MAX6388XS16D4-T中文资料
MAX832中文资料
NUAL KIT MA ATION U EET L H A S V A E T WS DA FOLLO
___________________________Features
o Input Range: Up to 30V o 1A On-Chip Power Switch o Adjustable Output (MAX830) Fixed Outputs: 5V (MAX831) 3.3V (MAX832) 3V (MAX833) o 100kHz Switching Frequency o Excellent Dynamic Characteristics o Few External Components o 8mA Quiescent Current o 16-Pin SO Package o Evaluation Kit Available
__________Typical Operating Circuit
__________________Pin Configuration
TOP VIEW
INPUT 8V TO 30V 100µF VIN VSW
100µH*
OUTPUT 5V AT 1A
V IN 1 V IN 2 V IN 3
16 V SW 15 V SW 14 V SW
_______________________Applications
Distributed Power from High-Voltage Buses High-Current, High-Voltage Step-Down Applications Multiple-Output Buck Converter
MAX831
VC 10k 0.047µF SENSE
MAX13085EESA-T中文资料
General DescriptionThe MAX13080E–MAX13089E +5.0V, ±15kV ESD-protect-ed, RS-485/RS-422 transceivers feature one driver and one receiver. These devices include fail-safe circuitry,guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receiver outputs a logic-high if all transmitters on a terminated bus are disabled (high impedance). The MAX13080E–MAX13089E include a hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also feature slew-rate-limited drivers but allow transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088E driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E slew rate is pin selectable for 250kbps,500kbps, and 16Mbps.The MAX13082E/MAX13085E/MAX13088E are intended for half-duplex communications, and the MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E are intended for full-duplex communica-tions. The MAX13089E is selectable for half-duplex or full-duplex operation. It also features independently programmable receiver and transmitter output phase through separate pins.The MAX13080E–MAX13089E transceivers draw 1.2mA of supply current when unloaded or when fully loaded with the drivers disabled. All devices have a 1/8-unit load receiver input impedance, allowing up to 256transceivers on the bus.The MAX13080E/MAX13083E/MAX13086E/MAX13089E are available in 14-pin PDIP and 14-pin SO packages.The MAX13081E/MAX13082E/MAX13084E/MAX13085E/MAX13087E/MAX13088E are available in 8-pin PDIP and 8-pin SO packages. The devices operate over the com-mercial, extended, and automotive temperature ranges.ApplicationsUtility Meters Lighting Systems Industrial Control Telecom Security Systems Instrumentation ProfibusFeatures♦+5.0V Operation♦Extended ESD Protection for RS-485/RS-422 I/O Pins±15kV Human Body Model ♦True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility ♦Hot-Swap Input Structures on DE and RE ♦Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission(MAX13080E–MAX13085E/MAX13089E)♦Low-Current Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)♦Pin-Selectable Full-/Half-Duplex Operation (MAX13089E)♦Phase Controls to Correct for Twisted-Pair Reversal (MAX13089E)♦Allow Up to 256 Transceivers on the Bus ♦Available in Industry-Standard 8-Pin SO PackageMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-3590; Rev 1; 4/05For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide, Pin Configurations, and Typical Operating Circuits appear at end of data sheet.Ordering Information continued at end of data sheet.M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC ).............................................................+6V Control Input Voltage (RE , DE, SLR,H/F , TXP, RXP)......................................................-0.3V to +6V Driver Input Voltage (DI)...........................................-0.3V to +6V Driver Output Voltage (Z, Y, A, B).............................-8V to +13V Receiver Input Voltage (A, B)....................................-8V to +13V Receiver Input VoltageFull Duplex (A, B)..................................................-8V to +13V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Driver Output Current.....................................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin Plastic DIP (derate 9.09mW/°C above +70°C).....727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 14-Pin Plastic DIP (derate 10.0mW/°C above +70°C)...800mW Operating Temperature RangesMAX1308_EC_ _.................................................0°C to +75°C MAX1308_EE_ _..............................................-40°C to +85°C MAX1308_EA_ _............................................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________3DC ELECTRICAL CHARACTERISTICS (continued)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.) (Note 1)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 4_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13080E/MAX13081E/MAX13082E/MAX13089E WITH SRL = UNCONNECTED (250kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________5DRIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13083E/MAX13084E/MAX13085E/MAX13089E WITH SRL = V CC (500kbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 6_______________________________________________________________________________________DRIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)RECEIVER SWITCHING CHARACTERISTICSMAX13086E/MAX13087E/MAX13088E/MAX13089E WITH SRL = GND (16Mbps)(V CC = +5.0V ±10%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5.0V and T A = +25°C.)Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________70.800.901.501.101.001.201.301.401.60-40-10520-253550958011065125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )0201040305060021345OUTPUT CURRENTvs. RECEIVER OUTPUT-HIGH VOLTAGEM A X 13080E -89E t o c 02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )20104030605070021345OUTPUT CURRENTvs. RECEIVER OUTPUT-LOW VOLTAGEM A X 13080E -89E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.04.44.24.84.65.25.05.4RECEIVER OUTPUT-HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )-40-10520-2535509580110651250.10.70.30.20.40.50.60.8RECEIVER OUTPUT-LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )-40-10520-25355095801106512502040608010012014016012345DRIVER DIFFERENTIAL OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEDIFFERENTIAL OUTPUT VOLTAGE (V)D I F FE R E N T I A L O U T P U T C U R R E N T (m A )2.02.82.43.63.24.44.04.8DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURED I F FE R E N T I A L O U T P U T V O L T A G E (V )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140180160200-7-5-4-6-3-2-1012354OUTPUT CURRENT vs. TRANSMITTEROUTPUT-HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )60402080100120140160180200042681012OUTPUT CURRENT vs. TRANSMITTEROUTPUT-LOW VOLTAGEOUTPUT-LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5.0V, T A = +25°C, unless otherwise noted.)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 8_______________________________________________________________________________________21543679810SHUTDOWN CURRENT vs. TEMPERATUREM A X 13080E -89E t o c 10S H U T D O W N C U R R E N T (µA )-40-10520-253550958011065125TEMPERATURE (°C)600800700100090011001200DRIVER PROPAGATION DELAY vs. TEMPERATURE (250kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)300400350500450550600DRIVER PROPAGATION DELAY vs. TEMPERATURE (500kbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)1070302040506080DRIVER PROPAGATION DELAY vs. TEMPERATURE (16Mbps)D R I VE R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (250kpbs AND 500kbps)R E C E I V E R P R O P A G A T I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)40201008060120140160180RECEIVER PROPAGATION DELAYvs. TEMPERATURE (16Mbps)R EC E I V E R P R O P A G AT I O N D E L A Y (n s )-40-10520-253550958011065125TEMPERATURE (°C)2µs/div DRIVER PROPAGATION DELAY (250kbps)DI 2V/divV Y - V Z 5V/divR L = 100Ω200ns/divRECEIVER PROPAGATION DELAY(250kbps AND 500kbps)V A - V B 5V/divRO 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers_______________________________________________________________________________________9Test Circuits and Waveforms400ns/divDRIVER PROPAGATION DELAY (500kbps)DI 2V/divR L = 100ΩV Y - V Z 5V/div10ns/div DRIVER PROPAGATION DELAY (16Mbps)DI 2V/divR L = 100ΩV Y 2V/divV Z 2V/div40ns/divRECEIVER PROPAGATION DELAY (16Mbps)V B 2V/divR L = 100ΩRO 2V/divV A 2V/divTypical Operating Characteristics (continued)(V CC = +5.0V, T A = +25°C, unless otherwise noted.)Figure 2. Driver Timing Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 10______________________________________________________________________________________Test Circuits and Waveforms (continued)Figure 4. Driver Enable and Disable Times (t DHZ , t DZH , t DZH(SHDN))DZL DLZ DLZ(SHDN)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversTest Circuits and Waveforms (continued)Figure 6. Receiver Propagation Delay Test CircuitM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E/MAX13083E/MAX13086EMAX13081E/MAX13084E/MAX13086E/MAX13087EFunction TablesM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers MAX13082E/MAX13085E/MAX13088EFunction Tables (continued)MAX13089EDetailed Description The MAX13080E–MAX13089E high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature fail-safe circuit-ry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all dri-vers disabled (see the Fail-Safe section). The MAX13080E/MAX13082E/MAX13083E/MAX13085E/ MAX13086E/MAX13088E/MAX13089E also feature a hot-swap capability allowing line insertion without erroneous data transfer (see the Hot Swap Capability section). The MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflec-tions caused by improperly terminated cables, allowing error-free data transmission up to 250kbps. The MAX13083E/MAX13084E/MAX13085E also offer slew-rate limits allowing transmit speeds up to 500kbps. The MAX13086E/MAX13087E/MAX13088Es’ driver slew rates are not limited, making transmit speeds up to 16Mbps possible. The MAX13089E’s slew rate is selectable between 250kbps, 500kbps, and 16Mbps by driving a selector pin with a three-state driver.The MAX13082E/MAX13085E/MAX13088E are half-duplex transceivers, while the MAX13080E/MAX13081E/ MAX13083E/MAX13084E/MAX13086E/MAX13087E are full-duplex transceivers. The MAX13089E is selectable between half- and full-duplex communication by driving a selector pin (H/F) high or low, respectively.All devices operate from a single +5.0V supply. Drivers are output short-circuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissi-pation. When activated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state.Receiver Input Filtering The receivers of the MAX13080E–MAX13085E, and the MAX13089E when operating in 250kbps or 500kbps mode, incorporate input filtering in addition to input hysteresis. This filtering enhances noise immunity with differential signals that have very slow rise and fall times. Receiver propagation delay increases by 25% due to this filtering.Fail-Safe The MAX13080E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, RO is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiv-er’s differential input voltage is pulled to 0V by the termi-nation. With the receiver thresholds of the MAX13080E family, this results in a logic-high with a 50mV minimumnoise margin. Unlike previous fail-safe devices, the-50mV to -200mV threshold complies with the ±200mVEIA/TIA-485 standard.Hot-Swap Capability (Except MAX13081E/MAX13084E/MAX13087E)Hot-Swap InputsWhen circuit boards are inserted into a hot or powered backplane, differential disturbances to the data buscan lead to data errors. Upon initial circuit board inser-tion, the data communication processor undergoes itsown power-up sequence. During this period, the processor’s logic-output drivers are high impedanceand are unable to drive the DE and RE inputs of these devices to a defined logic level. Leakage currents up to±10µA from the high-impedance state of the proces-sor’s logic drivers could cause standard CMOS enableinputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit board capacitance couldcause coupling of V CC or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver’s driver or receiver.When V CC rises, an internal pulldown circuit holds DElow and RE high. After the initial power-up sequence,the pulldown circuit becomes transparent, resetting thehot-swap tolerable input.Hot-Swap Input CircuitryThe enable inputs feature hot-swap capability. At theinput there are two NMOS devices, M1 and M2 (Figure 9). When V CC ramps from zero, an internal 7µstimer turns on M2 and sets the SR latch, which alsoturns on M1. Transistors M2, a 1.5mA current sink, andM1, a 500µA current sink, pull DE to GND through a5kΩresistor. M2 is designed to pull DE to the disabledstate against an external parasitic capacitance up to100pF that can drive DE high. After 7µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1 remains on until an external source overcomes the required input current. At this time, the SR latch resetsand M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CCdrops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling RE to V CC. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089EMAX13089E ProgrammingThe MAX13089E has several programmable operating modes. Transmitter rise and fall times are programma-ble, resulting in maximum data rates of 250kbps,500kbps, and 16Mbps. To select the desired data rate,drive SRL to one of three possible states by using a three-state driver: V CC , GND, or unconnected. F or 250kbps operation, set the three-state device in high-impedance mode or leave SRL unconnected. F or 500kbps operation, drive SRL high or connect it to V CC .F or 16Mbps operation, drive SRL low or connect it to GND. SRL can be changed during operation without interrupting data communications.Occasionally, twisted-pair lines are connected backward from normal orientation. The MAX13089E has two pins that invert the phase of the driver and the receiver to cor-rect this problem. F or normal operation, drive TXP and RXP low, connect them to ground, or leave them uncon-nected (internal pulldown). To invert the driver phase,drive TXP high or connect it to V CC . To invert the receiver phase, drive RXP high or connect it to V CC . Note that the receiver threshold is positive when RXP is high.The MAX13089E can operate in full- or half-duplex mode. Drive H/F low, leave it unconnected (internal pulldown), or connect it to GND for full-duplex opera-tion. Drive H/F high for half-duplex operation. In full-duplex mode, the pin configuration of the driver and receiver is the same as that of a MAX13080E. In half-duplex mode, the receiver inputs are internally connect-ed to the driver outputs through a resistor-divider. This effectively changes the function of the device’s outputs.Y becomes the noninverting driver output and receiver input, Z becomes the inverting driver output and receiver input. In half-duplex mode, A and B are still connected to ground through an internal resistor-divider but they are not internally connected to the receiver.