高中数学专题讲义-随机事件的概率 事件及样本空间
高二数学概率知识点
高二数学概率知识点一、事件与概率的基本概念概率是数学中一个重要的概念,它在实际生活中有着广泛的应用。
在研究概率之前,我们首先要了解事件和样本空间的概念。
1.1 样本空间样本空间是指一个随机试验所有可能结果的集合,通常用S表示。
比如掷一枚硬币,样本空间可以表示为S={正面,反面}。
1.2 事件事件是样本空间的子集,用大写字母A、B、C等表示。
比如掷一枚硬币,事件A可以表示为出现正面,事件B可以表示为出现反面。
1.3 概率概率是事件发生的可能性大小的度量,通常用P(A)表示。
概率的取值范围在0到1之间,0表示不可能事件,1表示必然事件。
概率的计算可以通过实验方法、几何概率、频率方法等多种方式。
二、概率的计算方法在研究概率问题时,我们需要掌握概率的计算方法,包括古典概型、几何概率、频率概率和条件概率等。
2.1 古典概型古典概型是指所有可能结果的数目是有限且相等的情况。
在古典概型中,事件A的概率可以通过公式P(A)=|A|/|S|计算,其中|A|表示事件A的结果数目,|S|表示样本空间的结果数目。
2.2 几何概率几何概率是指利用几何形状和几何关系来计算概率的方法。
在几何概率中,事件A的概率可以通过公式P(A)=S(A)/S计算,其中S(A)表示事件A对应的几何图形的面积或长度,S表示整个几何图形的面积或长度。
2.3 频率概率频率概率是指根据大量实验数据估计概率的方法。
在频率概率中,事件A的概率可以通过公式P(A)=n(A)/n计算,其中n(A)表示事件A在n次实验中发生的次数,n表示实验的次数。
2.4 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
条件概率可以表示为P(A|B),读作事件B发生的条件下事件A发生的概率。
条件概率的计算可以通过公式P(A|B)=P(A∩B)/P(B)来获得。
三、概率的性质及运算规则在研究概率时,我们需要掌握概率的性质及运算规则。
这些性质和规则可以帮助我们更好地理解和计算概率问题。
高一随机事件的概率知识点
高一随机事件的概率知识点概述:随机事件概率是高中数学中的重要内容,通过对随机事件的概率进行研究和计算,可以帮助我们理解事件发生的可能性,以及在实际问题中的应用。
本文将介绍高一阶段涉及的随机事件的概率知识点。
一、基本概念在进一步讨论高一随机事件的概率知识点之前,我们先来了解一些基本概念。
1.1 随机试验随机试验指的是满足以下三个条件的试验:试验进行前无法确定出现的结果,试验的结果有多种可能性,每次试验的结果不会受到上一次结果的影响。
1.2 样本空间与事件在随机试验中,样本空间是指所有可能结果的集合,一般用"S"表示。
而事件是样本空间的子集,是指我们感兴趣的某些结果组成的集合。
1.3 事件的概率事件的概率是指该事件在所有可能结果中出现的可能性大小,通常用"P(A)"表示。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
二、概率计算方法在计算随机事件的概率时,可以采用以下几种方法:2.1 等可能性原则当每个事件在样本空间中的出现是等可能的情况下,可以使用等可能性原则来计算事件的概率。
也就是说,如果一个随机试验有n个等可能的结果,而事件A有m个结果,那么事件A发生的概率可以表示为P(A) = m/n。
2.2 排列组合法当样本空间中的结果不是等可能的情况下,可以使用排列组合法来计算事件的概率。
排列和组合是高中数学中的基本概念,通过这些方法可以计算不同情况下事件的出现次数,从而求解事件的概率。
2.3 频率计算法频率计算法是通过实验的方式计算事件发生的概率。
当试验次数足够大时,事件发生次数与总试验次数的比值趋近于事件的概率。
三、概率的性质和应用在了解了概率计算方法之后,我们来探讨一些概率的性质和应用。
3.1 加法定理加法定理是指对于两个不相容事件A和B,它们的概率之和等于它们各自的概率之和。
即P(A∪B) = P(A) + P(B)。
3.2 乘法定理乘法定理是指对于两个相互独立的事件A和B,它们的概率乘积等于它们各自的概率之积。
概率_随机事件的概率.板块一.事件及样本空间.学生版
版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率mn,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合. 5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+ 若事件12nA A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生. 6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-. <教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率. 随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率. 3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率; ⑵ 互斥事件有一个发生的概率; ⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率; ⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =;②()15|11P B A =;③事件B 与事件1A 相互独立; ④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功; ②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个 D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”; ⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化; ⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
概率_随机事件的概率.板块一.事件及样本空间.学生版 普通高中数学复习讲义Word版
版块一:事件及样本空间 1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ;2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的.3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-.<教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立;④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数;其中属于随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”;⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件;⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
解读概率的随机事件与样本空间
解读概率的随机事件与样本空间概率是数学中一个重要的概念,它用来描述某个随机事件发生的可能性。
在概率论中,我们经常提到的随机事件和样本空间是两个基本概念。
本文将对概率的随机事件和样本空间进行解读,帮助读者更好地理解相关概念和应用。
