mA 10mW 550MHz2SC1929 SI-N 300V 25W 80MHz |2SC1941 SI-N 160V 50mA2SC1944 SI-N 80V 6A PQ=16W | 2SC1945 SI-N 80V 6A 20W2SC1946A SI-N 35V 7A 50W | 2SC1947 SI-N 35V 1A 4W/175MHz2SC1953 SI-N 150V 70MHz |2SC1957 SI-N 40V 1A 27MHz2SC1959 SI-N 30V 200MHz |2SC1967 SI-N 35V 2A 8W 470MHz2SC1968 SI-N 35V 5A 3W 470MHz |2SC1969 SI-N 60V 6A 20W2SC1970 SI-N 40V 5W |2SC1971 SI-N 35V 2A2SC1972 SI-N 35V 25W |2SC1975 SI-N 120V 2A 50MHz2SC1980 SI-N 120V 20mA 200MHz |2SC1984 SI-N 100V 3A 30W B=7002SC2023 SI-N 300V 2A 40W 10MHz2SC2026 SI-N 30V |2SC2027 SI-N 1500/800V 5A 50W2SC2036 SI-N 80V 1A PQ=1..4W |2SC2053 SI-N 40V 500MHz2SC2055 SI-N 18V 0,3A 0,5W |2SC2058 SI-N 40V2SC2060 SI-N 40V 150MHz | 2SC2061 SI-N 80V 1A 120MHz2SC2068 SI-N 300V 95MHz |2SC2073 SI-N 150V 25W 4MHz2SC2078 SI-N 80V 3A 10W 150MHz |2SC2086 SI-N 75V 1A 27MHz2SC2092 SI-N 75V 3A 5W 27MHz |2SC2094 SI-N 40V PQ>15W 175MHz2SC2097 SI-N 50V 15A PQ=85W |2SC2120 SI-N 30V 120MHz2SC2122 SI-N 800V 10A 50W |2SC2166 SI-N 75V 4A RFPOWER2SC2168 SI-N 200V 2A 30W 10MHz |2SC2200 SI-N 500V 7A 40W 1US2SC2209 SI-N 50V 10W 150MHz |2SC2216 SI-N 45V 50mA 300MHz2SC2228 SI-N 160V >50 | 2SC2229 SI-N 200V 50mA 120MHz2SC2230 SI-N 200V 50MHz | 2SC2233 SI-N200V 4A 40W 8MHz2SC2235 SI-N 120V 120MHz | 2SC2236 SI-N 30V 120MHz2SC2237 SI-N 35V 2A PQ> 175MHz | 2SC2238 SI-N 160V 25W 100MHz2SC2240 SI-N 120V 50mA .3W 100MHz |2SC2261 SI-N 180V 8A 80W 15MHz2SC2267 SI-N 400/360V | 2SC2270 SI-N 50V 5A 10W 100MHz2SC2271 SI-N 300V 50MHz | 2SC2275 SI-N120V 25W 200MHz2SC2283 SI-N 38V (500MHz | 2SC2287 SI-N 38V 175MHz2SC2295 SI-N 30V 250MHz | 2SC2307 SI-N 500V 12A 100W 18MHz2SC2308 SI-N 55V 230MHz | 2SC2310 SI-N 55V 230MHz2SC2312 SI-N 60V 6A 27MHz | 2SC2314 SI-N 45V 1A 5W2SC2320 SI-N 50V 0,2A 0,3W |2SC2329 SI-N 38V 2W 175MHz2SC2331 SI-N 150V 2A 15W POWER |2SC2333 SI-N 500/400V 2A 40W2SC2334 SI-N 150V 7A 40W POWER |2SC2335 SI-N 500V 7A 40W POWER2SC2336B SI-N 250V 25W 95MHz | 2SC2344 SI-N 180V 25W 120MHz2SC2347 SI-N 15V 50mA 250mW 650MHz |2SC2362 SI-N 120V 50mA 130MHz2SC2363 SI-N 120V 50mA 130MHz | 2SC2365 SI-N 600V 6A 50W POWER2SC2369 SI-N 25V 70mA | 2SC2383 SI-N 160V 1A 100MHz2SC2389 SI-N 120V 50mA 140MHz | 2SC2407 SI-N 35V 500MHz2SC2412 SI-N 50V 180MHz |2SC2433 SI-N 120V 30A 150W 80MHz2SC2440 SI-N 450V 5A 40W |2SC2458 SI-N 50V 80MHz2SC2466 SI-N 30V | 2SC2482 SI-N 300V 50MHz2SC2485 SI-N 100V 6A 70W 15MHz |2SC2486 SI-N 120V 7A 80W 15MHz2SC2491 SI-N 100V 6A 40W 15MHz |2SC2497 SI-N 70V 5W 150MHz2SC2498 SI-N 30V | 2SC2508 SI-N 40V 6A 50W 175MHz2SC2510 SI-N 55V 20A 250W(28MHz) |2SC2512 SI-N 30V 50mA 900MHz TUNE2SC2516 SI-N 150V 5A 30W <2us | 2SC2517 SI-N 150V 5A 30W <2us2SC2538 SI-N 40V |2SC2539 SI-N 35V 4A 17W 175MHz2SC2542 SI-N 450V 5A 40W |2SC2547 SI-N 120V2SC2551 SI-N 300V 80MHz | 2SC2552 SI-N500V 2A 20W2SC2553 SI-N 500V 5A 40W 1us |2SC2562 SI-N 60V 5A 25W2SC2563 SI-N 120V 8A 80W 90MHz |2SC2570A SI-N 25V 70mA2SC2579 SI-N 160V 8A 80W 20MHz |2SC2581 SI-N 200V 10A 100W2SC2590 SI-N 120V 5W 250MHz |2SC2592 SI-N 180V 1A 20W 250MHz2SC2603 SI-N 50V |2SC2610 SI-N 300V 80MHz2SC2611 SI-N 300V 80MHz | 2SC2621E SI-N 300V 10W >50MHz2SC2625 SI-N 450V 10A 80W |2SC2630 SI-N 35V 14A 100W2SC2631 SI-N 150V 50mA 0,75W 160MHz |2SC2632 SI-N 150V 50mA 1W 160MHz2SC2634 SI-N 60V 200MHz | 2SC2653 SI-N350V 15W >50MHz2SC2654 SI-N 40V 7A 40W |2SC2655 SI-N 50V 2A2SC2656 SI-N 450V 7A 80W < | 2SC2660 SI-N 200V 2A 30W 30MHz2SC2668 SI-N 30V 20mA 550MHz | 2SC2671 SI-N 15V 80mA2SC2682 SI-N 180V 8W 180MHz |2SC2690 SI-N 120V 20W 160MHz2SC2694 SI-N 35V 20A 140W |2SC2705 SI-N 150V 50mA 200MHz2SC2706 SI-N 140V 10A 100W 90MHz |2SC2712 SI-N 50V 80MHz2SC2714 SI-N 30V 20mA 550MHz | 2SC2717 SI-N 30V 50mA 300MHz2SC2724 SI-N 30V 30mA 200MHz |2SC2749 SI-N 500V 10A 100W 50MHz2SC2750 SI-N 150V 15A 100W POWER |2SC2751 SI-N 500V 15A 120W 50MHz2SC2752 SI-N 500V 10W <1/ | 2SC2753 SI-N 17V 5GHz2SC2759 SI-N 30V 50mA | 2SC2786 SI-N 20V 20mA 600MHz2SC2787 SI-N 50V 30mA 250MHz | 2SC2791 SI-N 900V 5A 100W2SC2792 SI-N 850V 2A 80W |2SC2793 SI-N 900V 5A 100W2SC2802 SI-N 300V 10W 80MHz |2SC2808 SI-N 100V 50mA 140MHz2SC2810 SI-N 500V 7A 50W 18MHz |2SC2812 SI-N 55V 100MHz2SC2814 SI-N 30V 320MHz F |2SC2825 SI-N 80V 6A 70W B>5002SC2837 SI-N 150V 10A 100W 70MHz |2SC2839 SI-N 20V 30mA 320MHz2SC2851 SI-N 36V 1W | 2SC2873 SI-N 50V 2A 120MHz2SC2878 SI-N 20V 30MHz | 2SC2879 SI-N 45V 25A PEP=100W 28MHz2SC2882 SI-N 90V 100MHz | 2SC288A SI-N 35V 20mA2SC2898 SI-N 500V 8A 50W |2SC2901 SI-N 40V <12/182SC2908 SI-N 200V 5A 50W 50MHz |2SC2910 SI-N 160V 70mA 150MHz2SC2911 SI-N 180V 140mA 10W 150MHz |2SC2912 SI-N 200V 140mA 10W 150MHz2SC2922 SI-N 180V 17A 200W 50MHz |2SC2923 SI-N 300V 140MHz2SC2928 SI-N 1500V 5A 50W |2SC2939 SI-N 500V 10A 100W2SC2958 SI-N 160V 1W |2SC2979 SI-N 800V 3A 40W2SC2987 SI-N 140V 12A 120W 60MHz |2SC2988 SI-N 36V 175MHz2SC2999 SI-N 20V 30mA 750MHz |2SC3001 SI-N 20V 3A PQ=7W(175MHz)2SC3019 SI-N 35V 520MHz | 2SC3020 SI-N 35V 1A 10W2SC3022 SI-N 35V 7A 50W |2SC3026 SI-N 1700V 5A 50W POWER2SC3030 N-DARL 900V 7A 80W |2SC3039 SI-N 500V 7A 52W2SC3042 SI-N 500/400V 12A 100W |2SC3052F SI-N 50V 200MHz2SC3063 SI-N 300V 140MHz | 2SC3067 2xSI-N 130V 50mA 1602SC3068 SI-N 30V Ueb=15V B>8 | 2SC3071 SI-N 120V Ueb=15V B>2SC3073 SI-N 30V 3A 15W 100MHz |2SC3074 SI-N 60V 5A 20W 120MHz2SC3075 SI-N 500V 10W 1/ | 2SC3089 SI-N 800V 7A 80W2SC3101 SI-N 250V 30A 200W 25MHz |2SC3102 SI-N 35V 18A 170W 520MHz2SC3112 SI-N 50V 100MHz | 2SC3116 SI-N 180V 10W 120MHz2SC3117 SI-N 180V 10W 120MHz | 2SC3133 SI-N 60V 6A 27MHz2SC3148 SI-N 900V 3A 40W 1us |2SC3150 SI-N 900V 3A 50W 15MHz2SC3153 SI-N 900V 6A 100W |2SC3157 SI-N 150V 10A 60W2SC3158 SI-N 500V 7A 60W |2SC3164 SI-N 500V 10A 100W2SC3169 SI-N 500V 2A 25W >8MHz |2SC3175 SI-N 400V 7A 50W 40MHz2SC3178 SI-N 1200V 2A 60W |2SC3179 SI-N 60V 4A 30W 15MHz2SC3180N SI-N 80V 6A 60W 30MHz |2SC3181N SI-N 120V 8A 80W 30MHz2SC3182N SI-N 140V 10A 100W 30MHz |2SC3195 SI-N 30V 20mA 550MHz2SC3199 SI-N 60V 130MHz | 2SC3200 SI-N 120V 100MHz2SC3202 SI-N 35V 300MHz | 2SC3203 SI-N 35V 120MHz2SC3205 SI-N 30V 2A 1W 120MHz |2SC3206 SI-N 150V 120MHz2SC3210 SI-N 500V 10A 100W 1us |2SC3211 SI-N 800V 5A 70W >3MHz2SC3212 SI-N 800V 7A 3W | 2SC3225 SI-N 40V 2A 1us2SC3231 SI-N 200V 4A 40W 8MHz |2SC3240 SI-N 50V 25A 110W 30MHz2SC3242 SI-N 20V 2A 80MHz |2SC3244E SI-N 100V 130MHz2SC3245A SI-N 150V 200MHz | 2SC3246 SI-N 30V 130MHz2SC3247 SI-N 50V 1A .9W 130MHz B> |2SC3257 SI-N 250V 10A 40W 1/2SC3258 SI-N 100V 5A 30W 120MHz |2SC3260 N-DARL 800V 3A 50W B>102SC3262 N-DARL 800V 10A 100W |2SC3263 SI-N 230V 15A 130W2SC3264 SI-N 230V 17A 200W 60MHz |2SC3271 SI-N 300V 1A 5W 80MHz2SC3277 SI-N 500V 10A 90W 20MHz |2SC3279 SI-N 10V 2A 150MHz2SC3280 SI-N 160V 12A 120W 30MHz |2SC3281 SI-N 200V 15A 150W 30MHz2SC3284 SI-N 150V 14A 125W 60MHz |2SC3293 N-DARL+D 50V 20W 1802SC3297 SI-N 30V 3A 15W 100MHz |2SC3299 SI-N 60V 5A 20W2SC3300 SI-N 100V 15A 100W |2SC3303 SI-N 100V 5A 20W2SC3306 SI-N 500V 10A 100W 1us |2SC3307 SI-N 900V 10A 150W 1us2SC3309 SI-N 500V 2A 20W 1us |2SC3310 SI-N 500V 5A 30W 1us2SC3311 