高中三年级数学复习文科--立体几何习题精选精讲
高中数学文科立体几何大题复习
高中数学文科立体几何大题复习文科立体几何大题复习一.解答题(共12小题)1.如图1,在正方形ABCD中,点,E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示.(1)求证:GR⊥平面PEF;(2)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.2.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.3.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.4.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.5.如图所示,△ABC所在的平面与菱形BCDE所在的平面垂直,且AB⊥BC,AB=BC=2,∠BCD=60°,点M为BE的中点,点N在线段AC上.(Ⅰ)若=λ,且DN⊥AC,求λ的值;(Ⅱ)在(Ⅰ)的条件下,求三棱锥B﹣DMN的体积.6.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.7.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.8.如图,已知多面体ABCDEF中,△ABD、△ADE均为正三角形,平面ADE⊥平面ABCD,AB∥CD∥EF,AD:EF:CD=2:3:4.(Ⅰ)求证:BD⊥平面BFC;(Ⅱ)若AD=2,求该多面体的体积.9.如图,在四棱锥中P﹣ABCD,底面ABCD为边长为的正方形,PA⊥BD.(Ⅰ)求证:PB=PD;(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D﹣ACE体积.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.11.如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=ED=1.(Ⅰ)求二面角E﹣AC﹣D的正切值;(Ⅱ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.12.如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥AB,AB=BC=CP=BP=2,CD=1.(1)求点B到平面DCP的距离;(2)点M为线段AB上一点(含端点),设直线MP与平面DCP 所成角为α,求sinα的取值范围.文科立体几何大题复习参考答案与试题解析一.解答题(共12小题)1.如图1,在正方形ABCD 中,点,E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G ,R 分别在线段DH ,HB 上,且.将△AED ,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P ﹣DEF 的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD 中,∠A 、∠B 、∠C 均为直角,∴在三棱锥P ﹣DEF 中,PE ,PF ,PD 三条线段两两垂直,∴PD ⊥平面PEF ,∵=,即,∴在△PDH 中,RG ∥PD ,∴GR ⊥平面PEF .解:(Ⅱ)正方形ABCD 边长为4,由题意PE=PF=2,PD=4,EF=2,DF=2,∴S △PEF =2,S △PFD =S △DPE =4,=6,设三棱锥P ﹣DEF 的内切球半径为r ,则三棱锥的体积:=,解得r=,∴三棱锥P﹣DEF的内切球的半径为.2.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD 是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.【解答】(Ⅰ)证明:∵PD⊥平面ABCD,AC?平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC?平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EA C∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BH⊥平面PAD,.∴==.3.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.【解答】证明:(1)如图,连结BD,由题意知四边形ABCD为菱形,∠BAD=60°,∴△ABD为正三角形,又∵AQ=QD,∴Q为AD的中点,∴AD⊥BQ,∵△PAD是正三角形,Q为AD中点,∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,又∵PB?平面PQB,∴AD⊥PB.解:(2)连结AC,交BQ于N,连结MN,∵AQ∥BC,∴,∵PN∥平面MQB,PA?平面PAC,平面MQB∩平面PAC=MN,∴根据线面平行的性质定理得MN∥PA,∴,综上,得,∴MC=2PM,∵MC=λPM,∴实数λ的值为2.4.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.【解答】解:(Ⅰ)连BD,设AC交BD于O,由题意SO⊥AC,在正方形ABCD中,AC⊥BD,所以AC⊥面SBD,所以AC⊥SD.(Ⅱ)若SD⊥平面PAC,则SD⊥OP,设正方形ABCD的边长为a,则SD=,OD=,则OD2=PD?SD,可得PD==,故可在SP上取一点N,使PN=PD,过N作PC的平行线与SC的交点即为E,连BN.在△BDN中知BN∥PO,又由于NE∥PC,故平面BEN∥面PAC,得BE∥面PAC,由于SN:NP=2:1,故SE:EC=2:1.5.如图所示,△ABC所在的平面与菱形BCDE所在的平面垂直,且AB⊥BC,AB=BC=2,∠BCD=60°,点M为BE的中点,点N在线段AC上.(Ⅰ)若=λ,且DN⊥AC,求λ的值;(Ⅱ)在(Ⅰ)的条件下,求三棱锥B﹣DMN的体积.