一、随机事件的定义和特征随机事件是指无法准确预测其具体结果的事件,也就是不确定性事件。
在统计学和概率论中,随机事件通常用字母A、B、C等表示。
例如,掷一颗骰子得到的点数就是一个随机事件,用A表示。
随机事件具有以下特征:1. 随机性:随机事件的结果是不确定的,无法事先确定具体的结果。
2. 普适性:随机事件可以发生在任何时间和任何地点,具有广泛的应用范围。
3. 可观察性:随机事件的结果可以通过观察和实验获得。
二、样本空间的定义和表示样本空间是指一个随机试验的所有可能结果的集合。
在概率论中,样本空间通常用Ω表示。
例如,掷一颗骰子的样本空间为Ω={1,2,3,4,5,6}。
样本空间的性质:1. 确定性:样本空间中的每个元素都是一个确定的结果。
2. 完备性:样本空间包含了随机试验的所有可能结果。
3. 互斥性:样本空间中的每个元素都是互不相同的,没有重复的结果。
三、随机事件与样本空间的关系随机事件是样本空间的子集,也就是说,随机事件是样本空间的一部分。
一个随机事件可以包含一个或多个样本点,表示该事件发生的所有可能结果。
以掷一颗骰子为例:样本空间Ω={1,2,3,4,5,6}随机事件A:A={2,4,6},表示得到的点数为偶数的情况。
随机事件B:B={1,2,3},表示得到的点数小于等于3的情况。
四、概率的计算方法概率的计算方法有多种,常见的有频率法、古典概型法和几何概型法。
1. 频率法:通过大量重复实验,统计某个事件发生的频率来估计概率。
概率P(A) = n(A)/n,其中n(A)为随机事件A发生的次数,n为实验总次数。
2. 古典概型法:适用于所有可能结果等可能且有限的情况。
概率P(A) = n(A)/n(Ω),其中n(A)为随机事件A中样本点的个数,n(Ω)为样本空间Ω中样本点的个数。
随机事件的概率知识点高三
随机事件的概率知识点高三随机事件的概率是高中数学中重要的概念之一。
在高三数学学习中,我们需要掌握随机事件的基本概念、计算方法以及与排列组合之间的关系。
通过学习这些知识点,我们能够更好地理解随机事件的发生规律,为我们解决实际问题提供数学的思维工具。
一、基本概念随机事件是指在一次试验中可能出现的不同结果。
在概率论中,我们把每个试验的结果称为样本点,样本空间是指所有可能的样本点的集合。
随机事件是样本空间的子集。
例如,抛一枚硬币的样本空间为{正面,反面},那么“出现正面”的事件可以表示为A={正面}。
二、概率的计算方法在概率理论中,我们用P(A)表示事件A的概率。
概率的计算方法有以下几种常见的形式:1.频率定义:当试验的次数非常多时,事件A发生的频率接近于A的概率,用频率定义计算概率的方法适用于大量试验的情况。
2.古典定义:对于一个有限样本空间的等可能试验,事件A的概率可以使用P(A)=|A|/|S|来计算,其中|A|表示事件A包含的样本点个数,|S|表示样本空间中的样本点个数。
3.几何概率定义:对于一些几何问题,我们可以利用几何概率的定义来计算概率。
例如,投掷一个点在单位正方形中的均匀分布的事件A,可以通过计算事件A所占的面积来求得概率。
4.条件概率定义:当事件A的发生与事件B的发生有关联时,我们可以通过条件概率来计算事件A在事件B发生的条件下的概率。
条件概率的计算公式为P(A|B)=P(AB)/P(B),其中P(AB)表示事件A与事件B同时发生的概率,P(B)表示事件B的概率。
三、排列与组合与概率的关系排列与组合是高中数学中的基础知识点,它们与概率有着密切的关系。
1.排列:排列是从n个不同元素中取出m个元素,按照一定的顺序排列的方式。
表示为A(n,m)。
当考虑概率时,排列可以用来计算有序事件的概率。
2.组合:组合是从n个不同元素中取出m个元素,不考虑排列顺序的方式。
表示为C(n,m)。
当考虑概率时,组合可以用来计算无序事件的概率。
随机事件与样本空间的关系
随机事件与样本空间的关系在概率论中,随机事件与样本空间是密不可分的概念。
理解二者之间的关系对于概率计算和推理至关重要。
本文将介绍随机事件和样本空间的定义、关系以及在概率计算中的应用。
一、随机事件的概念随机事件是指在一次特定的试验中可能发生或不发生的现象。
它是样本空间中的一个子集。
例如,掷一枚硬币,其试验结果可以是正面朝上(事件A)或反面朝上(事件B)。
在这个例子中,事件A和事件B分别是试验的两个随机事件。
二、样本空间的定义样本空间是指一个随机试验中所有可能结果的集合。
它包含了实验中的每一个可能结果。
以掷一枚硬币为例,样本空间为{正面,反面}。
样本空间可以有有限个元素,也可以是一个无穷集合。
三、随机事件与样本空间的关系随机事件是样本空间的子集。
它们之间的关系可以用包含关系来描述。
具体而言,一个事件A发生意味着试验的结果属于A所对应的样本点集合。
相反,如果试验结果属于事件A,那么事件A就发生了。
四、概率计算中的应用概率计算是研究随机事件发生可能性的重要方法。
随机事件和样本空间的关系在概率计算中起着关键作用。
1. 计算概率概率可以通过事件发生的样本点数量与样本空间中样本点总数的比值来计算。
例如,假设在掷一枚硬币的试验中,事件A表示正面朝上,那么事件A发生的概率为P(A) = |A| / |样本空间|,其中|A|表示事件A中的样本点数量,|样本空间|表示样本空间中的样本点数量。
2. 事件间的运算根据随机事件和样本空间的关系,可以进行并、交、差等运算。
例如,事件A和事件B的并集为A∪B,表示A和B中至少有一个发生的样本点的集合。
交集为A∩B,表示A和B同时发生的样本点的集合。
差集为A-B,表示A发生而B不发生的样本点的集合。
3. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率计算中,样本空间会根据已知事件的发生而被限制在一个子集中,从而影响概率的计算。
例如,已知事件A发生的条件下,事件B发生的概率可以表示为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和事件B同时发生的概率。
概率论 样本空间、随机事件
S4 ={1,2,3,4,5,6}; S5 ={0,1,2…}; S6 ={t | t≥0} t为灯泡寿命; S7 ={(x,y)|T0≤x≤y≤T1},这里x表示最低温度,y 表示最高温度,并设这一地区的温度不会小 于T0,也不会大于T1。 S8 ={(x,y)|x2+y2≤100}, 注意:样本空间的元素是由试验的目的所确 定的。例如,在E2和E3种同是将一枚硬币连 抛三次,由于试验的目的不一样,其样本空 间也不一样。
反之,当且仅当“接点a未闭合”与“接点 b、c都未闭合”二事件中至少有一事件发 生时,指示灯不亮;所以有
.
这个等式也可以由等式 D= A(B∪C) 利用De Morgan对偶律得到.事实上,我 们有
例7 设A,B,C,D是四个事件,用A,B,C, D的运算关系表示下列事件。 (1)A1:“A,B,C,D中仅有A发生” (2)A2:“A,B,C,D中恰有一个发生” (3)A3:“A,B,C,D中至少有一个发生” (4)A4:“A,B,C,D中至少有两个发生” (5)A5:“A,B,C,D中至多有一个发生” (6)A6:“A,B,C,D中至多有两个发生” (7)A7:“A,B,C,D都不发生” (8)A8:“A,B,C,D不都发生” (9)A9:“A,B,C,D中至多一个发生,但D 不发生” (10)A10:“A,B,C,D中至多一个不发生”
7. 事件的对立
AB , A B
— A 与B 互相对立 A 每次试验 A、 B中 有且只有一个发生 称B 为A的对立事件 (or 逆事件), 记为 B A
注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
B A
运算律
事件 运算 对应 集合 运算
吸收律
样本空间和随机事件.ppt
Ω的子集A,B,...