SI-N 60V 150MHz | 2SC3320 SI-N500V 15A 80W2SC3326 SI-N 20V 30MHz | 2SC3327 SI-N 50V 30MHz2SC3328 SI-N 80V 2A 100MHz |2SC3330 SI-N 60V 200MHz2SC3331 SI-N 60V 200MHz | 2SC3332 SI-N180V 120MHz2SC3334 SI-N 250V 50mA 100MHz | 2SC3345 SI-N 60V 12A 40W 90MHz2SC3346 SI-N 80V 12A 40W |2SC3355 SI-N 20V2SC3356 SI-N 20V 7GHz | 2SC3377 SI-N 40V 1A 150MHz2SC3378 SI-N 120V 100MHz | 2SC3379 SI-N 20V PQ=3W2SC3381 2xSI-N 80V 170MHz | 2SC3383 SI-N 60V 250MHz2SC3397 SI-N 50V 250MHz 46K/ | 2SC3399 SI-N 50V 250MHz2SC3400 SI-N 50V 250MHz 22K/ | 2SC3401 SI-N 50V .1A 46K/23KOHM2SC3402 SI-N 50V 250MHz 10K/ | 2SC3405 SI-N 900V 20W 1us2SC3409 SI-N 900V 2A 80W .8uS |2SC3416 SI-N 200V 5W 70MHz2SC3419 SI-N 40V 5W 100MHz |2SC3420 SI-N 50V 5A 10W 100MHz2SC3421O SI-N 120V 1A BJT O-G | 2SC3421Y SI-N 120V 1A 10W 120MHz2SC3422Y SI-N 40V 3A 10W 100MHz |2SC3423 SI-N 150V 50mA 5W 200MHz2SC3425 SI-N 500V 10W |2SC3446 SI-N 800V 7A 40W 18MHz2SC3447 SI-N 800V 5A 50W 18MHz |2SC3456 SI-N 1100/800V 40W2SC3457 SI-N 1100V 3A 50W |2SC3460 SI-N 1100V 6A 100W2SC3461 SI-N 1100/800V 8A 120W |2SC3466 SI-N 1200/650V 8A 120W2SC3467 SI-N 200V 1W 150MHz |2SC3468 SI-N 300V 1W 150MHz2SC3486 SI-N 1500V 6A 120W |2SC3502 SI-N 200V2SC3503 SI-N 300V 7W 150MHz |2SC3504 SI-N 70V 500MHz2SC3505 SI-N 900V 6A 80W |2SC3507 SI-N 1000/800V 5A 80W2SC3509 N-DARL+D 900V 10A 100W 0. |2SC3514 SI-N 180V 10W 200MHz2SC3518 SI-N 60V 5A 10W |2SC3520 SI-N 500V 18A 130W 18MHz2SC3526 SI-N 110V 7A 30W 1us | 2SC3528 SI-N 500V 20A 125W2SC3549 SI-N 900V 3A 40W |2SC3552 SI-N 1100V 12A 150W 15MHz2SC3568 SI-N 150V 10A 30W |2SC3571 SI-N 500V 7A 30W2SC3577 SI-N 850V 5A 80W 6MHz |2SC3581 SI-N 55V 150MHz2SC3591 SI-N 400V 7A 50W |2SC3595 SI-N 30V 5W 2GHz2SC3596 SI-N 80V 8W 700MHz |2SC3597 SI-N 80V 10W 800MHz2SC3599 SI-N 120V 8W 500MHz |2SC3600 SI-N 200V 7W 400MHz2SC3601 SI-N 200V 7W 400MHz | 2SC3608 SI-N 20V2SC3611 SI-N 50V 4W 300MHz | 2SC3616 SI-N 25V 250MHz2SC3621 SI-N 150V 10W 100MHz | 2SC3623 SI-N 60V B=1K2SC3632 SI-N 600V 1A 10W 30MHz |2SC3636 SI-N 900/500V 7A 80W2SC3642 SI-N 1200V 6A 100W 200ns |2SC3655 SI-N 50V 46/23K2SC3656 SI-N 50V 10K/10 | 2SC3659 SI-N+D 1700/800V 5A 50W2SC3668 SI-N 50V 2A 1W 100MHz |2SC3669 SI-N 80V 2A 1W2SC3675 SI-N 1500/900V 10W |2SC3678 SI-N 900V 3A 80W2SC3679 SI-N 900/800V 5A 100W |2SC3680 SI-N 900/800V 7A 120W 6MHz2SC3684 SI-N+D 1500V 10A 150W |2SC3688 SI-N 1500V 10A 150W2SC3692 SI-N 100V 7A 30W <300/180 |2SC373 SI-N 35V B>2002SC3746 SI-N 80V 5A 20W 100MHz |2SC3748 SI-N 80V 10A 30W 100/600ns2SC3752 SI-N 1100/800V 3A 30W |2SC3781 SI-N 120V 15W 500MHz2SC3782 SI-N 200V 15W 400MHz | 2SC3783 SI-N 800V 5A 100W2SC3787 SI-N 180V 10W 150MHz | 2SC3788 SI-N 200V 5W 150MHz2SC3789 SI-N 300V 7W 70MHz |2SC3790 SI-N 300V 7W 150MHz2SC3792 SI-N 50V 250MHz | 2SC3795A SI-N 900V 5A 40W2SC3807 SI-N 30V 2A 15W 260MHz |2SC3808 N-DARL 80V 2A 170MHz B>802SC380TM SI-N 30V 50mA 100MHz | 2SC3811 SI-N 40V 450MHz2SC3831 SI-N 500V 10A 100W |2SC3833 SI-N 500/400V 12A 100W2SC3844 SI-N 600V 15A 75W 30MHz2SC3851 SI-N 80V 4A 25W 15MHz |2SC3852 SI-N 80V 3A 25W 15MHz2SC3855 SI-N 200V 10A 100W 20MHz |2SC3857 SI-N 200V 15A 150W 20MHz2SC3858 SI-N 200V 17A 200W 20MHz |2SC3866 SI-N 900V 3A 40W2SC3868 SI-N 500V 25W | 2SC3883 SI-N+D 1500V 6A 50W2SC3884A SI-N 1500V 6A 50W |2SC3886A SI-N 1500V 8A 50W2SC388A SI-N 25V 50mA 300MHz | 2SC3890 SI-N 500V 7A 30W 500NS2SC3892A SI-N+D 1500V 7A 50W | 2SC3893A SI-N+D 1500V 8A 50W2SC3895 SI-N 1500/800V 8A 70W |2SC3896 SI-N 1500V 8A 70W2SC3897 SI-N 1500V 10A 70W |2SC3902 SI-N 180V 10W 120MHz2SC3907 SI-N 180V 12A 130W 30MHz |2SC3927 SI-N 900V 10A 120W2SC394 SI-N 25V 200MC RF |2SC3940 SI-N 30V 1A 1W 200MHz2SC3943 SI-N 110V 2W 300MHz | 2SC3944 SI-N 150V 1A 40W 300MHz2SC3950 SI-N 30V 5W2SC3952 SI-N 80V 10W 700MHz |2SC3953 SI-N 120V 8W 400MHz2SC3954 SI-N 120V 8W 400MHz |2SC3955 SI-N 200V 7W 300MHz2SC3956 SI-N 200V 7W 70MHz |2SC3964 SI-N 40V 2A 1us2SC3972 SI-N 800/500V 5A 40W |2SC3973A SI-N 900V 7A 45W2SC3979A SI-N 800V 3A 2W 10MHz |2SC3987 N-DARL+D 50V 3A 15W2SC3996 SI-N 1500/800V 15A 180W |2SC3998 SI-N 1500V 25A 250W POWER2SC3999 SI-N 300V 300MHz | 2SC4004 SI-N 900/800V 1A 30W <1/42SC4020 SI-N 900V 3A 50W 1us |2SC4024 SI-N 100V 10A 35W B>3002SC4029 SI-N 230V 15A 150W 30MHz |2SC4043 SI-N 20V 50mA2SC4046 SI-N 120V 8W 350MHz |2SC4052 SI-N 600V 3A 40W 20MHz2SC4056 SI-N 600V 8A 45W |2SC4059 SI-N 600/450V 15A 130W2SC4064 SI-N 50V 12A 35W 40MHz |2SC4107 SI-N 500/400V 10A 60W2SC4119 N-DARL+D 1500V 15A 250W B |2SC4123 SI-N+D 1500V 7A 60W2SC4125 SI-N+D 1500/800V 10A 70W |2SC4131 SI-N 100V 15A 60W 18MHz2SC4135 SI-N 120V 2A 15W 200MHz |2SC4137 SI-N 25V 300MHz2SC4138 SI-N 500V 10A 80W <1/ | 2SC4153 SI-N 200V 7A 30W2SC4157 SI-N 600V 10A 100W |2SC4159 SI-N 180V 15W 100MHz2SC4161 SI-N 500V 7A 30W |2SC4169 N-DARL+D 50V 1W B=4K2SC4199 SI-N 1400V 10A 100W |2SC4200 SI-N 20V 5W2SC4204 SI-N 30V |2SC4231 SI-N 1200/800V 2A 30W2SC4235 SI-N 1200/800V 3A 80W |2SC4236 SI-N 1200/800V 6A 100W2SC4237 SI-N 1200/800V 10A 150W |2SC4242 SI-N 450/400V 7A 40W2SC4256 SI-N 1500V 10A 175W 6MHz |2SC4278 SI-N 150V 10A 100W 30MHz2SC4288A SI-N1600/600V 12A 200W |2SC4289A SI-N 1500V 16A 200W2SC4290A SI-N 1500V 20A 200W |2SC4297 SI-N 500V 12A 75W 10MHz2SC4298 SI-N 500V 15A 80W 10MHz |2SC4300 SI-N 900V 5A 75W 1/6us2SC4304 SI-N 800V 3A 35W |2SC4308 SI-N 30V2SC4313 SI-N 900V 10A 100W | 2SC4381 SI-N 150V 2A 25W 15MHz2SC4382 SI-N 200V 2A 25W 15MHz |2SC4386 SI-N 160/120V 8A 75W 20MHz2SC4387 SI-N 200V 10A 80W 20MHz |2SC4388 SI-N 200V 15A 85W 20MHz2SC4408 SI-N 80V 2A 100/600ns | 2SC4429 SI-N 1100/800V 8A 60W2SC4430 SI-N 1100V 12A 65W 15MHz |2SC4431 SI-N 120V 20W 150MHz2SC4439 SI-N 180V 8W 400MHz |2SC4467 SI-N 160/120V 8A 80W 20MHz2SC4468 SI-N 200V 10A 80W 20MHz |2SC4484 SI-N 30V 1W 250MHz2SC4488 SI-N 120V 1A 1W 120MHz |2SC4511 SI-N 120V 6A 30W 20MHz2SC4512 SI-N 120V 6A 50W 20MHz |2SC4517 SI-N 900V 3A 30W 6MHz2SC4517A SI-N 1000V 3A 30W |2SC4531 SI-N+D 1500V 10A 50W2SC4532 SI-N 1700V 10A 200W 2uS |2SC4538 SI-N 900V 5A 80W2SC454 SI-N 30V 230MHz |2SC4542 SI-N 1500V 10A 50W2SC4547 N-DARL+D 85V 3A 30W B>2K |2SC4557 SI-N 900V 10A 80W <1/2SC4560 SI-N 1500V 10A 80W |2SC458 SI-N 30V 230MC UNI2SC4582 SI-N 600V 100A 65W 20MHz |2SC460 SI-N 30V 230MHz2SC461 SI-N 30V 230MHz | 2SC4744 SI-N 1500V 6A POWER2SC4745 SI-N 1500V 6A |2SC4747 SI-N 1500V 10A 50W2SC4758 SI-N 1500V 8A 50W HI-RES |2SC4769 SI-N+D 1500V 7A 60W2SC4770 SI-N 1500/800V 7A 60W |2SC4793 SI-N 230V 1A 2W 100MHz2SC4804 SI-N 900V 3A 30W |2SC4820 SI-N 450V 6A 30W 12MHz2SC4826 SI-N 200V 3A 300MHz |2SC4834 SI-N 500V 8A 45W <2SC4883A SI-N 180V 2A 20W 120MHz |2SC4891 SI-N 1500V 15A 75W2SC4908 SI-N 900V 3A 35W 1us |2SC4924 SI-N 800V 10A 70W2SC4977 SI-N 450V 7A 40W |2SC5002 SI-N 1500V 7A 80W2SC5003 SI-N+D 1500V 7A 80W |2SC5027 SI-N 1100V 3A 50W2SC5030 SI-N 50V 5A 150MHz |2SC5045 SI-N 1600V 15A 75W2SC5047 SI-N 1600V 25A 250W |2SC5048 SI-N 1500V 12A 50W2SC5070 SI-N 30V 2A B>800 |2SC5086 SI-N 20V 80MA 7GHZ2SC509 SI-N 35V 60MHz | 2SC5144 SI-N 1700V 20A 200W2SC5148 SI-N 1500V 8A 50W |2SC5149 SI-N+D 1500V 8A 50W2SC5150 SI-N 1700V 10A 50W 03us |2SC5171 SI-N 180V 2A 20W 200MHz2SC5198 SI-N 140V 10A 100W 30MHz |2SC5207 SI-N 1500V 10A 50W2SC5242 SI-N 230V 15A 130W 30MHz |2SC5244A SI-N 1600V 30A 200W2SC5296 SI-N+D 1500V 8A 60W |2SC5297 SI-N 1500V 8A 60W2SC5299 SI-N 1500V 10A 70W | 2SC535 SI-N 20V 20mA2SC536 SI-N 40V 180MC UNI |2SC620 SI-N 50V UNI2SC643 SI-N 1100V 50W |2SC644 SI-N 30V 50mA2SC645 SI-N 30V 30mA 200MHz | 2SC710 SI-N 30V 200MHz2SC711 SI-N 30V 150MHz |2SC712 SI-N 30V 150MHz2SC717 SI-N 30V 50mA 600MHz |2SC730 SI-N 40V PQ=2SC732 SI-N 50V 150MHz | 2SC735 SI-N 35V UNI2SC752 SI-N 15V 100mA |2SC756 SI-N 40V 4A 10W 65MHz2SC784 SI-N 40V 500MC RF |2SC815 SI-N 60V 200MHz2SC828 SI-N 30V UNI | 2SC829 SI-N30V 30mA 230MHz2SC839 SI-N 50V 250MHz |2SC867 SI-N 400V 1A 23W 8MHz2SC869 SI-N 160V 30mA 150MHz | 2SC898A SI-N 150V 7A 80W 15MHz2SC900 SI-N 30V 100MHz |2SC930 SI-N 15V 300MC RF2SC936 SI-N 1000V 1A 22W POWER |2SC941 SI-N 35V 20mA 120MHz2SC943 SI-N 60V 220MHz | 2SC945 SI-N 50V 250MC UNI2SC982 N-DARL 40V。
