高考数学函数的值域与最值
【优化方案】高考数学一轮复习 第2章第二节 函数的定义域、值域和最值课件 文 苏教
(5)令 x= 5sinθ(-π2≤θ≤π2),
得 y= 5sinθ+ 5- 5sinθ2 = 5sinθ+ 5cosθ= 10sin(θ+π4). ∵-π2≤θ≤π2,∴-π4≤θ+π4≤34π.
于是- 22≤sin(θ+π4)≤1, 则- 5≤ 10sin(θ+π4)≤ 10, 即- 5≤y≤ 10. ∴所求值域为[- 5, 10].
解析:分别画出三个函数 y=-x+3,y=32x+12, y=x2-4x+3 的图象(如图),得到三个交点 A(0,3),B(1,2),C(5,8).
从图象观察可得函数 f(x)的表达式:
x2-4x+3x≤0, -x+30<x≤1,
f(x)=
32x+211<x≤5, x2-4x+3x>5.
f(x)的 图 象 是
∴f(x)的值域为[-52,-2]∪[-32,32].
【名师点评】 求某个函数的最值或值域时,首 先要仔细、认真地观察其解析式的特征,然后再 选择恰当的方法,一般优先考虑直接法、函数的 单调性法.
互动探究4 例4条件不变,设函数g(x)=ax-2, x∈[-2,2],若对于任意的x1∈[-2,2],总存 在x0∈[-2,2],使得g(x0)=f(x1)成立,求实数a 的取值范围.
3.函数值域的主要求法 (1)利用函数的单调性 若y=f(x)是[a,b]上的单调增(减)函数,则f(a)、 f(b)分别是f(x)在区间[a,b]上的最_小__(_大__)值, 最_大__(_小__) 值. (2)利用配方法
将函数配成一个完全平方式与一个常量和形式, 用此种方法,特别要注意对于x在定义域内的 值是否能使完全平方式取得__零__.__
第二节 函数的定义域、值域和最值
第
二
节
高中数学解题方法系列:函数的值域与最值
①
y
k
b x2
型,可直接用不等式性质,
【及时反馈】
求
y
3 2 x2
的值域(答: (0,
3]) 2
②
y
x2
ቤተ መጻሕፍቲ ባይዱ
bx mx
n
型,先化简,再用均值不等式,
【及时反馈】
(2)求函数 y x 2 的值域(答:[0, 1] )
x3
2
③ y x2 mx n 型,可用判别式法或均值不等式法, mx n
(3)、求函数 y x 2 2x 3 在如下区间中的的最值与值域。
ⅰ、 (4,2] ;ⅱ、 (1,2] ;ⅲ、 (3,5) ;ⅳ、 (,)
(4)、求函数 y sin x cos 2x 的最值与值域。(提示:先转化为带有限制条
件的二次型函数的最值与值域的求解)
(5)、若
所示:
定义域
值域
原函数 y f (x)
A
C
反函数 y f 1 (x)
C
A
由上表知,求原函数的值域就是相当于求它的反函数的定义域 ⅱ、求反函数的步骤(“三步曲”)
①求 x ( y) ;②x、y 互换;③通过求原函数的值域得出反函数的定义域
【及时反馈】
(1)、求函数 f (x) 2x 4 的值域 x 1
解: y x x 1 (x 1) x 1 1
令 x 1 t(运用换元法时,要特别要注意新元 t 的范围),易知 t 0(why ?) 所 以 x 1 t 2 , 所 以 y t 2 t 1(t 0) , 欲 求 原 函 数 的 值 域 , 只 需 求 y t 2 t 1(t 0) 的最值与值域即可(解法同上面的【及时反馈】)。
高考数学复习函数值域的13种求法
函数值域十三种求法1. 直接观察法利用已有的基本函数的值域观察直接得出所求函数的值域,对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
例1. 求函数x 1y =的值域解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域 解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]评注:配方法往往需结合函数图象求值域.3. 判别式法(只有定义域为整个实数集R 时才可直接用) 对于形如21112222a xb xc y a x b x c ++=++(1a ,2a 不同时为0)的函数常采用此法,就是把函数转化成关于x 的一元二次方程(二次项系数不为0时),通过方程有实数根,从而根的判别式大于等于零,求得原函数的值域.对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:.112..22222222b a y 型:直接用不等式性质k+xbx b. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx nx mx n d. y 型 x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1 例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
高考数学中的函数取值与范围
高考数学中的函数取值与范围在高考数学中,函数是一个重要的概念,掌握函数及其性质对于数学成绩的提升有着至关重要的作用。
而函数的取值与范围则是数学中的重要问题之一,在高考数学中也是经常出现的考点。
本文将从函数的定义入手,介绍函数取值与范围的相关知识点,并结合例题进行详细讲解。
一、函数的定义函数是一种把一个值域上的数对映射到另一个值域上的数对的规则。
如果一个变量的变化能够影响另一个变量的取值,那么这两个变量之间就可用函数来描述。
例如,y = 2x + 1,其中x是自变量,y是因变量,2x + 1是函数值。
二、函数的取值与范围函数的取值是指函数在定义域内所有可能的函数值所组成的集合,即f(x)的取值。
而函数的范围则是函数取遍的所有可能的函数值所组成的集合,即f(x)的取值范围。
例如,函数f(x) = x^2,定义域为实数集,那么函数的取值集合就是[0,+∞),因为对于任意实数x,x^2的值不会小于0,而可以取到0,因此取值范围是[0,+∞)。
在解决函数的取值与范围问题的时候,有几点需要注意:1. 函数的定义域需要明确首先,我们需要明确函数的定义域,因为函数的取值与范围都是在定义域内进行考虑的。
例如,函数y = sqrt(x),如果定义域是实数集合,则取值范围是[0,+∞),但如果定义域是[1,+∞),则取值范围是[1,+∞)。
2. 函数的奇偶性对取值范围的影响其次,我们需要了解一些特殊函数的取值范围特点。
例如,关于函数f(x) = sin(x)和f(x) = cos(x),我们可以发现,当x取任意一个实数时,它们的取值范围的上下限分别为[-1,1],其中又有一些规律:如果函数f(x)是偶函数,即f(x) = f(-x),则取值范围是[|f(0)|,+∞);如果函数f(x)是奇函数,即f(x) = -f(-x),则取值范围是(-∞,|f(0)|];例如,函数f(x) = sin(x)是奇函数,因此它的取值范围是[-1,1]。
高考数学函数必考知识点总结
高考数学函数必考知识点总结高考数学必考知识点:判断函数值域的方法1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。
通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。
6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
高考数学必考知识点:对数函数性质定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}值域:实数集R,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。
高考求函数值域及最值得方法及例题_训练题
一.观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域.例1:求函数)+=的值域.y-3x32(点拨:根据算术平方根的性质,先求出)-的值域.32(x解:由算术平方根的性质,知)2(x-≥3。
∴函数的值域为)3-≥0,故3+)2(x3,3[+∞ .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2:求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数, 故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域. 例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法:若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
精品推荐:常见函数值域或最值的求法(一)