2020-8-15
x
各种集合间的关系
12
一、子事件 (事件的包含)Contain
事件A发生必然导致事件B发生,则称A蕴含了
B或者B包含了A,记为 A B
={事件A发生必然导致事件B发生}
AB
事件A是事件B的子事件
A B 事件A的样本点都是事件B的样本点
例如: 抛掷一颗骰子,观察出现的点数
20 Tossing a coin
掷一枚均匀的硬币,观察它出现正面或反面的情况
1. 试验的样本点和基本事件:“正面向上”、“反面向上”
2. 样本空间: Ω = {H,T}
H
T
3. 随机试验:
掷一枚硬币三次,观察它出现正面或反面的情况
Ω={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
可以确定试验的所有可能结果 (3) 每次试验前不能准确预言试验后会出现哪种结果.
实例 ➢上抛一枚均匀的硬币 ➢上抛一枚均匀的骰子 ➢在一条生产线上,检测产品的合格情况、等级情况 ➢向一目标射击
2020-8-15
x
3
三、随机事件 Random Events
1. 在随机试验中,可能出现也可能不出现,而在大 量的重复试验中具有某种规律性的事件叫做随机 事件,简称事件.
例如:抛掷一颗骰子,观察出现的点数
A={出现偶数点} B={出现2,4或6点} A B
2020-8-15
x
14
三、和事件(并事件) Union
若事件A发生或事件B发生,则称为事件A与B的
和事件发生,记为 A B
例如: “抛掷一颗骰子,出现的点数不超过6”
2020-8-15
随机事件和样本空间知识点
随机事件和样本空间知识点
随机事件是在一次试验中可能发生或不发生的事件。
样本空间是指所有可能的结果构成的集合。
以下是关于随机事件和样本空间的相关知识点:
1. 样本空间:在一次试验中,所有可能的结果构成的集合。
通常用大写字母S表示,其中的元素称为样本点。
例如,掷一
枚硬币的样本空间为S = {正面,反面}。
2. 随机事件:样本空间中的一个子集称为随机事件。
也就是说,随机事件是样本空间中的一个特定的结果组合。
例如,从掷一枚硬币的样本空间中,可以定义一个事件A,表示出现正面,即A = {正面}。
3. 必然事件和不可能事件:样本空间和空集分别对应着必然事件和不可能事件。
必然事件是指在每次试验中必然发生的事件,记作S;而不可能事件是指在每次试验中不可能发生的事件,
记作∅。
4. 事件的运算:事件之间可以进行运算,包括并集、交集和补集。
- 并集:表示同时包含两个事件的结果。
例如,事件A和事
件B的并集为A∪B,表示包含事件A和事件B中任意一个
结果的集合。
- 交集:表示同时满足两个事件的结果。
例如,事件A和事件B的交集为A∩B,表示包含同时满足事件A和事件B结果的集合。
- 补集:表示不属于一个事件的结果。
例如,事件A的补集为A的补,记作A',表示所有不属于事件A结果的集合。
5. 事件的概率:事件发生的可能性称为概率。
概率一般用一个实数表示,范围在0到1之间。
这些是关于随机事件和样本空间的基本知识点,可以帮助我们理解随机事件的概念和计算概率的方法。
概率论课件——样本空间、随机事件
互
斥
事件间的运算规律 设 A, B, C 为事件, 则有
(1) 交换律
A B B A, AB BA. (Exchange law)
( 2) 结合律 ( A B ) C A ( B C ),
( AB )C A( BC ).
(Combination law)
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的积事件.
k 1
和事件与积事件的运算性质
A A A, A A A, A S S, A S A, A A,
A .
5. 事件 A 与 B 互不相容 (互斥) (Incompatible events) 若事件 A 的出现必然导致事件 B 不出现, B
直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. 图示事件 A 与 B 的并.
B A B A
S
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
4. 事件 A 与 B 的交 (积事件) (Product of events)
例如 只包含两个样本点的样本空间
S {H , T }
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的模 型 , 又能用于排队现象中有人排队与无人排队的 模型等.
所以在具体问题的研究
中 , 描述随机现象的第一步
就是建立样本空间.
二、随机事件(Random event ) 的概念
第二节 样本空间、随机事件 (Sampling space, Random event )
概率与统计中的样本空间与随机事件
概率与统计中的样本空间与随机事件概率与统计是数学中非常重要的一个分支,它研究的是在不确定性条件下,通过样本空间和随机事件的概念,对现实世界中事件的发生进行量化和解释。
在本文中,我们将深入探讨概率与统计中的样本空间与随机事件的概念、性质以及其在实际问题中的应用。
一、样本空间的定义与性质在概率与统计中,样本空间指的是一个随机试验所有可能结果的集合。
举个例子来说,如果我们进行一次抛硬币的实验,那么样本空间可以表示为{正面,反面}。