中日常用钢板牌号对照表
马自达 (MES)
国标 (GB)/(Q/BQB) SPCC(St12) SPCD(St13) SPCE(St14)
用途
內板部品專用鋼板 一般用冷轧碳钢薄板及带 冲压用冷轧碳素钢薄板及带 深冲引伸部品用鋼板 超深引伸部品用鋼板 抗拉強度35kgf/m㎡之零件
SPFC340HM CF370R JSC390P JSC440P JSC490P JSC590P JSC590Y JSC780P JSC7980P SPFC370M SPFC390M SPFC440M SPFC490M SPFC540M SPFC590M Q215(St37-2G) Q215(St37-2G) Q225(St44-3G) Q275(St52-3G) Q275(St52-3G)
SPHCM SPC1M SPC1RM SPC2M SPC3AM
與SPHC相當之防鏽零件 與SPCC相當之防鏽零件 與SPCC相當之防鏽零件 與SPCD相當之防鏽零件 與SPHC相當之防鏽零件
SGC340
SGC400
F04
SP781-340 SP782-340 SP785-340
SP781-390 SP782-390 SP783 SP784 RP791-440 SP791-440
SP153-780 (SP150-980)
抗拉強度80kgf/m㎡之零件 抗拉強度100kgf/m㎡之零件 用於FRAKE等,厚板成形容易之平 坦狀零件
SP211 SP212
RP221 SP221 RP222 SP222 RP223 SP223
(SP230-310) RP231-370 SP231-370 (SP230-400) RP231-440 SP231-440F (SP250-490) RP251-540 SP251-540 RP252-540 SP252540F RP253-590 SP253-590 RP254-590 SP254-590
贴片三极管上的印字
贴片三极管上的印字(与真实名称的对照表)(3)(2011-03-17 09:03:07)转载标签:杂谈3FR BC857BR Phi R SOT23R BC557B3Fs BC857B Sie N SOT23 BC557B3Ft BC857B Phi N SOT23 BC557B3Ft BC857BW Phi N SOT323 BC557B3Ft BC857BS Phi N SOT363 BC557B3G BC857C Phi N SOT23 BC557C3G BC857C Phi N SOT23 BC557C3G MMBTH11 NS N SOT23 -3G MGSF3454X Mot DK TSOP6 n-ch enh tmosfet 1.75A3G- BC857CW Phi N SOT323 BC557C3Gp BC857C Phi N SOT23 BC557C3GR BC857CR Phi R SOT23R BC557CR3Gs BC857C Sie N SOT23 BC557C3Gt BC857C Phi N SOT23 BC557C3Gt BC857CW Phi N SOT323 BC557C3H MMBTH30 NS N SOT23 -3H- BC857CW Phi N SOT323 BC5573Hp BC857C Phi N SOT23 BC5573Ht BC857C Phi N SOT23 BC5573Ht BC857CW Phi N SOT323 BC5573J MMBTH69 Mot N SOT23 pnp UHF fT 2GHz3J BC858A Phi N SOT23 BC558A3Jp BCV62A Phi VQ SOT143 pnp current mirror hFe 1803JR BC858AR Phi R SOT23R BC558A3Js BC858A Sie N SOT23 BC558A3Js BCV62A Sie VQ SOT143 pnp current mirror hFe 1803K BC858B Phi N SOT23 BC558B3Kp BCV62B Phi VQ SOT143 npn current mirror hFe 2903KR BC858BR Phi R SOT23R BC558B3Ks BCV62B Sie VQ SOT143 npn current mirror hFe 2903L BC858C Phi N SOT23 BC558C3Lp BCV62C Phi VQ SOT143 pnp current mirror hFe 5203LR BC858CR Phi R SOT23R BC558C3Ls BCV62C Sie VQ SOT143 pnp current mirror hFe 5203M BC858 Phi N SOT23 BC5583M FMMT5087R Zet R SOT23R 2N5087 BC3223Mp BCV62 Phi VQ SOT143 pnp current mirror3Ms BCV62 Sie VQ SOT143 pnp current mirror3N MMBT4402 Nat N SOT23 2N4402 pnp3P FMT2222AR Zet R SOT23R 2N2222A3R MMBT5571 Nat N SOT23 pnp sw 850MHz3S MMBT5551 Nat N SOT23 npn 160V3T HT3 Zet N SOT23 npn 80V 100mA3V0 PZM3.0NB Phi C SOT346 3.0V 300mW Zener3V3 PZM3.3NB Phi C SOT346 3.3V 300mW Zener3V6 PZM3.6NB Phi C SOT346 3.6V 300mW Zener3V9 PZM3.9NB Phi C SOT346 3.9V 300mW Zener3W FMMT-A12 Zet N - MPSA123Y3 BZV49-C3V3 Phi O SOT89 3.3V 1W zener3Y6 BZV49-C3V6 Phi O SOT89 3.6V 1W zener3Y9 BZV49-C3V9 Phi O SOT89 3.9V 1W zener4 (red) BB57-03W Sie I SOD323 Varicap4 (white) BAS140W Sie I SOD323 40V 120mA sw schottky 4 (yellow) BB644 Sie I SOD323 Varicap 42-2.5pF41A FMMT491A Zet N SOT23 npn 40v 1A max41D BAT14-115D Sie CY SOT173 40GHz schottky dual42D BAT14-025D Sie CY SOT173 4GHz schottky dual43V PZM43NB Phi C SOT346 43V 0.3W zener43Y BZV49-C43 Phi O SOT89 43V 1W zener45D BAT14-055D Sie CY SOT173 8GHz schottky dual47V PZM47NB Phi C SOT346 47V 0.3W zener47Y BZV49-C47 Phi O SOT89 47V 1W zener49D BAT14-095D Sie CY SOT173 18GHz schottky dual4A MMBV109 Mot C SOT23 MV209 varicap4A FMMV109 Zet C SOT23 MV209 varicap4A HD3A Zet C - 75V 100mA sw diode4A BC859A ITT N SOT23 BC559A4A3 PZM4.3NB2A Phi A SOT346 dual ca 4.3V Zener4A7 PZM4.7NB2A Phi A SOT346 dual ca 4.7V Zener4Ap BC859A Phi N SOT23 BC559A4AR BC859AR Phi R SOT23R BC559A4As BC859AW Sie N SOT323 BC559A4As BC859A Sie N SOT23 BC559A4B MMBV432 Mot B - dual cc varicap 1.5-45pF4B BC859B ITT N SOT23 BC559B4B- BC859BW Phi N SOT323 BC559B4Bp BC859B Phi N SOT23 BC559B4BR BC859BR Phi R SOT23R BC559B4Bs BC859B Sie N SOT23 BC559B4Bs BC859BW Sie N SOT323 BC559B4Bt BC859B Phi N SOT23 BC559B4Bt BC859BW Phi N SOT323 BC559B4C BC859C ITT N SOT23 BC559C4C MMVB3102 Mot C SOT23 varicap 6-35pF4C BC859C Phi N SOT23 BC559C4C- BC859CW Phi N SOT323 BC559C4Cp BC859C Phi N SOT23 BC559C4CR BC859CR Phi R SOT23R BC559C4Cs BC859C Sie N SOT23 BC559C4Cs BC859CW Sie N SOT323 BC559C4Ct BC859C Phi N SOT23 BC559C4Ct BC859CW Phi N SOT323 BC559C4D BC859B Phi N SOT23 BC559B4D MMBV3401 Mot C SOT23 VHF pin diode4D HD3A Zet C SOT23 sw diode 75V 100mA4D- BC859W Phi N SOT323 BC559B4Dt BC859W Phi N SOT323 BC559B4E BC860A Phi N SOT23 BC560A4E FMMT-A92 Zet N SOT23 MPSA924E MMBV105G Mot C SOT23 MV105 varicap4ER BC860AR Phi R SOT23R BC560A4F MMBD353 Mot Z SOT23 dual MBD1014F BC860B Phi N SOT23 BC560B4F Gali-4F MC AZ SOT89 DC-4GHz MMIC amp 15 dBm o/p 4F- BC860BW Phi N SOT323 BC560B4Fp BC860B Phi N SOT23 BC560B4FR BC860BR Phi R SOT23 BC560B4Fs BC860B Sie N SOT23 BC560B4Fs BC860BW Sie N SOT323 BC560B4Ft BC860B Phi N SOT23 BC560B4Ft BC860BW Phi N SOT323 BC560B4G MMBV2101 Mot C SOT23 MV2101 varicap4G BC860C Phi N SOT23 BC560C4G- BC860CW Phi N SOT323 BC560C4Gp BC860C Phi N SOT23 BC560C4GR BC860CR Phi R SOT23 BC560CR4Gs BC860C Sie N SOT23 BC560C4Gs BC860CW Sie N SOT323 BC560C4Gt BC860C Phi N SOT23 BC560C4Gt BC860CW Phi N SOT323 BC560C4H MMBV2103 Mot C SOT23 MV2103 varicap4H- BC860W Phi N SOT323 BC5604Hp BC860 Phi N SOT23 BC5604Ht BC860W Phi N SOT323 BC5604J FMMT38A Zet N SOT23 BCX38A4J MMBV2109 Mot C SOT23 MV2109 varicap4K BAP64-04 Phi D - dual series 3GHz pin diode4K MMSB3000 Mot I SOD123 Si diode 30V 0.2A4L BAP50-04 Phi D - dual series GP RF pin diode4M MMBD101 Mot C SOT23 MBD101 schottky diode4Ms BAT240A Sie EQ SOT143 dual schottky 250V 0.4A 4R MMBV3700 Mot C SOT23 200V vhf pin diode4S MMBD201 Mot C SOT23 MBD2014T MMBD301 Mot C SOT23 MBD301 UHF schottky diode 4U MMBV2105 Mot C SOT23 MV2105 varicap4V MMBV2106 Mot C SOT23 MV2106 varicap4V BCW65AR Zet R SOT23R npn 32V 0.8A4V3 PZM4.3NB Phi C SOT346 4.3V 0.3W zener4V7 PZM4.7NB Phi C SOT346 4.7V 0.3W zener4W MMBV2107 Mot C SOT23 MV2107 varicap4W BCW67AR Zet R SOT23R pnp 32V 0.8A4X MMBV2108 Mot C SOT23 MV2108 varicap4Y MMBV2102 Mot C SOT23 MV2102 varicap4Y3 BZV49-C4V3 