【解答】解:(Ⅰ)取BC的中点O,连接ON,OD,∵四边形BCDE为菱形,∠BCD=60°,∴DO⊥BC,∵△ABC所在的平面与菱形BCDE所在平面垂直,∴DO⊥平面ABC,∵AC?平面ABC,∴DO⊥AC,又DN⊥AC,且DN∩DO=D,∴AC⊥平面DON,∵ON?平面DON,∴ON⊥AC,由O为BC的中点,AB=BC,可得,∴,即λ=3;(Ⅱ)由平面ABC⊥平面BCDE,AB⊥BC,可得AB⊥平面BCDE,由,可得点N到平面BCDE的距离为,由菱形BCDE中,∠BCD=60°,点M为BE的中点,可得DM⊥BE,且,∴△BDM的面积,∴三棱锥N﹣BDM的体积.=V B﹣DMN,又V N﹣BDM∴三棱锥B﹣DMN的体积为.6.如图,在三棱柱ABC﹣A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.(Ⅰ)求证:AB1⊥BC;(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.【解答】解:(I)取BC中点M,连结AM,B1M,∵AB=AC,M是BC的中点,∴AM⊥BC,∵侧面BB1C1C是菱形,∠B1BC=60°,∴B1M⊥BC,又AM?平面AB1M,B1M?平面AB1M,AM∩B1M=M,∴BC⊥平面AB1M,∵AB1?平面AB1M,∴BC⊥AB1.(II)设AB=x,则AC=x,BC=x,∵M是BC的中点,∴AM=,BB1=,B1M=,又∵AB1=BB1,∴AB1=,∴AB12=B1M2+AM2,∴B1M⊥AM.由(I)知B1M⊥BC,AM?平面ABC,BC?平面ABC,AM∩BC=M,∴B1M⊥平面ABC,∴V==,∴x=2,即AB=2.7.如图1,在矩形ABCD中,AB=4,AD=2,E是CD的中点,将△ADE沿AE折起,得到如图2所示的四棱锥D1﹣ABCE,其中平面D1AE⊥平面ABCE.(1)证明:BE⊥平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF∥平面D1AE,若存在,求出的值;若不存在,请说明理由.【解答】(1)证明:连接BE,∵ABCD为矩形且AD=DE=EC=2,∴AE=BE=2,AB=4,∴AE2+BE2=AB2,∴BE⊥AE,又D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,∴BE⊥平面D1AE.(2)=.取D1E中点N,连接AN,FN,∵FN∥EC,EC∥AB,∴FN∥AB,且FN==AB,∴M,F,N,A共面,若MF∥平面AD1E,则MF∥AN.∴AMFN为平行四边形,∴AM=FN=.∴=.8.如图,已知多面体ABCDEF中,△ABD、△ADE均为正三角形,平面ADE⊥平面ABCD,AB∥CD∥EF,AD:EF:CD=2:3:4.(Ⅰ)求证:BD⊥平面BFC;(Ⅱ)若AD=2,求该多面体的体积.【解答】解:(Ⅰ)因为AB∥CD,所以∠ADC=120°,△ABD为正三角形,所以∠BDC=60°.设AD=a,因为AD:CD=2:4=1:2,所以CD=2a,在△BDC中,由余弦定理,得,所以BD2+BC2=CD2,所以BD⊥BC.取AD的中点O,连接EO,因为△ADE为正三角形,所以EO⊥AD,因为平面ADE⊥平面ABCD,所以EO⊥平面ABCD.取BC的中点G,连接FG,OG,则,且EF∥OG,所以四边形OEFG为平行四边形,所以FG∥EO,所以FG⊥平面ABCD,所以FG⊥BD.因为FG∩BC=G,所以BD⊥平面BFC.(Ⅱ)过G作直线MN∥AD,延长AB与MN交于点M,MN与CD交于点N,连接FM,FN.因为G为BC的中点,所以MG=OA且MG∥OA,所以四边形AOGM为平行四边形,所以AM=OG.同理DN=OG,所以AM=OG=DN=EF=3.又AB∥CD,所以AM∥DN,所以AM∥DN∥EF,所以多面体MNF﹣ADE为三棱柱.过M作MH⊥AD于H点,因为平面ADE⊥平面ABCD,所以MH⊥平面ADE,所以线段MH的长即三棱柱MNF﹣ADE的高,在△AMH中,,所以三棱柱MNF﹣ADE的体积为.因为三棱锥F﹣BMG与F﹣CNG的体积相等,所以所求多面体的体积为.9.如图,在四棱锥中P﹣ABCD,底面ABCD为边长为的正方形,PA⊥BD.(Ⅰ)求证:PB=PD;(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D﹣ACE体积.【解答】解:(Ⅰ)连接AC交BD于点O,∵底面ABCD是正方形,∴AC⊥BD且O为BD的中点.又PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,又PO?平面PAC,∴BD⊥PO.又BO=DO,∴Rt△PBO∽Rt△PDO,∴PB=PD.(Ⅱ)取PD的中点Q,连接AQ,EQ,则EQ CD,又AF,∴AFEQ为平行四边形,EF∥AQ,∵EF⊥平面PCD,∴AQ⊥平面PCD,∵PD?平面PCD,∴AQ⊥PD,∵Q是PD的中点,∴AP=AD=.∵AQ⊥平面PCD,CD?平面PCD,∴AQ⊥CD,又AD⊥CD,又AQ∩AD=A,∴CD⊥平面PAD∴CD⊥PA,又BD⊥PA,CD∩BD=D,∴PA⊥平面ABCD.故三棱锥D﹣ACE的体积为.10.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC?平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG=AC=AG=x,则BE==x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB?BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBG,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE=,∴从而得AE=EC=ED=,∴△EAC的面积S==3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE=,AF==,则EF=,∴△EAD的面积和△ECD的面积均为S==,故该三棱锥的侧面积为3+2.11.如图,四边形ABCD是正方形,DE⊥平面ABCD,AF∥DE,AF=ED=1.(Ⅰ)求二面角E﹣AC﹣D的正切值;(Ⅱ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.【解答】(本小题满分12分)解:(Ⅰ)设AC∩BD=O,连结OE,由AC⊥OD,AC⊥DE,OD∩DE=D,得AC⊥OE,∴二面角E﹣AC﹣D的平面角为∠EOD,∵AF=ED=1,∴tan∠EOD=,∴二面角E﹣AC﹣D的正切值为.(Ⅱ)时,AM∥平面BEF,理由如下:作MN∥E D,则,∵AF∥DE,DE=3AF,∴,∴AMNF是平行四边形,∴AM∥FN,∵AM?平面BEF,FN?平面BEF,∴AM∥平面BEF.。