样本空间中的每个元素称为一个样本点,而样本空间的大小称为样本点的个数。
样本空间可以用数学符号Ω表示。
样本空间具有以下性质:1. 样本空间是一个集合,其中的元素表示所有可能的结果。
2. 样本空间中的元素是互斥的,即一个实验结果只能对应样本空间中的一个元素。
3. 样本空间中的元素是完备的,即包含了实验的所有可能结果。
4. 样本空间是随机试验的基本概念,是进行概率计算的起点。
二、随机事件的定义与性质在样本空间的基础上,我们可以定义随机事件。
随机事件是指样本空间的子集,即由样本空间中的若干个样本点构成的集合。
举个例子来说,如果我们定义事件A为抛硬币的结果是正面朝上,那么事件A 可以表示为{正面},它是样本空间的一个子集。
随机事件具有以下性质:1. 随机事件是样本空间的一个子集,由样本点构成。
2. 随机事件可以是单个样本点,也可以是多个样本点组成的集合。
3. 随机事件可以是空集,即不包含任何样本点的事件。
4. 样本空间本身以及包含所有样本点和空集的事件也是随机事件。
三、样本空间与随机事件在实际问题中的应用概率与统计作为一门应用广泛的学科,其样本空间与随机事件的概念在实际问题中具有重要的应用价值。
以下是一些典型的应用场景:1. 投资决策:在金融领域中,投资决策往往需要对不同投资方案的风险和回报进行评估。
通过建立样本空间和定义相应的随机事件,可以对不同投资方案进行量化和比较,从而做出更明智的决策。
高中数学概率与统计中的事件与样本空间解析
高中数学概率与统计中的事件与样本空间解析概率与统计是高中数学中的一门重要课程,涉及到事件与样本空间的概念。
了解事件与样本空间的概念对于解题非常关键。
本文将通过具体的题目举例,深入分析事件与样本空间的概念,以及如何运用解题技巧。
一、事件与样本空间的概念事件是指一个试验中可能发生的结果的集合,而样本空间则是指一个试验中所有可能结果的集合。
事件是样本空间的子集,即事件是样本空间中的一部分。
例如,假设有一个骰子,投掷一次,我们可以定义事件A为“出现的点数是偶数”,样本空间S为{1, 2, 3, 4, 5, 6}。
在这个例子中,事件A是样本空间S的子集,包括了出现的点数是2、4、6的情况。
二、事件的运算与概率在概率与统计中,我们常常需要对事件进行运算,包括并、交、差等操作。
这些运算可以帮助我们更好地理解事件之间的关系。
1. 并运算:事件A并B表示同时发生事件A和事件B,可以用符号A∪B表示。
例如,对于上述例子中的事件A和事件B,“出现的点数是偶数”和“出现的点数是大于3的数”,它们的并事件为{2, 4, 6}∪{4, 5, 6}={2, 4, 5, 6}。
2. 交运算:事件A交B表示事件A和事件B同时发生的结果,可以用符号A∩B表示。
例如,对于上述例子中的事件A和事件B,“出现的点数是偶数”和“出现的点数是大于3的数”,它们的交事件为{2, 4, 6}∩{4, 5, 6}={4, 6}。
3. 差运算:事件A差B表示事件A发生而事件B不发生的结果,可以用符号A-B表示。
例如,对于上述例子中的事件A和事件B,“出现的点数是偶数”和“出现的点数是大于3的数”,它们的差事件为{2, 4, 6}-{4, 5, 6}={2}。
概率是事件发生的可能性大小的度量,通常用一个介于0和1之间的数表示。
概率的计算公式为:P(A) = n(A) / n(S),其中P(A)表示事件A的概率,n(A)表示事件A中元素的个数,n(S)表示样本空间S中元素的个数。
高一数学必修课件随机事件和样本空间
质量控制
在工业生产中,通过计算产品的数学 期望和方差来控制产品质量,确保产 品符合标准。
感谢您的观看
THANKS
的平方。
01
02
方差定义:方差是衡量源 数据和期望值相差的度量 值,即随机变量与其均值 之差的平方的期望值。
03
常数的方差为0。
04
05
独立随机变量和的方差等 于各随机变量方差的和。
常见离散型和连续型分布数学期望和方差
离散型分布 连续型分布
01
二项分布:数学期望为np,方
差为np(1-p)。
02
泊松分布:数学期望和方差均 为λ。
的后验概率。
典型例题解析
解析
例题1
一袋中有5只乒乓球,分别标 记为1, 2, 3, 4, 5。现随机从袋 中取出3只球,求取出的3只球 中最大号码为4的概率。
例题2
解析
首先确定基本事件总数为从5 只球中取3只的组合数 $C_{5}^{3}$。然后计算最大 号码为4的基本事件数,即先 取出4号球,再从剩下的1, 2, 3 号球中取2只的组合数 $C_{3}^{2}$。最后根据古典 概型计算概率$P = frac{C_{3}^{2}}{C_{5}^{3}}$。
高一数学必修课件随机事 件和样本空间
汇报人:XX 2024-01-20
目录
• 随机事件与概率初步 • 古典概型与几何概型 • 条件概率与独立性 • 全概率公式与贝叶斯公式 • 随机变量及其分布 • 数学期望与方差
01
随机事件与概率初步
随机现象与随机试验
随机现象
在一定条件下,并不总是出现相同结果的现象。
某地区一种疾病的患病率与年 龄有关,年龄越大患病概率越 高。现有一种试剂可以检验被 检者是否患病,准确率为99% 。即在被检验者患病的条件下 用该试剂检测,有99%的可能 呈现阳性;在被检验者未患病 的条件下用该试剂检测,有 99%的可能呈现阴性。现随机 抽取该地区的一个被检验者, 用该试剂来检验,结果呈现阳 性。问该被检验者确实患病的 概率是多少?