Phi O SOT89 4.3V 1W zener4Y7 BZV49-C4V7 Phi O SOT89 4.7V 1W zener4Z MMBV2104 Mot C SOT23 MV2104 varicap5 (red) BBY57-03W Sie I SOD323 varicap5 (white) BAT60B Sie I 10V 3A sw Schottky51D BAT15-115D Sie CY SOT173 40GHz schottky dual 51V PZM51NB Phi C SOT346 51V 0.3W zener51Y BZV49-C51 Phi O SOT89 51V 1W zener52D BAT15-025D Sie CY SOT173 4GHz schottky dual 53s BAT17 Sie C SOT23 schottky diode 4V 100mA54s BAT17-04 Sie D SOT23 dual series BAT1754s BAT17-04W Sie D SOT323 dual series BAT1755D BAT15-055D Sie CY SOT173 8GHz schottky dual 55s BAT17-05 Sie A SOT23 dual ca BAT1755s BAT17-05W Sie A SOT323 dual ca BAT1756s BAT17-06 Sie B SOT23 dual cc BAT1756s BAT17-06W Sie B SOT323 dual cc BAT1756V PZM56NB Phi C SOT346 56V 0.3W zener56Y BZV49-C56 Phi O SOT89 56V 1W zener57s BAT17-07 Sie S SOT143 dual BAT1759D BAT15-095D Sie CY SOT173 18GHz schottky dual 5A BC807-16 Phi N SOT23 BC327-165A BSS123 Mot M SOT23 n-ch tmosfet Vds 100V5A MMBD6050 Mot C SOT23 sw diode 70V 0.2A5A FMMD6050 Zet C SOT23 sw diode 70V 100mA5A1 PZM5.1NB2A Phi A SOT346 dual ca 5.1V 0.3W zener 5A6 PZM5.6NB2A Phi A SOT346 dual ca 5.6V 0.3W zener 5Ap BC807-16 Phi N SOT23 BC327-165AR BC807-16R Phi R SOT23R BC327-165As BC807-16 Sie N SOT23 BC327-165As BC807-16W Sie N SOT323 BC327-165At BC807-16 Phi N SOT23 BC327-165At BC807-16W Phi N SOT323 BC327-165B MMBT4123 Mot N SOT23 2N41235B BC807-25 SGS N SOT23 BC327-255B MMBD6100 Mot B SOT23 cc dual diode 70V 0.2A5B FMMD6100 Zet B SOT23 cc dual diode 70V 0.2A5B- BC807-25W Phi N SOT323 BC327-255BM MMBD6100 Mot B SOT23 cc dual diode 70V 0.2A5Bp BC807-25 Phi N SOT23 BC327-255BR BC807-25R Phi R SOT23R BC327-255Bs BC807-25 Sie N SOT23 BC327-255Bs BC807-25W Sie N SOT323 BC327-255Bs BC807-25U Sie N SC74 BC327-255Bt BC807-25 Phi N SOT23 BC327-255Bt BC807-25W Phi N SOT323 BC327-255C BC807-40 SGS N SOT23 BC327-405C MMBD7000 Mot D SOT23 2 ser diodes 100V 0.2A5C FMMD7000 Zet D SOT23 2 ser diodes 70V 200mA5C- BC807-40W Phi N SOT323 BC327-405Cp BC807-40 Phi N SOT23 BC327-405CR BC807-40R Phi R SOT23E BC327-405Cs BC807-40 Sie N SOT23 BC327-405Cs BC807-40W Sie N SOT323 BC327-405Ct BC807-40 Phi N SOT23 BC327-405Ct BC807-40W Phi N SOT323 BC327-405D FMMD914 Zet C SOT23 1N9145D MMBD914 Mot C SOT23 1N9145D MMSD914 Mot I SOD123 1N9145D HD2A Zet B dual cc HD2 75V 100mA5D- BC807W Phi N SOT323 BC3275Dp BC807 Phi N SOT23 BC3275Dt BC807 Phi N SOT23 BC3275Dt BC807W Phi N SOT323 BC3275E BC808-16 Phi N SOT23 BC328-165E FMMT-A43R Zet R SOT23R MPSA435E BC808-16 Phi N SOT23 BC328-165ER BC808-16R Phi R SOT23R BC328-165Es BC808-16W Sie N SOT323 BC328-165F BC808-25 Phi N SOT23 BC328-255F MMBD501 Mot C SOT23 MBD501 hot carrier diode5F Gali-5F MC AZ SOT89 DC-4GHz MMIC amp 20 dB gain 5FR BC808-25R Phi R SOT23R BC328-255Fs BC808-25 Sie N SOT23 BC328-255Fs BC808-25W Sie N SOT323 BC328-255G BC808-40 Phi N SOT23 BC328-405G MMBD353 Mot D dual series MBD1015GR BC808-40R Phi R SOT23R BC328-405Gs BC808-40 Sie N SOT23 BC328-405Gs BC808-40W Sie N SOT323 BC328-405H MMBD701 Mot C SOT23 MBD701 UHF schottky diode 5H MMBD4148 Nat C SOT23 1N41485Hp BC808 Phi N SOT23 BC3285HZ BC808 Zet N SOT23 BC3285I MMSD4148 Mot C 1N41485J FMMT38B Zet N BCX38B5K MMBV809 Mot C SOT23 Hyperabrupt varicap5Kp BAP64-05 Phi B dual cc 3GHz RF pin diode5L MMBV609 Mot B SOT23 dual cc Hyperabrupt varicap 5N MMBD452L Mot D SOT23 series UHF schottky diodes 5P FMMT2907AR Zet R SOT23R 2N2907A5T BCW66GR Sie R SOT23R npn 45V 0.8A 350mW5V BCW65BR Zet R SOT23R npn 32V 0.8A5V1 PZM5.1NB Phi C SOT346 5.1V 0.3W zener5V6 PZM5.6NB Phi C SOT346 5.6V 0.3W zener5W BCW67BR Zet R SOT23R pnp 32V 0.8A5Y1 BZV49-C5V1 Phi O SOT89 5.1V 1W zener5Y6 BZV49-C5V6 Phi O SOT89 5.6V 1W zener6 (red) BBY56-03W Sie I SOD323 varicap60s BAR60 Sie QQ SOT143 3 pin diodes61A MMBF4117 Nat F - n-ch jfet ultra low i/p Ig61A MMBF4119 Nat F - n-ch jfet ultra low i/p Ig61C MMBF4118 Nat F - n-ch jfet ultra low i/p Ig61J MMBF4091 Nat F - n-ch jfet sw/chopper61K MMBF4092 Nat F - n-ch jfet sw/chopper61L MMBF4093 Nat F - n-ch jfet sw/chopper61M MMBF4859 Nat F - n-ch jfet sw/chopper61N MMBF5514 Nat F - p-ch jfet sw/chopper61P MMBF5115 Nat F - p-ch jfet sw/chopper61Q MMBF5516 Nat F - p-ch jfet sw/chopper61s BAR61 Sie PQ SOT143 3 pin diodes pi atten61S MMBF5458 Nat F - n-ch jfet gp 2N545861T MMBF5459 Nat F - n-ch jfet gp 2N545961U MMBF5461 Nat F - p-ch jfet gp 2N546161V MMBF5462 Nat F - p-ch jfet gp 2N546262P MMBFJ201 Nat F - n-ch jfet gp J20162Q MMBFJ202 Nat F - n-ch jfet gp J20262R MMBFJ203 Nat F - n-ch jfet gp J20362S MMBFJ270 Nat F - p-ch jfet gp J27062T MMBFJ271 Nat F - p-ch jfet gp J27162V PZM62NB1 Phi C SOT346 62V 0.3W zener62Y BZV49-C62 Phi O SOT89 62V 1W zener63Q MMBFJ304 Nat F - n-ch jfet vhf J30463s BAT64 Sie C SOT23 Schottky 40V 250mA gp63s BAT64W Sie C SOT323 Schottky 40V 250mA gp64s BAT64-04 Sie D SOT23 dual ser gp Schottky 40V 250mA 64s BAT64-04W Sie D SOT323 dual ser gp Schottky 40V 250mA 65s BAT64-05 Sie B SOT23 dual cc gp Schottky 40V 250mA65s BAT64-05W Sie B SOT323 dual cc gp Schottky 40V 250mA 66s BAT64-06 Sie A SOT23 dual ca gp Schottky 40V 250mA66s BAT64-06W Sie A SOT323 dual ca gp Schottky 40V 250mA 67R BFP67R Tfk WQ - npn Rf fT 7.5GHz 10V 50mA67s BAT64-07 Sie S SOT143 dual gp Schottky 40V 250mA67s BAT64-07W Sie S SOT343 dual gp Schottky 40V 250mA68V PZM68NB1 Phi C SOT346 68V 0.3W zener68Y BZV49-C68 Phi O SOT89 68V 1W zener6A MMBF4416 Mot F SOT23 2N4416 n-ch vhf jfet6A MUN2111 Mot N SOT23 pnp dtr with 10k+10k6A MUN5111 Mot N SOT323 pnp dtr with 10k+10k6A BC817-16 Phi N SOT23 BC337-166A- BC817-16W Phi N SOT323 BC337-166A2 PZM6.2NB2A Phi A SOT346 dual ca 6.2V 0.3W zener6A8 PZM6.8NB2A Phi A SOT346 dual ca 6.8V 0.3W zener6Ap BC817-16W Phi N SOT23 BC337-166AR BC817-16R Phi R SOT23 BC337-166As BC817-16 Sie N SOT23 BC337-166As BC817-16 Sie N SOT323 BC337-166At BC817-16 Phi N SOT23 BC337-166At BC817-16W Phi N SOT323 BC337-166AZ BC817-16 Zet N SOT23 BC337-166B MMBF5484 Mot F SOT23 n-ch jfet 2N54846B BC817-25 Phi N SOT23 BC337-256B MUN2112 Mot N SOT23 pnp dtr 22k+22k6B MUN5112 Mot N SOT323 MUN21126B- BC817-25W Phi N SOT323 BC337-256BR BC817-25R Phi R SOT23R BC337-256Bs BC817-25 Sie N SOT23 BC337-256Bs BC817-25W Sie N SOT323 BC337-256Bt BC817-25 Phi N SOT23 BC337-256Bt BC817-25W Phi N SOT323 BC337-256BZ BC817-25 Zet N SOT23 BC337-256C BC817-40 Phi N SOT23 BC337-406C MMBFU310 Mot F SOT23 n-ch jfet U3106C MUN2113 Mot N SOT23 pnp dtr 47k+47k6C MUN5113 Mot N SOT323 MUN21136C- BC817-40W Phi N SOT323 BC337-406Cp BC817-40 Phi N SOT23 BC337-406CR BC817-40R Phi R SOT23R BC337-406Cs BC817-40 Sie N SOT23 BC337-406Cs BC817-40W Sie N SOT323 BC337-406Ct BC817-40 Phi N SOT23 BC337-406Ct BC817-40W Phi N SOT323 BC337-406CZ BC817-40 Zet N SOT23 BC337-406D MMBF5457 Mot F SOT23 2N5457 n-ch jfet6D MUN2114 Mot N SOT23 pnp dtr 10k+47k6D MUN5114 Mot N SOT323 MUN211416D- BC817W Phi N SOT323 BC3376Dp BC817 Phi N SOT23 BC3376Dt BC817 Phi N SOT23 BC3376Dt BC817W Phi N SOT323 BC3376DZ BC817 Zet N SOT23 BC3376E FMMT-A93R Zet R SOT23R MPSA936E MMBF5460 Mot