常见函数值域或最值的经典求法【考点综述】函数值域是函数概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单函数的值域求解的基本方法.【解题方法思维导图预览】【解题方法】解题方法模板一:直接法使用情景:函数的不等式中含有一些特殊函数,直接观察即可确定函数的值域或最值. 解题模板:第一步 观察函数中的特殊函数;第二步 利用这些特殊函数的有界性,结合不等式推导出函数的值域. 例1 求函数2()131xf x =++的值域. 【答案】(1,3) 【解析】 解题模板选择:本题中分式的分母部分是一个指数型函数的形式,属于特殊函数,且函数的解析式整体比较简单,故选取解题方法模板一直接法进行解答. 解题模板应用:第一步 观察函数中的特殊函数; 函数31x y=+为指数型函数,易得31(1,)x +∈+∞,第二步 利用这些特殊函数的有界性,结合不等式推导出函数的值域. 由31(1,)x+∈+∞,得2()1(1,3)31x f x =+∈+,故函数2()131x f x =++的值域为(1,3). 【典型例题】1.函数y = A .[0,)+∞ B .[0,4] C .[0,4) D .(0,4)【答案】C 【解析】函数y =(]20,16,x∈所以[)1620,16x-∈.有[)0,4y =. 故选C.2.函数211y x =+的值域是( ) A .[1,)+∞ B .(0,1]C .(,1]-∞D .(0,)+∞【答案】B 【解析】 【分析】根据倒数性质求值域. 【详解】因为211x +≥,所以21011x <≤+,选B. 【点睛】本题考查函数值域,考查基本分析求解能力,属基本题. 3.函数21()12f x x =+的值域为( )A .()0,1B .[)0,1C .[]0,1D .(]0,1【答案】D 【解析】 【分析】根据20x ≥,求得()f x 的值域. 【详解】由于20x ≥.所以220x ≥,2121x +≥,210112x<≤+,故()f x 的值域为(]0,1. 故选:D. 【点睛】本小题主要考查函数值域的求法,考查不等式的性质,属于基础题.4.函数y A .[–1,+∞) B .[0,+∞)C .(–∞,0]D .(–∞,–1]【答案】B 【解析】 【分析】由x +1≥0,得x ≥–1,在[–1,+∞)上函数y 0,进而得到结果. 【详解】由x +1≥0,得x ≥–1,在[–1,+∞)上函数y 0,∴函数y [0,+∞). 故选B . 【点睛】这个题目考查了函数的值域的求法,关于函数的值域需要注意的有:首先函数值域不能为空集,其次是指的函数值的集合.求函数的值域的问题,最终结果要写成集合或者区间的形式. 5.已知函数()212f x x =+,则f (x )的值域是 A .1{|}2y y ≤ B .1{|}2y y ≥ C .1{|0}2y y <≤D .{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域. 【详解】由于220,22x x ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,故选C. 【点睛】本小题主要考查函数值域的求法,考查不等式的性质,属于基础题. 6.设函数()()121xf x x R =∈+,则它的值域为( ) A .(0,1) B .(0,2)C .(1,+∞)D .(2,+∞)【答案】A 【解析】 【分析】根据指数函数的值域结合反比例函数值域即可求解. 【详解】由题:x ∈R ,()20,x∈+∞,()211,x+∈+∞,所以()10,121x ∈+()()121xf x x R =∈+的值域为0,1. 故选:A 【点睛】此题考查求函数值域,涉及指数函数值域,反比例型函数值域. 解题方法模板二:配方法使用情景:函数表达式为二次函数或者换元之后为二次函数的类型,即可使用配方法求函数的值域或最值. 解题模板:第一步 将二次函数配方成2()y a x b c =-+;第二步 根据二次函数的图像和性质即可求出函数的值域. 例2 已知函数2()41,[2,5]f x x x x =-+∈-,求函数y =f (x )的值域.【答案】[-3,13] 【解析】 解题模板选择:本题中所给的函数解析式为二次函数的形式,是一个二次函数在给定区间求值域的问题,故选取解题方法模板二配方法进行解答. 解题模板应用:第一步 将二次函数配方成2()y a x b c =-+; 函数的解析式22()41(2)3f x x x x =-+=--.第二步 根据二次函数的图像和性质即可求出函数的值域. 由二次函数的性质可知: 当x =2时,min 3y =-;当x =-2时,max 13y =.因此函数2()41,[2,5]f x x x x =-+∈-的值域为[-3,13].【典型例题】1.函数y =的值域为( ) A .RB .[0,)+∞C .3(,]2-∞D .30,2⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】由题意可得y =21924x ⎛⎫--+ ⎪⎝⎭的取值范围结合幂函数的单调性即可得解. 【详解】函数y ==,21990,244x ⎛⎫⎡⎤--+∈ ⎪⎢⎥⎝⎭⎣⎦,∴函数y =的值域为⎡⎢⎣即30,2⎡⎤⎢⎥⎣⎦.故选:D. 【点睛】本题考查了复合函数值域的求解,考查了二次函数与幂函数性质的应用,属于基础题. 2.函数[]22,0,3y x x x =-∈的值域为( )A .[]0,3B .[]1,3C .[]1,0-D .[]1,3-【答案】D 【解析】分析:利用二次函数的性质即可得出答案. 解析:()22211y x x x =-=--,∴对称轴为1x =,抛物线开口向上,03x ≤≤,∴当1x =时,min 1y =-,1-距离对称轴远,∴当3x =时,max 3y =, ∴13y -≤≤.故选:D.点睛:二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键都是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论 3.函数24y x x =-,([0,4])x ∈的值域是( ) A .[3,0]- B .[4,0]- C .[0,3] D .[4,)-+∞【答案】B 【解析】 【分析】先将函数配方224(2)4y x x x =-=--,再利用二次函数的图象和性质求解. 【详解】224(2)4y x x x =-=--又因为[0,4]x ∈ 所以[4,0]y ∈- 故选:B 【点睛】本题主要考查了二次函数求值域,还考查了运算求解的能力,属于基础题. 4.函数[]()2220,3y x x x =-+∈的值域是( )A .[]1,5B .[]1,2C .[]2,5D .[)1,+∞ 【答案】A 【解析】 【分析】求出函数的对称轴,讨论对称轴和区间的关系,即可得到最值,进而得到值域. 【详解】解:函数()2222(1)1y f x x x x ==-+=-+,对称轴为[]10,3x =∈,()f x ∴在[]0,1上单调递减,在[]1,3上单调递增,()11f =,()02f =,()2332325f =-⨯+=()[]1,5f x ∴∈即函数的值域为[]1,5. 故选:A .【点睛】本题考查二次函数的值域,注意讨论对称轴和区间的关系,考查运算能力,属于基础题. 5.函数23622y x x =-+-的值域为( ) A .[4,)+∞ B .(,4]-∞C .(,10]-∞-D .[10,)-+∞【答案】B 【解析】 【分析】将二次函数配成顶点式,即可得解. 【详解】 解:()2233622422y x x x =-+-=--+,(],4y ∴∈-∞.故选:B . 【点睛】本题考查二次函数的性质,属于基础题. 解题方法模板三:判别式法使用情景:函数表达式形如22dx ex fy ax bx c++=++类型 解题模板:第一步 观察函数解析式的形式,型如22dx ex fy ax bx c++=++的函数; 第二步 将函数式化成关于x 的方程,且方程有解,用根的判别式求出参数y 的取值范围,即得函数的值域.例3 求函数3274222++-+=x x x x y 的值域.【答案】9,22⎡⎫-⎪⎢⎣⎭【解析】 解题模板选择:本题中所给函数的解析式符合利用判别式法求值域的形式,故选取解题方法模板三判别式法进行解答.解题模板应用:第一步,将函数式化成关于x 的方程的形式:因为3274222++-+=x x x x y ,所以()()0732222=++-+-y x y x y ,第二步,根据判别式得出函数值的取值范围:2≠y 时,上式可以看成关于x 的二次方程,该方程的x 范围应该满足()0322≠++=x x x f 即R x ∈此时方程有实数根即0≥∆:=∆()[]()()07324222≥+---y y y ⎥⎦⎤⎢⎣⎡-∈⇒2,29y当2=y 时,方程化为7=0,显然不能成立,所以2≠y , 将2=y ,29-=y 分别代入检验的2=y 不符合方程,所以9,22y ⎡⎫∈-⎪⎢⎣⎭解题方法模板四:分离常数法 使用情景:函数表达式形如()ax bf x cx d+=+类型解题模板:第一步 观察函数()f x 类型,型如()ax bf x cx d+=+;第二步 对函数()f x 变形成()a ef x c cx d=++形式; 第三步 求出函数ey cx d=+在()f x 定义域范围内的值域,进而求函数()f x 的值域. 例4 求函数1(1)1x y x x +=≠-的值域 【答案】{y |y ≠1} 【解析】 解题模板选择:本题中函数的解析式是一个分时形式()ax bf x cx d+=+,故选取解题方法模板四分离常数法进行解答.解题模板应用:第一步 观察函数()f x 类型,型如()ax bf x cx d+=+:1(1)1x y x x +=≠-,其中1,1a b c d ====-; 第二步 对函数()f x 变形成()a e f x c cx d=++形式; 11221111x x y x x x +-+===+---, 第三步 求出函数e y cx d=+在()f x 定义域范围内的值域,进而求函数()f x 的值域. 函数的定义域为{}|1x x ≠-,则201x ≠-,故2111y x =+≠-, 因此原函数的值域为{y |y ≠1}.【名师点睛】此类型的函数,分子、分母都含有自变量,而通过分离常数法,可以将此类函数的变量只含到分母上,分子化为常数,使函数值y 的范围变化容易确定,从而较为简单地求出函数的值域.【典型例题】1.函数()3452x f x x -+=-的值域是( ) A .B .C .D .R【答案】B【解析】试题分析:()344341077252252525x x x f x x x x x -+--+==-=-=-+----()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞考点:函数值域2.函数()3452x f x x -+=-的值域是( ) A .()(),22,-∞+∞ B .()(),22,-∞--+∞C .55,,22⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .R 【答案】B【解析】【分析】先分离常数,再根据反比例函数单调性求值域.