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13080E family of devices have extra protection against static electricity. Maxim’s engineers have devel-oped state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD struc-tures withstand high ESD in all states: normal operation,shutdown, and powered down. After an ESD event, the MAX13080E–MAX13089E keep working without latchup or damage.ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13080E–MAX13089E are characterized for protec-tion to the following limits:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 61000-4-2ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,which is then discharged into the test device through a 1.5k Ωresistor.IEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13080E family of devices helps you design equip-ment to meet IEC 61000-4-2, without the need for addi-tional ESD-protection components.+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD with-stand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.Machine Model The machine model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. The objective is to emulate the stress caused when I/O pins are contacted by handling equipment during test and assembly. Of course, all pins require this protection, not just RS-485 inputs and outputs.Applications Information256 Transceivers on the BusThe standard RS-485 receiver input impedance is 12kΩ(1-unit load), and the standard driver can drive up to 32-unit loads. The MAX13080E family of transceivers has a1/8-unit load receiver input impedance (96kΩ), allowingup to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices,as well as other RS-485 transceivers with a total of 32-unit loads or fewer, can be connected to the line.Reduced EMI and ReflectionsThe MAX13080E/MAX13081E/MAX13082E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to250kbps. The MAX13083E/MAX13084E/MAX13085Eoffer higher driver output slew-rate limits, allowing transmit speeds up to 500kbps. The MAX13089E withSRL = V CC or unconnected are slew-rate limited. WithSRL unconnected, the MAX13089E error-free data transmission is up to 250kbps. With SRL connected toV CC,the data transmit speeds up to 500kbps. MAX13080E–MAX13089E+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversM A X 13080E –M A X 13089ELow-Power Shutdown Mode (Except MAX13081E/MAX13084E/MAX13087E)Low-power shutdown mode is initiated by bringing both RE high and DE low. In shutdown, the devices typically draw only 2.8µA of supply current.RE and DE can be driven simultaneously; the devices are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 700ns, the devices are guaranteed to enter shutdown.Enable times t ZH and t ZL (see the Switching Characteristics section) assume the devices were not in a low-power shutdown state. Enable times t ZH(SHDN)and t ZL(SHDN)assume the devices were in shutdown state. It takes drivers and receivers longer to become enabled from low-power shutdown mode (t ZH(SHDN), t ZL(SHDN))than from driver/receiver-disable mode (t ZH , t ZL ).Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention.The first, a foldback current limit on the output stage,provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics ). The second, a thermal-shut-down circuit, forces the driver outputs into a high-imped-ance state if the die temperature exceeds +175°C (typ).Line LengthThe RS-485/RS-422 standard covers line lengths up to 4000ft. F or line lengths greater than 4000ft, use the repeater application shown in Figure 11.Typical ApplicationsThe MAX13082E/MAX13085E/MAX13088E/MAX13089E transceivers are designed for bidirectional data commu-nications on multipoint bus transmission lines. F igures 12 and 13 show typical network applications circuits. To minimize reflections, terminate the line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-lim-ited MAX13082E/MAX13085E and the two modes of the MAX13089E are more tolerant of imperfect termination.Chip InformationTRANSISTOR COUNT: 1228PROCESS: BiCMOS+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversFigure 11. Line Repeater for MAX13080E/MAX13081E/MAX13083E/MAX13084E/MAX13086E/MAX13087E/MAX13089E in Full-Duplex Mode+5.0V, ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversMAX13080E–MAX13089EM A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 TransceiversPin Configurations and Typical Operating CircuitsMAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________21Pin Configurations and Typical Operating Circuits (continued)M A X 13080E –M A X 13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers 22______________________________________________________________________________________Ordering Information (continued)MAX13080E–MAX13089E+5.0V , ±15kV ESD-Protected, Fail-Safe, Hot-Swap, RS-485/RS-422 Transceivers______________________________________________________________________________________23Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MEMORY存储芯片MAX1680ESA+T中文规格书
M A X 1680/M A X 16812_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS (Typical Operating Circuits (inverter configuration), FSEL = LV = GND, V IN = 5V, C1 = C2 = 10µF (MAX1680), C1 = C2 = 2.2µF (MAX1681), T A = 0°C to +85°C , unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.IN..............................................................................-0.3V to +6V LV....................................................(V OUT - 0.3V) to (V IN + 0.3V)CAP+...........................................................-0.3V to (V IN + 0.3V)SHDN, FSEL......................................(V LV - 0.3V) to (V IN + 0.3V)OUT, CAP-..................................................................-6V to 0.3V Continuous Output Current ..............................................135mA Output Short-Circuit Duration to GND (Note 1) ...................1sec Continuous Power Dissipation (T A = +70°C)SO (derate 5.88mW/°C above +70°C)..........................471mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°C Note 1:Shorting OUT to IN may damage the device and should be avoided.找MEMORY 、二三极管上美光存储ELECTRICAL CHARACTERISTICS(Typical Operating Circuits (inverter configuration), FSEL = LV = GND, V IN = 5V, C1 = C2 = 10µF (MAX1680), C1 = C2 = 2.2µF (MAX1681), T A = -40°C to +85°C , unless otherwise noted.) (Note 4)MAX1680/MAX1681125mA, Frequency-Selectable, Switched-Capacitor Voltage Converters_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(Typical Operating Circuits (inverter configuration), FSEL = LV = GND, V IN = 5V, C1 = C2 = 10µF (MAX1680), C1 = C2 = 2.2µF (MAX1681), T A = 0°C to +85°C , unless otherwise noted. Typical values are at T A = +25°C.)Note 2:C1 and C2 are low-ESR (<0.2Ω) capacitors. Capacitor ESR adds to the circuit’s output resistance. Using capacitors withhigher ESR reduces output voltage and efficiency. The specified output resistance includes the C1 and C2 0.2ΩESR. Note 3:The typical threshold for V INPUT other than +5V is 0.35V INPUT (V IL = V IH ).Note 4:Specifications to -40°C are guaranteed by design, not production tested.。
MEMORY存储芯片MAX491EESD+T中文规格书
μMAX
8 VCC 7B 6A 5 GND
8A
RO 1
R
RE 2
DE 3
DI 4 D
8 VCC 7B
Rt 6
A
5 GND
MAX481 MAX483 MAX485 MAX487 MAX1487
DE
DI D B Rt
A R
RO
7 GND
RE
6 DI
5 DE
NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH. TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.
MAX481/MAX483/MAX485/ MAX487–MAX491/MAX1487
Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
______________________________________________________________Pin Description
Figure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating Circuit
7
MAX481/MAX483/MAX485/ MAX487–MAX491/MAX1487
Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
8
__________Applications Information
MAX809SN160T1资料
MAX809 Series,MAX810 SeriesVery Low Supply Current 3-Pin Microprocessor Reset MonitorsThe MAX809 and MAX810 are cost–effective system supervisor circuits designed to monitor V CC in digital systems and provide a reset signal to the host processor when necessary. No external components are required.The reset output is driven active within 10 µsec of V CC falling through the reset voltage threshold. Reset is maintained active for a minimum of 140 msec after V CC rises above the reset threshold. The MAX810 has an active–high RESET output while the MAX809 has an active–low RESET output. The output of the MAX809 is guaranteed valid down to V CC = 1.0 V. Both devices are available in a SOT–23 package.The MAX809/810 are optimized to reject fast transient glitches on the V CC line. Low supply current of 1.0 µA (V CC= 3.2 V) makes these devices suitable for battery powered applications.Features•Precision V CC Monitor for 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies •Precision Monitoring V oltages from 1.6 V to 4.9 V Availablein 100 mV Steps•140 msec Guaranteed Minimum RESET Output Duration •RESET Output Guaranteed to V CC = 1.0 V•Low Supply Current•V CC Transient Immunity•Small SOT–23 Package•No External Components•Wide Operating Temperature: –40°C to 105°CTypical Applications•Computers•Embedded Systems•Battery Powered Equipment•Critical µP Power Supply MonitoringV CCFigure 1. Typical Application DiagramDevice Package ShippingORDERING INFORMATIONMAX809xTR SOT–233000 Tape/Reel MAX809SNxxxT1SOT–233000 Tape/Reel NOTE:*SOT–23 is equivalent to JEDEC (TO–236) **RESET is for MAX809***RESET is for MAX810SOT–23(TO–236)CASE 318PIN CONFIGURATION312V CCGNDRESET**SOT–23*(Top View)xx, xxx= Specific Device Codem= Date Codey= Yearw= Work WeekMARKINGDIAGRAMS32xxxm1(RESET)***MAX810xTR SOT–233000 Tape/ReelSee general marking information in the device marking section on page 8 of this data sheet.DEVICE MARKING INFORMATION NOTE: The “x” and “xxx” denotes a suffix for V cc voltage threshold options – see page 8 for more details.32xxyw1See specific device markinginformation on page 8.PIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS* (Note 1)1.This device series contains ESD protection and exceeds the following tests:Human Body Model 2000 V per MIL–STD–883, Method 3015. Machine Model Method 350 V.2.The maximum package power dissipation limit must not be exceeded.P D +T J(max)*T Aq JAwith T J(max) = 150°C ELECTRICAL CHARACTERISTICS T A = –40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 3)The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.AELECTRICAL CHARACTERISTICS(continued) T A = –40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 4) The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.A5.Contact your ON Semiconductor sales representative for other threshold voltage options.ELECTRICAL CHARACTERISTICS (V CC = Full Range, T A = –40°C to +85°C unless otherwise noted. Typical values are at T A = +25°C, V CC = 5.0 V for L/M/J, 3.3 V for T/S, 3.0 V for R) (Note 6) The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V; MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.AAPPLICATIONS INFORMATIONV CC Transient RejectionThe MAX809 provides accurate V CC monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches)on the power supply line. Figure 2 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Typically, transient that goes 100 mV below the reset threshold and lasts 5 µs or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V CC pin of the MAX809.Figure 2. Maximum Transient Duration vs. Overdrivefor Glitch Rejection at 25°CV CC10.010080110.060.0M A X I M U M T R A N S I E N T D U R A T I O N (µs e c )20120RESET COMPARATOR OVERDRIVE (mV)160.06040RESET Signal Integrity During Power–DownThe MAX809 RESET output is valid to V CC = 1.0 V .Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the µP will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage.However, in situations where RESET must be maintainedvalid to V CC = 0 V , a pull–down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 3). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100 k W will be suitable for most applications).Figure 3. Ensuring RESET Valid to V CC = 0 VProcessors With Bidirectional I/O PinsSome µP’s (such as Motorola 68HC11) have bi–directional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k W resistor in series with the output of the MAX809 (Figure 4). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the µP, the buffer should be connected as shown with the solid line.Figure 4. Interfacing to Bidirectional Reset I/OBUFFERED RESETThe following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.1.10S U P P L Y C U R R E N T I N M I C R O A M PTEMPERATURE (°C)N O R M A L I Z E D P O W E R –U P R E S E T T I M E O U T–404020–206080Figure 7. Normalized Power–Up Reset vs.Temperature Figure 8. Normalized Reset Threshold Voltagevs. TemperatureTEMPERATURE (°C)–404020–206080The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V;MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.S U P P L Y C U R R E N T ( A )m 040206080100P O W E R -D O W N R E S E T D E L A Y ( s e c )m TEMPERATURE (C °)-40-200204085Figure 13. Power–Up Reset Timeout vs.Temperature TEMPERATURE (C °)-40-20020406085225235230240245250P O W E R -U P R E S E T T I M E O U T (m s e c )60Figure 14. Normalized Reset Threshold vs.TemperatureTAPING FORMComponent Taping Orientation for 3L SOT–23 (JEDEC–236) Devices(Mark Right Side Up)SOT–23Package Carrier Width (W)Pitch (P)Part Per Full ReelReel Size 8 mm4 mm30007 inchesTape & Reel Specifications TableMARKING AND THRESHOLD INFORMATIONm = Date Codey = Yearw = Work WeekPACKAGE DIMENSIONSSOT–23PLASTIC PACKAGE (TO–236)CASE 318–08ISSUE AHNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.MAXIMUM LEAD THICKNESS INCLUDES LEADNotesNotes11ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。
MAX6368PKA46+T中文资料
VCC Peak ..............................................................................1A VCC Continuous .............................................................250mA BATT Peak .....................................................................250mA
MAX6368HKA_ _-T
-40°C to +85°C
8 SOT23-8
*These parts offer a choice of reset threshold voltages. From the Reset Threshold Ranges table, insert the desired threshold voltage code in the blank to complete the part number. SOT parts come in tape-and-reel only and must be ordered in 2500-piece increments. See Device Marking Codes for a complete parts list, including SOT top marks and standard threshold versions. See Selector Guide for a listing of device features.