F SOT23 p-ch jfet 2N54606E BC818-16 Phi N SOT23 BC338-166E MUN2115 Mot N SOT23 pnp dtr R1 10k6E MUN5115 Mot N SOT323 MUN21156ER BC818-16R Phi R SOT23 BC338-166Es BC818-16 Sie N SOT23 BC338-166Es BC818-16W Sie N SOT323 BC338-166EZ BC818-16 Zet N SOT23 BC338-166F MMBF4860 Mot F SOT23 2N4860 n-ch jfet6F BC818-25 Phi N SOT23 BC338-256F MUN2116 Mot N SOT23 pnp dtr R1 4k76F MUN5116 Mot N SOT323 MUN21166F Gali-6F MC AZ SOT89 DC-4GHz MMIC amp 12 dB gain 6FR BC818-25R Phi R SOT23R BC338-256Fs BC818-25 Sie N SOT23 BC338-256Fs BC818-25W Sie N SOT323 BC338-256G BC818-40 Phi N SOT23 BC338-406G MMBF4393 Mot F SOT23 n-ch jfet 2N43936G MUN2130 Mot N SOT23 pnp dtr 1k0+1k06G MUN5130 Mot N SOT323 "ial"">MUN2130 "6GR BC818-40R Phi R SOT23 BC338-406Gs BC818-40 Sie N SOT23 BC338-406Gs BC818-40W Sie N SOT323 BC338-406GZ BC818-40 Zet N SOT23 BC338-406H MMBF5486 Mot F SOT23 n-ch jfet 2N54866H MUN2131 Mot N SOT23 pnp dtr 2k2 +2k26H MUN5131 Mot N SOT323 MUN21216Hp BC818 Phi N SOT23 BC3386HZ BC818 Zet N SOT23 BC3386J MMBF4391 Mot F SOT23 n-ch jfet 2N43916J MUN2132 Mot N SOT23 pnp dtr 4k7+ 4k76J MUN5132 Mot N SOT323 MUN21326K MMBF4932 Mot F SOT23 n-ch jfet 2N49326K MUN2133 Mot N SOT23 pnp dtr 4k7+ 47k6K MUN5133 Mot N SOT323 MUN21336L MMBF5459 Mot F SOT23 n-ch jfet 2N54596L MUN2134 Mot N SOT23 pnp dtr 22k+47k6L MUN5134 Mot N SOT323 MUN21346M MMBF5485 Nat F SOT23 n-ch jfet vhf 2N5485 6N MMBF4861 Nat F SOT23 n-ch jfet sw/chopper 6P MMBFJ111 Nat F - J111 n-ch jfet6P BCX71HR Phi R SOT23R BCX796P MMBFJ113 Nat F - J113 n-ch jfet6Q MMBFJ305 Nat F - n-chjfet vhf J3056R MMBFJ112 Nat F - J112 n-chjfet6S MMBFJ176 Nat F - J176 n-ch jfet6S MMSD71 Mot C - gp Si diode6T BCW68GR Sie R - pnp 45V 0.8A 350mW6T MMBFJ310 Mot F SOT23 uhf n-ch jfet J3106U MMBFJ309 Nat F SOT23 uhf n-ch jfet J3096V BCW65CR Zet R SOT23R npn 32V 0.8A6V MMBFJ174 Nat F - J174 p-ch jfet sw/chopper 6V2 PZM6.2NB Phi C SOT346 6.2V 0.3W zener6V8 PZM6.8NB Phi C SOT346 6.8V 0.3W zener6W BCW67CR Zet R SOT23R pnp32V 0.8A6W MMBFJ175 Mot F SOT23 J175 p-ch jfet6X MMBFJ174 Nat F - J174 p-ch jfet sw/chopper 6Y MMBFJ177 Mot F SOT23 J177 p-ch jfet6Y2 BZV49-C6V2 Phi O SOT89 6.2V 1W zener6Y8 BZV49-C6V8 Phi O SOT89 6.8V 1W zener6Z MMBF170 Mot M SOT23 tmosfet n-ch Vds 60V7 (white) BBY55-02W Sie I SCD80 UHF Varicap73- BAS70W Phi C SOT323 schottky diode 70V 50mA 73p BAS70 Phi C SOT23 schottky diode 70V 50mA73s BAS70 Sie C SOT23 schottky diode 70V 50mA73S BFQ73S Sie CX SOT173 npn fT 5.3GHz 15V 100mA 73t BAS70 Phi C SOT23 schottky diode 70V 50mA73t BAS70W Phi C SOT323 schottky diode 70V 50mA 74p BAS70-04 Phi D SOT23 dual series BAS7074s BAS70-04 Sie D SOT23 dual series BAS7074t BAS70-04 Phi D SOT23 dual series BAS7074t BAS70-04W Phi D SOT323 dual series BAS7074t BAS70-04W Phi D SOT323 dual series BAS7075- BAS70-05W Phi B SOT323 dual cc BAS7075p BAS70-05 Phi B SOT23 dual cc BAS7075s BAS70-05 Sie B SOT23 dual cc BAS70。
SCD中文资料
GAMEWELL-FCI12 Clintonville Road, Northford, CT 06472-1610 USA • Tel: (203) 484-7161 • Fax: (203) 484-7118Specifications are for information only, are not intended for installation purposes, and are subject to change without notice. No responsibility is assumed by Gamewell-FCI for their use.©2007 Honeywell International Inc. All rights CS-2047 Rev. A page 1 of 2SCE-95Signal Control ElementAPPROVEDSIGNALINGS5217300-1288:147DescriptionThe Gamewell-FCI Signal Control Elements (SCE-95) is the interface between the Fire Alarm Control Panel's (FACPs) analog circuits and building functions. The SCE-95 connects to the panel via the SLC circuit. The SCE-95provides a means to remotely locate a fully supervised cir-cuit for the operation of signaling appliances such as horns, strobes, and horn/strobes. The SCE-95 works with all 600 Series analog addressable FACPs. For annuncia-tion and feedback at the panel, Gamewell-FCI offers a Sig-nal Control Display (SCD). The SCD is only available with the IF632 and IF650 FACPs.The SCE-95 is capable of switching 24 VDC. When used as a remote signaling circuit the SCE-95 provides all the necessary supervision of the circuit and trouble reporting via the analog circuit.The Signal Control Element (SCE-95) is designed for sur-face or flush mounting and has an integral LED which annunciates upon device activation.OperationThe signal control element connects to the SLC of the Fire Alarm Control Panel (FACP) via two-wires. In its standby mode, the SCE-95 monitors its internal circuitry for status of the device itself and supervises the external control cir-cuit for faults. In the event that a fault is detected, the SCE-95 will report a trouble to the FACP .When an event is reported to the Fire Alarm Control Panel (FACP) that requires the activation of the SCE-95, the con-trol panel communicates via the analog circuit to the SCE-95 and the signaling circuit is actuated. The integral LED is also lit for annunciation at the device.ProgrammingThe SCE-95 is programed by setting a single DIP switch easily accessible on the printed circuit board. The SCE-95’s DIP switch is used to set the address of the device.Features•Compatible with the Gamewell-FCI 600 Series analog addressable FACPs.•Supervises and operates notification appliance circuit.•Supervises DC power-in.•LED annunciates activation.•Fully supervised.•Surface or flush mounting.•Field programmable.•Style four, six, or seven wiring.•Screw terminals for field wiring connections.•2.0 A output..C S -2064p h 1.w m fSCE-95GAMEWELL-FCI12 Clintonville Road, Northford, CT 06472-1610 USA • Tel: (203) 484-7161 • Fax: (203) 484-7118CS-2047 Rev. A page 2 of 2 ProgrammingAll other programming is accomplished at the Fire Alarm Control Panel (FACP), either through a laptop computer or the control panel operator’s display.MountingThe SCE-95 is designed to mount in a standard 4.688"(11.908 cm) electrical backbox. The SCE-95 should be mounted in an easily accessible location of proper connec-tion and activation.Engineer’s SpecificationsA programmable electronic device shall be provided for the remote control of notification appliances. The device shall communicate with the main FACP via the SLC circuit. It shall supervise its notification appliance circuit and include an LED for circuit activation annunciation. It shall be Gamewell-FCI SCE-95.SpecificationsP+, P- Power:20-24 VDC from listed supply.Standby Current:0.0005 A.Alarm Current:0.0015 A.Operating Temperature:0° C to 49° C (32°F to 120°F).Relative Humidity:85% non-condensing.Housing Requirements: 4.688" (11.908 cm) backbox.Output Rating:0.2 Amp DC signal circuit.Auxiliary input Power:24 VDC signalling power.Ordering InformationModelDescriptionSCE-95Signal control element device. XP95 protocol compatible.70839Trim ring for flush mounting the SCE-95.SCDO ptional signal control display; provides annunciation of the SCE-95 dontrol element devices at the FACP . One needed for every eight SCEs. Compatible only with the IF632and IF650 FACPs.。
飞毛腿SC-538A系列充电器通用型号表.