高中数学的解析掌握概率统计中的样本空间与事件概率
高中数学的解析掌握概率统计中的样本空间与事件概率在高中数学中,概率统计是一个重要的知识点。
在解析掌握概率统计的过程中,理解样本空间和事件概率是至关重要的。
本文将详细介绍高中数学中的样本空间和事件概率,并探讨如何准确解析掌握这两个概念。
一、样本空间在概率统计中,样本空间是指一个随机试验中所有可能结果的集合。
对于每个试验来说,它的结果可以是多种可能性,而这些可能性构成了样本空间。
以抛硬币为例,假设抛一枚硬币的结果可以是正面或者反面。
那么样本空间就是{正面,反面}。
在这个例子中,样本空间是一个有限集合,但是在实际问题中,样本空间也可以是一个无限的集合。
掌握样本空间的方法是通过列举所有可能的结果来确定。
在高中数学中,我们常用树状图或者集合论的方法来表示和求解样本空间。
例如,假设有一副扑克牌,从中抽取一张牌,那么抽取的结果可以是52张牌中的任意一张,即样本空间为{A♣,2♣,3♣,...,K♠}。
通过列举所有的可能结果,我们可以得到样本空间。
二、事件概率在概率统计中,事件是样本空间的一个子集合。
事件可以是单个结果,也可以是多个结果的组合。
事件概率表示事件发生的可能性大小,是一个在0到1之间的实数。
事件概率的计算公式是 P(A) = n(A) / n(S),其中 P(A) 表示事件 A 的概率,n(A) 表示事件 A 中的有利结果个数,n(S) 表示样本空间的结果个数。
举个例子,假设有一副扑克牌,从中抽取一张牌,事件A表示抽到一张红色的牌。
样本空间为{A♣,2♣,3♣,...,K♠},事件A的结果为{红心, 方片},即事件A={A♥, 2♥, ..., K♦}。
在这个例子中,事件A的有利结果个数为26,样本空间的结果个数为52,所以事件A的概率为 P(A) = 26/52 = 1/2。
要准确解析掌握事件的概率,我们可以通过确定有利结果的个数和样本空间的结果个数来计算事件的概率。
总结:在高中数学的解析掌握概率统计中,样本空间和事件概率是重要的概念。
认识简单的概率分析样本空间与事件概率
认识简单的概率分析样本空间与事件概率概率论是一门研究不确定性事物的数学学科,通过对事件的概率进行分析和计算,可以帮助人们更好地理解和处理各种随机事件。
在概率论中,样本空间和事件概率是两个重要的概念,对于初学者来说,了解和掌握它们的概念和计算方法是入门的基础。
一、样本空间的概念与计算样本空间指的是一个随机试验中所有可能结果的集合。
比如,掷一枚骰子的样本空间可以表示为S={1, 2, 3, 4, 5, 6},其中每个元素表示一个可能的结果。
另一个例子是从一副扑克牌中随机抽取一张牌的样本空间可以表示为S={红桃A,黑桃A,方块A,梅花A,红桃2,黑桃2,...,方块K,梅花K}。
在实际问题中,样本空间的元素可以是有限个,也可以是无限个。
计算样本空间的大小,也就是元素的个数,对于有限样本空间来说很简单,只需要数一数即可。
而对于无限样本空间,可以通过某种规律来确定个数。
比如掷骰子的样本空间,可以通过骰子的面数来确定,即样本空间大小为骰子面数的个数。
而抽取扑克牌的样本空间,则可以通过扑克牌的排数和每个排的牌数来确定,即样本空间大小为排数乘以每个排的牌数。
二、事件概率的概念与计算事件是指样本空间的一个子集,它表示了我们对试验结果的某种关注或者要求。
事件的概率是用来度量该事件发生的可能性大小。
在计算事件概率时,我们通常使用两种方法:古典概率和统计概率。
1. 古典概率:在古典概率中,假设试验的可能结果是等可能的,即每个结果发生的概率相等。
如果事件A包含了m个等可能结果中的n个结果,那么事件A的概率P(A)可表示为P(A)=n/m。
例如,掷一枚骰子,求出现奇数的概率。
由于骰子有六个面,其中有三个是奇数,所以事件A(出现奇数)的概率为P(A)=3/6=1/2。
2. 统计概率:在统计概率中,根据大量试验的结果来计算事件发生的概率。
通过频率的方式来估计概率。
例如,抛硬币的样本空间为S={正面,反面},相应的事件A(出现正面)发生的概率可以通过多次抛掷硬币,并统计出正面朝上的次数与总次数的比值来估计。
中学数学概率_随机事件的概率.板块一.事件及样本空间.学生版
版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率mn,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合. 5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+ 若事件12nA A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生. 6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-. <教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率. 随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率. 3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率; ⑵ 互斥事件有一个发生的概率; ⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率; ⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =;②()15|11P B A =;③事件B 与事件1A 相互独立; ④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功; ②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个 D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”; ⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化; ⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.古今中外有学问的人,有成就的人,总是十分注意积累的。
高中数学完整讲义——概率_随机事件的概率1.事件及样本空间
B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A =.若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A +若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n nP A A A P A P A P A =+++. 事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.中至少有一个发生.6.互为对立事件高中数学讲义版块一:事件及样本空间 1.必然现象与.必然现象与随机现象随机现象必然现象是在一定条件下必然发生某种结果的现象;必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.为试验的结果.一次试验是指事件的条件实现一次.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为在试验中可能发生,也可能不发生的结果称为随机事件随机事件.通常用大写通常用大写英文英文字母A B C ,,,来表示随机事件,简称为事件.来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为所有基本事件构成的集合称为基本事件空间基本事件空间,常用W 表示.表示.版块二:随机事件的版块二:随机事件的概率概率计算1.如果事件A B ,同时发生,我们记作A 与B 都是相互独立的.都是相互独立的.3.概率的.概率的统计统计定义定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个很大时,总是在某个常数常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B B 是由事件A 或B 所包含的基本事件组成的集合.件组成的集合.5.互斥事件的概率.互斥事件的概率加法加法公式:公式:若A 、B 是互斥事件,有()()()P A B P A P B =知识内容 板块一.事件及样本空间不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -ì=ïïï+=+íï×=×ï=-ïî等可能事件等可能事件: : 互斥事件: 独立事件: 次独立重复试验次独立重复试验::求解求解 第四步,答,即给提出的问题有一个明确的答复.第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;次才首次发生的概率;⑹ 对立事件的概率.对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.等.题型一 事件及样本空间【例1】 (2010安徽) 甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的典例分析 高中数学讲义有()1()P A P A =-.<教师教师备案备案> 1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.,与通常所说的事件不同.基本事件空间基本事件空间是指一次试验中所有可能发生的基本结果.有可能发生的基本结果.有时我们提到事件或有时我们提到事件或有时我们提到事件或随机事件随机事件,也包含不可能事件和必然事件,也包含不可能事件和必然事件,将其作为随机将其作为随机事件的事件的特例特例,需要根据情况作出判断.,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的,或者说是频率的一个近似,此处概率的定义叫做概率的统计统计定义.在实践中,很多时候采用这种方法求事件的概率.实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的它具有一定的稳定性稳定性,总是在某个总是在某个常数常数附近摆,且随着试验次数的增加,且随着试验次数的增加,摆动的幅度越来越小,摆动的幅度越来越小,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.这个常数叫做这个随机事件的概率.这个常数叫做这个随机事件的概率.概率可以看成概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.下可近似地看作这个事件的概率.3.基本事件一定是两两.基本事件一定是两两互斥互斥的,它是互斥事件的特殊情形.的,它是互斥事件的特殊情形.主要方法:主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:求概率的步骤是:第一步,确定事件性质ìïïíïïî等可能事件等可能事件互斥事件互斥事件 独立事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算ìíî和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是确的是 __ __(写出所有正确结论的编号). ① ()25P B =; ②(高中数学讲义)15|11P B A =; ③事件B 与事件1A 相互独立;相互独立;④1A ,2A ,3A 两两互斥的事件;两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选同学甲竞选班长班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ÍÍ,,则A C Í; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数; 其中属于其中属于随机事件随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何技术充分发达后,不需要任何能量能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面a 平面m b =,n b ∥,n a ∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的写出这个试验的基本事件空间基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件; ⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的球,观察球的颜色颜色.⑴写出这个试验的基本事件空间;事件,点数之和为的事件是 事件,点数之差为点的事件是 事43214321高中数学讲义 点间的事件是。
随机事件和样本空间.ppt
三、事件的关系与运算
以下设 A, B,C
等都是同一样本空间
中的事件.