MAX1680ESA+T中文资料
PART MAX1680C/D MAX1680ESA MAX1681C/D MAX1681ESA
TEMP. RANGE 0°C to +70°C -40°C to +85°C 0°C to +70°C -40°C to +85°C
*Contact factory for dice specifications.
Note 1: Shorting OUT to IN may damage the device and should be avoided.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2.0
MAX1681
3.0
MAX1680
2.5
MAX1681
4.0
5.5 5.5
V 5.5
V 5.5
Supply Current
MAX1680 I+
TweenMax中文手册与参数说明
TweenMax 建立在TweenLite 和TweenFilterLite 基础之上,因此,又揉合了这二者的功能,使得功能更加的齐备,但是如果说易用性,觉得还是 TweenLite 来得方便一些。
我的译文是从 TweenLite 开始的,接着是 TweenFilterLite 最后是 TweenMax ,这也恰好是这个类发展的轨迹,沿着这个轨迹一路读过来,会觉得容易理解很多。
描述:TweenMax 建立在TweenLite 核心类以及它的大哥TweenFilterLite 基础之上,它为Tween 家族增加了新的受欢迎的功能(尽管只是锦上添花),从而使家族更加的壮大,比如贝赛尔缓动、暂停/继续能力,简便的连续缓、16进制颜色缓动、以及更多的内容。
TweenMax 采用了与它的兄弟相似的易于学习的语法结构。
实事上,因为它扩展自它们,TweenMax 可以做任何TweenLite 和/或者TweenFilterLite 能做的事,还加上了更多的特色。
那么为什么要建立3 个类,而不是1 个呢?问的好,我的目标是:效率最大化,尺寸最小化。
坦白的说,TweenLite 可能是所有的程序员在90% 的项目中都需要用到的,而它仅有3k。
相对它的功能来说,它是非常高效和紧凑的。
但是如果你需要对滤镜进行缓动,或者更丰富的图像效果,比如说饱和度(saturation)、对比度(contrast)、色相(hue)、调色等等进行控制,那就装上TweenFilterLite 总共6k 。
还想要的更多?No problem (没问题)– TweenMax 已经在总共8k 的大小里面塞满了足够多的功能。
想查看相关的功能对比图,请访问 以获取更多信息。
( TweenMax 类包中直接包含有独立的TweenLite 和TweenFilterLite 类,因此下载这一个包就可以了,在Flash 类路径中添加的时候,也只需要添加这一个路径就可以了—-译者注)TweenMax 创造了一种全新的功能,叫做―bezierThrough‖(暂译为贝塞尔通路),这个功能允许你定义一些点,通过贝塞尔曲线连接这些点,(通常的控制点只是用来拉近曲线,这里的点直接在曲线的路径上)。
MAX6383XR16D4+中文资料
General Description The MAX6381–MAX6390 microprocessor (µP) supervisory circuits monitor power-supply voltages from +1.8V to +5.0V while consuming only 3µA of supply current at +1.8V. Whenever V CC falls below the factory-set reset thresholds, the reset output asserts and remains assert-ed for a minimum reset timeout period after V CC rises above the reset threshold. Reset thresholds are available from +1.58V to +4.63V, in approximately 100mV incre-ments. Seven minimum reset timeout delays ranging from 1ms to 1200ms are available.The MAX6381/MAX6384/MAX6387 have a push-pull active-low reset output. The MAX6382/MAX6385/ MAX6388 have a push-pull active-high reset output, and the MAX6383/MAX6386/MAX6389/MAX6390 have an open-drain active-low reset output. The MAX6384/MAX6385/MAX6386 also feature a debounced manual reset input (with internal pullup resistor). The MAX6387/MAX6388/MAX6389 have an auxiliary input for monitoring a second voltage. The MAX6390 offers a manual reset input with a longer V CC reset timeout period (1120ms or 1200ms) and a shorter manual reset timeout (140ms or 150ms).The MAX6381/MAX6382/MAX6383 are available in 3-pin SC70 and6-pinµDFN packages and the MAX6384–MAX6390 are available in 4-pin SC70 andFeatures♦Factory-Set Reset Threshold Voltages Rangingfrom +1.58V to +4.63V in Approximately 100mVIncrements♦±2.5% Reset Threshold Accuracy OverTemperature (-40°C to +125°C)♦Seven Reset Timeout Periods Available: 1ms,20ms, 140ms, 280ms, 560ms, 1120ms,1200ms (min)♦3 Reset Output OptionsActive-Low Push-PullActive-High Push-PullActive-Low Open-Drain♦Reset Output State Guaranteed ValidDown to V CC= 1V♦Manual Reset Input (MAX6384/MAX6385/MAX6386)♦Auxiliary RESET IN(MAX6387/MAX6388/MAX6389)♦V CC Reset Timeout (1120ms or 1200ms)/ManualReset Timeout (140ms or 150ms) (MAX6390)♦Negative-Going V CC Transient Immunity♦Low Power Consumption of 6µA at +3.6Vand 3µA at +1.8V♦Pin Compatible withMAX809/MAX810/MAX803/MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX6348,and MAX6711/MAX6712/MAX6713♦Tiny 3-Pin/4-Pin SC70 and 6-Pin µDFN PackagesMAX6381–MAX6390 SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits ________________________________________________________________Maxim Integrated Products1Pin Configurations19-1839; Rev 4; 4/07Ordering InformationOrdering Information continued at end of data sheet.Typi cal Operati ng Ci rcui t appears at end of data sheet.Selector Guide appears at end of data sheet.after "XR", "XS", or "LT." Insert reset timeout delay (see ResetTimeout Delay table) after "D" to complete the part number.Sample stock is generally held on standard versions only (seeStandard Versions table). Standard versions have an orderincrement requirement of 2500 pieces. Nonstandard versionshave an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.+Denotes a lead-free package.For pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .ComputersControllersIntelligent InstrumentsCritical µP and µCPower MonitoringPortable/Battery-Powered EquipmentDual Voltage SystemsM A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset CircuitsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +125°C, unless otherwise specified. Typical values are at T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..........................................................-0.3V to +6.0V RESET Open-Drain Output....................................-0.3V to +6.0V RESET , RESET (push-pull output)..............-0.3V to (V CC + 0.3V)MR , RESET IN.............................................-0.3V to (V CC + 0.3V)Input Current (V CC ).............................................................20mA Output Current (all pins).....................................................20mAContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.9mW/°C above +70°C)..............235mW 4-Pin SC70 (derate 3.1mW/°C above +70°C)..............245mW 6-Pin µDFN (derate 2.1mW/°C above +70°C)..........167.7mW Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________3M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 4______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)215436789-40-105-25203550658095110125SUPPLY CURRENT vs. TEMPERATURE(NO LOAD)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )25292735333137394143-40-105-25203550658095110125POWER-DOWN RESET DELAYvs. TEMPERATURETEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )0.940.980.961.021.001.061.041.08-40-10520-253550658095110125NORMALIZED POWER-UP RESET TIMEOUTvs. TEMPERATUREM A X 6381/90 t o c 03TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.9900.9851.0150.9950.9901.0001.0051.0101.020-40-10520-253550958011065125M A X 6381/90 t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E T TH R E S H O L D NORMALIZED RESET THRESHOLDvs. TEMPERATURE00.40.20.80.61.01.2063912OUTPUT-VOLTAGE LOW vs. SINK CURRENTI SINK (mA)V O L (V )01.00.52.01.52.53.00500750250100012501500OUTPUT-VOLTAGE HIGH vs. SOURCE CURRENTI SOURCE (µA)V O H (V )45001100010010MAXIMUM TRANSIENT DURATION vs. RESET COMPARATOR OVERDRIVE15050350250500200100400300RESET COMPARATOR OVERDRIVE, V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )3.53.93.74.54.34.14.74.95.35.15.5-40-105-25203550658095110125RESET IN TO RESET DELAYvs. TEMPERATUREM A X 6381/90 t o c 08TEMPERATURE (°C)R E S E T I N D E L A Y (µs )MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset CircuitsPin DescriptionM A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 6_______________________________________________________________________________________Detailed DescriptionRESET OutputA µP reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.Reset asserts when V CC is below the reset threshold;once V CC exceeds the reset threshold, an internal timer keeps the reset output asserted for the reset timeout period. After this interval, reset output deasserts. Reset output is guaranteed to be in the correct logic state for V CC ≥1V.Manual Reset Input (MAX6384/MAX6385/MAX6386/MAX6390)Many µP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low,and for the reset active timeout period (t RP ) after MR returns high. This input has an internal 63k Ωpullup resistor (1.56k Ωfor MAX6390), so it can be left uncon-nected if it is not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs.Connect a normally open momentary switch from MR to G ND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environ-ment, connecting a 0.1µF capacitor from MR to G ND provides additional noise immunity.RESET IN Comparator(MAX6387/MAX6388/MAX6389)RESET IN is compared to an internal +1.27V reference.If the voltage at RESET IN is less than 1.27V, reset asserts. Use the RESET IN comparator as a user-adjustable reset detector or as a secondary power-sup-ply monitor by implementing a resistor-divider at RESET IN (shown in Figure 1). Reset asserts when either V CC or RESET IN falls below its respective threshold volt-age. Use the following equation to set the threshold:V INTH = V THRST (R1/R2 + 1)where V THRST = +1.27V. To simplify the resistor selec-tion, choose a value of R2 and calculate R1:R1 = R2 [(V INTH /V THRST ) - 1]Since the input current at RESET IN is 50nA (max),large values can be used for R2 with no significant loss in accuracy.___________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, the MAX6381–MAX6390 are relatively immune to short dura-tion negative-going V CC transients (glitches).The Typical Operating Characteristics section shows the Maximum Transient Durations vs. Reset Comparator Overdrive, for which the MAX6381–MAX6390 do not generate a reset pulse. This graph was generated usinga negative-going pulse applied to V CC , starting above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a neg-ative-going V CC transient may have without causing a reset pulse to be issued. As the magnitude of the tran-sient increases (goes farther below the reset threshold),the maximum allowable pulse width decreases. A 0.1µF capacitor mounted as close as possible to V CC provides additional transient immunity.Ensuring a Valid RESET Output Down to V CC = 0VThe MAX6381–MAX6390 are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0V, a pulldown resistor to active-low outputs (push/pull only, Figure 2) and a pullup resistor to active-high outputs (push/pull only)will ensure that the reset line is valid while the reset out-put can no longer sink or source current. This schemedoes not work with the open-drain outputs of the MAX6383/MAX6386/MAX6389/MAX6390. The resistor value used is not critical, but it must be small enough not to load the reset output when V CC is above the reset threshold. For most applications, 100k Ωis ade-quate.MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________7M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 8_______________________________________________________________________________________Selector GuideOrdering Information (continued)Note:Insert reset threshold suffix (see Reset Threshold table)after "XR", "XS", or "LT." Insert reset timeout delay (see Reset Timeout Delay table) after "D" to complete the part number.Sample stock is generally held on standard versions only (see Standard Versions table). Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.*MAX6390 is available with D4 or D7 timing only.+Denotes a lead-free package.MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits_______________________________________________________________________________________9Chip InformationTRANSISTOR COUNT: 647PROCESS: BiCMOSPin Configurations (continued)M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 10______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)MAX6381–MAX6390SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset Circuits______________________________________________________________________________________11Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)M A X 6381–M A X 6390SC70/µDFN, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)SC70/µDFN, Single/Dual Low-Voltage,Low-Power µP Reset CircuitsMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600____________________13©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.MAX6381–MAX6390Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)Revision HistoryPages changed at Rev 4: Title on all pages, 1, 2, 5,7–13。