2005.03
机型 3508 6688 2128 SL55 CL55 CX65 C60 GD55 GD88 X88 X66 X400 X77 TCL2898 3688 8388 6898 TCL3188 TCL2188 TCL5188 TCL2688 TCL1898 Q520 TCLQ510 K880+ A6 A8 CU8080 CU2120 C630 CU7030 G210 LG8390 N8 N810 N100 N110 N830
熊猫 彩智星3000B/康佳C908/C988
彩智星3000
T102 P802 T618 T238 Z608
T628/T608 Z208
飞利浦 PHILIPS
162 163 164 165 166 167 168 169
GM958 GPM3551 GM300 929 9@9++ 630 TW530 639
序号 机型 95 C908 康佳 96 A68 南方高科 97 SC9988 98 SC02 99 V09 100 V08 101 S1820 102 S1150 103 S788 104 GC600 105 S1000 106 S2000 107 S1500 波导 108 SC03 109 C88 110 S1180 111 S288 112 S689 113 S1160 114 S310 115 V5100 116 A130 117 V5200 118 G118 119 K3900 120 K308 科健 121 J390 122 K595 123 K519 中桥 124 VK300 厂商 可同时满足的机型 序号 133 阿尔卡特 134 135 136 137 138 139 140 141 142 143 144 145 146 147 三星 SAMSUNG 148 149 150 151 152 153 154 155 156 157 158 159 首信 斯达康 厂商
SAE-AMS-5387C-2001-R2006
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.All rights reserved.Printed in U.S.A. QUESTIONS REGARDING THIS DOCUMENT:(724) 772-7161FAX: (724) 776-0243TO PLACE A DOCUMENT ORDER:(724) 776-4970FAX: (724) 776-0790SAE WEB ADDRESS:- 2 -2.2ASTM Publications:Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.ASTM E 18Rockwell Hardness and Rockwell Superficial Hardness of Metallic MaterialsASTM E 354Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel and Cobalt Alloys ASTM E 1417Liquid Penetrant Examination ASTM E 1444Magnetic Particle Examination ASTM E 1742Radiographic Examination2.3U.S. Government Publications:Available from DODSSP, Subscription Services Desk, Building 4D, 700 Robbins Avenue, Philadelphia, PA -STD-2175Castings, Classification and Inspection of3.TECHNICAL REQUIREMENTS: 3.1Composition:Castings shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 354, by spectrochemical methods, or by other analytical methods acceptable to purchaser (See 8.2.1 and 8.2.2).3.1.1Vendor may test for any element not listed in Table 1 and include this analysis in the report of 4.5. Limits of acceptability may be specified by purchaser (See 8.2.3).TABLE 1 - Composition Element minmaxCarbon 0.90 1.40Manganese -- 1.00Silicon-- 1.50Phosphorus -- 0.04Sulfur-- 0.04Chromium 27.0031.00Tungsten 3.50 5.50Nickel-- 3.00Molybdenum -- 1.50Iron -- 3.00Cobaltremainder--`,`,`,`,,````,``,,,,,```,`-`-`,,`,,`,`,,`---3.1.2Check Analysis: Composition variations shall meet the applicable requirements of AMS 2269.3.2Melting Practice:Castings and specimens shall be poured at casting vendor’s facility either from a melt (See8.2.4) ofa master heat, or directly from a master heat (See 8.2.5).3.2.1Revert (gates, sprues, risers, and rejected castings) may be used only in the preparation of masterheats; revert shall not be remelted directly, without refining, for pouring of castings. Melting ofrevert creates a new master heat.3.2.2Portions of two or more qualified master heats (See 3.4.2) may be melted together and poured intocastings using a procedure authorized by purchaser (See 8.2.6).3.2.3If modifications, such as alloy additions or replenishments (See 8.2.10), are made by the vendor atremelt, vendor shall have a written procedure acceptable to purchaser which defines the controls, tests, and traceability criteria for both castings and separately-cast specimens. Control factors of4.4.2.2 shall apply.3.3Condition:Castings shall be delivered in the as cast condition.3.4Test Specimens:Specimens shall be either separately-cast, integrally-cast (See 8.2.7), or machined from a casting, and shall conform to 3.2.3.4.1If specimens are separately-cast, vendor shall have a written procedure acceptable to purchaser.Control factors of 4.4.2.2 shall apply.3.4.2Each master heat shall be qualified by evaluation of chemical specimens.3.4.2.1If alloy additions or replenishments are made at remelt as in 3.2.3, the frequency of sampling andtesting used by the vendor for qualification to 3.4.2 shall be acceptable to purchaser.3.4.3Chemical Analysis Specimens: Shall be of any convenient size and shape.3.5Heat Treatment:Not applicable.3.6Properties:3.6.1Hardness of Castings: Shall be not lower than 37 HRC, or equivalent (See 8.3), determined inaccordance with ASTM E 18.- 3 ---`,`,`,`,,````,``,,,,,```,`-`-`,,`,,`,`,,`---3.7Quality:3.7.1Castings, as received by purchaser, shall be uniform in quality and condition, sound and free fromforeign materials and from imperfections detrimental to usage of the castings. Castings shall be free of cracks, laps, hot tears, and cold shuts, and free of scale and other process induced surface contamination which would obscure defects.3.7.2Castings shall be produced under radiographic control. This control shall consist of radiographicexamination of each casting part number until foundry manufacturing controls in accordance with4.4.2 have been established. Additional radiography shall be conducted in accordance with thefrequency of inspection specified by purchaser, or as necessary to ensure continued maintenance of internal quality.3.7.2.1Radiographic inspection shall be conducted in accordance with ASTM E 1742 or another methodspecified by purchaser.3.7.3When specified, additional nondestructive testing shall be performed as follows:3.7.3.1Fluorescent penetrant inspection in accordance with ASTM E 1417 or another method specifiedby purchaser.3.7.4Acceptance standards for radiographic, fluorescent penetrant, visual, and other inspectionmethods shall be agreed upon by purchaser and vendor (See 8.2.8). MIL-STD-2175 may be used to specify acceptance standards (casting grade) and frequency of inspection (casting class).3.7.4.1When acceptance standards are not specified, Grade C of MIL-STD-2175 as applicable to steelcastings shall apply for each applicable method of inspection.3.7.5Castings shall not be peened, plugged, impregnated, or welded unless authorized by purchaser.3.7.5.1When authorized by purchaser, welding in accordance with AMS 2694 or another weldingprogram acceptable to purchaser may be used.4.QUALITY ASSURANCE PROVISIONS:4.1Responsibility for Inspection:The vendor of castings shall supply all samples for vendor’s tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform anyconfirmatory testing deemed necessary to ensure that the castings conform to specifiedrequirements.4.2Classification of Tests:4.2.1Acceptance Tests: Composition (3.1), hardness of castings (3.6.1), and the applicablerequirements of quality (3.7) are acceptance tests and shall be performed as specified in 4.3.--` , ` , ` , ` , , ` ` ` ` , ` ` , , , , , ` ` ` , ` -` -` , , ` , , ` , ` , , ` ---- 4 -- 5 -4.2.2Periodic Tests: Radiographic soundness (3.7.2) is a periodic test and shall be performed as in 3.7.2.4.2.3Preproduction Tests: All technical requirements are preproduction tests and shall be performed on specimens or sample castings (4.3.2), when a change in control factors occurs (4.4.2.2), or when purchaser deems confirmatory testing to be required.4.3Sampling and Testing:The minimum testing performed by vendor shall be in accordance with the following:4.3.1One chemical analysis specimen or a casting from each master heat shall be tested forconformance with Table 1; if 3.4.2.1 applies, test frequency shall be acceptable to purchaser.4.3.2One preproduction casting in accordance with 4.4 shall be tested to the requirements of the casting drawing and to all applicable technical requirements.4.3.2.1Dimensional inspection sample quantity shall be as specified by purchaser.4.3.3Castings shall be inspected in accordance with 3.7 to the methods, frequency, and acceptance standards specified by purchaser.4.3.4Castings for delivery shall be tested for hardness to determine conformance to 3.6.1. Unlessotherwise specified by purchaser, the number of castings from each lot shall be in accordance with Table 2.4.3.4.1If a single casting from the inspection lot fails to meet the specified requirement, the entire lot shall be 100% inspected.TABLE 2 - Hardness Test ScheduleLot Size Sample Size 1 to 8 9 to 50 51 to 90 91 to 150 151 to 280 281 to 500 501 to 12001201 to 32003201 and overAll 8 13 20 32 5080125200--`,`,`,`,,````,``,,,,,```,`-`-`,,`,,`,`,,`---4.4Approval:4.4.1Sample casting(s) from new or reworked master patterns produced under the casting procedure of4.4.2 shall be approved by purchaser before castings for production use are supplied, unless suchapproval be waived by purchaser.4.4.2For each casting part number, vendor shall establish parameters for process control factors thatwill consistently produce castings and test specimens meeting the requirements of the castingdrawing and this specification. These parameters shall constitute the approved casting procedure and shall be used for production of subsequent castings and test specimens. If necessary to make any change to these parameters, vendor shall submit a statement of the proposed change forpurchaser reapproval. When requested, vendor shall also submit test specimens, samplecastings, or both to purchaser for reapproval.4.4.2.1Production castings produced prior to receipt of purchaser’s approval shall be at vendor’s risk. 4.4.2.2Control factors for producing castings and separately-cast specimens include, but are not limitedto, the factors shown below. Supplier’s procedures shall identify tolerances, ranges, and/orcontrol limits, as applicable. Control factors for separately-cast specimens must generallyrepresent, but need not be identical to, those factors used for castings (See 3.2.3 and 3.4.1).Composition of ceramic cores, if usedArrangement and number of patterns in the mold (including integrally-cast specimens, ifapplicable)Size, shape, and location of gates and risersMold refractory formulationGrain refinement methods, if applicableMold back up material (weight, thickness, or number of dips)Type of furnace, atmosphere, and charge for meltingMold preheat and metal pouring temperaturesFluxing or deoxidation procedureReplenishment and alloy addition procedures, if applicableTime molten metal is in furnaceSolidification and cooling proceduresCleaning operations (mechanical and chemical)Welding procedure, if applicableStraighteningFinal inspection methods.4.4.2.2.1Any of the control factors for which parameters are considered proprietary by vendor may beassigned a code designation. Each variation in such parameters shall be assigned a modifiedcode designation.4.4.2.2.1.1Unless otherwise agreed upon by purchaser and vendor, purchaser shall be entitled to reviewproprietary control factor details and coding at vendor’s facility.