【详解】()344341077252252525x x x f x x x x x -+--+==-=-=-+----,()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞. 【点睛】本题考查分式函数单调性以及值域,考查基本求解能力.3.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德,牛顿并列为世界三大数学家,用其命名的“高斯函数”为:设用[]表示不超过的最大整数,则称为高斯函数,例如[-3.5]=-4,[2.1]=2,已知函数,则函数的值域为( ) A .{0,1}B .{0}C .{-1,0}D .{-1,0,1}【答案】C【解析】【分析】由题意首先确定函数的值域,然后求解函数的值域即可. 【详解】函数的解析式,由于,故,结合函数的定义可得函数的值域为{-1,0}.本题选择C 选项.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝. 4.设函数f (x )=-,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域为( ) A .{0}B .{-1,0}C .{-1,0,1}D .{-2,0}【答案】B【解析】【分析】【详解】 依题意()211111122212x x x f x +-=-=-++,由于10121x <<+,所以()11,22f x ⎛⎫∈- ⎪⎝⎭.当()1,02f x ⎛⎫∈- ⎪⎝⎭时,()1f x ⎡⎤=-⎣⎦,当()10,2f x ⎡⎫∈⎪⎢⎣⎭时,()0f x ⎡⎤=⎣⎦,故()f x ⎡⎤⎣⎦的值域为{}0,1.故选B.【点睛】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题. 5.函数()1212xxf x -=+的值域为( ) A .()1,1-B .(),1-∞C .()1,+∞D .()0,1【答案】A【解析】【分析】用分离常数法,并结合指数函数性质求解.【详解】 ()1212xx f x -=+2112x =-++, 因为20x >,所以121x +>,20212x <<+,211112x -<-+<+. ∴()f x 的值域是(1,1)-.故选:A.【点睛】本题考查求函数的值域,方法是分离常数法.对一次分式型函数可以采用分离常数法求函数值域.本题还考查了指数函数的性质.。
高考数学中的函数值域与定义域求解总结
高考数学中的函数值域与定义域求解总结在高中数学中,函数是一个非常基础并且非常重要的概念。
函数值域与定义域的求解是函数学习中的重点和难点。
在高考中,对于函数的掌握程度和对函数值域与定义域求解的熟练程度都是非常重要的。
一、函数域的定义在提及函数值域与定义域求解之前,我们需要先来回顾一下函数域的定义。
函数域即为定义域和值域的并集。
其中,定义域指的是函数的自变量所在的取值范围,通俗地理解,就是能够代入函数中的数字集合。
值域指的是函数因变量的取值范围,即将所有自变量都代入函数中所得到的所有函数值的集合。
理解了这两个术语的定义后,再来看看如何求解函数的值域和定义域。
二、函数值域的求解1.分段函数值域求解对于分段函数,我们需要对每一个分段分别求解,最后再将结果合并。
求解过程具体如下:1)对于线性函数 y = kx + b,当 k > 0 时,y 的最小值是固定的,即 b;当 k < 0 时,y 的最大值是固定的,即 b。
因此,对于线性函数而言,它的值域就是一条直线。
2)对于二次函数 y = ax² + bx + c,由于 a 的正负性不确定,因此可以根据判别式来判断这个函数的值域。
a > 0 时,y 取最小值 f(x = -b/2a),此时 y ∈ [ f(x), +∞)。
a < 0 时,y 取最大值 f(x = -b/2a),此时 y ∈ (-∞, f(x)]。
3)对于绝对值函数 y = |x|,其值域为 y ∈ [0, +∞)。
4)对于反比例函数 y = 1/x,其值域为 y ∈ (-∞, 0) U (0, +∞)。
2.连续函数值域求解对于连续函数 y = f(x),我们可以通过求导来判断函数的最值,通过函数的最值来推导出值域。
对于一个实数集合内的连续函数,当其定义域为闭区间时,函数的值域即为右端点和左端点函数值的较大值和较小值的区间。
当其定义域为开区间时,值域即为函数的最大值和最小值的区间。
高考数学中的函数定义域及值域的详细解释
高考数学中的函数定义域及值域的详细解释在高中数学的学习过程中,函数的定义域和值域是非常重要的一个知识点。
掌握函数的定义域和值域,对于学生未来的学习和职业发展都有着极为重要的作用。
接下来,我们就来详细解释函数的定义域和值域的概念及其在高考数学中的应用。
一、函数的定义域是什么?在数学中,函数可以看作是一种联系两个集合的规律。
其中,一个集合是自变量的取值集合,另一个集合是函数值的取值集合。
函数的定义域指的就是自变量的取值集合。
以一个简单的例子为说明:设有一个函数f(x) = √(10 - x),其中x 的取值范围是整个实数集合,那么函数 f(x) 的定义域就是整个实数集合。
但是实际上,在某些情况下,函数的自变量可能不是整个实数集合。
例如,函数 f(x) = 1/x,x 的取值范围为整个实数集合,但由于在 x = 0 处没有定义,因此函数的定义域就是整个实数集合减去 0。
通过以上例子,可以看出函数的定义域并不是简单的取值范围,而是根据函数的性质来确定的。
每个函数都有其自己对应的定义域。
二、函数的值域是什么?函数的值域指的是函数在定义域上所有可能的函数值所组成的集合。
也以前面的例子f(x)= √ (10-x),为例。
将这个函数的定义域限定在 [0,10] 上,那么函数的值域就是在这个区间内所有满足条件的函数值组成的集合。
在求解函数的值域的问题上,可以借助一些特殊的技巧。
比如,在许多函数的求值问题上,我们可以使用函数的性质、图像、导数等方式来简单地确定函数的值域。
三、函数的定义域和值域在高考数学中的应用函数的定义域和值域是高中数学的重点知识点,而在高考中经常考到的题型则是在此基础上进行加深。
经过高中的语文、英语、数学学习,学生应该已经掌握了认真分析问题的方法。
在高考数学的题目中,有许多都需要从某个小细节来全面分析题目,从而解决问题。
而在面对一些函数及其图像的问题时,掌握函数的定义域和值域概念,不仅能在图像问题及函数在某个区间的取值问题上提供大量便利,还可以为高考数学的综合应用题提供更好的思路。
专题06 函数的定义域、值域--《2023年高考数学命题热点聚焦与扩展》【原卷版】
【热点聚焦】函数的定义域作为函数的要素之一,是研究函数的基础,函数的定义域问题也是高考的热点.函数的值域(最值)也是高考中的一个重要考点,并且值域(最值)问题通常会渗透在各类题目之中,成为解题过程的一部分.【重点知识回眸】1.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.提醒:两个函数的值域和对应关系相同,但两个函数不一定相同,例如,函数f(x)=|x|,x ∈[0,2]与函数f(x)=|x|,x∈[-2,0].2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.提醒:分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.3.常见函数定义域的求法类型x满足的条件n f x(n∈N*)f(x)≥02()(n∈N*)f(x)有意义21()n f x1与[f(x)]0f(x)≠0f x()log a f(x)(a>0且a≠1)f(x)>0a f(x)(a>0且a≠1)f(x)有意义tan[f (x )]f (x )≠π2+k π,k ∈Z四则运算组成的函数 各个函数定义域的交集实际问题使实际问题有意义4.①若()y f x =的定义域为(),a b ,则不等式()a g x b <<的解集即为函数()()y f g x =的定义域;②若()()y f g x =的定义域为(),a b ,则函数()g x 在(),a b 上的的值域即为函数()y f x =的定义域.5.常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归.(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域.(2)二次函数(2y ax bx c =++),给定区间.二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解.(关键点:①抛物线开口方向,②顶点是否在区间内).(3)反比例函数:1y x=(1)图像关于原点中心对称(2)当,0x y →+∞→ ,当,0x y →-∞→. (4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a >注:因为此类函数的值域与a 相关,求a 的值时要先保证x 的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a =② 极值点:,x a x a ==③ 极值点坐标:(,2,,2a a a a --④ 定义域:()(),00,-∞+∞⑤ 自然定义域下的值域:(),22,a a ⎡-∞-+∞⎣(5)函数:()0ay x a x=-> 注意与对勾函数进行对比① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-. 6.函数值域问题处理策略 (1)换元法:① ()()(),log ,sin f x a y ay f x y f x ===⎡⎤⎡⎤⎣⎦⎣⎦:此类问题在求值域时可先确定()f x 的范围,再求出函数的范围.② ()()(),log ,sin x a y f a y f x y f x ===:此类函数可利用换元将解析式转为()y f t =的形式,然后求值域即可.③形如y ax b cx d =++(2)均值不等式法:特别注意“一正、二定、三相等”.(3)判别式法:若原函数的定义域不是实数集时,应结合函数的定义域,将扩大的部分剔除.