高中文科数学立体几何知识点(大题)
高考立体几何中直线、平面之间的位置关系知识点总结(文科)一.平行问题 (一) 线线平行:方法一:常用初中方法(1中位线定理;2平行四边形定理;3三角形中对应边成比例;4同位角、内错角、同旁内角) 方法二:1线面平行⇒线线平行m l m l l ////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法三:2面面平行⇒线线平行m l m l ////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法四:3线面垂直 ⇒线线平行若αα⊥⊥m l ,,则m l //。
(二) 线面平行:方法一:4线线平行⇒线面平行ααα////l l m m l ⇒⎪⎭⎪⎬⎫⊄⊂方法二:5面面平行⇒线面平行 αββα////l l ⇒⎭⎬⎫⊂ (三) 面面平行:6方法一:线线平行⇒面面平行βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交m l m l m m l l 方法二:7线面平行⇒面面平行βαβαα//,////⇒⎪⎭⎪⎬⎫=⊂A m l m l m l ,方法三:8线面垂直⇒面面平行 βαβα面面面面//⇒⎭⎬⎫⊥⊥l ll二.垂直问题:(一)线线垂直方法一:常用初中的方法(1勾股定理的逆定理;2三线合一 ;3直径所对的圆周角为直角;4菱形的对角线互相垂直。
) 方法二:9线面垂直⇒线线垂直 m l m l ⊥⇒⎭⎬⎫⊂⊥αα (二)线面垂直:10方法一:线线垂直⇒线面垂直αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l AC l , 方法二:11面面垂直⇒线面垂直αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,(面) 面面垂直:方法一:12线面垂直⇒面面垂直 βαβα⊥⇒⎭⎬⎫⊂⊥l l 三、夹角问题:异面直线所成的角:(一) 范围:]90,0(︒︒(二)求法:方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(计算结果可能是其补角)线面角:直线PA 与平面α所成角为θ,如下图求法:就是放到三角形中解三角形四、距离问题:点到面的距离求法1、直接求,2、等体积法(换顶点)1、一个几何体的三视图如图所示,则这个几何体的体积为( )A .B .C .D .2、设 a b ,是两条不同的直线, αβ,是两个不同的平面,则( ) A .若a α∥,b α∥,则a b ∥ B .若a α∥,αβ∥,则αβ∥C.若a b ∥,a α⊥,则b α⊥ D .若a α∥,αβ⊥,则a β⊥3、如图是一个正方体被切掉部分后所得几何体的三视图,则该几何体的体积为 .4、某几何体的三视图如图所示,则该几何体的体积为( )A .5B .163C .7D .1735、某空间几何体的三视图如图所示,则该几何体的体积为A .73B .83π-C .83D .73π- 6、一个几何体的三视图如图所示,则这个几何体的直观图是7、某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥的体积为A.223B.43C.2D.48、某三棱锥的三视图如图所示,则该三棱锥的体积为(A)23(B)43(C)2(D)831、(2017新课标Ⅰ文数)(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.2、(2017新课标Ⅱ文)(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.3、(2017新课标Ⅲ文数)(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.4、(2017北京文)(本小题14分)如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC;(Ⅲ)当PA∥平面BD E时,求三棱锥E–BCD的体积.5、(2017山东文)(本小题满分12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1- B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E 平面ABCD.A O∥平面B1CD1;(Ⅰ)证明:1(Ⅱ)设M是OD的中点,证明:平面A1EM 平面B1CD1.6、(2017江苏)(本小题满分14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD 上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.。
高中三年级立体几何习题(文科含答案)
立几习题21若直线I 不平行于平面a ,且I a ,则A. a 内的所有直线与异面B. a 内不存在与I 平行的直线C. a 内存在唯一的直线与I 平行D. a 内的直线与I 都相交2. I i , I 2 , I 3是空间三条不同的直线,则下列命题正确的是4. 某几何体的三视图如图所示,则它的体积是( )A. 8B. 8— 3C.8- 2nD.5、如图,在四棱锥 P ABCD 中,平 ABCD AB=AD / BAD=60 , E 、F 分别 占 八、、 求证:(1) 直线EFII 平面PCD (2) 平面 BEFL 平面 PAD(A ) I i I 2 , I 2 I 3 I 1//I 3(B ) I iI 2 , I 2 //13 I i I 3(C ) I 2//I 3//I 3 I i , I 2 , I 3共面(D ) I i , I 2 , I 3共点 I i , I 2 , I 3共面3. 如图i ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形, A . C. 等腰三角形和菱形,则该几何体的体积 4.3 2.3面PAD 丄平面是 AP 、AD 的中图3侧视图 图2主现图 左咬氏5 (本小题满分13分) 如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点0在线段AD上,0A 1,0D 2,△ OAB △ OAC △ ODE △ ODF都是正三角形。