--`,`,`,`,,````,``,,,,,```,`-`-`,,`,,`,`,,`---- 6 -4.5Reports:The vendor of castings shall furnish with each shipment a report showing the results of tests todetermine conformance to the acceptance test requirements, and stating that the product conforms to the other technical requirements. This report shall include the purchase order number, master heat identification, AMS 5387C, part number, and quantity.4.6Resampling and Retesting:If the results of a valid test fail to meet the requirements, two additional specimens in accordance with 4.3 from the same master heat, modified melt (See 3.2.3), or lot, as applicable, shall be tested for each nonconforming characteristic. The results of each additional test, and the average of the results of all tests (original and retests) shall meet the specified requirements; otherwise, the master heat or lot shall be rejected. Results of all tests shall be reported.4.6.1 A test may be declared invalid if failure is due to specimen mispreparation, test equipmentmalfunction, or improper test procedure.5.PREPARATION FOR DELIVERY:5.1Identification:Unless otherwise specified by purchaser, individual castings shall be identified in accordance with AMS 2804.5.1.1Traceability: Individual castings shall be traceable to their conditions of manufacture and inspectionup to and including the point of acceptance by purchaser.5.2Packaging:Castings shall be prepared for shipment in accordance with commercial practice and in compliance with applicable rules and regulations pertaining to the handling, packaging, and transportation of the castings to ensure carrier acceptance and safe delivery.6.ACKNOWLEDGMENT:A vendor shall mention this specification number and its revision letter in all quotations and whenacknowledging purchase orders.7.REJECTIONS:Castings not conforming to this specification or to modifications authorized by purchaser will be subject to rejection.--` , ` , ` , ` , , ` ` ` ` , ` ` , , , , , ` ` ` , ` -` -` , , ` , , ` , ` , , ` ---- 7 -8.NOTES:8.1 A change bar ( l ) located in the left margin is for the convenience of the user in locating areas wheretechnical revisions, not editorial changes, have been made to the previous issue of this specification.An (R) symbol to the left of the document title indicates a complete revision of the specification, including technical revisions. Change bars and (R) are not used in original publications, nor inspecifications that contain editorial changes only.8.2Terms used in this AMS are defined as follows. Other terms not specifically defined are clarified inARP1917.8.2.1“Acceptable to Purchaser”: Does not require prior written approval from purchaser, but allowsvendor to make a decision and purchaser the right to disapprove the decision.8.2.2“Purchaser”: The cognizant engineering organization responsible for casting design and fitness foruse, or the designee of this engineering organization.8.2.3“Specified”: Requires documented instruction from purchaser through casting drawing, purchaseorder, specification, or other engineering documentation.8.2.4“Melt”: All castings poured from a single furnace charge. Also referred to as remelt, submelt, heat,or subheat.8.2.5“Master Heat”: Refined metal (See 8.2.10) of a single furnace charge, poured directly into castingsand/or converted into ingot for remelting in accordance with 3.2. One or more melts can be poured from a single master heat.8.2.6“Authorized by Purchaser”: Requires prior written approval from the purchaser.8.2.7"Integrally-Cast Specimen": An attached specimen that is cast in the mold, and remains with thecasting lot through the completion of all heat treatment operation(s) required of the vendor. The casting drawing may identify a specific location for the attachment of each integrally-castspecimen. A correlation between test results from integrally-cast specimens and specimensmachined from the casting may exist, which will allow for reduction or elimination of specimens machined from castings.8.2.8“Agreed Upon by Purchaser and Vendor”: Requires concurrence of both purchaser and vendor.Such concurrence is typically documented by way of the casting drawing, purchase order, oranother engineering documentation.- 8 ---`,`,`,`,,````,``,,,,,```,`-`-`,,`,,`,`,,`---8.2.9“Lot”: For room temperature tensile and hardness testing, a lot shall consist of all castings of thesame part number, poured from consecutive melts of a single master heat, and processed throughall applicable heat treatment operations in the same equipment at the same time. For visual andnondestructive testing, an inspection lot shall consist of castings of the same part number,manufactured under the same process control parameters of 4.4.2.2, and submitted for those testsin a single group.8.2.10“Refined Metal”: Metal derived from raw materials in the form of virgin elements, master alloy, and/or revert melted in any combination, replenished as needed, fluxed for nonmetallics, and degassedas necessary. Melting of revert creates a new master heat.8.3Hardness conversion tables for metals are presented in ASTM E 140.8.4Dimensions and properties in inch/pound units and the Fahrenheit temperatures are primary;dimensions and properties in SI units and the Celsius temperatures are shown as the approximate equivalents of the primary units and are presented only for information.8.5Purchase documents should specify not less than the following:AMS 5387CPart number or pattern number of castings desiredQuantity of castings desiredInspection methods and acceptance standards (See 3.7.4).PREPARED UNDER THE JURISDICTION OF AMS COMMITTEE “F”- 9 ---`,`,`,`,,````,``,,,,,```,`-`-`,,`,,`,`,,`---。
MIC5387评测板:微型三路150mA输出LDO微细粒度和微细粒度微型电路说明书
MIC5387 Evaluation BoardUltra-Small Triple 150mA Output LDOMLF and Micro LeadFrame are registered trademarks of Amkor Technology, Inc.Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • General Description The MIC5387 is an advanced, general purpose triple-output, linear regulator offering high power supply rejection (PSRR) in an ultra-small 6 pin 1.6mm x 1.6mm Thin MLF ® package. The MIC5387 is capable of 150mA from each output and offers high PSRR, making it an ideal solution for any portable electronic application.Ideal for battery powered applications, the MIC5387 offers 2% initial accuracy, low dropout voltage (180mV @ 150mA), and low ground current (typically 32µA per output).The MIC5387 is available in a lead-free (RoHS compliant) 1.6mm x 1.6mm 6 pin Thin MLF ® occupying only 2.56mm 2 of PCB area, a 36% reduction in board area compared to a 2mm x 2mm Thin MLF ® package.An input capacitor is required when the power supply is more than four inches from the device. The evaluation board includes an input capacitor of 10µF to compensate for long inductive test leads.Data sheets and support documentation can be found on Micrel’s web site at: .RequirementsThe MIC5387 evaluation board requires an input power supply that is capable of delivering a minimum 600mA at a voltage range of 2.5V to 5.5V. The output load can be either active or passive.PrecautionsThe MIC5387 evaluation board does not have reverse polarity protection. Applying a negative voltage to the V IN terminal may damage the device.Getting Started• Connect an External Supply to V IN . Apply the desired input voltage to the V IN (J1) and ground (J2) terminal of the evaluation board, paying careful attention to polarity and supply voltage (2.5V ≤ V IN ≤ 5.5V). An ammeter can be placed between the input supply and the V IN terminal of the evaluation board. Ensure that the supply voltage is monitored at the V IN terminal. The ammeter and/or power-lead resistance can reduce the voltage supplied to the input.• Enable/Disable the MIC5387. To enable the MIC5387 jumper the enable terminal (J3 for LDO2 and LDO3) to V IN . LDO1 does not have an enable pin and is always enabled when V IN is above the UVLO threshold. To disable outputs 2 and 3, simply remove the jumper from the EN2/3 terminal . The enable pin must be either pulled high or low. Leaving the pin floating will cause the regulator to operate in an indeterminate state . The evaluation board is supplied with 100K Ω pull-down resistor on the EN2/3 pin for default off state of LDO2 and LDO3.