(4)分离常数法:一般地, ① ax by cx d+=+:换元→分离常数→反比例函数模型② 2ax bx c y dx e ++=+:换元→分离常数→ay x x=±模型③ 2dx ey ax bx c+=++:同时除以分子:21y ax bx c dx e=+++→②的模型 ④ 22ax bx cy dx ex f++=++:分离常数→③的模型(5)单调性性质法:利用函数的单调性(6)导数法:利用导数与函数的连续性求图复杂函数的极值和最值, 然后求出值域 (7)数形结合法【典型考题解析】热点一已知函数解析式求定义域【典例1】(广东·高考真题(文))函数f (x )=11x-+lg(1+x )的定义域是( ) A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞) 【典例2】(山东·高考真题(文))函数21()4ln(1)f x x x =-+( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]【典例3】(2019·江苏·高考真题)函数276y x x =+-_____. 【典例4】(2022·北京·高考真题)函数1()1f x x x=-_________. 【总结提升】已知函数的具体解析式求定义域的方法(1)简单函数的定义域:若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可. 热点二 求抽象函数的定义域【典例5】(全国·高考真题(理))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)-B .1(1,)2--C .(1,0)-D .1(,1)2【典例6】(2023·全国·高三专题练习)已知函数()31f x +的定义域为[]1,7,求函数()f x 的定义域.【典例7】(2022·全国·高三专题练习)已知函数(1)y f x +=的定义域为112⎡⎤-⎢⎥⎣⎦,,则函数2(log )y f x =的定义域为( )A .(0,)+∞B .(0,1)C .222⎤⎢⎥⎣⎦D .2⎡⎤⎣⎦,【总结提升】(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. (2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 热点三 求函数的值域(最值)【典例8】(江西·高考真题(理))若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3 C .510[,]23D .10[3,]3【典例9】(2023·全国·高三专题练习)已知函数()y f x =的定义域是R ,值域为[]1,2,则下列四个函数①()21y f x =-;①()21y f x =-;①()12f x y -=;①()2log 11y f x =++,其中值域也为[]1,2的函数个数是( ) A .4B .3C .2D .1【典例10】(2023·全国·高三专题练习)已知函数2()(2)sin(1)1xf x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=( )A .1B .2C .3D .4【典例11】(2022·河南·郑州四中高三阶段练习(文))高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[]1.32-=-,[]3.43=,已知()11313xf x =-+,则函数()y f x ⎡⎤=⎣⎦的值域为______. 【典例12】(2023·全国·高三专题练习)函数()21f x x x =+-________;函数24y x x =-________.【典例13】(2023·河南·洛宁县第一高级中学一模(文))已知函数()211122f x x x =++. (1)求()f x 的图像在点()()22f ,处的切线方程; (2)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域.热点四 求参数的值或取值范围【典例14】(2023·全国·高三专题练习)设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2B .[]1,3C .[]0,2D .[]2,3【典例15】(2022·全国·高三专题练习)已知函数()221f x ax x =++R ,则实数a 的取值范围是__.【典例16】(2016·北京·高考真题(理))设函数33,(){2,x x x a f x x x a -≤=->. ①若0a =,则()f x 的最大值为____________________; ②若()f x 无最大值,则实数a 的取值范围是_________________.【精选精练】1.(2023·全国·高三专题练习)若集合-1|2M x y x ==⎧⎨⎩,{}2|N y y x -==,则( )A .M N ⋂=∅B .M N ⊆C .N M ⊆D .M =N2.(2022·全国·高三专题练习)下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y x3.(2022·全国·高三专题练习)若函数()21f x ax ax =-+R ,则a 的范围是( ) A .()0,4 B .[)0,4 C .(]0,4D .[]0,44.(2023·全国·高三专题练习)已知函数()f x 的定义域为[]0,1,值域为[]1,2,那么函数()2f x +的定义域和值域分别是( )A .[]0,1,[]1,2B .[]2,3,[]3,4C .[]2,1--,[]1,2D .[]1,2-,[]3,45.(2022·江西·高三阶段练习(文))函数()s 2π2inx f x x =+在[0,1]上的值域为( ) A .[1,2] B .[1,3] C .[2,3] D .[2,4]6.(2022·全国·高三专题练习)已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩的值域为R ,那么a 的取值范围是( ) A .(﹣∞,﹣1]B .(﹣1,12)C .[﹣1,12)D .(0,1)7.(2023·全国·高三专题练习)函数f (x 2sin 12x π- )A .54,433k k πππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) B .154,433k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )C .54,466k k πππ⎡⎤++⎢⎥⎣⎦ (k ∈Z ) D .154,466k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )8.(2023·山西大同·高三阶段练习)函数6()e 1||1x mx f x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关9.(2022·江苏南京·高三开学考试)已知函数()()()()5sin sin ,99f x x x g x f f x ππ⎛⎫⎛⎫=++-= ⎪ ⎪⎝⎭⎝⎭,则()g x 的最大值为( )A 2B 3C .32D .210.(2022·广东·石门高级中学高二阶段练习)函数()12cos f x x x x =+-的最小值为( ) A .1ππ B .22ππC .-1D .0二、多选题11.(2023·全国·高三专题练习)已知函数122()log (2)log (4)f x x x =--+,则下列结论中正确的是( )A .函数()f x 的定义域是[4,2]-B .函数(1)=-y f x 是偶函数C .函数()f x 在区间[1,2)-上是减函数D .函数()f x 的图象关于直线1x =-对称 三、双空题12.(2023·全国·高三专题练习)已知函数()ln ,1e 2,1xx b x f x x +>⎧=⎨-≤⎩,若(e)3(0)f f =-,则b =_____,函数()f x 的值域为____.13.(2023·全国·高三专题练习)已知函数()121xf x a =+-为奇函数,则实数a =__,函数f (x )在[1,3]上的值域为__. 四、填空题14.(2022·全国·高三专题练习)函数()02112y x x x =++-的定义域是________.15.(2022·上海闵行·二模)已知函数()()41log 42xf x m x =+-的定义域为R ,且对任意实数a ,都满足()()f a f a ≥-,则实数m =___________;16.(2022·上海市嘉定区第二中学模拟预测)已知函数()y f x =是定义域为R 的奇函数,且当0x <时,()1af x x x=++.若函数()y f x =在[)3,+∞上的最小值为3,则实数a 的值为________.17.(2022·北京·清华附中模拟预测)已知函数()()2ln ,1,1x a x f x x a x +≥⎧⎪=⎨+<⎪⎩,下列说法正确的是___________.①当0a ≥时,()f x 的值域为[0,)+∞; ②a ∀∈R ,()f x 有最小值;③R a ∃∈,()f x 在(0,)+∞上单调递增: ④若方程1f x有唯一解,则a 的取值范围是(,2)-∞-.18.(2022·全国·高三专题练习)已知函数f (x )()221mx m x m =--+-的值域是[0,+∞),则实数m 的取值范围是__.。
高考数学 函数的值域