文氏图 ( Venn diagram )
A
1. 事件的包含关系
定义1.1.1:若 A,有 B(若事件A发生必然导
致事件B发生),这时称事件B包含事件A,记作 B A
或 A B ,即A是B的子集.
注:对任何事情 A,有A 7中 A B={该产品的直径不合格,高度合格} 5.对立事件(逆)
定义1.1.5:若A是一个事件,令 A A
称为事件A的对立事件或逆事件.
A A A A
A
A
对立事件与互不相容事件的关系:
6. 事件的互不相容(互斥) 定义1.1.6:若AB ,则称事件A与事件 A
2.若A B, 则 A B A.
类似的“ A , A ,, A
1
2
n
同时发生”称为A , A ,, A
1
2
n
的交(或积)记作A A A
1
2
n
(简记为n A i1 i
n
A
i1 i
4. 差事件
定义1.1.4:“事件A 发生而 B
A
不发生”,这样一个事件称作事件
B
A与 B 的差,记为 A B.
第一章 随机事件及概率
随机试验、样本空间、随机事件 概率的定义及性质 古典概型与几何概型 有关条件概率的计算公式 独立性及贝努里概型
退出 返回
§1.1 随机事件和样本空间
一、随机事件和样本空间的概念
1、基本事件和样本空间
定义:一个试验如果满足下述条件:
(1)试验可以在相同的情形下重复进行; (可重复性)
高中数学讲义(人教A版必修二):第42讲 随机事件的概率(教师版)
第42课随机事件与概率知识精讲知识点01有限样本空间与随机事件【即学即练1】抛掷一枚骰子(touzi),观察它落地时朝上的面的点数,写出试验的样本空间.解:用i 表示朝上面的“点数为i ”,因为落地时朝上面的点数有1,2,3,4,5,6共6个可能的基本结果,所以试验的样本空间可以表示为Ω={1,2,3,4,5,6}.构建样本空间,这是将实际问题数学化的关键步骤,其作用体现在:可以利用集合工具(语言)描述概率问题,能用数学语言严格刻画随机事件的概念,通过与集合关系与运算的类比,可以更好地理解随机事件的关系和运算意义.可以用符号语言准确而简练地表示求解概率问题的过程.知识点02事件的关系和运算定义表示法图示事件的运算包含关系一般地,对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A(或称事件A 包含于事件B)B ⊇A (或A ⊆B )并事件若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A∩B (或AB)互斥关系若A∩B 为不可能事件,则称事件A 与事件B 互斥若A∩B =∅,则A 与B 互斥对立关系若A∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件,可记为B =或A =若A∩B =∅,A ∪B =U ,则A 与B 对立事件的关系或运算含义符号表示包含A 发生导致B 发生A ⊆B 并事件(和事件)A 与B 至少一个发生A ∪B 或A +B 交事件(积事件)A 与B 同时发生A ∩B 或AB 互斥(互不相容)A 与B 不能同时发生A ∩B =∅互为对立A 与B 有且仅有一个发生A ∩B =∅,A ∪B =Ω【即学即练2】盒子里有6个红球,4个白球,现从中任取3个球,设事件A ={3个球中有1个红球2个白球},事件B ={3个球中有2个红球1个白球},事件C ={3个球中至少有1个红球},事件D ={3个球中既有红球又有白球}.求:(1)事件D 与A ,B 是什么样的运算关系?(2)事件C 与A 的交事件是什么事件?【答案】(1)D =A ∪B .(2)C ∩A =A .【解析】(1)对于事件D ,可能的结果为1个红球,2个白球或2个红球,1个白球,故D =A ∪B .(2)对于事件C ,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,所以A ⊆C ,故C ∩A =A .知识点03古典概型【即学即练3】抛掷两枚质地均匀的骰子(标记为I 号和II 号),观察两枚骰子分别可能出现的基本结果,(1)写出这个试验的样本空间,并判断这个试验是否为古典概型;(2)求下列事件的概率:A =“两个点数之和是5”;B =“两个点数相等”;C =“I 号骰子的点数大于II 号骰子的点数”.【答案】(1),,1,2,3,4,5,6m n m n,是古典概型(2)19;16;512【解析】(1)抛掷一枚骰子有6种等可能的结果,I 号骰子的每一个结果都可与II 号骰子的任意一个结果配对,组成掷两枚骰子试验的一个结果.用数字m 表示I 号骰子出现的点数是m ,数字n 表示II 号骰子出现的点数是n ,则数组 ,m n 表示这个试验的一个样本点.因此该试验的样本空间,,1,2,3,4,5,6m n m n ,其中共有36个样本点.由于骰子的质地均匀,所以各个样本点出现的可能性相等,因此这个试验是古典概型.(2)因为 1,4,2,3,3,2,4,1A ,所以 4n A ,从而 41369n A P A n ;因为 1,1,2,2,3,3,4,4,5,5,6,6B,所以 6n B ,从而 61366n B P B n;因为C={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)},所以 15n C ,从而 1553612n C P C n;解题技巧(求古典概型的一般步骤)(1)明确实验的条件及要观察的结果,用适当的符号(字母/数字/数组等)表示实验的可能结果(可借助图表);(2)根据实际问题情景判断样本点的等可能性;(3)计算样本点总个数及事件包含的样本点个数,求出事件A 的概率.知识点04概率的基本性质【即学即练4】一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件1R “第一次摸到红球”,2R “第二次摸到红球”,R “两次都摸到红球”,G “两次都摸到绿球”,M “两个球颜色相同”,N “两个球颜色不同”.(1)用集合的形式分别写出试验的样本空间以及上述各事件;(2)事件R 与1R ,R 与G ,M 与N 之间各有什么关系?(3)事件R 与事件G 的并事件与事件M 有什么关系?事件1R 与事件2R 的交事件与事件R 有什么关系?解:(1)所有的试验结果如图10.1-10所示.用数组 12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,则试验的样本空间{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} ,事件1R “第一次摸到红球”,即11x 或2,于是1{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)}R ;事件2R “第二次摸到红球”,即21x 或2,于是2{(2,1),(3,1),(4,1),(1,2),(3,2),(4,2)}R .同理,有{(1,2),(2,1)}R ,{(3,4),(4,3)}G ,{(1,2),(2,1),(3,4),(4,3)}M ,{(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)}N .(2)因为1R R ,所以事件1R 包含事件R ;因为R G ∩,所以事件R 与事件G 互斥;因为M N ,M N ,所以事件M 与事件N 互为对立事件.(3)因为R G M ,所以事件M是事件R 与事件G 的并事件;因为12R R R ∩,所以事件R 是事件1R 与事件2R 的交事件.能力拓展考法01有限样本空间与随机事件考法02事件的关系和运算【典例2】抛掷一枚质地均匀的骰子一次,事件1表示“骰子向上的点数为奇数”,事件2表示“骰子向上的点数为偶数”,事件3表示“骰子向上的点数大于3”,事件4表示“骰子向上的点数小于3”则()A .事件1与事件3互斥B .事件1与事件2互为对立事件C .事件2与事件3互斥D .事件3与事件4互为对立事件【答案】B【分析】根据互斥事件、对立事件定义判断求解.【详解】由题可知,事件1可表示为: 13,5A ,,事件2可表示为: 2,4,6B ,事件3可表示为: 4,5,6C ,事件4可表示为: 1,2D ,因为 5A C ∩,所以事件1与事件3不互斥,A 错误;因为A B 为不可能事件,A B 为必然事件,所以事件1与事件2互为对立事件,B 正确;因为 4,6B C ∩,所以事件2与事件3不互斥,C 错误;因为C D 为不可能事件,C D 不为必然事件,所以事件3与事件4不互为对立事件,D 错误;故选:B.