MAX6398ATT-T中文资料
General DescriptionThe MAX6397/MAX6398 are small, high-voltage overvolt-age protection circuits. These devices disconnect the output load or limit the output voltage during an input overvoltage condition. These devices are ideal for appli-cations that must survive high-voltage transients such as those found in automotive and industrial applications.The MAX6397/MAX6398 monitor the input or output voltages and control an external n-channel MOSFET to isolate or limit the load from overvoltage transient energy.When the monitored input voltage is below the user-adjustable overvoltage threshold, the external n-channel MOSFET is turned on by the GATE output. In this mode,the internal charge pump fully enhances the n-channel MOSFET with a 10V gate-to-source voltage.When the input voltage exceeds the overvoltage thresh-old, the protection can disconnect the load from the input by quickly forcing the GATE output low. In some applications, disconnecting the output from the load is not desirable. In these cases, the protection circuit can be configured to act as a voltage limiter where the GATE output sawtooths to limit the voltage to the load.The MAX6397 also offers an always-on linear regulator that is capable of delivering up to 100mA of output current. This high-voltage linear regulator consumes only 37µA of quiescent current.The regulator is offered with output options of 5V, 3.3V,2.5V, or 1.8V. An open-drain, power-good output (POK)asserts when the regulator output falls below 92.5% or 87.5% of its nominal voltage.The MAX6397/MAX6398 include internal thermal-shut-down protection, disabling the external MOSF ET and linear regulator if the chip reaches overtemperature conditions. The devices operate over a wide 5.5V to 72V supply voltage range, are available in small TDFN packages, and are fully specified from -40°C to +125°C.ApplicationsAutomotive Industrial FireWire ®Notebook Computers Wall Cube Power DevicesFeatures♦5.5V to 72V Wide Supply Voltage Range♦Overvoltage Protection Controllers Allow User to Size External n-Channel MOSFETs ♦Internal Charge-Pump Circuit Ensures MOSFET Gate-to-Source Enhancement for Low R DS(ON)Performance ♦Disconnect or Limit Output from Input During Overvoltage Conditions ♦Adjustable Overvoltage Threshold ♦Thermal-Shutdown Protection♦Always-On, Low-Current (37µA) Linear Regulator Sources Up to 100mA (MAX6397)♦Fully Specified from -40°C to +125°C (T J )♦Small, Thermally Enhanced 3mm x 3mm TDFN PackageMAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V________________________________________________________________Maxim Integrated Products1Pin ConfigurationsOrdering Information19-3668; Rev 3; 1/07For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide and Typical Operating Circuit appear at end of data sheet.FireWire is a registered trademark of Apple Computer, Inc.M A X 6397/M A X 6398Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V= 14V; C = 6000pF, C = 4.7µF, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = T = +25°C.)(Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional oper-ation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All pins referenced to GND, unless otherwise noted.)IN, GATE, OUT............................................................-0.3V to +80V SHDN ..................................................................-0.3V to (IN + 0.3V)GATE to OUT.................................................................-0.3 to +20V SET, REG, POK...........................................................-0.3V to +12V Maximum Current:IN, REG...............................................................................350mA All Remaining Pins...................................................................50mAContinuous Power Dissipation (T A = +70°C)6-Pin TDFN (derate 18.2mW/°C above +70°C).............1455mW 8-Pin TDFN (derate 18.2mW/°C above +70°C).............1455mW Operating Temperature Range (T A )......................-40°C to +125°C Junction Temperature...........................................................+150°C Storage Temperature Range.................................-65°C to +150°C Lead Temperature................................................................+300°CMAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V IN = 14V; C GATE = 6000pF, C REG = 4.7µF, T A = T J = -40°C to +125°C, unless otherwise noted. Typical values are at T A = T J = +25°C.)(Note 1)Note 1:Specifications to -40°C are guaranteed by design and not production tested.Note 2:The MAX6397/MAX6398 power up with the external FET in off mode (V GATE = GND). The external FET turns on t START after thedevice is powered up and all input conditions are valid.Note 3:For accurate overtemperature shutdown performance, place the device in close thermal contact with the external MOSFET.Note 4:Dropout voltage is defined as V IN - V REG when V REG is 2% below the value of V REG for V IN = V REG (nominal) + 2V.Note 5:Operations beyond the thermal dissipation limit may permanently damage the device.M A X 6397/M A X 6398Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 4_______________________________________________________________________________________Typical Operating Characteristics(V IN = 14V, C REG = 4.7µF, I REG = 0, unless otherwise noted.)40608010012014016002010304050607080SUPPLY CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)S U P P L Y C U R R E N T (µA )SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )1007525500-259010011012013014015016017018080-50125405060708090100110120020406080SUPPLY CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)S U P P L Y CU R R E N T (µA )8010090120110130140-502550-25075100125SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L YC U R R E N T (µA )20302540354550040206080SHUTDOWN SUPPLY CURRENT vs. INPUT VOLTAGE (MAX6397)INPUT VOLTAGE (V)S U P P L YC U R R E N T (µA )103050700642810121416182020406080SHUTDOWN SUPPLY CURRENTvs. INPUT VOLTAGEINPUT VOLTAGE (V)S U P PL Y C U R R E N T (µA )0642810124121068141618202224GATE-DRIVE VOLTAGE vs. INPUT VOLTAGEINPUT VOLTAGE (V)V G A T E - V O U T (V )4.04.64.44.25.04.85.85.65.45.26.0-50-250255075100125UVLO THRESHOLD vs. TEMPERATUREM A X 6397-98 t o c 08TEMPERATURE (°C)V U V L O (V )SET THRESHOLD vs. TEMPERATUREM A X 6397-98 t o c 09TEMPERATURE (°C)S E T T H R E S H O L D (V )1007525500-251.2041.2081.2121.2161.2201.2241.2281.2321.2361.2401.200-50125MAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V_______________________________________________________________________________________516.016.316.216.116.516.416.916.816.716.617.0-50-25255075100125GATE-TO-OUT CLAMP VOLTAGEvs. TEMPERATUREM A X 6397-98 t o c 10TEMPERATURE (°C)G A T E -T O -O U T C L A M P V O L T A G E (V )00.40.20.80.61.21.01.41.81.62.0040608020100120140160180DROPOUT VOLTAGE vs. REG LOAD CURRENTREG LOAD CURRENT (mA)D R O P O U T V O L T A GE (V )4.905.004.955.105.055.155.20-40-10520-253550658095110125REG OUTPUT VOLTAGEvs. LOAD CURRENT AND TEMPERATURETEMPERATURE (°C)R E G O U T P U T V O L T A G E (V )4.04.64.44.24.85.05.21601204080200240280320360400MAXIMUM REG OUTPUT VOLTAGE vs. LOAD CURRENT AND TEMPERATURELOAD CURRENT (mA)R E G O U T P U T V O L T A G E (V )POWER-SUPPLY REJECTION RATIOvs. FREQUENCYFREQUENCY (Hz)P S R R (d B )1M 100k 10k 1k 100-60-50-40-30-20-100-701010M4ms/divSTARTUP WAVEFORM(R LOAD = 100Ω, C IN = 10µF, C OUT = 10µF)V IN 10V/divMAX6397-98 toc16V GATE 10V/div V OUT 10V/div I OUT200mA/div400µs/divSTARTUP WAVEFORM FROM SHUTDOWN(C IN = 10µF, C OUT = 10µF)V 2V/divV GATE 10V/divV OUT 10V/div I OUT200mA/divR LOAD = 100ΩTypical Operating Characteristics (continued)(V IN = 14V, C REG = 4.7µF, I REG = 0, unless otherwise noted.)GATE-DRIVE VOLTAGE vs. TEMPERATUREM A X 6397-98 t o c 14TEMPERATURE (°C)G A T E -D R I V E V O L T A G E (V )1007525500-2510.45510.46010.46510.47010.47510.48010.48510.49010.49510.50010.450-50125M A X 6397/M A X 6398Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V IN = 14V, C REG = 4.7µF, I REG = 0, unless otherwise noted.)200µs/divOVERVOLTAGE SWITCH FAULTV IN 20V/divV GATE 20V/div V OUT 20V/div V REG 5V/divV OV = 30V1ms/divVOLTAGE LIMIT FAULTV IN 20V/divV GATE 20V/divV OUT 20V/div V REG 5V/divV OV = 30V400µs/divTRANSIENT RESPONSEV IN 10V/divV REG100mV/divC REG = 10µF I REG = 10mA1ms/divREG LOAD-TRANSIENT RESPONSEV REGAC-COUPLED 500mV/divI REG100mA/divC REG = 10µF1ms/divREGULATOR STARTUP WAVEFORMV IN 10V/divV POK 2V/divV REG 2V/divI REG = 10mA100µs/divREGULATOR POK ASSERTIONV REG 2V/divI REG200mA/div V POK 2V/divI REG = 00V0V0ADetailed Description The MAX6397/MAX6398 are ultra-small, low-current, high-voltage protection circuits for automotive applica-tions that must survive load dump and high-voltage transient conditions. These devices monitor the input/ output voltages and control an external n-channel MOSF ET to isolate the load or to regulate the output voltage from overvoltage transient energy. The con-troller allows system designers to size the external MOSFET to their load current and board size.The MAX6397/MAX6398 drive the MOSF ET’s gate high when the monitored input voltage is below the adjustable overvoltage threshold. An internal charge-pump circuit provides a 5V to 10V gate-to-source drive (see the Typical Operating Characteristics) to ensure low input-to-load voltage drops in normal operating modes. When the input voltage rises above the user-adjusted overvoltage threshold, GATE pulls to OUT, turning off the MOSFET.The MAX6397/MAX6398 are configurable to operate as overvoltage protection switches or as closed-looped volt-age limiters. In overvoltage protection switch mode, theinput voltage is monitored. When an overvoltage condi-tion occurs at IN, GATE pulls low, disconnecting the loadfrom the power