(I)证明直线BC// EF ;(n)求棱锥F OBED的体积•6. (本小题共14分)如图,在四面体PABC中, PC丄AB PA丄BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(I)求证:DE//平面BCP(n)求证:四边形DEFG为矩形;(川)是否存在点Q,至U四面体PABC六条棱的中点的距离相等?说明理由.7. (本小题满分12分)如图,四棱锥P-ABCD中,PA丄底面ABCD AB丄AD,点E在线段AD上,且CE// AB (I )求证:CE丄平面PAD(11)若PA=AB=1 AD=3 CD=/2,/ CDA=45,求四棱锥P-ABCD的体积& (本小题满分12分)如图,已知正三棱柱 ABC - A 1B 1C 1的底面边长为3 2,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且 AE 2 2, BF 2 .(I )求证:CF C 1E ;(II )求二面角E CF C 1的大小。
立体几何(精讲精练文科)
2014届高三一轮复习立体几何第2讲空间关系及其运算(一)概念复习(平面的性质公理、等角定理、异面直线夹角、垂直、线面角、二面角、射影、距离) 平面的公理1: 平面的公理2: 平面的公理3: 平面的公理4: 等角定理(功能): 异面直线所成角范围求法: 线面平行的判定定理: 线面平行的性质定理: 线面垂直的判定定理: 线面垂直的性质定理: 线面角的定义和求解:定义法(平面法) 、 面面平行判定定理: 面面平行性质定理: 二面角的定义: 面面垂直判定定理: 面面垂直性质定理: 点线面距离的定义及求法____________________________. (二)小题举例【精练1】设四面体的六条棱的长分别为1,1,1,1和a ,且长为a的棱异面,则a 的取值范围是( ) (A) (B) (C) (D)解析:在求解立体几何中的范围是函数、不等式仍然为通法,但要会准确找出空间关系,多注意转化为平面几何知识处理。
【精练2】已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1BC.D .2解析:根据高平齐,主要看底边如何投影,为1-【精练3】理16如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是_____(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 的交点R 满足1113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S 解析:正方体是一个可以考察所有关系的几何体,要学会运用它的性质分析空间位置及其数量关系。
【精练4】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 【精练5】设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//lα,//l β,则//αβ B .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥【精练6】已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( )NA 1A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l解析:使用判定定理及其性质定理判断:注意平面到空间迁移不一定成立,其次注意定理的条件减弱亦会导致命题失真,还要学会举反例,画图时先画大件,再画小样。
高三文科数学专题复习——立体几何.doc
高三文科数学专题复习――立体几何一、本章知识结构:二、题型及典型例题考点二:空间几何体的表面积和体积【内容解读】理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。
理解球的表面积和体积的计算方法。
例3、(2007广东)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S例4、(2008山东)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A.9πB.10πC.11πD.12π例5、(湖北卷3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. 38πB. 328πC. π28 D. 332π考点三:点、线、面的位置关系【内容解读】理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。
例6、如图1,在空间四边形ABCD中,点E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且CFCB=CGCD=23,则()(A)EF与GH互相平行(B)EF与GH异面(C)EF与GH的交点M可能在直线AC上,也可能不在直线AC上(D)EF与GH的交点M一定在直线AC上例7、(2008全国二10)已知正四棱锥S ABCD-的侧棱长与底面边长都相等,E是SB的中点,则AE SD,所成的角的余弦值为()A.13B.2C.3D.23考点四:直线与平面、平面与平面平行的判定与性质俯视图正(主)视图侧(左)视图2322图1【内容解读】掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。