第二章 函数——第9课时:函数的值域一.课题:高考数学 函数的值域二.教学目标:理解函数值域的意义;掌握常见题型求值域的方法,了解函数值域的一些应用.三.教学重点:求函数的值域.四.教学过程:(一)主要知识:1.函数的值域的定义;2.确定函数的值域的原则;3.求函数的值域的方法.(二)主要方法(范例分析以后由学生归纳):求函数的值域的方法常用的有:直接法,配方法,判别式法,基本不等式法,逆求法(反函数法),换元法,图像法,利用函数的单调性、奇偶性求函数的值域等.(三)例题分析:例1.求下列函数的值域:(1)232y x x =-+; (2)y =; (3)312x y x +=-; (4)y x =+ (5)y x = (6)|1||4|y x x =-++;(7)22221x x y x x -+=++; (8)2211()212x x y x x -+=>-; (9)1sin 2cos x y x-=-. 解:(1)(一)公式法(略)(二)(配方法)2212323323()61212y x x x =-+=-+≥Q , ∴232y x x =-+的值域为23[,)12+∞. 改题:求函数232y x x =-+,[1,3]x ∈的值域.解:(利用函数的单调性)函数232y x x =-+在[1,3]x ∈上单调增,∴当1x =时,原函数有最小值为4;当3x =时,原函数有最大值为26.∴函数232y x x =-+,[1,3]x ∈的值域为[4,26].(2)求复合函数的值域:设265x x μ=---(0μ≥),则原函数可化为y =. 又∵2265(3)44x x x μ=---=-++≤,∴04μ≤≤[0,2],∴y 的值域为[0,2].(3)(法一)反函数法:312x y x +=-的反函数为213x y x +=-,其定义域为{|3}x R x ∈≠, ∴原函数312x y x +=-的值域为{|3}y R y ∈≠. (法二)分离变量法:313(2)773222x x y x x x +-+===+---, ∵702x ≠-,∴7332x +≠-, ∴函数312x y x +=-的值域为{|3}y R y ∈≠. (4)换元法(代数换元法):设0t =,则21x t =-,∴原函数可化为2214(2)5(0)y t t t t =-+=--+≥,∴5y ≤,第二章 函数——第9课时:函数的值域∴原函数值域为(,5]-∞.说明:总结y ax b =++2y ax b =+2y ax b =++(5)三角换元法:∵21011x x -≥⇒-≤≤,∴设cos ,[0,]x ααπ=∈,则cos sin )4y πααα=+=+ ∵[0,]απ∈,∴5[,]44πππα+∈,∴sin()[42πα+∈-)[4πα+∈-, ∴原函数的值域为[-.(6)数形结合法:23(4)|1||4|5(41)23(1)x x y x x x x x --≤-⎧⎪=-++=-<<⎨⎪+≥⎩,∴5y ≥,∴函数值域为[5,)+∞.(7)判别式法:∵210x x ++>恒成立,∴函数的定义域为R .由22221x x y x x -+=++得:2(2)(1)20y x y x y -+++-= ① ①当20y -=即2y =时,①即300x +=,∴0x R =∈②当20y -≠即2y ≠时,∵x R ∈时方程2(2)(1)20y x y x y -+++-=恒有实根,∴22(1)4(2)0y y =+-⨯-≥V ,∴15y ≤≤且2y ≠, ∴原函数的值域为[1,5].(8)2121(21)11112121212122x x x xy x x x x x x -+-+===+=-++----, ∵12x >,∴102x ->,∴112122x x -+≥=-当且仅当112122x x -=-时,即x =12y ≥,∴原函数的值域为1,)2+∞. (9)(法一)方程法:原函数可化为:sin cos 12x yx y -=-,)12x y ϕ-=-(其中cos ϕϕ==), ∴sin()[1,1]x ϕ-=-,∴|12|y -≤2340y y -≤,∴403y ≤≤, ∴原函数的值域为4[0,]3.(法二)数形结合法:可看作求点(2,1)与圆221x y +=上的点的连线的斜率的范围,解略. 例2.若关于x 的方程|3|2(22)3x a ---=+有实数根,求实数a 的取值范围.第二章 函数——第9课时:函数的值域 解:原方程可化为|3|2(22)3x a --=--, 令|3|2x t --=,则01t <≤,2()(2)3a f t t ==--,又∵()a f t =在区间(0,1]上是减函数, ∴(1)()(0)f f t f ≤<,即2()1f t -≤<,故实数a 的取值范围为:21a -≤<.例3.(《高考A 计划》考点9,智能训练16)某化妆品生产企业为了占有更多的市场份额,拟在2003年度进行一系列的促销活动.经过市场调查和测算,化妆品的年销量x 万件与年促销费用t 万元(0)t ≥之间满足:3x -与1t +成反比例;如果不搞促销活动,化妆品的年销量只能是1万件. 已知2003年,生产化妆品的固定投入为3万元,每生产1万件化妆品需再投入32万元.当将每件化妆品的售价定为“年平均每件成本的150%”与“年平均每件所占促销费的一半”之和,则当年产销量相等.(1)将2003年的年利润y 万元表示为年促销费t 万元的函数;(2)该企业2003年的促销费投入多少万元时,企业的年利润最大?(注:利润=收入-生产成本-促销费)解:(1)由题设知:31k x t -=+,且0t =时,1x =,∴2k =,即231x t =-+, ∴年生产成本为2[32(3)3]1t -++万元,年收入为21150%[32(3)3]12t t -+++. ∴年利润212{150%[32(3)3]}[32(3)3](0)121y t t t t t =-++--+-≥++, ∴29835(0)2(1)t t y t t -++=≥+. (2)由(1)得2(1)100(1)6413250()50422(1)21t t t y t t -+++-+==-+≤-=++, 当且仅当13221t t +=+,即7t =时,y 有最大值42. ∴当促销费定为7万元时,2003年该化妆品企业获得最大利润.(四)巩固练习:1.函数221xx y =+的值域为(0,1). 2.若函数()log a f x x =在[2,4]上的最大值与最小值之差为2,则a=2.五.课后作业:《高考A 计划》考点1,智能训练3,4,9,12,13,14.。
高考数学 常见题型 三角函数的值域与最值
【解析】 ①∵f(x)=2cos2x+2 3sinxcosx+m =1+cos2x+ 3sin2x+m=2sin(2x+π6)+m+1, ∴函数 f(x)的最小正周期 T=π.
②假设存在实数 m 符合题意.∵x∈[0,π2], ∴π6≤2x+π6≤76π,∴sin(2x+π6)∈[-12,1]. ∴f(x)=2sin(2x+π6)+m+1∈[m,3+m]. 又∵f(x)∈[12,72],解得 m=12, ∴存在实数 m=12,使函数 f(x)的值域恰为[12,72].
cos2x+
3 4
=12sinx·cosx-
23cos2x+
3 4
=14sin2x-
43(1+cos2x)+
3 4
=14sin2x- 43cos2x=12sin2x-π3.
所以 f(x)的最小正周期 T=22π=π.
(2) 因 为 f(x) 在 区 间 -π4,-1π2 上 是 减 函 数 , 在 区 间 -1π2,π4上是增函数,
故 y=f(t)=12(t+1)2-1(- 2≤t≤ 2). 从而知 f(-1)≤y≤f( 2),即-1≤y≤ 2+12. 则函数的值域为[-1, 2+12].
点评:可化为y=f(sinx)型三角函数的最值或值域也可通 过换元法转为其他函数的最值或值域.
对点训练 (1)求函数 y=s1in-2xcsoisnxx的值域. 【解析】 ∵y=2si1n-xcocsoxssxinx=2cos1x-1-coscxos2x =2cos2x+2cosx=2(cosx+12)2-12, 于是当且仅当 cosx=1 时,ymax=4. 但 cosx≠1,∴y<4. 且 ymin=-12,当且仅当 cosx=-12时取得. 故函数值域为[-12,4).
高考数学函数的值域
三主要方法:
求函数的值域的方法常用的有:直接法,配方法,判别式 法,基本不等式法,逆求法(反函数法),换元法,图 像法,利用函数的单调性、奇偶性求函数的值域等.
Hale Waihona Puke 六眼荒原鸽一样大爽了一声,突然使了一套蹲身疯耍的特技神功,身上顿时生出了二十只活似玩具形态的水白色脸皮。最后棉桃锣翅仙甩动浑厚的碳黑色烟卷般的声音 一声怪吼!只见从天边涌来一片棉际的钱海巨浪……只见棉际的金币轰鸣翻滚着快速来到近前,突然间密密麻麻的主管在一个个小棉桃锣翅仙的指挥下,从轰鸣翻滚的 金币中冒了出来!无比壮观的景象出现了,随着岩浆和钱海的高速碰撞!翻滚狂舞其中的所有物体和碎片都被撞向十几万米的高空,半空中立刻形成一道杀声震天、高 速上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎的猫妖蟹脚鬼如同蜡像一样迅速熔化……双方斗士残碎的肢 体很快变成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由L.崴敕柯忍者和另外三个校霸怪又从地下钻出变成一个巨大的芝麻毒脖鬼!这个巨大的芝 麻毒脖鬼,身长二百多米,体重八十多万吨。最奇的是这个怪物长着十分美妙的毒脖!这巨鬼有着金橙色皮球般的身躯和暗橙色细小玩具形态的皮毛,头上是纯黄色路 灯似的鬃毛,长着水青色高粱般的爆竹浪云额头,前半身是深橙色海带般的怪鳞,后半身是多变的羽毛。这巨鬼长着深绿色高粱般的脑袋和纯蓝色元宵般的脖子,有着 墨绿色蜜桃一般的脸和春绿色叉子般的眉毛,配着墨蓝色火龙似的鼻子。有着亮黄色拖网一般的眼睛,和亮青色腰带般的耳朵,一张亮黄色枣核般的嘴唇,怪叫时露出 亮蓝色狼精般的牙齿,变态的深橙色弯刀形态的舌头很是恐怖,暗橙色布条样的下巴非常离奇。这巨鬼有着犹如蜈蚣般的肩胛和仿佛竹节似的翅膀,这巨鬼花哨的橙白 色肥肠形态的胸脯闪着冷光,美如炸鸡似的屁股更让人猜想。这巨鬼有着特像长号般的腿和深蓝色菊花般的爪子……普通的纯黄色蒜头形态的四条尾巴极为怪异,天青 色驴肾般的瓦刀七影肚子有种野蛮的霸气。橙白色柳叶似的脚趾甲更为绝奇。这个巨鬼喘息时有种墨蓝色牛怪形态的气味,乱叫时会发出暗绿色蚯蚓一般的声音。这个 巨鬼头上深黄色邮筒似的犄角真的十分罕见,脖子上活像鲇鱼似的铃铛似乎有点原始但又有些变态……蘑菇王子和知知爵士见情况突变,急忙变成了一个巨大的铜钱狠 趾仙!这个巨大的铜钱狠趾仙,身长二百多米,体重八十多万吨。最奇的是这个怪物长着十分暴力的狠趾!这巨仙有着灰蓝色柿子一般的身躯和淡青色细小肉串一样的 皮毛,头上是青古磁色土堆样的鬃毛,长着中灰色猪肺一般的瓜蒂仙霞额头,前半身是蓝宝石色毛刷一般的怪鳞,后半身是奇绝的羽毛。这巨仙长着紫葡萄色猪肺造型 的脑袋和白象牙