source, and then slowly enhances upon removal of the overvoltage condition. In overvoltagelimit mode, the output voltage is monitored and theMAX6397/MAX6398 regulate the source of the external MOSFET at the adjusted overvoltage threshold, allowing devices within the system to continue operating during an overvoltage condition.The MAX6397/MAX6398 undervoltage lockout (UVLO) function disables the devices as long as the input remains below the 5V (typ) UVLO turn-on threshold. TheMAX6397/MAX6398 have an active-low SHDN input toturn off the external MOSFET, disconnecting the load and reducing power consumption. After power is applied and SHDN is driven above its logic-high voltage, there is a100µs delay before GATE enhancement commences.MAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V _______________________________________________________________________________________7M A X 6397/M A X 6398The MAX6397 integrates a high-input-voltage, low-qui-escent-current linear regulator in addition to an over-voltage protector circuit. The linear regulator remains enabled at all times to power low-current “always-on”applications (independent of the state of the external MOSF ET). The regulator is offered with several stan-dard output voltage options (5V, 3.3V, 2.5V, or 1.8V).An open-drain power-good output notifies the system if the regulator output falls to 92.5% or 87.5% of its nomi-nal voltage. The MAX6397’s REG output operates inde-pendently of the SHDN logic input.The MAX6397/MAX6398 include internal thermal-shut-down protection, disabling the external MOSF ET and linear regulator if the chip reaches overtemperature conditions.Linear Regulator (MAX6397 Only)The MAX6397 is available with 5.0V, 3.3V, 2.5V, and 1.8V factory-set output voltages. Each regulator sources up to 100mA and includes a current limit of 230mA. The linear regulator operates in an always-on condition regardless of the SHDN logic. For fully specified operation, V IN must be greater than 6.5V for the MAX6397L/M (5V regulator output). The actual output current may be limited by the operating condition and package power dissipation.Power-OK OutputPOK is an open-drain output that goes low when REG falls to 92.5% or 87.5% (see the Selector Guide ) of its nominal output voltage. To obtain a logic-level output,connect a pullup resistor from POK to REG or another system voltage. Use a resistor in the 100k Ωrange to minimize current consumption. POK provides a valid logic-output level down to V IN = 1.5V.GATE VoltageThe MAX6397/MAX6398 use a high-efficiency charge pump to generate the GATE voltage. Upon V IN exceed-ing the 5V (typ) UVLO threshold, GATE enhances 10V above IN (for V IN ≥14V) with a 75µA pullup current. An overvoltage condition occurs when the voltage at SET pulls above its 1.215V threshold. When the threshold is crossed, GATE falls to OUT within 100ns with a 100mA (typ) pulldown current. The MAX6397/MAX6398 include an internal clamp to OUT that ensures GATE is limited to 18V (max) above OUT to prevent gate-to-source damage to the external FET.The GATE cycle during overvoltage limit and overvolt-age switch modes are quite similar but have distinct characteristics. In overvoltage switch mode (Figure 2a),GATE is enhanced to V IN + 10V while the monitored IN voltage remains below the overvoltage fault threshold (SET < 1.215V). When an overvoltage fault occurs (SET ≥1.215V), GATE is pulled one diode below OUT, turn-ing off the external F ET and disconnecting the load from the input. GATE remains low (FET off) as long as V IN is above the overvoltage fault threshold. As V IN falls back below the overvoltage fault threshold (-5% hys-teresis) GATE is again enhanced to V IN + 10V.In overvoltage limit mode (Figure 2b), GATE is enhanced to V IN + 10V. While the monitored OUT voltage remains below the overvoltage fault threshold (SET < 1.215V).When an overvoltage fault occurs (SET ≥1.215V),GATE is pulled low one diode drop below OUT until OUT drops 5% below the overvoltage fault threshold.GATE is then turned back on until OUT again reaches the overvoltage fault threshold and GATE is again turned off.Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 8_______________________________________________________________________________________GATE cycles on-off-on-off-on in a sawtooth waveform until OUT remains below the overvoltage fault threshold and GATE remains constantly on (V IN + 10V). The over-voltage limiter’s sawtooth GATE output operates the MOSFET in a switched-linear mode while the input volt-age remains above the overvoltage fault threshold. The sawtooth frequency depends on the load capacitance,load current, and MOSFET turn-on time (GATE charge current and GATE capacitance).GATE goes high when the following startup conditions are met: V IN is above the UVLO threshold, SHDN is high, an overvoltage fault is not present and the device is not in thermal shutdown.Overvoltage MonitoringWhen operating in overvoltage mode, the MAX6397/MAX6398 feedback path (F igure 3) consists of IN,SET’s internal comparator, the internal gate charge pump, and the external n-channel MOSFET resulting in a switch-on/off function. When the programmed over-voltage threshold is tripped, the internal fast compara-tor turns off the external MOSFET, pulling GATE to OUT within t OV and disconnecting the power source from the load. When IN decreases below the adjusted over-voltage threshold, the MAX6397/MAX6398 slowly enhance GATE above OUT, reconnecting the load to the power source.Overvoltage LimiterWhen operating in overvoltage limiter mode, the MAX6397/MAX6398 feedback path (F igure 4) consists of OUT, SET’s internal comparator, the internal gate charge pump and the external n-channel MOSF ET,which results in the external MOSF ET operating as a voltage regulator.During normal operation, GATE is enhanced 10V above OUT. The external MOSFET source voltage is monitored through a resistor-divider between OUT and SET. When OUT rises above the adjusted overvoltage threshold, an internal comparator sinks the charge-pump current, dis-charging the external GATE, regulating OUT at the set overvoltage threshold. OUT remains active during the overvoltage transients and the MOSFET continues to con-duct during the overvoltage event, operating in switched-linear mode.MAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V_______________________________________________________________________________________9V GATE 10V/divV OUT 10V/divV IN 10V/div10ms/divV GATE 10V/divV OUT 10V/divV IN 10V/div4ms/divM A X 6397/M A X 6398As the transient begins decreasing, OUT fall time will depend on the MOSF ET’s GATE charge, the internal charge-pump current, the output load, and the tank capacitor at OUT.For fast-rising transients and very large-sized MOSFETs,add an additional external bypass capacitor from GATE to GND to reduce the effect of the fast-rising voltages at IN. The external capacitor acts as a voltage-divider working against the MOSF ETs’ drain-to-gate capaci-tance. For a 6000pF C gd , a 0.1µF capacitor at GATE will reduce the impact of the fast-rising V IN input.Caution must be exercised when operating the MAX6397/MAX6398 in voltage-limiting mode for long durations. If the V IN is a DC voltage greater than the MOSFET’s maximum gate voltage, the FET will dissipate power continuously. To prevent damage to the external MOSFET, proper heatsinking should be implemented.Applications InformationLoad DumpMost automotive applications run off a multicell, 12V lead-acid battery with a nominal voltage that swings between 9V and 16V (depending on load current,charging status, temperature, battery age, etc.). The battery voltage is distributed throughout the automobile and is locally regulated down to voltages required by the different system modules. Load dump occurs when the alternator is charging the battery and the battery becomes disconnected. Power in the alternator (essen-tially an inductor) flows into the distributed power sys-tem and elevates the voltage seen at each module. The voltage spikes have rise times typically greater than 5ms and decays within several hundred milliseconds but can extend out to 1s or more depending on thecharacteristics of the charging system (F igure 5).These transients are capable of destroying semicon-ductors on the first ‘fault event.’Setting Overvoltage ThresholdsSET provides an accurate means to set the overvoltage level for the MAX6397/MAX6398. Use a resistor-divider to set the desired overvoltage condition (Figure 6). SET has a rising 1.215V threshold with a 5% falling hysteresis.Begin by selecting the total end-to-end resistance,R TOTAL = R1 + R2. Choose R TOTAL to yield a total cur-rent equivalent to a minimum 100 x I SET (SET’s input bias current) at the desired overvoltage threshold.For example:With an overvoltage threshold set to 20V:R TOTAL < 20V/(100 x I SET )where I SET is SET’s 50nA input bias current.R TOTAL < 4M ΩUse the following formula to calculate R2:where V TH is the 1.215V SET rising threshold and V OV is the overvoltage threshold.R2 = 243k Ω, use a 240k Ωstandard resistor.R TOTAL = R2 + R1, where R1 = 3.76M Ω.Use a 3.79M Ωstandard resistor.A lower value for total resistance dissipates morepower but provides slightly better accuracy.Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 10______________________________________________________________________________________Reverse-Battery ProtectionUse a diode or p-channel MOSF ET to protect the MAX6397/MAX6398 during a reverse-battery insertion (Figures 7a, 7b). Low p-channel MOSFET on-resistance of 30m Ωor less yields a forward-voltage drop of only a few millivolts (versus hundreds of millivolts for a diode,Figure 7a) thus improving efficiency.Connecting a positive battery voltage to the drain of Q1(F igure 7b) produces forward bias in its body diode,which clamps the source voltage one diode drop below the drain voltage. When the source voltage exceeds Q1’s threshold voltage, Q1 turns on. Once the F ET is on, the battery is fully connected to the system and can deliver power to the device and the load.An incorrectly inserted battery reverse-biases the F ET’s body diode. The gate remains at the ground potential.The FET remains off and disconnects the reversed bat-tery from the system. The zener diode and resistor com-bination prevent damage to the p-channel MOSF ET during an overvoltage condition.MAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V______________________________________________________________________________________11M A X 6397/M A X 6398REG Capacitor Selection for StabilityFor stable operation over the full temperature range and with load currents up to 100mA, use ceramic capacitor values greater than 4.7µF. Large output capacitors help reduce noise, improve load-transient response, and power-supply rejection at REG. Note that some ceramic dielectrics exhibit large capacitance and ESR variation with temperature. At lower temperatures, it may be nec-essary to increase capacitance.Under normal conditions, use a 10µF capacitor at rger input capacitor values and lower ESR provide bet-ter supply-noise rejection and line-transient response.Inrush/Slew-Rate ControlInrush current control can be implemented by placing a capacitor at GATE (F igure 8) to slowly ramp up the GATE, thus limiting the inrush current and controlling GATE’s slew rate during initial turn-on. The inrush cur-rent can be approximated using the following formula:where I GATE is GATE’s 75µA sourcing current, I LOAD is the load current at startup, and C OUT is the output capacitor.Input Transients ClampingWhen the external MOSFET is turned off during an over-voltage occurrence, stray inductance in the power path may cause voltage ringing exceeding the MAX6397/MAX6398 absolute maximum input (IN) supply rating.The following techniques are recommended to reduce the effect of transients:•Minimize stray inductance in the power path usingwide traces, and minimize loop area including the power traces and the return ground path.