例8、(2008安徽)如图,在四棱锥O ABCD-中,底面ABCD四边长为1的菱形,4ABCπ∠=,OA ABCD⊥底面, 2OA=,M为OA的中点,N为BC的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离。
高三数学第一轮复习立体几何的综合问题知识精讲
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1. 如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2. 如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a =(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=∙-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。
高三文科立体几何专题(典型)
1.如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点,AN SC ⊥,且交SC 于点N . (I ) 求证: //SB 平面ACM ; (III )求证:平面SAC ⊥平面AMN . 解法一:(几何法)解法二:(空间向量法)2.如图,四棱锥ABCD P -中,底面ABCD 是边长为2的正方形,CD PD BC PB ⊥⊥,,且2=PA ,E 为PD 中点.(Ⅰ)求证:⊥PA 平面ABCD ; (Ⅱ)求证://PB 平面AEC解法二:(空间向量法)SNM D C B ASN M D C BAPA BCDEPADE4.如图,在正方体ABCD —A 1B 1C 1D 1中,E 为AB 的中点.(1)求直线B 1C 与DE 所成角的余弦值; (2)求证:平面EB 1D ⊥平面B 1CD ; (3)求EC 1与平面CD 1所成角的余弦值.5.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD .底面ABCD 为梯形,//AB DC ,AB BC ⊥.PA AB BC ==,点E 在棱PB 上,且2PE EB =. (Ⅰ)求证:平面PAB ⊥平面PCB ;(Ⅱ)求证:PD ∥平面EAC ;6.在直三棱柱111ABC A B C -中,190,1ABC AB BC BB ∠=︒===,点D 是1A C 的中点.(I )求11A B 与AC 所成的角的大小; (II )求证:BD ⊥平面1AB C ;7.如图,在三棱锥P ABC -中,P A P B =, PA PB ⊥, 30AB BC BAC ⊥∠=︒,,平面PAB ⊥平面ABC . (Ⅰ)求证:PA PBC ⊥平面 ;A CB D D1A 1C1BD C B A P8.在直三棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1;(II )求直线A 1C 与平面B 1AC 所成角的正弦值;9.如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD ⊥平面PAB . (I) 求证:AB ⊥平面PCB ;10.已知如图(1),正三角形ABC 的边长为2a ,CD 是AB 边上的高,E 、F 分别是AC 和BC 边上的点,且满足CE CF k CA CB ==,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图(2). (Ⅰ) 试判断翻折后直线AB 与平面DEF 的位置关系,并说明理由;图(1)图(2)D BAF ED C B AF EDCB A12.如图,在直三棱柱ABC —A 1B 1C 1中,∠ABC =90,AB =BC =AA 1=2,D 是AB 的中点. (I )求AC 1与平面B 1BCC 1所成角的正切值; (II )求证:AC 1∥平面B 1DC ; .13.如图,梯形ABCD 中,CD//AB ,AB 21CB DC AD ===,E 是AB 的中点,将ADE ∆沿DE 折起,使点A 折到点P 的位置,且二面角C DE P --的大小为120°。
高三文科数学第二轮《立体几何》专题
答案:D
2.如下图,斜三棱柱ABC-A1B1C1的底面是Rt△ABC,∠A 是直角,且BC1⊥AC,作C1H⊥底面ABC,垂足为H.
(1)试判断H点的位置,并说明理由; (2)若AB=AC=2,且三棱柱的高为 2 6,求三棱柱ABC- A1B1C1的体积.
解析:(1)∵∠A为直角,又∵CA⊥AB,CA⊥BC1, ∴CA⊥平面C1AB, ∴平面C1AB⊥平面CAB. 在平面C1AB内作C1H⊥AB, ∴C1H⊥平面CAB,∴H点在直线BA上. 2 6, (2)∵h= ∴VABC-A1B1C1=SRt△ABC· h
答案:D
高分突破
线线、线面的位置关系
正三棱柱A1B1C1—ABC中,点D是BC的中点,BC= 2BB1. 设B1D∩BC1=F.
(1)求证:A1C∥平面AB1D; (2)求证:BC1⊥平面AB1D.
答案: 1.两点 2.过不在一条直线上 3.一个 过该点 4.互相平行
整合训练
1.给出下列命题,正确命题的个数是( ) ①梯形的四个顶点在同一平面内;②有三个公共点的两个 平面必重合;③三条平行直线必共面;④每两条都相交且交点 不相同的四条直线一定共面. A.1个 B.2个 C.3个 D.4个 答案:B
基础梳理 三、表面积公式 1.多面体的表面积 多面体的表面积为各个面的________. 2.旋转体的表面积 (1)圆柱的表面积S=________; (2)圆锥的表面积S=________; (3)圆台的表面积S=π (r′2+r2+r′L+rL); (4)球的表面积S=________. 四、体积公式 1.柱体的体积V=________; 2.锥体的体积V=________; 3.台体的体积V=________; 4.球的体积V=________.
(完整)高中文科数学立体几何部分整理.doc