• Connect the Load. Connect the loads to the V OUTTerminals (J4 for LDO1, J6 for LDO2 and J8 for LDO3) and Ground Terminals (J5, J7, or J9). The loads can be either passive (resistor) or active (electronic load). Be sure to monitor the output voltage at the V OUT (J5, J7 and J9) terminals.Ordering InformationPart NumberDescriptionMIC5387-SGFYMT EVTriple-Output LDO EvaluationBoard. V OUT1 = 3.3V, V OUT2 = 1.8V, V OUT3 = 1.5V.MIC5387-SG4YMT EVTriple-Output LDO EvaluationBoard. V OUT1 = 3.3V, V OUT2 = 1.8V, V OUT3 = 1.2V.MIC5387-GMGYMT EVTriple-Output LDO EvaluationBoard. V OUT1 = 1.8V, V OUT2 = 2.8V, V OUT3 = 1.8V.MIC5387-GMMYMT EVTriple-Output LDO EvaluationBoard. V OUT1 = 1.8V, V OUT2 = 2.8V, V OUT3 = 2.8V.Evaluation Board SchematicBill of MaterialsItem Part Number Manufacturer Description Qty. C1 C1608X5R0J106K TDK(1) 10μF, Ceramic, 6.3V, X5R, Size 0603 Capacitor 1 GRM155R1A1055KE19D Murata(2)1μF, Ceramic, 10V, X5R, Size 0402 Capacitor3 C2, C3, C40402ZD105KAT2A AVX(3)1μF, Ceramic, 10V, X5R, Size 0402 CapacitorLMK105BJ105KV-F TaiyoYuden(4)1μF, Ceramic, 10V, X5R, Size 0402 CapacitorR1, R2, R3 CRCW0402100KFKEA Vishay(5) 100KΩ, 1%, 1/16W, Size 0402 Resistor 3Inc.(6)High-Performance, Triple-Output, 150mA LDO 1 U1 MIC5387-xxxYMT Micrel,Notes:1. TDK:..2. Murata:3. AVX: .4. Taiyo Yuden: .5. Vishay: .6. Micrel, Inc.: PCB Layout RecommendationsTop LayerBottom Layer。
危险化学品特性表_第6类有毒品
目录表- 氰化钠的理化性质及危险特性 (1)表- 氰化钾的理化性质及危险特性 (2)表- 氰化铜的理化性质及危险特性 (3)表- 氰化银的理化性质及危险特性 (4)表- 氰化锌的理化性质及危险特性 (5)表- 氰化金钾的理化性质及危险特性 (6)表- 三氧化(二)砷的理化性质及危险特性 (7)表- 碳酸钡的理化性质及危险特性 (8)表- 氯化钡的理化性质及危险特性表 (9)表- 氢氧化钡的理化性质及危险特性表 (10)表- 环氧氯丙烷的理化性质和危险特性表 (11)表- 硝基苯的理化性质和危险特性表 (12)表- 氯化苄的理化性质和危险特性表 (13)表- 二氯化苄的理化性质及危险特性 (14)表- 苯酚的理化性质及危险特性表 (15)表- 邻甲(苯)酚的理化性质及危险特性 (16)表- N,N-二甲(基)苯胺的理化性质和危险特性表 (17)表- 甲苯-2,4-二异氰酸酯的理化性质及危险特性表 (18)表- 六亚甲基二异氰酸酯的理化性质及危险特性 (19)表- 己酮肟威的理化性质及危险特性表 (20)表- 灭害威的理化性质及危险特性表 (21)表- 克百威[含量>10%]的理化性质及危险特性表 (22)表- 自克威[含量>25%]的理化性质及危险特性表 (23)表- 间异丙威的理化性质及危险特性表 (24)表- 杀线威的理化性质及危险特性表 (25)表- 敌蝇威[含量>50%]的理化性质及危险特性表 (26)表- 涕灭威的理化性质及危险特性表 (27)表- 腈叉威的理化性质及危险特性表 (28)表- 恶虫威[含量>65%]的理化性质及危险特性表 (29)表- 异索威[含量>20%]的理化性质及危险特性表 (30)表- 硒粉的理化性质及危险特性 (31)表- 氧化钡的理化性质及危险特性表 (32)表- 一氧化铅的理化性质和危险特性表 (33)表- 四氧化(三)铅的理化性质和危险特性表 (34)表- 硫酸汞的理化性质和危险特性表 (35)表- 硝酸亚汞的理化性质和危险特性表 (36)表- 氟化铵的理化性质及危险特性表 (37)表- 氟化钠的理化性质及危险特性 (38)表- 氟化钾的理化性质及危险特性 (39)表- 氟化钡的理化性质及危险特性 (40)表- 氟硅酸钠的理化性质和危险特性表 (41)表- 氟锆酸钾的理化性质及危险特性 (42)表- 硫酸铜的理化性质及危险特性表 (43)表- 三氯甲烷的理化性质及危险特性表 (45)表- 四氯化碳的理化性质及危险特性 (46)表- 1,1,1-三氯乙烷的理化性质及危险特性表 (47)表1,1,2-三氯乙烷的理化性质及危险特性表 (48)表- 1,1,2,2-四氯乙烷的理化性质和危险特性表 (49)表- 溴代乙烷的理化性质和危险特性表 (50)表- 三氯乙烯的理化性质及危险特性表 (51)表- 四氯乙烯的理化性质及危险特性表 (52)表- 十二硫醇的理化性质和危险特性表 (53)表- 乙二醇丁醚的理化性质及危险特性表 (54)表- 水杨醛的理化性质和危险特性表 (55)表- 二苯甲烷-4,4’-二异氰酸酯的理化性质及危险特性 (56)表- 异佛尔酮二异氰酸酯的理化性质及危险特性表 (57)表- 邻二氯苯的理化性质和危险特性表 (58)表- 3,4-二氯苄基氯的理化性质及危险特性 (59)表- 对甲苯磺酰氯的理化性质和危险特性表 (60)表- 邻硝基(苯)酚的理化性质和危险特性表 (61)表- 对硝基(苯)酚的理化性质和危险特性表 (62)表- 邻氨基(苯)酚的理化性质和危险特性表 (63)表- 间氨基(苯)酚的理化性质和危险特性表 (64)表- 对氨基(苯)酚的理化性质和危险特性表 (65)表- 间苯二酚的理化性质和危险特性表 (67)表- 对苯二酚的理化性质及危险特性表 (68)表- 间苯三酚的理化性质和危险特性表 (69)表- 丙烯酰胺的理化性质及危险特性表 (70)表- 苯胺的理化性质和危险特性表 (71)表- 邻苯二胺的理化性质和危险特性表 (72)表- 间苯二胺的理化性质和危险特性表 (73)表- 对苯二胺的理化性质和危险特性表 (74)表- 苯肼的理化性质和危险特性表 (75)表- 硫脲的理化性质及危险特性表 (76)表- 苯醌的理化性质及危险特性表 (77)表- α-萘乙酸的理化性质和危险特性表 (78)表- α-萘胺的理化性质和危险特性表 (79)表- 盐酸-1-萘乙二胺的理化性质和危险特性表 (80)表- 喹啉的理化性质和危险特性表 (81)表- 乙酸铅的理化性质和危险特性表 (82)表- 酒石酸锑钾的理化性质和危险特性表 (83)表- 二丁基二月桂酸锡的理化性质和危险特性表 (84)表- 辛酸亚锡的理化性质和危险特性表 (85)表- 三苯(基)磷的理化性质及危险特性表 (86)表- 煤焦沥青的理化性质及危险特性 (87)表- 2,4-滴[含量>75%]的理化性质和危险特性表 (88)表- 1,2,2-三氯三氟乙烷的理化性质及危险特性 (89)表-氰化金钾的理化性质及危险特性表-三氧化(二)砷的理化性质及危险特性表-碳酸钡的理化性质及危险特性表-氯化钡的理化性质及危险特性表表- 氢氧化钡的理化性质及危险特性表表-环氧氯丙烷的理化性质和危险特性表表-邻甲(苯)酚的理化性质及危险特性表-N,N-二甲(基)苯胺的理化性质和危险特性表表- 甲苯-2,4-二异氰酸酯的理化性质及危险特性表表-六亚甲基二异氰酸酯的理化性质及危险特性表-己酮肟威的理化性质及危险特性表表-灭害威的理化性质及危险特性表表-间异丙威的理化性质及危险特性表表-杀线威的理化性质及危险特性表表-敌蝇威[含量>50%]的理化性质及危险特性表表-硒粉的理化性质及危险特性表-四氧化(三)铅的理化性质和危险特性表表-硫酸汞的理化性质和危险特性表表-硝酸亚汞的理化性质和危险特性表表-氟硅酸钠的理化性质和危险特性表表-二氯甲烷的理化性质及危险特性表-三氯甲烷的理化性质及危险特性表。
5357芯片手册
PRODUCT SPECIFICATION
8
200904
CHINAIC SEMICONDUCTOR
■ 时序表
CJC5357
图 3 MCLK,LRCK,SCLK 时序图
PRODUCT SPECIFICATION
图 4 音频接口时序图 9
200904
CHINAIC SEMICONDUCTOR
CJC5357
注意 11:SCLK 上升沿不能和 LRCK 变化沿发生在同一时间。 注意 12:使 PDN 的引脚处于 L 时,能使 CJC5357 Reset. 注意 13:这个周期是从 PDN 脚为 H 时到 LRCK 上升沿的时间。
-20 -20
150
64fs 50
4233 4051
Hz
%
20
ns
35
ns
ns 1/fs 1/fs
共模电压输出引脚,VA/2
ADC 的偏置电压输入
模拟地引脚
模拟电源引脚,2.7~3.6V
数字电源引脚, 2.7~3.6V
数字地引脚
音频串行数据输出引脚 掉电状态下输出“L”
fs输出数据
输出通道时钟引脚
掉电状态下在主模式中输出“L”
主时钟输入引脚
音频串行数据时钟引脚
掉电状态下在主模式中输出“L”
掉电模式设置引脚 “H”:上电,“L”:掉电
模式 0 1
DIF pin L H
SDTO
LRCK
24bit,MSB justified
H/L
24bit,I2S compatibel
L/H
表 3:音频接口格式
SCLK ≥48fs or 32fs ≥48fs or 32fs
东芝2SC5387数据表说明书
TOSHIBA TRANSISTOR SILICON NPN TRIPLE DIFFUSED MESA TYPE2SC5387HORIZONTAL DEFLECTION OUTPUT FOR HIGH RESOLUTIONDISPLAY, COLOR TVHIGH SPEED SWITCHING APPLICATIONSz High Voltage: V CBO = 1500 V z Low Saturation Voltage : V CE (sat) = 3 V (Max.) z High Speed : t f = 0.15 μs (Typ.)z Collector Metal (Fin) is Fully Covered with Mold Resin.ABSOLUTE MAXIMUM RATINGS (Tc = 25°C)CHARACTERISTIC SYMBOL RATING UNITCollector −Base Voltage V CBO 1500 V Collector −Emitter Voltage V CEO 600 V Emitter −Base Voltage V EBO5 V DC I C 10 Collector Current PulseI CP 20ABase CurrentI B 5 A Collector Power Dissipation P C 50 W Junction Temperature T j 150 °C Storage Temperature RangeT s tg−55~150 °CNote: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and thesignificant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook(“Handling Precautions”/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).Unit: mmJEDEC ― JEITA―TOSHIBA 2-16E3A Weight: 5.5 g (typ.)ELECTRICAL CHARACTERISTICS (Tc = 25°C )CHARACTERISTIC SYMBOL TEST CONDITION MIN TYP. MAX UNITCollector Cut −off Current I CBO V CB= 1500 V, I E = 0 ― ― 1 mA Emitter Cut −off CurrentI EBO V EB = 5 V, I C = 0 ― ― 10 μA Emitter −Base Breakdown Voltage V (BR) CEO I C = 10 mA, I B = 0 600 ―― Vh FE (1) V CE = 5 V, I C = 1 A 15 ― 35DC Current Gainh FE (2) V CE = 5 V, I C = 8 A 4.3 ― 7.8 ― Collector −Emitter Saturation Voltage V CE (sat) I C = 8 A, I B = 2 A ― ― 3 V Base −Emitter Saturation Voltage V BE (sat) I C = 8 A, I B = 2 A ―― 1.5 VTransition Frequency f T V CE = 10 V, I C = 0.1 A ― 1.7 ― MHz Collector Output Capacitance C ob V CB = 10 V, I E = 0, f = 1 MHz ― 130 ― pF Storage Time t stg ― 2.5 3.5Switching TimeFall Timet fI CP = 6 A, I B1 (end) = 1.2 Af H = 64 kHz― 0.15 0.3μsMarkinglead (Pb)-free package or lead (Pb)-free finish.RESTRICTIONS ON PRODUCT USE20070701-EN •The information contained herein is subject to change without notice.•TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk.•The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.• The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.• Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.。
实用文库汇编之危险货物品名表
*作者:蛇从梁*作品编号:125639877B 550440660G84创作日期:2020年12月20日实用文库汇编之危险货物品名表1# 主题内容与适用范围本标准规定了危险货物的品名和编号。
本标准适用于危险货物运输、生产、贮存和销售。
2# 引用标准GB 6944 危险货物分类和品名编号GB 7694 危险货物命名原则3# 术语稀释 dilution指在物品中加入水、醇或其他溶剂,以降低溶液的浓度或涂料的粘度。
涂层 coating指物品表面经处理后,包覆一层油、蜡或其他材料,可防止物品与水或其他物质发生化学反应4# 第1类爆炸品4.1 第1项具有整体爆炸危险的物质和物品4.2 第2项具有抛射危险但无整体爆炸危险的物质和物品4.3 第3项具有燃烧危险和较小爆炸或较小抛射危险,或两者兼有、但无整体爆炸危险的物质和物品4.4 第4项无重大危险的爆炸物质和物品4.5 第5项非常不敏感的爆炸物质5# 第2类压缩气体和液化气体5.1 第1项易燃气体5.2 第2项不燃气体5.3 第3项有毒气体6# 第3类易燃液体6.1 第1项低闪点液体6.2 第2项中闪点液体6.3 第3项高闪点液体7# 第4类易燃固体、自燃物品和遇湿易燃物品7.1 第1项易燃固体7.2 第2项自燃物品7.3 第3项遇湿易燃物品8 第5类氧化剂和有机过氧化物8.1 第1项氧化剂8.2 第2项有机过氧化物9# 第6类毒害品和感染性物品9.1 第1项毒害品9.2 第2项感染性物品10 第7类放射性物品11 第8类腐蚀品11.1 第1项酸性腐蚀品11.2 第2项碱性腐蚀品11.3 第3项其他腐蚀品本标准由中华人民共和国交通部提出。
本标准由交通部标准计量委员会归口。
本标准由交通部水运科学研究所和交通部公路局负责起草。
本标准主要起草人牟锡华、韩萍萍、范贵根、谭尚林、陈钺。
参加本标准起草的有铁道部运输局胡恒旭、民航局运输司许毓信、交通部海洋运输局李建生、交通部内河运输局王家骧、交通部公路局周有才、交通部标准计量所傅重光、北方交通大学吴育俭、罗善美。
危险化学品特性表
危险化学品特性表(自制)危险化学品特性表(自制) (1)(1)丙烯酸 (4)(2)甲酸 (5)(3)氢氟酸 (6)(1)N,N-二甲基甲酰胺 (7)(2)丙烯酸丁酯 (7)(1)萘 (8)(2)乌洛托品 (9)(1)氯酸钠 (10)(2)亚硝酸钠 (11)(1)四氯乙烯 (12)(2)二氯甲烷 (13)3。
1。
1.1丙酮 (15)3.1.1.2—丁酮 (16)3.1。
1.3甲醇 (17)3。
1.1。
4乙醇 (18)3.1。
1。
5 环己酮 (19)3。
1.1.6异丙醇 (20)3.1.1.7 甲苯 (21)3。
1.1。
8 1,2—二甲苯 (22)3.1。
1.9 乙醚 (23)3.1.1。
10 乙酸乙酯 (24)3.1。
1.11过氧化氢 (25)3。
1。
1.12高锰酸钾 (26)3.1.1。
13重铬酸钾 (27)3。
1.1.14硝酸银 (28)3.1。
1.15苯酚 (29)3。
1。
1.16三氯甲烷 (30)3.1。
1.17四氯化碳 (31)3.1.1。
18氢氧化铵水溶液 (32)3。
1.1.19氢氧化钠 (33)3.1.1。
20氢氧化钾 (34)3。
1.1.21甲醛 (35)3。
1。
1.22盐酸 (36)3。
1.1。
23硝酸 (37)3.1.1。
24硫酸 (38)3.1.1.25 乙酸 (39)3.1。
1。
26三氯乙酸 (40)3。
1。
1。
27氢氟酸 (41)3.1。
1。
28次氯酸钠 (42)3。
1.1.29亚硫酸氢钠 (43)(4)纯苯 (44)(5)1,1—二氯乙烷 (45)(7)正丁醇 (46)(10)二(正)丁醚 (47)(11)丙烯酸正丁酯 (48)(4)冰醋酸 (49)三氯乙醛 (50)硝酸钠 (51)连二亚硫酸钠 (52)石油醚 (53)对二甲苯 (54)氧 (55)乙炔 (56)⑺乙酸酐 (57)⑻2—丁酮 (58)(1)丙烯酸(1)N,N—二甲基甲酰胺表3.1—5丙烯酸丁酯简介表3.1-6萘简介表3。
丙基三氯丙烷安全技术说明书
丙基三氯硅烷
141-57—1
119
丙基三氯硅烷
propyltrichlorosilane
141—57-1
易燃液体,类别2
急性毒性—吸入,类别3
皮肤腐蚀/刺激,类别1A
严重眼损伤/眼刺激,类别1
侵入途径
吸入、食入、经皮吸收。
健康危害
健康危害:吸入、摄入或经皮肤吸收后对身体有害。对眼睛、皮肤、粘膜和上呼吸道有强烈刺激作用。接触后,可引起头痛、咳嗽、喉炎、气短、恶心、呕吐等症状。
燃爆危险:本品易燃,有毒,具腐蚀性、强刺激性,可致人体灼伤。
毒理学资料
无资料
消防措施
危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂可发生反应。遇水或水蒸气反应放热并产生有毒的腐蚀性气体。受高热分解产生有毒的腐蚀性烟气。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃.遇潮时对大多数金属有腐蚀性。若遇高热,容器内压增大,有开裂和爆炸的危险。
丙基三氯丙烷安全技术说明书
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(丙基三氯丙烷安全技术说明书)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
稳定性和反应活性
稳定性
聚合危害
不聚合。
避免接触条件
接触潮气可分解
禁配物
强氧化剂、强酸、强碱、水。