•Add a zener diode or transient voltage suppressor(TVS) rated below the IN absolute maximum rating (Figure 9).Add a resistor in series with IN to limit transient currentgoing into the input for the MAX6398 only.Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 12______________________________________________________________________________________Figure 8. MAX6397/MAX6398 Controlling GATE Inrush CurrentFigure 9. Protecting the MAX6397/MAX6398 Input from High-Voltage TransientsMOSFET SelectionSelect external MOSF ETs according to the application current level. The MOSF ET’s on-resistance (R DS(ON))should be chosen low enough to have minimum voltage drop at full load to limit the MOSFET power dissipation.Determine the device power rating to accommodate an overvoltage fault when operating the MAX6397/MAX6398 in overvoltage limit mode.During normal operation, the external MOSFETs dissipate little power. The power dissipated in normal operation is:P Q1 = I LOAD 2x R DS(ON).The most power dissipation will occur during a pro-longed overvoltage event when operating the MAX6397/MAX6398 in voltage limiter mode, resulting in high power dissipated in Q1 (F igure 10) where the power dissipated across Q1 is:P Q1= V Q1x I LOADwhere V Q1is the voltage across the MOSF ET’s drain and source.Thermal ShutdownThe MAX6397/MAX6398 thermal-shutdown feature shuts off the linear regulator output, REG, and GATE if it exceeds the maximum allowable thermal dissipation.Thermal shutdown also monitors the PC board tempera-ture of the external nF ET when the devices sit on thesame thermal island. Good thermal contact between the MAX6397/MAX6398 and the external nF ET is essential for the thermal-shutdown feature to operate effectively.Place the nFET as close as possible to OUT.When the junction temperature exceeds T J = +150°C,the thermal sensor signals the shutdown logic, turning off REG’s internal pass transistor and the GATE output,allowing the device to cool. The thermal sensor turns the pass transistor and GATE on again after the IC’s junction temperature cools by 20°C. Thermal-overload protection is designed to protect the MAX6397/MAX6398 and the external MOSFET in the event of cur-rent-limit fault conditions. For continuous operation, do not exceed the absolute maximum junction-tempera-ture rating of T J = +150°C.Thermal ShutdownOvervoltage Limiter ModeWhen operating the MAX6397/MAX6398 in overvoltage limit mode for a prolonged period of time, a thermal shutdown is possible due to device self-heating. The thermal shutdown is dependent on a number of differ-ent factors:•The device’s ambient temperature (T A )•The output capacitor (C OUT )•The output load current (I OUT )•The overvoltage threshold limit (V OV )•The overvoltage waveform period (t OVP )•The power dissipated across the package (P DISS )MAX6397/MAX6398Overvoltage Protection Switch/LimiterControllers Operate Up to 72V______________________________________________________________________________________13M A X 6397/M A X 6398When OUT exceeds the adjusted overvoltage threshold,an internal GATE pulldown current is enabled until OUT drops by 5%. The capacitance at OUT is discharged by the internal current sink and the external OUT load cur-rent. The discharge time (∆t1) is approximately:where V OV is the adjusted overvoltage threshold, I OUT is the external load current and I GATEPD is the GATE’s internal 100mA (typ) pulldown current.When OUT falls 5% below the overvoltage threshold point, the internal current sink is disabled and the MAX6397/MAX6398’s internal charge pump begins recharging the external GATE voltage. The OUT volt-age continues to drop due to the external OUT load current until the MOSF ET gate is recharged. The time needed to recharge GATE and re-enhance the external nFET is approximately:where C ISS is the MOSFET’s input capacitance, V GS(TH)is the MOSFET’s gate-to-source threshold voltage, V F is the internal clamp diode forward voltage (V F = 1.5V typ),and I GATE is the MAX6397/MAX6398 charge-pump cur-rent (75µA typ).During ∆t2, C OUT loses charge through the output load.The voltage across C OUT (∆V2) decreases until the MOSF ET reaches its V GS(TH) threshold and can be approximated using the following formula:Once the MOSFET V GS (TH ) is obtained, the slope of the output voltage rise is determined by the MOSF ET Q G charge through the internal charge pump with respect to the drain potential. The time for the OUT voltage to rise again to the overvoltage threshold can be approxi-mated using the following formula:where ∆V OUT = ( V OV x 0.05) + ∆V2.The total period of the overvoltage waveform can be summed up as follows:t OVP = ∆t1 + ∆t2 + ∆t3The MAX6397/MAX6398 dissipate the most power dur-ing an overvoltage event when I OUT = 0 (C OUT is dis-charged only by the internal current sink). The maximum power dissipation can be approximated using the follow-ing equation:The die temperature (T J ) increase is related to θJC (8.3°C/W and 8.5°C/W for the MAX6397 and MAX6398,respectively) of the package when mounted correctly with a strong thermal contact to the circuit board. The MAX6397/MAX6398 thermal shutdown is governed by the equation:T J = T A + P DISS x (θJC + θCA) < 170°C (typical thermal-shutdown temperature)For the MAX6397, the power dissipation of the internal linear regulator must be added to the overvoltage pro-tection circuit power dissipation to calculate the die temperature. The linear regulator power dissipation is calculated using the following equation:P REG = (V IN – V REG ) (I REG )F or example, using an IRF R3410 100V n-channel MOSF ET, F igure 12 illustrates the junction temperature vs. output capacitor with I OUT = 0, T A = +125°C, V OV < 16V,V F = 1.5V, I GATE = 75mA, and I GATEPD =100mA. Figure 12 shows the relationship between output capacitance versus die temperature for the conditionslisted above.Overvoltage Protection Switch/Limiter Controllers Operate Up to 72V 14______________________________________________________________________________________。
MEMORY存储芯片MT46V8M16TG-75IT中文规格书
ACT
001100000F0
–
D
100000000F0
–
D
100000000F0
–
D#
111100000F0
–
D#
111100000F0
–
Repeat cycles nRC + 1 through nRC + 4 until nRC + nRCD - 1; truncate if needed
RD
0 1 0 1 0 0 0 0 0 F 0 00110011
nRC + nRAS
1
2 × nRC
2
4 × nRC
3
6 × nRC
4
8 × nRC
5 10 × nRC
6 12 × nRC
7 14 × nRC
ACT
00110000000
–
D
10000000000
–
D
10000000000
–
D#
11110000000
–
D#
11110000000
–
Repeat cycles 1 through 4 until nRCD - 1; truncate if needed
Repeat sub-loop 0, use BA[2:0] = 6
Repeat sub-loop 0, use BA[2:0] = 7
Notes:
1. DQ, DQS, DQS# are midlevel unless driven as required by the RD command. 2. DM is LOW. 3. Burst sequence is driven on each DQ signal by the RD command. 4. Only selected bank (single) active.
MAX1978中文数据手册
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
TACT 电子开关产品说明书
274
TACT SwitchTM
Soldering Conditions
Condition for Reflow
Available for Surface Mount Type. 1. Heating method: Double heating method with infrared heater. 2. Temperature measurement: Thermocouple 0.1 to 0.2П CAʢKʣor CCʢTʣat solder jointʢs copper foil surfaceʣ. A heat resistive tape should be used to fix thermocouple. 3. Temperature profile
TACT SwitchTM
6mm Square (Snap-in Type)
SKEG Series
Soft feeling available with joint-stem & horizontal push.
Detector
Push
Slide
Rotary
Encoders
Product Line
Vertical Type
No.
Photo
Joint stem type
Style
Unit:mm
PC board mounting hole dimensions ʢViewed from switch mounting faceʣ
Power Dual-in-line Package Type TACT SwitchTM CustomProducts
2. Please place purchase orders per minimum order unit N (integer).
MEMORY存储芯片MT46V8M16FJ-6中文规格书
fresh mode, the DLL remains disabled even upon exit of SELF REFRESH operation untilit is re-enabled and reset.The DRAM is not tested to check—nor does Micron warrant compliance with—normalmode timings or functionality when the DLL is disabled. An attempt has been made tohave the DRAM operate in the normal mode where reasonably possible when the DLLhas been disabled; however, by industry standard, a few known exceptions are defined:•ODT is not allowed to be used•The output data is no longer edge-aligned to the clock•CL and CWL can only be six clocksWhen the DLL is disabled, timing and functionality can vary from the normal operationspecifications when the DLL is enabled (see DLL Disable Mode (page 125)). Disablingthe DLL also implies the need to change the clock frequency (see Input Clock Frequen-cy Change (page 129)).Output Drive StrengthThe DDR3 SDRAM uses a programmable impedance output buffer. The drive strengthmode register setting is defined by MR1[5, 1]. RZQ/7 (34ȍ [NOM]) is the primary outputdriver impedance setting for DDR3 SDRAM devices. To calibrate the output driver im-pedance, an external precision resistor (RZQ) is connected between the ZQ ball andV SSQ. The value of the resistor must be 240ȍ ±1%.The output impedance is set during initialization. Additional impedance calibration up-dates do not affect device operation, and all data sheet timings and current specifica-tions are met during an update.To meet the 34ȍ specification, the output drive strength must be set to 34ȍ during initi-alization. To obtain a calibrated output driver impedance after power-up, the DDR3SDRAM needs a calibration command that is part of the initialization and reset proce-dure.OUTPUT ENABLE/DISABLEThe OUTPUT ENABLE function is defined by MR1[12], as shown in Figure 56 (page146). When enabled (MR1[12] = 0), all outputs (DQ, DQS, DQS#) function when in thenormal mode of operation. When disabled (MR1[12] = 1), all DDR3 SDRAM outputs(DQ and DQS, DQS#) are tri-stated. The output disable feature is intended to be usedduring I DD characterization of the READ current and during t DQSS margining (writeleveling) only.TDQS EnableTermination data strobe (TDQS) is a feature of the x8 DDR3 SDRAM configuration thatprovides termination resistance (R TT) and may be useful in some system configurations.TDQS is not supported in x4 or x16 configurations. When enabled via the mode register(MR1[11]), the R TT that is applied to DQS and DQS# is also applied to TDQS and TDQS#.In contrast to the RDQS function of DDR2 SDRAM, DDR3’s TDQS provides the termina-tion resistance R TT only. The OUTPUT DATA STROBE function of RDQS is not providedby TDQS; thus, R ON does not apply to TDQS and TDQS#. The TDQS and DM functionsshare the same ball. When the TDQS function is enabled via the mode register, the DMfunction is not supported. When the TDQS function is disabled, the DM function is pro-vided, and the TDQS# ball is not used. The TDQS function is available in the x8 DDR3DLL Disable ModeIf the DLL is disabled by the mode register (MR1[0] can be switched during initializationor later), the DRAM is targeted, but not guaranteed, to operate similarly to the normalmode, with a few notable exceptions:•The DRAM supports only one value of CAS latency (CL = 6) and one value of CASWRITE latency (CWL = 6).