(完整)高中文科数学立体几何部分整理.doc立体几何高中文科数学立体几何部分整理第一章空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图——光线从几何体的前面向后面正投影,得到的投影图;侧视图——光线从几何体的左面向右面正投影,得到的投影图;正视图——光线从几何体的上面向下面正投影,得到的投影图;注:(1)俯视图画在正视图的下方,“长度”与正视图相等;侧视图画在正视图的右边,“高度”与正视图相等,“宽度”与俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽” .( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图:3.1 直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3.2 斜二测法:step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90 );step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的平面表示水平平面;step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于 x 轴(或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的2倍 .4解决两种常见的题型时应注意:(1)由几何体的三视图画直观图时,一般先考虑“俯视图”.(2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
【例题点击】将正三棱柱截去三个角(如图1 所示 A ,B , C 分别是△GHI 三边的中点)得到几何体如图2,则该几何体按图2 所示方向的侧视图(或称左视图)为()HA G ABBB侧视BBBCCIEDEDEEEEA .B .C .D .立体几何解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A(二)立体几何1.棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
广东省佛山南海九学中学高中三年级第二轮专题复习资料_立体几何题型与方法(文科)
专题二:立体几何题型与方法(文科)一、考点回顾1.平面(1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面 ,推出点在面), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。
(3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(4)证共面问题一般用落入法或重合法。
(5)经过不在同一条直线上的三点确定一个面. 2. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面。
(2)异面直线判定定理:过平面外一点与平面一点的直线和平面不经过该点的直线是异面直线.(不在任何一个平面的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(5)两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面. (l 1或l 2在这个做出的平面不能叫l 1与l 2平行的平面)3. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面的射影是一条直线.(×)] b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面的射影在这个角的平分线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例谈立体几何中的转化立体几何中所蕴含的数学思想方法非常丰富,其中最重要的就是转化的思想方法,它贯穿立体几何教学的始终,在立体几何教学中占有很重要的地位。
立体几何中的转化主要是空间问题向平面问题的转化,具体从以下几个方面入手。
1、位置关系的转化线线、线面、面面平行与垂直的位置关系是立体几何中的一个重点容,其精髓就是平行与垂直位置关系的相互依存及转化,平行与垂直问题不但能横向转化,而且可以纵向转化。
例1 已知三棱锥S -ABC 中,∠ABC =90°,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E 、F 。
求证EF ⊥SC 。
分析:∵A 、E 、F 三点不共线,AF ⊥SC , ∴要证EF ⊥SC ,只要证SC ⊥平面AEF , 只要证SC ⊥AE (如图1)。
又∵BC ⊥AB ,BC ⊥SA ,∴BC ⊥平面SAB , ∴SB 是SC 在平面SAB 上的射影。
∴只要证AE ⊥SB (已知),∴EF ⊥SC 。
例2 设矩形ABCD ,E 、F 分别为AB 、CD 的中点,以EF 为棱将矩形 折成二面角A -EF -C 1(如图-2)。
求证:平面AB 1E ∥平面C 1DF 。
分析一(纵向转化): ∵AE ∥DF ,AE ⊄平面C 1DF ,∴ AE ∥平面C 1DF.同理,B 1E ∥平面C 1DF , 又AE ∩B 1E =E ,∴平面AB 1E ∥平面C 1DF 。
分析二(横向转化):∵AE ∥EF ,B 1E ⊥EF ,且AE ∩B 1E =E ,∴EF ⊥平面C 1DF 。
同理,EF ⊥平面C 1DF 。
平面AB1E ∥平面C 1DF 。
2、降维转化由三维空间向二维平面转化,是研究立体几何问题的重要数学方法之一。
降维转化的目的是把空间的基本元素转化到某一个平面中去,用学生们比较熟悉的平面几何知识来解决问题。
如线面垂直的判定定理的证明就是转化为三角形全等的平面问题。
例3 如图-3,在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2, 90=∠ABC ,E 、F分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 . 223 分析:这类问题通常都是将几何体的侧面展开成平面图形来解决。
又如异面直线所成的角、线面角、面面角的计算,最终都是转化为平面上两相交直线成的角来进行的。