高考函数考什么知识点
高考函数考什么知识点在高中数学学科中,函数是一个重要的概念和知识点,也是高考中的一道难题。
高考函数考察的内容包括函数的定义、性质、图像、变化规律以及解题技巧等等。
在这篇文章中,我将从不同角度探讨高考函数考察的知识点。
函数的定义是高考函数考察的基础。
根据教材中的定义,函数是一个将自变量(通常表示为x)映射到因变量(通常表示为y)的规则或关系。
在考试中通常会要求考生给出函数的定义或判断一个给定的关系是否为函数。
这需要考生对函数的定义有清晰的理解,能够准确地判断关系是否符合函数的定义。
函数的性质是高考函数考察的重点之一。
其中,函数的增减性是一个重要的性质。
考生需要掌握函数在定义域上的增减性,了解函数在不同区间的增减情况。
此外,函数的奇偶性也是考点之一。
如果一个函数满足f(-x) = f(x),则称该函数为偶函数;如果一个函数满足f(-x) = -f(x),则称该函数为奇函数。
考生需要通过观察函数的表达式或图像,判断出函数的奇偶性。
函数的图像是高考函数考察的另一个重要方面。
考生需要能够根据函数的表达式,画出函数的图像。
同时,考生还需要通过观察函数的图像,掌握函数的特点和性质。
比如,当函数的图像在坐标系上是上升/下降的单调曲线时,可以判断函数是单调递增/递减的。
当函数的图像在坐标系上是对称的,可以判断函数的奇偶性等。
函数的变化规律也是高考函数考察的重要内容。
其中,函数的定义域和值域是考生需要注意的点。
定义域是指函数的自变量的取值范围,而值域是函数的因变量的取值范围。
考生需要通过解方程或观察函数的图像,确定函数的定义域和值域。
此外,函数的极值和最值也是考试中经常出现的问题。
通过求导、解方程等方法,考生可以确定函数的极值和最值。
在解题过程中,考生需要掌握一些解题技巧。
比如,组合函数是一个常见的考点。
考生需要掌握如何确定函数的复合,以及如何求解复合函数的值。
另外,反函数也是一个常见的考点。
通过对函数进行逆运算,考生可以求解函数的反函数,并利用反函数属性解决问题。
求函数值域的方法大全
求函数值域最值的方法大全函数是中学数学的一个重点,而函数值域最值的求解方法更是一个常考点, 对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域最值求法就显得十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用;本文旨在通过对典型例题的讲解来归纳函数值域最值的求法,希望对大家有所帮助; 一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦., 反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 二、求函数值域最值的常用方法 1. 直接观察法适用类型:根据函数图象.性质能较容易得出值域最值的简单函数例1、求函数y=211x +的值域 解: 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1 例2、求函数y=2-x 的值域;解: x ≥0 ∴-x ≤0 2-x ≤2故函数的值域是:-∞,2 2、配方法适用类型:二次函数或可化为二次函数的复合函数的题型;配方法是求二次函数值域最基本的方法之一;对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2x+5,x ∈-1,2的值域;解:将函数配方得:y=x-12+4, x ∈-1,2,由二次函数的性质可知: 当x=1时,y m in =4 当x=-1,时m ax y =8 故函数的值域是:4,8例4、求函数的值域:y =解:设()2650x x μμ=---≥,则原函数可化为:y =.又因为()2265344x x x μ=---=-++≤,所以04μ≤≤,故[]0,2,所以,y 的值域为[]0,2. 3、判别式法适用类型:分子.分母中含有二次项的函数类型,此函数经过变形后可以化为0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断;例5、求函数的值域22221x x y x x -+=++解:210x x ++>恒成立,∴函数的定义域为R.由22221x x y x x -+=++ 得()()22120y x y x y -+++-= ;① 当20y -=即2y =时,300,0x x R +=∴=∈;② 当20y -≠即2y ≠时,x R ∈时,方程()()22120y x y x y -+++-=恒有实根.()()221420y y ∴=+-⨯-≥ 15y ∴≤≤且2y ≠.∴原函数的值域为[]1,5.例6、 求函数y=x+)2(x x -的值域; 解:两边平方整理得:22x -2y+1x+y 2=01 x ∈R,∴△=4y+12-8y≥0 解得:1-2≤y≤1+2但此时的函数的定义域由x2-x≥0,得:0≤x≤2;由△≥0,仅保证关于x 的方程:22x -2y+1x+y 2=0在实数集R 有实根,而不能确保其实根在区间0,2上,即不能确保方程1有实根,由△≥0求出的范围可能比y 的实际范围大,故不能确定此函数的值域为21,23;可以采取如下方法进一步确定原函数的值域; 0≤x≤2,∴y=x+)2(x x -≥0,∴y min =0,y=1+2代入方程1,解得:1x =222224-+∈0,2,即当1x =222224-+时,原函数的值域为:0,1+2;注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除; 4、反函数法适用类型:分子.分母只含有一次项的函数即有理分式一次型,也可用于其它易反解出自变量的函数类型; 例7、求函数12+=x xy 的值域; 分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出x,从而便于求出反函数;12+=x x y 反解得y y x -=2 即xxy -=2知识回顾:反函数的定义域即是原函数的值域; 故函数的值域为:),2()2,(+∞-∞∈ y ; 5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域;适用类型:一般用于三角函数型,即利用]1,1[cos ],1,1[sin -∈-∈x x 等;例8、求函数y=11+-x x e e 的值域;解:由原函数式可得:x e =11-+y y x e >0,∴11-+y y >0 解得:-1<y <1;故所求函数的值域为-1,1. 例9、求函数y=3sin cos -x x的值域;解:由原函数式可得:ysinx-cosx=3y 可化为:12+y sinxx+β=3y 即 sinxx+β=132+y y∵x∈R,∴sinxx+β∈-1,1;即-1≤132+y y ≤1解得:-42≤y≤42 故函数的值域为-42,42; 6、函数单调性法适用类型:一般能用于求复合函数的值域或最值;原理:同增异减 例10、求函数)4(log 221x x y -=的值域;分析与解:由于函数本身是由一个对数函数外层函数和二次函数内层函数复合而成,故可令:)0)((4)(2≥+-=x f x x x f 配方得:)4,0)(4)2()(2(所以∈+--=x f x x f 由复合函数的单调性同增异减知:),2[+∞-∈y ; 例11、 求函数y=+-25x log31-x 2≤x≤10的值域解:令y 1=25-x ,2y =log31-x ,则 y 1 ,2y 在2,10上都是增函数;所以y= y 1 +2y 在2,10上是增函数; 当x=2时,y m in =32-+log312-=81,当x=10时,m ax y = 52+log39=33;故所求函数的值域为:81,33;例12、求函数y=1+x -1-x 的值域; 解:原函数可化为: y=112-++x x令y 1 =1+x ,2y = 1-x ,显然y 1,2y 在1,+∞上为无上界的增函数,所以y= y 1 +2y 在1,+∞上也为无上界的增函数;所以当x=1时,y=y 1 +2y 有最小值2,原函数有最大值22=2;显然y >0,故原函数的值域为0,2; 7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型;换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用;适用类型:无理函数、三角函数用三角代换等; 例13、求函数y=x+1-x 的值域; 解:令x-1=t,t≥0则x=2t +1∵y=2t +t+1=2)21(+t +43,又t≥0,由二次函数的性质可知当t=0时,y m in =1,当t→0时,y→+∞; 故函数的值域为1,+∞;例14、求函数y=x+2+2)1(1+-x 的值域 解:因1-2)1(+x ≥0,即2)1(+x ≤1故可令x+1=cosβ,β∈0,∏;∴y=cosβ+1+B 2cos 1-=sinβ+cosβ+1 =2sinβ+∏/4+1 ∵0≤β≤∏,0≤β+∏/4≤5∏/4 ∴ -22≤sinβ+∏/4≤1 ∴ 0≤2sin β+∏/4+1≤1+2; 故所求函数的值域为0,1+2;例15、求函数 y=12243++-x x xx 的值域解:原函数可变形为:y=-21⨯212x x +⨯2211x x +- 可令x=tgβ,则有212x x+=sin2β,2211x x +-=cos2β∴y=-21sin2β⨯ cos2β=-41sin4β 当β=k∏/2-∏/8时,m ax y =41;当β=k∏/2+∏/8时,y m in =-41而此时tgβ有意义; 故所求函数的值域为-41,41; 例16、求函数y=sinx+1cosx+1,x∈-∏/12∏/2的值域; 解:y=sinx+1cosx+1=sinxcosx+sinx+cosx+1 令sinx+cosx=t,则sinxcosx=212t -1 y=212t -1+t+1=212)1(+t 由t=sinx+cosx=2sinx+∏/4且x∈-∏/12,∏/2 可得:22≤t≤2 ∴当t=2时,m ax y =23+2,当t=22时,y=43+22故所求函数的值域为43+22,23+2; 例17、求函数y=x+4+25x -的值域 解:由5-x≥0,可得∣x∣≤5 故可令x=5cosβ,β∈0,∏y=5cosβ+4+5sinβ=10sinβ+∏/4+4 ∵0≤β≤∏, ∴ ∏/4≤β+∏/4≤5∏/4当β=∏/4时,m ax y =4+10,当β=∏时,y m in =4-5;故所求函数的值域为:4-5,4+10; 8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目; 适用类型:函数本身可和其几何意义相联系的函数类型. 