考法03古典概型与概率基本性质【典例3】芯片是科技产品中的重要元件,其形状通常为正方形.生产芯片的原材料中可能会存在坏点,而芯片中出现坏点即报废,通过技术革新可以减小单个芯片的面积,这样在同样的原材料中可以切割出更多A.50%B.625%.【答案】C【分析】依题意将原材料进行切割,得到有坏点的芯片数,即可判断【详解】依题意将这块原材料如下切割得到第故第5代芯片的产品良率为12100%75% 16故选:C【变式训练】从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球同”的概率为()A.415B.715【答案】C【分析】首先利用三个事件为互斥事件,再根据互斥事件概率公式,即可求解分层提分题组A 基础过关练一、单选题1.某人在打靶中连续射击两次,事件“至多有一次中靶”的对立事件是A .至少有一次中靶B .只有一次中靶C .两次都中靶D .两次都不中靶【答案】C【分析】至多有一次的反面是至少有两次.【详解】射击两次中靶的次数可能是0,1,2.至多1次中靶,即中靶次数为0或1,故它的对立事件为中靶两次.选C.【点睛】本题考查对立事件的概念,解题关键是掌握至少、至多等词语的否定.2.在投掷骰子的试验中,可以定义许多事件,例如:1 C {出现1点},2 C {出现的点数小于1},3 C {出现的点数小于7},4C {出现的点数大于6},5C {出现的点数是偶数},以上5个事件中的随机事件个数为().A .1B .2C .3D .4【答案】B【分析】根据随机事件的定义即可得解.【详解】解:∵24C C ,是不可能事件,3C 是必然事件,在一定条件下可能发生也可能不发生的事件叫随机事件,二、多选题7.下列事件是随机事件的是()A.连续掷一枚硬币两次,两次都出现正面朝上B.异性电荷相互吸引C.在标准大气压下,水在1℃结冰D.买一注彩票中了特等奖E.掷一次骰子,向上的一面的点数是6A .应从第3,4,5组中分别抽取3人、2人、1人B .第4组志愿者恰有一人被抽中的概率为815C .第5组志愿者被抽中的概率为13D .第3组志愿者至少有一人被抽中的概率为23【答案】ABC【分析】根据分层抽样得定义即可判断A ;利用列举法结合古典概型计算即可判断【详解】第3组的人数有0.06630.060.040.02人,第4组的人数有0.04620.060.040.02人,第5组的人数有0.02610.060.040.02人,故A 正确;设第3组的人分别为,,a b c ,第4组的人分别为,d e ,第则6人中随机抽取2人有 ,,,,,,,,,a b a c a d a e a f种结果,满足条件的事件是为坐标的点落在直线上,当,,,;,,共有种结果,根据古典概型的概率公式得到以为坐标的点落在直线上的概率:.故答案为.四、解答题13.判断下列现象是否是随机现象,如果是,写出该试验的样本空间.(1)抛一个苹果,下落;(2)种下一粒种子,观察是否发芽;(3)甲、乙两队进行一场足球比赛,观察甲队的比赛结果(可以是平局).【答案】(1)是确定性现象,不是随机现象(2)是随机现象,答案见解析(3)是随机现象,答案见解析(1)试根据频率分布直方图求出这100据用该组区间的中点值代替);(2)若先采用分层抽样的方法从成绩在社区开展全运会、特奥会宣传活动,求做宣传的这【答案】(1)18人,73(2)115【分析】(1)根据频率分布直方图中数据计算频率,从而求出人数,再代入平均数公式求解平均分;(2)先通过分层抽样确定各组人数,然后列举基本事件,利用古典概型概率公式求概率【详解】(1)由频率分布直方图中数据知,成绩低于平均成绩0.02450.16550.22x题组B能力提升练A.518B.13【答案】A的表格,再根据古典概型的概率公式计算可得;【分析】依题意画出345648【详解】解:根据题意,结合范例画出个,所以从表内任取一数,恰好取到奇数的概率故选:A.4.古代《冰糖葫芦》算法题:一个小摊上摆满了五彩缤纷的5个山楂;另一种是2个山楂、3个小桔子.若小摊上山楂共选取一个“冰糖葫芦”,则这个“冰糖葫芦”是A.0.3B.0.4【答案】B【分析】设5个山楂的“冰糖葫芦”有x个,2个山楂、y ,基本事件总数80120200120n ,这个求出这个“冰糖葫芦”是5个山楂的概率.【点睛】本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.(1)按分层抽样的方法从质量落在[350,400),[400,抽2个,求这2个黄桃质量至少有一个不小于400(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:A .所有黄桃均以20元/千克收购;B .低于350克的黄桃以5元/个收购,高于或等于请你通过计算为该村选择收益最好的方案.(参考数据:2250.052750.163250.24375 【答案】(1)710(2)B 【分析】(1)由题得黄桃质量在 350,400和 400,2A ,3A ,质量在 400,450的黄桃为1B ,2B ,列出取出400克的事件个数,根据古典概型即可求解(2)分别计算两种方案的收益,比较收益大小即可确定需选择的方案.【详解】(1)由题得黄桃质量在 350,400和 400,∴应分别在质量为 350,400和 400,450的黄桃中各抽取记抽取质量在 350,400的黄桃为1A ,2A ,3A ,质量在(1)求实数a 的值;(2)若从第四组、第五组的学生中按组用分层抽样的方法抽取用简单随机抽样方法从6人中抽取2人作为正、副队长,求【答案】(1)0.04(2)815【分析】(1)根据频率分布直方图中各矩形面积之和为(2)求出第四组和第五组中人数之比,即可求得简单随机抽样方法取2人作为正、副队长的所有的基本事件和“抽取的可求得答案.(1)由题意可得(0.010.070.060.02)51a ,可得(2)由题意,100名大学生中第三组有20人,第五组有故从第四组、第五组的学生中用分层抽样的方法抽取20642010人,第五组有2人,设第四组的4人分别为a,b,c,d,第五组的2人为A,B ,则从中抽取2人的所有基本事件有:,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB 共其中“抽取的2人为不同组”的基本事件有,,,aA aB bA 故“抽取的2人为不同组”的概率为815P.题组C培优拔尖练A.38【答案】B【分析】根据古典概型的概率公式即可求解【详解】从甲、乙两位同学的则共有16种情况,其中甲的得分高于乙的得分的情况有故所求的概率为7 16故选:B.2.柜子里有3双不同的鞋子,如果从中随机地取出一双的概率为(“”,“”“”“”“”“”“”二、多选题7.如果知道事件X 已发生,则该事件所给出的信息量称为“自信息”.设随机变量X 的所有可能取值为1x ,2x ,…,n x ,且 01,2,,i p x i n , 11ni i p x ,定义X 的“自信息”为 2log i i I x p x .一次掷两个不同的骰子,若事件A 为“仅出现一个2”,事件B 为“至少出现一个5”,事件C 为“出现的两个数之和是偶数”,则()A .当 1i p x 时,“自信息” 0i I xB .当 120p x p x 时, 12I x I xC .事件C 的“自信息” 1I C D .事件A 的“自信息” I A 大于事件B 的“自信息”I B三、填空题9.抛掷3枚硬币,试验的样本点用(x ,y ,z )表示,集合M 表示“既有正面朝上,也有反面朝上”,则M =________________________________________________________________________.【答案】{(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正)}.【分析】根据试验结果,直接写出事件M 包含的基本事件即可求解.【详解】抛掷3枚硬币,试验的样本点用(x ,y ,z )表示,其中,,x y z 分别表示正反,则{M (正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正)}.四、解答题13.抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间.【答案】详见解析【解析】根据抛一枚硬币,落地时有正面朝上和反面朝上两种可能情况,可得样本空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