例4 如图-4直四棱柱1111D C B A ABCD-中,21=AA ,底面ABCD 是直角梯形,∠A 是直角,AB||CD ,AB=4,AD=2,DC=1,求异面直线1BC 与DC 所成角的大小.(结果用反三角函数值表示) 解:由题意AB//CD ,BA C 1∠∴是异面直线BC 1与DC 所成的角.连结AC 1与AC ,在Rt △ADC 中,可得5=AC ,又在Rt △ACC 1中,可得AC 1=3.在梯形ABCD 中,过C 作CH//AD 交AB 于H , 得13,3,2,90=∴==︒=∠CB HB CH CHB又在1CBC Rt ∆中,可得171=BC ,B E AD1C F C 1图-2D图-1 ESF CA图-4图-3在.17173arccos ,171732cos ,112121211=∠∴=⋅-+=∠∆ABC BC AB AC BC AB ABC ABC 中∴异而直线BC 1与DC 所成角的大小为。
实现空间问题向平面问题转化的方法很多,常用的就有:平移法、射影法、展开法和辅助面法等等。
3、割补转化“割形”与“补形”是解决立体几何问题的常用方法之一,通过“割”或“补”可化复杂图形为已熟知的简单几何体,从而较快地找到解决问题的突破口。
例5 如图5,三棱锥P -ABC 中,已知PA ⊥BC ,PA =BC =n, PA 与BC 的公垂线ED =h ,求证:三棱锥P -ABC 的体积V =16 n 2h.此题证法很多,下面用割补法证明如下:分析一:如图5,连结AD 、PD ,∵BC ⊥DE ,BC ⊥AB ,∴BC ⊥平面APD ,又DE ⊥AP ,∴V P -ABC =V B -APD +V C -APD=31BC ·S⊿APD=h n 261 。
分析二:如图6,以三棱锥P -ABC 的底面为底面,侧棱PA 为侧棱,补成三棱拄 PB1C1-ABC ,连结EC 、EB ,则易证AP ⊥平面EBC ,∴V 三棱拄=AP ·S ⊿EBC=21n 2h 。
∴V P -ABC=31V三棱拄= h n 261。
4、等积转化“等积法”在初中平面几何中就已经有所应用,是一种很实用的数学方法与技巧。
立体几何中的“等积转化”(或称等积变换)是以面积、体积(尤其是四面体的体积)作为媒介,来沟通有关元素之间的联系,从而使问题得到解决。
例6 如图7,已知ABCD -A 1B 1C 1D 1是棱长为a 的正方体,E 、F 分别为棱AA 1与CC 1的中点,求四棱锥A 1-EBFD 1的体积。
略解:易证四边形EBFD 1是菱形,连结A 1C 1、EC 1、AC 1、AD 1, 则V A1-EBFD1=2V A-EFD =2V F- A1ED1=2V C1- A1ED1=2V E- A1C1D1=V A-A1C1D1=61V 正方体AC1=61a 3。
5、抽象向具体转化例7 A 、B 、C 是球O 面上三点,弧AB 、AC 、BC 的度数分别是90°、90°、60°。
求球O 夹在二面角B -AO -C 间部分的体积。
分析:此题难点在于空间想象,即较抽象。
教师 引导学生读题:条件即∠AOB =∠AOC =90°,∠BOC =60°,然后给出图形(如图8),则可想象此题意即为用刀沿60°二面角,以直径为棱将一个西瓜切下一块,求这一块西瓜的体积,(答:A 1 D 1B 1D图图-8A DB CA1 D 1B 1C 1 图-9图-6B 1 1C 图—5923r π)。
问题于是变得直观具体多了。
例8 三条直线两两垂直,现有一条直线与其中两条直线都成60°角,求此直线与另外一条直线所成的角。
分析:由条件想象到长方体的三条棱也两两垂直,于是问题可以转化为如下问题:长方体一条对角线与同一顶点上的三条棱所成的角分别是60°、60°、α,求α的大小。
根据长方体的性质,有cos α+cos60°+cos60°=1,可求得α=45°。
立体几何的教学,关键是要调动学生的学习兴趣,让他们学会联想与转化。
立体几何的许多定理、结论源自生活实际,源自平面几何,要教会学生联想实际模型,联想平面几何中已经熟悉的东西,借助可取之材来建立空间想象,加强直观教学,这样就容易让学生接受,让他们喜欢上这一门学科,从而更有效地培养他们的空间想象力,提高他们解决立体几何问题的能力。
立方体在高考题中立方体是高中课本里空间图形中的最基本、最常用、最重要的几何体. 首先:其本身中的点、线、面的位置关系包涵了空间图形中的所有的位置关系. 其次:它与代数(如:不等式、函数与数列、排列组合等)、三角、解析几何有着密切联系. 因而它是高考命题的热点. 下面从数学思想方法方面探究其重要性.一.体现数形结合思想1.2004年卷(6)如图,在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点.那么异面直线OE 和1FD 所成的角θ的余弦值等于.(A)510 (B)515 (C)54 (D)32 分析:可建立空间直角坐标系(如图),转化为空间向量的数量关系 运用数量积来求解,可得OE =(-1,1,1), 1FD =(-1,0,2)=3=5,有 ·1FD =(-1,1,1) ·(-1,0,2)=3 又 ·1FD =3 ·5cos θ∴3 ·5cos θ=3即cos θ=515.故选(B)注:立方体具有的直观性特点从垂直联想到运用向量法求解(2.2003年全国卷(12)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )(A )π3 (B )4π(C )π33(D )π6分析:本题中没有立方体,可充分挖掘是正四面体特点补形成立方体. 如图,将正四面体ABCD 补成立方体,则正四面体、立方体的中心 与其外接球的球心共一点.因为正四面体的棱长为2,Z所以正方体棱长为1,从而外接球半径R=23,得π3=球S .故选(A).注:“补形割体”构造模型,进行适当的变形为熟悉的模型从而很方便地进行计算使问题得到顺利的解决,是处理空间图形中惯用的手段.二.体现转化与化归思想3.2003年全国(理)(16).下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP的图形的序号是 (写出所有符合要求的图形序号)__________.① ② ③ ④ ⑤分析:易知①是合要求的,由于五个图形中的l 在同一位置,只要观察图②③④⑤ 中的平面MNP 哪一个和①中的平面MNP 平行(转化为面面平行) 即可. 故为: ①④⑤注:本题中选①中平面MNP 作为“参照系”,可清淅解题思路,明确解题目标.4.2004年卷(4)如图,在正方体ABCD-A 1B 1C 1D 1中,P 是侧面BB 1C 1C 一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 (A ) 直线 (B ) 圆 (C ) 双曲线 (D ) 抛物线分析:易知P 到直线C 1D 1的距离为:1PC .由C 1是定点, BC 是定直线.条件即动点P 到定点C 1的距离等于到定直线BC 的距离.符合抛物线的定义,化归为抛物线问题.故选(D)注:立几中的解几问题是近年来才露脸的题型,要求熟练掌握立体几何和解析几何所有知识容,更要有跳跃的思维,较强的转换能力.三.体现分类讨论思想5.2000年全国卷(16)如图,E 、F 分别为正方体的面11A ADD 、 面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射 影可能是______。