•DLL disable mode affects the read data clock-to-data strobe relationship (t DQSCK),but not the read data-to-data strobe relationship (t DQSQ, t QH). Special attention isrequired to line up the read data with the controller time domain when the DLL is dis-abled.•In normal operation (DLL on), t DQSCK starts from the rising clock edge AL + CLcycles after the READ command. In DLL disable mode, t DQSCK starts AL + CL - 1 cy-cles after the READ command. Additionally, with the DLL disabled, the value oft DQSCK could be larger than t CK.The ODT feature (including dynamic ODT) is not supported during DLL disable mode.The ODT resistors must be disabled by continuously registering the ODT ball LOW byprogramming R TT,nom MR1[9, 6, 2] and R TT(WR) MR2[10, 9] to 0 while in the DLL disablemode.Specific steps must be followed to switch between the DLL enable and DLL disablemodes due to a gap in the allowed clock rates between the two modes (t CK [AVG] MAXand t CK [DLL_DIS] MIN, respectively). The only time the clock is allowed to cross thisclock rate gap is during self refresh mode. Thus, the required procedure for switchingfrom the DLL enable mode to the DLL disable mode is to change frequency during selfrefresh:1.Starting from the idle state (all banks are precharged, all timings are fulfilled, ODTis turned off, and R TT,nom and R TT(WR) are High-Z), set MR1[0] to 1 to disable theDLL.2.Enter self refresh mode after t MOD has been satisfied.3.After t CKSRE is satisfied, change the frequency to the desired clock rate.4.Self refresh may be exited when the clock is stable with the new frequency fort CKSRX. After t XS is satisfied, update the mode registers with appropriate values.5.The DRAM will be ready for its next command in the DLL disable mode after thegreater of t MRD or t MOD has been satisfied. A ZQCL command should be issuedwith appropriate timings met.。
MAX1642-MAX1643中文资料
ELECTRICAL CHARACTERISTICS
(VBATT = V SHDN = 1.3V, ILOAD = 0mA, FB = GND, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Minimum Operating Input Voltage Maximum Operating Input Voltage Start-Up Voltage (Note 2) Start-Up Voltage Tempco Output Voltage Output Voltage Range FB Set Voltage N-Channel On-Resistance P-Channel On-Resistance P-Channel Catch-Diode Voltage On-Time Constant Off-Time Tracking Ratio (Note 3) Quiescent Current into OUT Quiescent Current into BATT Shutdown Current into OUT Shutdown Current into BATT Efficiency FB Input Current PFI Trip Voltage PFI Input Current PFO, BATTLO Low Output Voltage PFO, BATTLO Leakage Current BATTLO Trip Voltage SHDN Input Low Voltage SHDN Input High Voltage SHDN Input Current VIL VIH VOL K RATIO IQOUT IQBATT ISHDN,OUT ISHDN,BATT η VOUT = 3.5V (MAX1642) VBATT = 1.0V (MAX1642) ILOAD = 20mA VFB = 1.3V Falling PFI, hysteresis = 1% VPFI = 650mV VPFI = 0V, VOUT = 3.3V, ISINK = 1mA VPFI = 650mV, V PFO = 6V VOUT = 3.3V, hysteresis = 2% (MAX1643) % of VBATT (MAX1642) % of VBATT (MAX1642) (MAX1642) 80 10 0.96 1.0 590 614 VFB VOUT VFB < 0.1V External feedback External feedback VOUT = 3.3V VOUT = 3.3V IDIODE = 100mA, P-channel switch off 0.9V < VBATT < 1.5V (tON = K / VBATT) 0.9V < VBATT < 1.5V, VOUT = 3.3V VOUT = 3.5V 17 1 11 4 0.1 2 80 10 632 10 0.4 1 1.04 20 3.16 2.0 1.18 1.225 1 1.5 0.8 25 35 1.5 18 6.5 1 3.5 µA µA µA µA % nA mV nA V µA V % % nA RL = 3kΩ, TA = +25°C 0.88 -2 3.30 3.44 5.2 1.27 1.5 2.2 SYMBOL VBATT(MIN) CONDITIONS MIN TYP 0.7 1.65 MAX UNITS V V V mV/°C V V V Ω Ω V V-µs
MAX6310UK42D4-T中文资料
† The MAX6306/MAX6307/MAX6309/MAX6310/MAX6312/ MAX6313 are available with factory-set VCC reset thresholds from 2.5V to 5V, in 0.1V increments. Insert the desired nominal reset threshold (from Table 1) into the blanks following the letters UK. All parts also offer factory-programmed reset timeout periods. Insert the number corresponding to the desired nominal timeout period index following the “D” in the part number (D1 = 1ms min, D2 = 20ms min, D3 = 140ms min, and D4 = 1120ms min). There are 10 standard versions with a required order increment of 2,500 pieces. Sample stock is generally held on the standard versions only (see Standard Versions table). Required order increment is 10,000 pieces for non-standard versions. Contact factory for availability of non-standard versions. All devices available in tapeand-reel only. Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing “-T” with “+T” when ordering.
XC61CN替换MAX6377和MAX6380及MAX6808
XC61CN替换MAX6377和MAX6380及MAX6808例:XC61CN 替换MAX6377XC61CN 替换MAX6380XC61CN 替换MAX6808系列名称:【XC61CN/XC61CC】特点:低功耗(0.8V)输入电压(V):最小--0.8V;最大--6V输出电压(V):最小--0.7V;最大--10V最大输出电流(mA):400mA消耗电流(μA):0.7A封装:SOT-23,SOT-89,SSOT-24,TO-92【TOREX-XC61CN系列】描述:1.XC61CN系列是一款高精度,低功耗的电压检测器芯片,并采用了CMOS生产工艺和激光微调技术。
2.XC61CN系列受温度漂移特性的影响很小,电压检测精度很高。
3.XC61CN系列有CMOS和N沟道开漏两种输出模式供选择。
【TOREX-XC61CN系列】特点:●高精度:±2%, ±1% (VDF=2.6V~5.1V)●低消耗电流:0.7μA(TYP.)[VIN=1.5V]●检测电压范围:能够在0.8V~6.0V范围内以0.1V间隔设定●工作电压范围:0.7V~6.0V(低检测电压0.8V~1.5V), 0.7V~10.0V(一般检测电压1.6V~6.0V)●检测电压温度特性:±100ppm/℃(TYP.)●輸出形式:N沟道开漏/CMOS輸出●封装:SSOT-24, SOT-23, SOT-89, TO-92TOREX日本IC均可完全替代下列型号:XC6221Bxx2MR 替代MIC5253 XC6115xxxxMR 替代LTC699CN8 XC6221BXX2MR 替代MIC5255-xxBM5 XC6116x0xxMR 替代LTC2915xxS8 XC6221BXX2MR 替代MIC5259 XC6121 替代MAX6320XC6204Bxx2DR 替代MIC5305-xxYML XC6122 替代MAX6320XC6419 替代MIC5371 XC6123 替代MAX6320XB1086 替代MIC39100-xxBS XC6124 替代MAX6320XC6205 替代MIC5203 XC6113 替代MAX823XC6411 替代MIC5371 XC6103 替代MAX823XC6412 替代MIC5371 XC6112 替代MAX823XC6415 替代MIC5371 XC6102 替代MAX823XCM406 替代MIC5264 XC6115 替代MAX824XC8101 替代MIC94060 XC6105 替代MAX824XC6601 替代MCP1727 XC6114xxxxMR 替代DS1819BRXC6213 替代TC1014-xxVCT713 XC6104xxxxMR 替代DS1819BRXC6212 替代TC1014-xxVCT713 XC61H 替代MAX809/803XC62KNxx02PR 替代TC59xx02EMBTR XC6101xxxxMR 替代DS1819ARXC62KNxx02MR 替代TC59xx02ECB XC6106xxxxER 替代MAX6335XC62EPxxxxMR 替代TC57xx02ECT XC6106xxxxER 替代MAX6402XC6206Pxx2TB替代TC55RPxx02EZB XC6107 替代MAX825XC6206Pxx2PR 替代TC55RPxx02EMB XC6116xxxxER 替代MAX6402XC6206Pxx2MR 替代TC55RPxx01ECB XC612 替代MAX6779XC6203Pxx2FR 替代TC1264-xxVDB XC61CNxx02NR 替代MAX6377XRxx XC6207 替代TC1014-xxVCT713 XC61CNxx02NR 替代MAX6380XRxx XC6217 替代TC1014-xxVCT XC61CNxx02MR 替代MAX6808URxx XC6206Pxx2PR 替代MCP1700T-xx02E/TT XC61FC 替代MAX809XC6209Bxx2MR 替代TC1014-xxVCT713 XC61FC2912MR 替代MAX809SEUR XC6209Bxx2MR 替代TC1015xxVCT XC61CCxx02NR 替代MAX6375XRxx XC6209Bxx2MR 替代TC1185xxVCT XC61CCxx02NR 替代MAX6378XRxx XC6203Pxx2FR 替代TC1262-xxVDB XC61CCxx02MR 替代MAX6806URxx XC6204Bxx2MR 替代LX8211-xxISE XC6111xxxxMR 替代DS1819ARXC6215Pxx2NR 替代MC78LC00 XC6101 替代MAX823XC6210Bxx2 替代MC78M00 XC6111 替代MAX823XC6401CHxxMR 替代LP3988IMX-xx XC6104 替代MAX824XC6403DHxxMR 替代LP3988IMF-xx XC6114 替代MAX824XC6210B122DR 替代LP3990TL-xx XC6106 替代MAX825XC6210B122DR 替代LP3990MF-xx XC6116 替代MAX825XC6221A182MR 替代LP3990MF-xx XC6107xxxxMR 替代MAX6337USxxD3 XC6202Pxx2TH 替代LM2931AZxx XC6117xxxxMR 替代MAX6337USxxD3 XC6214 替代LM1117MPX-xx XC6107xxxxMR 替代MAX6841/2XC6419 替代LP5996 XC6117xxxxMR 替代MAX6841/2XC6411 替代LP5996 XC61FNxxx2MR 替代MAX803XC6412 替代LP5996 XC61CNxx02MR 替代MAX6380URXC6415 替代LP5996 XC61CCxx02MR 替代MAX6375URXB1086Pxx1JR 替代LM1086CS XC6117 替代MAX825XB1117K12BFR 替代LM1117S XC6106 替代MIC2775XB1117PxxxFR 替代LM1117MPX-xx XC6116 替代MIC2775XC6203Pxx2FR 替代LM1117MPX-xx XC612 替代MIC2777XC6202Pxx2TH 替代LM2936Z-xx XCM410 替代MIC2774XB1117Pxx1FR 替代LM340S XC61CCxx02PR 替代TC54VCxx02EMB XC6202Pxx2TH 替代LM340LAZ-xx XC61CCxx02TB 替代TC54VCxx02EZB XC6202Pxx2MR 替代LM3480IM3-xx XC61H 替代TCM809XC6203P332FR 替代LM3940IMP-3.3 XCM410 替代TC52XC6202Pxx2TH 替代LM78LxxACZ XC6120 替代TC54XC6404DHxxMR 替代LMS5258MF-xx XC612 替代TC52XC6202Pxx2MR 替代LP2950 XC61CNxx02MR 替代TC53Nxx02ECTTR XC6204Bxx2MR 替代LP2978 XC61CNxx02NR 替代TC53Nxx02EVCTR XC6204Bxx2MR 替代LP2980AIM5-xx XC61CN 替代TC54VNXC6204Bxx2MR 替代LP2980IM5-xx XC6202Pxx2TH 替代L4931ABZxxXC6204Axx2MR 替代LP2980IM5X-xx XC6202Pxx2TH 替代L4931CZxxXC6204Bxx2MR 替代LP2981AIM5-xx XC6202Pxx2PR 替代L78LxxABUTRXC6204Bxx2MR 替代LP2981IM5-xx XC6202Pxx2TH 替代L78LxxABZXC6204Bxx2MR 替代LP2982AIM5-xx XC6202Pxx2PR 替代L78LxxACUXC6204Bxx2MR 替代LP2982IM5-xx XC6202Pxx2TH 替代L78LxxACZXC6204Bxx2MR 替代LP2985AIM5-xx XC6202Pxx2TH 替代L78LxxCZXC6204Bxx2MR 替代LP2985IM5-xx XC6203Pxx2FR 替代LD1117SXC6204Bxx2MR 替代LP3984IBP-xx XC6204Bxx2MR 替代LD2979MxxXC6403 替代LP3982 XC6202Pxx2TH 替代LD2979ZxxXC6204Bxx2DR 替代LP3985IBL-xx XC6204Bxx2MR 替代LD2980ABMxxXC6204Bxx2MR 替代LP3985IM5-x.x XC6201Pxx2PR 替代LD2980ABUxxTR XC62H 替代NCP584HSNxxT1G XC6204Bxx2MR 替代LD2980ACMxxXC62E 替代NCP584HSNxxT1G XC6201Pxx2PR 替代LD2980ACUxxXC6404 替代NCP400FCT2G XC6204Bxx2MR 替代LD2981ABMxxXB1086 替代LM317MBDTRK XC6201Pxx2PR 替代LD2981ABUxxXC6202 series 替代LM2931CD XC6204Bxx2MR 替代LD2981ACMxxXC6202Pxx2TH 替代LM2931Z-xx XC6201Pxx2PR 替代LD2981ACUxxXC6202Pxx2MR 替代LP2950 XC6202Pxx2TH 替代LExxABZ/CZXC6202Pxx2TH 替代LP2950CZ-xx XC6401 替代NCP583XVxxT2G XB1086 替代MC33269DTRK XC6214 替代MC78LCxxHT1XC6203Pxx2FR 替代MC33275ST-xxT3 XC6219 替代NCP584HSNxxT1G XC6204Bxx2MR 替代MC33761 XC6219Bxx2MR 替代BAxxxLBSGXC6206Pxx2PR 替代MC78FCxxHT1 XC6219 替代BA0xxLBSGXC6203xxx2PR 替代MC78LCxxHT1 XC6206Pxx2TB 替代RE5RExxACXC6202Pxx2TH 替代MC78LxxACP/BCP XC6206Pxx2PR 替代RH5RLxxAAXC6204Bxx2MR 替代MC78PCxxNTR XC6206Pxx2TH 替代RE5RLxxAAXC6206Pxx2PR 替代MC78RCxxHT1 XC6206Pxx2TB 替代RE5RLxxACXC6217Axx2MR 替代NCP584HSNxxT1G XC62EPxx02MR 替代RN5RGxxAATR XC6203Pxx2FR 替代SC5201-1GSTR3 XC62H 替代RN5RGxxAATR XC6402 替代NCP400FCT2G XC6419 替代R5325XC6403/04 替代NCP400FCT2G XB1086 替代RN5RGxxAATR XC6405 替代NCP400FCT2G XC6411 替代R5325XC6204Bxx2MR 替代R1111Nxx1A/B XC6412 替代R5325XC6204Bxx2MR 替代R1112Nxx1A/B XC6415 替代R5325XC6204Bxx2MR 替代R1112Nxx1B-TR XC8101 替代R5520HXC6206Pxx2PR 替代RH5RExxAA XC6204Bxx2MR 替代R1110Nxx1A/BXC6206Pxx2TH 替代RE5RExxAA。