版块一:事件及样本空间
1.必然现象与随机现象
必然现象是在一定条件下必然发生某种结果的现象;
随机现象是在相同条件下,很难预料哪一种结果会出现的现象.
2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.
一次试验是指事件的条件实现一次.
在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;
在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C L ,,,来表示随机事件,简称为事件.
3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.
所有基本事件构成的集合称为基本事件空间,常用Ω表示.
版块二:随机事件的概率计算
1.如果事件A B ,同时发生,我们记作A B I ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义
一般地,在n 次重复进行的试验中,事件A 发生的频率m
n
,当n 很大时,总是在某个常数附
近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .
从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并
互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件
C ,称为事件A 与B 的并(或和)
,记作C A B =U . 若C A B =U ,则若C 发生,则A 、B 中至少有一个发生,事件A B U 是由事件A 或B 所包含的基本事件组成的集合. 5.互斥事件的概率加法公式:
若A 、B 是互斥事件,有()()()P A B P A P B =+U 若
事
件
12n
A A A L ,,,两两互斥(彼此互斥),有
1212()()()()n n P A A A P A P A P A =+++U UL U L .
知识内容
板块一.事件及样本空间
事件“12n A A A U UL U ”发生是指事件12n A A A L ,,,中至少有一个发生. 6.互为对立事件
不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-. <教师备案>
1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.
2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率. 随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率. 3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.
主要方法:
解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:
第一步,确定事件性质⎧⎪
⎪⎨⎪⎪⎩等可能事件 互斥事件
独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.
第二步,判断事件的运算⎧⎨⎩
和事件
积事件,即是至少有一个发生,还是同时发生,分别运用相加或
相乘事件.
第三步,运用公式()()()()()()()()(1)
k k n k n n m P A n
P A B P A P B P A B P A P B n P k C p p -⎧
=⎪⎪⎪
+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解
第四步,答,即给提出的问题有一个明确的答复.
解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率; ⑵ 互斥事件有一个发生的概率; ⑶ 相互独立事件同时发生的概率;
⑷ n 次独立重复试验中恰好发生k 次的概率;
⑸ n 次独立重复试验中在第k 次才首次发生的概率; ⑹ 对立事件的概率.
另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.
题型一 事件及样本空间
典例分析
【例1】 (安徽)
甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑
球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).
① ()2
5P B =;
②()15
|11
P B A =;
③事件B 与事件1A 相互独立; ④1A ,2A ,3A 两两互斥的事件;
⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.
【例2】 下列事件:
①同学甲竞选班长成功; ②两队球赛,强队胜利了;
③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆;
⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个 D .5个
【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:
⑴六月天下雪;
⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;
⑷当100x ≥时,事件“lg 2x ≥”; ⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.
【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:
⑴在标准大气压下且温度低于0C o 时,冰融化; ⑵今天晚上下雨;
⑶没有水分,种子发芽;
⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;
⑹若平面αI 平面m β=,n β∥,n α∥,则m n ∥.
【例5】 将一颗骰子连续投掷两次,观察落地后的点数.
⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件;
⑷“两次点数之差为1”这一事件包含了几个基本事件.
【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球
的颜色.
⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;
⑶“至少有1个白球”这一事件包含哪几个基本事件;
【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,
结果为()x y ,.
⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;
⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?
【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )
A .明天该地区约有85%的地区降水,其它15%的地区不降水
B .明天该地区约有85%的时间降水,其它时间不降水
C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水
D .明天该地区降水的可能性为85%
【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点
的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。