(要求:把可能的图的序号都填上)分析:因正方体是由三对平行面所组成,所以只要将四边形E BFD 1在三个方向上作投影即可,因而可分为三类情况讨论.⑴在面ABCD 上作投影可得②(平行四边形). ⑵在面11A ADD 上作投影可得③(线段).PMNlPNMlNlPMlMNPNlPMB CDA1B1C1DP⑶在面11A ABB 上作投影可得②(平行四边形).故可填为:②③注:截面、射影的问题是空间图形和平面问题间变换的一种重要题型,象本题一样的定性分析题一定要抓住图形的特性(平行、垂直等)进行分析.6.2004年卷(10) 从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为 (A)56 (B) 52 (C)48 (D)40 分析:可将合条件的直角三角形分为两类:第一类:三个顶点在正方体的同一个面上时有:634C =24个.第二类:三个顶点在正方体的相对的两个面上时,直角三角形所在的平面一定是正方体的对角面,因而有:6×4=24个. 故共有:24+24=48个.从而选 (C)注:以几何体为载体考查排列与组合的有关问题是高考的传统题型,要做到不重复不遗漏地分类并且注意几何体的结构特点去求解.四.体现函数与方程思想7. 2002全国卷(18) 如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动, 若a BN CM==)20(<<a .(1)求MN 的长;(2)当a 为何值时,MN 的长最小;分析:将图形补成为正方体(如图)运用函数思想求解. (1)作MK ⊥AB 于K,连KN.由面ABCD ⊥面ABEF 得MK ⊥KN.从而MN=22KN MK +……①又由NFBN MA CM KA BK == 得KN ∥AF. 从而KN=BK=BN 22=a 22……②)2(2222a AM MK -==……③ 将②③代入①有MN=2221)2(21a a +-=122+-a a 为所求.(2)运用函数配方法,由(Ⅰ)知MN=122+-a a . )20(<<a .配方有MN=21)22(2+-a ≥22即当a =22时,MN取最小值22.注:对空间图形中含有一些“动态”因素(象距离、角度等)的问题,可考虑能否把这一动源作为自变量,构造目标函数,用函数的思想来处理.8.2004年(18)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点.试确定点F 的 使得D 1E ⊥平面AB 1F.ABDCE FNM K分析:以A 为坐标标原点,建立如图所未的空间直角坐标系.运用方程思想(借助向量的数量积)求解. 设DF=x ,则A (0,0,0),B 1(1,0,1),D 1(0,1,1),E ⎪⎭⎫ ⎝⎛0,21,1,F (x ,1,0)∴⎪⎭⎫⎝⎛--=1,21,11ED , )0,1,(x AF =. 于是D 1E ⊥平面F AB 1∴⇔=⋅01AF E D ⎪⎭⎫⎝⎛--1,21,1.)0,1,(x =0021=-⇔x既21=x .故当点F 是CD 的中点时,D 1E ⊥平面AB 1F. 在近几年的高考试题中,立方体不仅包涵了所有的数学思想方法,密切了与中学数学中其它容的联系,更体现着从静到动,从单一到多方面,从立方体本身应用问题到利用立方体去解决问题的发展变化.仔细研究这些变化对学好空间几何无疑是有裨益的. 几点思考:1.加强对立方体的研究,对空间图形的研究以培养学生的空间想象能力,数形转换能力与逻辑思维能力.⑴对立方体本身的研究:如:立方体的切球,外接球,球与立方体的棱相切等;立方体与正四面体的联系;以正方体各面的中点为顶点可构成正八面体等.⑵对空间图形问题中解题方法的研究:以立方体为载体的方法有:平移求角法,割体补形法,面积射影法,体积相等法,侧面展形法,转化化归法,空间向量法等.⑶构造立方体以解决有关问题(第二册下B 19P 3)“已知三个平行平面α、β、γ与两条直线 、m 分别相交于点A 、B 、C 和点D 、E 、F(图1),求证:EFDEBC AB =.”解答此题时学生很容易误将 与m 共面去理解造成错误.其实构造正方体(图2)可加强直观性以帮助学生理解.图1 图2通过对立方体及空间图形的研究可培养学生的认识空间图形的能力,建立起空间概念,准确地理解并熟练运用概念、性质、公理、定理进行判断、推理与转化(如:①线线、线面、面面垂直关系的转化及平行关系的转化,②把空间距离和角向平面距和平面角的转化,③文字语言、符号语言、图形语言三者的相互转化.)等2.加强立方体与其它容的渗透的研究:立方体与排列组合的结合,象染色问题,计数问题;立方体与解析几何的结合,象轨迹问题;立方体与函数方程的结合,象最值问题;立方体与代数三角的结合,象角度距离问题;立方体与其它学科的结合,象化学晶体问题等.这样有助于对正方体的深刻认识与实际应用.3.通过对立方体及空间图形的研究挖究高考解答题的模式.高考解答题往往是要解决两大问题:一是证明题,二是计算题.处理方式有两种:⑴在证明中要以典型的三段论的形式,严格按照演绎推理的步骤完成推理的论证;计算时并非单纯的数字计算,而是与作图与证明相结合的,立体几何计算题的主要步骤可归纳为:“画—证—算”三步.“画”是画图,添加必要的辅助线,或画出所要求的几何量,或进行必要的转换化,“证”是证明,证明所画的几何量即为所求,然后进行最后一步计算.这三步之间紧密相连,环环相扣,相互制约,是解决立体几何题的思维程序.⑵由垂直关系建立空间直角坐标系,运用向量处理即可.例谈点到平面距离的求法立体几何的空间距离是历年高考考查的重点和热点。