例18、求函数y=)2(2-x +)8(2+x 的值域;解:原函数可化简得:y=∣x -2∣+∣x+8∣上式可以看成数轴上点Px 到定点A2,B-8间的距离之和; 由上图可知:当点P 在线段AB 上时, y=∣x -2∣+∣x+8∣=∣AB∣=10当点P 在线段AB 的延长线或反向延长线上时, y=∣x -2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:10,+∞ 例19、求函数y=1362+-x x+542++x x的值域解:原函数可变形为:y=)20()3(22--+x +)10()2(22+++x上式可看成x 轴上的点Px,0到两定点A3,2,B-2,-1的距离之和, 由图可知当点P 为线段与x 轴的交点时,y m in =∣AB∣=)12()23(22+++=43,故所求函数的值域为43,+∞; 例20、求函数y=1362+-x x-542++x x的值域解:将函数变形为:y=)20()3(22--+x -)10()2(22-++x上式可看成定点A3,2到点Px,0的距离与定点B-2,1到点Px,0的距离之差;即:y=∣AP∣-∣BP∣由图可知:1当点P 在x 轴上且不是直线AB 与x 轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边, 有 ∣∣AP1∣-∣BP1∣∣<∣AB∣=)12()23(22-++= 26即:-26<y <26 2当点P 恰好为直线AB 与x 轴的交点时,有∣∣AP∣-∣BP∣∣=∣AB∣= 26;综上所述,可知函数的值域为:-26,-26; 注:由例17,18可知,求两距离之和时,要将函数式变形,使A,B 两点在x 轴的两侧,而求两距离之差时,则要使两点A,B 在x 轴的同侧;如:例17的A,B 两点坐标分别为:3,2,-2,-1,在x 轴的同侧; 例18的A,B 两点坐标分别为:3,2,2,-1,在x 轴的同侧; 例21、求函数xxy cos 2sin 3--=的值域.分析与解:看到该函数的形式,我们可联想到直线中已知两点求直线的斜率的公式1212x x y y k --=,将原函数视为定点2,3到动点)sin ,(cos x x 的斜率,又知动点)sin ,(cos x x 满足单位圆的方程,从而问题就转化为求点2,3到单位圆连线的斜率问题,作出图形观察易得的最值在直线和圆上点的连线和圆相切时取得,从而解得: ]3326,3326[+-∈y 9 、不等式法适用类型:能利用几个重要不等式及推论来求得最值;如:ab b a ab b a 2,222≥+≥+ 其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧;例22、 求函y=sinx+1/sinx+cosx+1/cosx 的值域 解:原函数变形为:y=x sin 2+x cos 2+1/x sin 2+1/x cos 2=1+ x csc 2+x sec 2=3+x tg 2+x ctg 2当且仅当tgx=ctgx,即当x=k∏±∏/4时k∈z,等号成立; 故原函数的值域为:5,+∞; 例23、求函数y=2sinxsin2x 的值域解:y=2sinxsinxcosx=4x sin 2cosxy2=16x sin 4x cos 2=8x sin 2x sin 22-2x sin 2≤8x sin 2+x sin 2+2- x sin 2=8x sin 2+x sin 2+2- x sin 2/33=2764当且当x sin 2=2-2x sin 2,即当x sin 2=时,等号成立; 由y 2≤2764,可得:-938≤y≤938 xB故原函数的值域为:-938,938; 例24、当0>x 时,求函数248)(xx x f +=的最值,并指出)(x f 取最值时x 的值; 分析与解:因为2244448)(xx x x x x f ++=+=可利用不等式33abc c b a ≥++即:324443)(x x x x f ••≥所以12)(≥x f 当且仅当244xx =即1=x 时取”=”当1=x 时)(x f 取得最小值12;例25、双曲线12222=-b y a x 的离心率为1e ,双曲线12222=-ax b y 的离心率为2e ,则21e e +的最小值是 ;A 22B 4C 2D 2 分析与解:根据双曲线的离心率公式易得:bb a a b a e e 222221+++=+,我们知道xy y x 2≥+所以abb a e e 22212+≥+当且仅当bb a a b a 2222+=+时取“=”而ab b a 222≥+故2221≥+e e 当且仅当b a =时取“=”22)(min 21=+e e 所以;10、导数法设函数()f x 在[],a b 上连续,在(),a b 上可导,则()f x 在[],a b 上的最大值和最小值为()f x 在(),a b 内的各极值与()f a ,()f b 中的最大值与最小值;要求三次及三次以上的函数的最值,以及利用其他方法很难求的函数似的最值,通常都用该方法;导数法往往就是最简便的方法,应该引起足够重视; 例26、求函数()32362f x x x x =-+-,[]1,1x ∈-的最大值和最小值;解: ()2'366f x x x =-+,令()'0f x =,方程无解.()2'366f x x x =-+()23130x =-+> ∴函数()f x 在[]1,1x ∈-上是增函数.故当1x =-时, ()()min 112f x f =-=-,当1x =时, ()()max 12f x f == 例27、求函数221)(2++=x x x f 的最值.解析: 函数)(x f 是定义在一个开区间()∞+∞-,上的可导函数,令0)22(22)('2=+++-=x x x x f得)(x f 的唯一驻点1-=x 即为最点.1-<x 时,0)('>x f ,函数递增, 1-<x 时,0)('<x f ,函数递减, 故)(x f 有最大值1)1(=-f .说明 本函数是二次函数的复合函数,用配方法求最值也很简便.11)1(1)(2≤++=x x f ,等号成立条件是1-=x .注:最值寻根的导数判定若定义在一个开区间上的函数)(x f y =有导函数)()(x g x f ='存在,那么)(x f 是否有最值的问题可转化为)(x f 的导函数)(x g 是否有最根的问题来研究:1若导函数)(x g 无根,即0)(≠x g ,则)(x f 无最值;2若导函数)(x g 有唯一的根0x ,即0)('0=x f ,则)(x f 有最值)(0x f .此时,导函数)(x f '的根0x 即是函数)(x f 最根0x .3若导函数)(x g 有多个的根,则应从多个驻点中依次判定极点、最点的存在性. 11、多种方法综合运用 例28、求函数y=32++x x 的值域 解:令t=2+x t≥0,则x+3=2t +1 1 当t >0时,y=12+t t=t t /11+≤21, 当且仅当t=1,即x=-1时取等号 所以0<y≤21; 2 当t=0时,y=0;综上所述,函数的值域为:0,21; 注:先换元,后用不等式法;例29、求函数y=xx x x x x 424322121++++-+的值域;解:y=xx x x 42422121+++-+xx xx 42321+++=)11(222xx +-+x x21+令x=tg2β,则)11(222xx +-=βcos 2,xx 21+=21sin β,∴y=βcos 2+21sin β=-βsin 2+ 21sin β+1 =-)41(sin 2-β+1617 ∴当sin β=41时,m ax y =1617;当sin β=-1时,y m in =-2; 此时tg 2β都存在,故函数的值域为:-2,1617;注:此题先用换元法;后用配方法,然后再运用sin β的有界性;总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法; 学生巩固练习1 函数y =x 2+x1 x ≤-21的值域是A -∞,-47]B -47,+∞)C 2233,+∞)D -∞,-32232 函数y =x +x 21-的值域是 A -∞,1]B -∞,-1]C RD 1,+∞)3 一批货物随17列货车从A 市以V 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于20V 2千米 ,那么这批物资全部运到B 市,最快需要_________小时不计货车的车身长4 设x 1、x 2为方程4x 2-4mx +m +2=0的两个实根,当m =_________时,x 12+x 22有最小值_________5 某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为Rx =5x -21x 2万元0≤x ≤5,其中x 是产品售出的数量单位 百台1把利润表示为年产量的函数; 2年产量多少时,企业所得的利润最大3年产量多少时,企业才不亏本6 已知函数fx =lg a 2-1x 2+a +1x +11若fx 的定义域为-∞,+∞,求实数a 的取值范围; 2若fx 的值域为-∞,+∞,求实数a 的取值范围7 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周按120个工时计算生产空调器、彩电、冰箱共360台,且冰箱至少生产60台 已知生产家电产品每台所需工时和每台产值如下表家电名称 空调器 彩电 冰箱 工时产值千元4 3 2问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少以千元为单位8 在Rt△ABC 中,∠C =90°,以斜边AB 所在直线为轴将△ABC 旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S 1,△ABC 的内切圆面积为S 2,记ABCABC =x 1求函数fx =21S S 的解析式并求fx 的定义域 2求函数fx 的最小值 参考答案1 解析 ∵m 1=x 2在-∞,-21上是减函数,m 2=x1在-∞,-21上是减函数,∴y =x 2+x1在x ∈-∞,-21上为减函数,∴y =x 2+x1 x ≤-21的值域为-47,+∞)答案 B2 解析 令x 21-=tt ≥0,则x =212t -∵y =212t -+t =-21 t -12+1≤1∴值域为-∞,1] 答案 A 3 解析 t =V 400+16×20V 2/V =V 400+40016V≥216=8 答案 84 解析 由韦达定理知 x 1+x 2=m ,x 1x 2=42+m , ∴x 12+x 22=x 1+x 22-2x 1x 2=m 2-22+m =m -412-1617,又x 1,x 2为实根,∴Δ≥0 ∴m ≤-1或m ≥2,y =m -412-1617在区间-∞,1上是减函数,在2,+∞)上是增函数,又抛物线y 开口向上且以m =41为对称轴 故m =1时,y min =21答案 -1 215 解 1利润y 是指生产数量x 的产品售出后的总收入Rx 与其总成本Cx 之差,由题意,当x ≤5时,产品能全部售出,当x >5时,只能销售500台,所以y =⎪⎩⎪⎨⎧>-≤≤--=⎪⎪⎩⎪⎪⎨⎧>+-⨯-⨯≤≤+--)1( 25.012)50(5.02175.4)5)(25.05.0()52155()50)(25.05.0(215222x x x x x x x x x x x 2在0≤x ≤5时,y =-21x 2+4 75x -0 5,当x =-ab2=4 75百台时,y max =10 78125万元,当x >5百台时,y <12-0 25×5=10 75万元,所以当生产475台时,利润最大3要使企业不亏本,即要求⎩⎨⎧≥->⎪⎩⎪⎨⎧≥-+≤≤025.012505.075.421502x x x x x 或 解得5≥x ≥4 75-5625.21≈0 1百台或5<x <48百台时,即企业年产量在10台到4800台之间时,企业不亏本6 解 1依题意a 2-1x 2+a +1x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎪⎩⎪⎨⎧-<>-<>⎪⎩⎪⎨⎧<--+=∆>-13511,0)1(4)1(01222a a a a a a a 或或即, ∴a <-1或a >35又a =-1时,fx =0满足题意,a =1时不合题意 故a ≤-1或a >为35所求2依题意只要t =a 2-1x 2+a +1x +1能取到0,+∞上的任何值,则fx 的值域为R ,故有⎩⎨⎧≥∆>-0012a ,解得1<a ≤35,又当a 2-1=0即a =1时,t =2x +1符合题意而a =-1时不合题意,∴1≤a ≤35为所求7 解 设每周生产空调器、彩电、冰箱分别为x 台、y 台、z 台,由题意得x +y +z =360 ①120413121=++z y x ② x >0,y >0,z ≥60③假定每周总产值为S 千元,则S =4x +3y +2z ,在限制条件①②③之下,为求目标函数S 的最大值,由①②消去z ,得y =360-3x ④将④代入①得 x +360-3x +z =360,∴z =2x ⑤ ∵z ≥60,∴x ≥30⑥再将④⑤代入S 中,得S =4x +3360-3x +2·2x ,即S =-x +1080 由条件⑥及上式知,当x =30时,产值S 最大,最大值为S =-30+1080=1050千元得x =30分别代入④和⑤得y =360-90=270,z =2×30=60∴每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最大,最大产值为1050千元8 解 1如图所示 设BC =a ,CA =b ,AB =c ,则斜边AB 上的高h =cab , ∴S 1=πah +πbh =,)2(),(22c b a S b a cab-+=+ππ, ∴fx =221)()(4c b a c b a ab S S -++= ①abCBcA又⎪⎩⎪⎨⎧-==+⇒⎪⎩⎪⎨⎧=+=+)1(222222x c ab cxb ac b a x c b a 代入①消c ,得fx =1)(22-+x x x在Rt△ABC 中,有a =c sin A ,b =c cos A 0<A <2π),则 x =c b a +=sin A +cos A =2sin A +4π∴1<x ≤2 2fx =]12)1[(21)(22-+-=-+x x x x x +6,设t =x -1,则t ∈0, 2-1,y =2t +t2+6 在0,2-1]上是减函数,∴当x =2-1+1=2时,fx 的最小值为62+8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数
第三节:函数的值域与最值
教学目的:1.理解函数的值域与最值概念,掌握基本的求解方法
2.应熟练掌握一次函数、二次函数,指、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.
3.掌握常用的求最值与值域的方法。
教学重点:函数的值域与最值的求法。
教学难点:函数的值域与最值的求法。
教学方法:通过例题讲解,讲练结合,在问题中掌握方法。
学法指导:通过理解例题的方法,结合练习,掌握常用的基本方法。
媒体设计:Powerpoint幻灯片(小结内容)
教学过程:
一、知识点讲解:
1、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.
2.求函数值域常用的方法有:
(1)利用函数的单调性:若是[a,b]上的单调增(减)函数,则、分别是
在区间[a,b]上的最小(大)值,最大(小)值.
(2)利用配方法
(3)利用反函数定义域是原函数的值域
(4)利用函数的有界性
(5)利用“判别式”法形如 (a、p至少有一个不为零)的函数,求其值域,可利用“△”法.
(6)利用换元法
(7)利用“均值定理”
(8)几何法
利用数形结合的思想方法,通过函数图形间的关系,利用平面几何知识求值域.
(9)导数法:利用导数与函数的连续性求较复杂函数的极值和最值,然后求出值域.
二、例题分析:
(一)基础知识扫描
1.函数,(-1≤x≤1)的最小值为
A. B.3 C.-1 D.1
2.函数(0≤x≤4)的值域是( )
A.[-2,2] B.[1,2] C.[0,2] D.
3.函数的值域是( )
A.(0,3] B.(0,1) C. D.(-∞,2)∪(2,+∞) 4.函数的值域是( )
A.R
B.{y∣y≠1且y ∈ R}
C. D.{y∣y ≠ 0且y ∈ R}
5.函数的值域为( )
A.[-3,0] B.(-∞,3] C.(0,3] D.[3,+∞)
6.已知函数的定义域为R ,值域为[-2,2],则的值域为( )
A .[-1,3]
B .[-3,1]
C .[-2,2]
D .[-1,1]
(二)典型题型分析:
题型1:已知函数解析式求函数的值域.
例1、求下列函数的值域. (1)
(2) (3) (4)
分析: 观察所给函数解析式的结构特征,联想类比求函数值域的各种基本方法,以确定求函数值域的最佳途径.其中,题1可采用配方法;题2反函数法或分离系数法;题3换元法或单调性法;题4是典型的判别式法
例2 求下列函数的值域: (1) 1
222+=x x
y ;(2) 分析:(1)x x x x
y 21211222+=+=从而可以使用均值不等式求解;
(2)由于 令
,因 = 无解, 故不能使用均值不等式,但是y 为双钩函数,它在t ≥1时为增函数。
题型2、已知函数的解析式求函数的最值
求函数最值的常用方法和求函数值域的常用方法基本上是相同的。
事实上。
如果在函数的值域中存在一个最小(大)数。
这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
例3 (1)(1998年上海市)求函数
,的最大值.
(2)(2000年春季高考)求函数y=的最大值.
分析:函数值域的求法多种多样,要仔细分析所给题目的特点,确定解法.
(1)数形结合法;(2)换元法.
例4 (2003·北京市高考题)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形.要使正方形与圆的面积之和最小,正方形的周长应为。
说明:函数的最值的应用主要体现在用函数知识求解实际问题上.从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
题型3、有关函数值域的逆向思维问题.
例5 (2002年长春市模拟题)已知函数的定义域为R.
(1)求实数m的取值范围;
(2)当m变化时,若y的最小值为求函数的值域.
说明:本题要注意分类讨论,要分m=0和m≠0讨论.
三、本节所涉及的思想·规律·方法小结:
1.求函数值域没有通用方法或固定模式,要综合而灵活地运用各种方法.
2.求函数值域常见的方法有:配方法、换元法、判别式法、利用函数单调性法、求反函数的定义域法、均值定理法、图象法、导数法等等.
3.函数的值域常常化归为求函数的最值.
4.函数最值的应用主要体现在用函数知识求解实际问题上.
四、作业:《绿色通道》P38—39
五、课后记:。