MAX6360MTUT-T中文资料
MAX6358_ _UT-T -40°C to +85°C 6 SOT23-6 MAX6359_ _UT-T -40°C to +85°C 6 SOT23-6 MAX6360_ _UT-T -40°C to +85°C 6 SOT23-6 SV 2.93 1.58 * The _ _ are placeholders for the threshold voltage levels of the UW 2.78 1.67 devices. Substitute the part number suffix in the Voltage ThresUV 2.78 1.58 hold Levels table for the desired voltage level. All devices are available in tape-and-reel only. There is a 2500 piece minimum RW 2.63 1.67 order increment for the SOT package. RV 2.63 1.58 Devices are available in both leaded and lead-free packaging. Note: Standard versions are shown in bold. Sample stock is genSpecify lead-free by replacing “-T” with “+T” when ordering. erally held on the standard versions only. Contact factory for availPin Configurations appear at end of data sheet. ability. Selector Guide appears at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1
MAX6400BS28-T中文资料
General DescriptionThe MAX6400–MAX6405 is a family of ultra-low power microprocessor (µP) supervisory circuits used for moni-toring battery, power-supply, and regulated system voltages. Each device contains a precision bandgap reference comparator and is trimmed to specified trip threshold voltages. These devices provide excellent cir-cuit reliability and low cost by eliminating external com-ponents and adjustments when monitoring system voltages from 2.5V to 5.0V. A manual reset input is also included.The MAX6400–MAX6405 assert a reset signal whenev-er the V CC supply voltage falls below a preset thresh-old. These devices are differentiated by their output logic configurations and preset threshold voltages. The MAX6400/MAX6403 (push-pull) and the MAX6402/MAX6405 (open-drain) have an active-low reset (RESET is logic low when V CC is below V TH ). The MAX6401/MAX6404 have an active-high push-pull output (RESET is logic high when V CC is below V TH ). All parts are guaranteed to be in the correct output logic state for V CC down to 1V. The reset circuit is designed to ignore fast transients on V CC . The MAX6400/MAX6401/MAX6402 have voltage thresholds between 2.20V and 3.08V in approximately 100mV increments. The MAX6403/MAX6404/MAX6405 have voltage thresholds between 3.30V and 4.63V in approximately 100mV increments.Ultra-low supply current of 500nA (MAX6400/MAX6401/MAX6402) makes these parts ideal for use in portable equipment. These devices are available in 4-bump chip-scale packages (UCSP™)ApplicationsPortable/Battery-Powered EquipmentCell Phones PDAsMP3 Players Pagers____________________________Featureso Ultra-Small 4-Bump (2 ✕2) Chip-Scale Package,(Package Pending Full Qualification—Expected Completion Date 6/30/01. See UCSP Reliability Section for More Details.)o 70% Smaller Than SC70 Package o Ultra-Low 500nA (typ) Supply Current (MAX6400/MAX6401/MAX6402)o Factory-Trimmed Reset Thresholds from 2.20V to 4.63V in Approximately 100mV Increments o ±2.5% Threshold Accuracy -40°C to +85°C o Factory-Set 100ms (min) Reset Timeout Period o Manual Reset Inputo Guaranteed Reset Valid to V CC = 1.0Vo Three Reset Output Logic Options: Active-Low Push-Pull, Active-High Push-Pull, and Active-Low Open-Drain.o Immune to Short V CC Transients o No External ComponentsMAX6400–MAX6405µP Supervisory Circuits in 4-Bump (2 ✕ 2)Chip-Scale PackageMaxim Integrated Products1Ordering InformationCC thresholds from 2.20V to 4.63V, in approximately 0.1V incre-ments. Choose the desired reset-threshold suffix from Table 1and insert it in the blank space following “S”. There are 21 stan-dard versions with a required order increment of 2500 pieces.Sample stock is generally held on the standard versions only (Table 1). Required order increment is 10,000 pieces for non-standard versions (Table 2). Contact factory for availability. All devices available in tape-and-reel only.UCSP reliability is integrally linked to the user’s assemblymethods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.Pin Configuration appears at end of data sheet.19-2043; Rev 1; 8/01UCSP is a trademark of Maxim Integrated Products, Inc.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 6400–M A X 6405µP Supervisory Circuits in 4-Bump (2 ✕ 2) Chip-Scale Package 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = 1.0V to 5.5V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V CC = 3.0V and T A = +25°C.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC ...........................................................................-0.3V to +6V RESET, RESET (push-pull).........................-0.3V to (V CC + 0.3V)RESET (open-drain)..................................................-0.3V to +6V MR ..............................................................-0.3V to (V CC + 0.3V)Input/Output into Any Pin....................................................20mAContinuous Power Dissipation (T A = +70°C)4-Bump UCSP (derate 3.8mW/°C above +70°C).........303mW Operating Temperature Range ..........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range ............................-65°C to +150°C Bump Reflow Temperature .............................................+235°CAll voltages measured with respect to GND, unless otherwise noted.MAX6400–MAX6405µP Supervisory Circuits in 4-Bump (2 ✕ 2)Chip-Scale Package_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)Note 2:Guaranteed by design.M A X 6400–M A X 6405µP Supervisory Circuits in 4-Bump (2 ✕ 2) Chip-Scale Package 4_______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)0.200.60.41.21.00.81.4-40-2020406080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )50150100200250-40-2020406080POWER-DOWN RESET DELAYvs. TEMPERATURETEMPERATURE (°C)R E S E T D E L A Y (µs )130150140170160200190180210-40-2020406080POWER-UP RESET TIMEOUTvs. TEMPERATUREM A X 6400-05 t o c 03TEMPERATURE (°C)P O W E R -U P R E S E T T I M E O U T (m s)1100010010MAXIMUM TRANSIENT DURATION vs. THRESHOLD OVERDRIVE500200100400300THRESHOLD OVERDRIVE V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )Reset Output A microprocessor’s (µP’s) reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.RESET is guaranteed to be a logic low for V CC down to 1V. Once V CC exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high.If a brownout condition occurs (V CC dips below the reset threshold), RESET goes low. Any time V CC goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after V CC returns above the reset threshold, and RESET remains low for the reset timeout period.The manual reset input (MR) can also initiate a reset, see the Manual Reset Input section. The MAX6401/ MAX6404 have active-high RESET outputs that are the inverse of the MAX6400/MAX6402/MAX6403/MAX6405 outputs (Figure 1).Manual Reset Input Many µP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuit to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low, and for the reset active timeout period (t RP) after MR returns high. This input has an internal 50kΩpullup resistor, soit can be left open if it is not used. MR can be drivenwith TTL or CMOS logic levels, or with open-drain/col-lector outputs. Connect a normally open momentary switch from MR to GND to create a manual reset func-tion; external debouncing circuitry is not required. If MRis driven from long cables or if the device is used in anoisy environment, connect a 0.1µF capacitor from MRto ground to provide additional noise immunity (see Figure 1).Applications InformationInterfacing to µP with BidirectionalReset PinsSince the RESET output on the MAX6402/MAX6405 isopen-drain, these devices interface easily with (µPs)that have bidirectional reset pins. Connecting the µP supervisor’s RESET output directly to the microcon-troller’s (µC’s) RESET pin with a single pullup resistor allows either device to assert reset (Figure 2).Negative-Going VCC Transients These devices are relatively immune to short-duration, negative-going V CC transients (glitches).The Typical Operating Characteristics show the Maximum Transient Duration vs. Reset Threshold Overdrive graph, for which reset pulses are not gener-MAX6400–MAX6405µP Supervisory Circuits in 4-Bump (2 ✕ 2)Chip-Scale Package _______________________________________________________________________________________5Pin DescriptionM A X 6400–M A X 6405µP Supervisory Circuits in 4-Bump (2 ✕ 2) Chip-Scale Package 6_______________________________________________________________________________________MAX6400–MAX6405µP Supervisory Circuits in 4-Bump (2 ✕ 2)Chip-Scale Package_______________________________________________________________________________________7Table 1. Factory Trimmed Reset Thresholds**Note: Parts marked with an asterisk (*) are standard versions.Table 2. Device Marking CodesM A X 6400–M A X 6405µP Supervisory Circuits in 4-Bump (2 ✕ 2) Chip-Scale Package 8_______________________________________________________________________________________UCSP ReliabilityThe chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliabil-ity tests. CSP reliability is integrally linked to the user ’s assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a CSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.tion for a CSP package. CSPs are attached through direct solder contact to the user ’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be rmation on Maxim ’s qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim ’s website at .Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600______________________9©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package InformationµP Supervisory Circuits in 4-Bump (2 ✕ 2)Chip-Scale PackageMAX6400–MAX6405。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX6381–MAX6390 microprocessor (µP) supervisory circuits monitor power supply voltages from +1.8V to +5.0V while consuming only 3µA of supply current at +1.8V. Whenever V CC falls below the factory-set reset thresholds, the reset output asserts and remains assert-ed for a minimum reset timeout period after V CC rises above the reset threshold. Reset thresholds are available from +1.58V to +4.63V, in approximately 100mV incre-ments. Seven minimum reset timeout delays ranging from 1ms to 1200ms are available.The MAX6381/MAX6384/MAX6387 have a push-pull active-low reset output. The MAX6382/MAX6385/MAX6388 have a push-pull active-high reset output,and the MAX6383/MAX6386/MAX6389/MAX6390 have an open-drain active-low reset output. The MAX6384/MAX6385/MAX6386 also feature a debounced manual reset input (with internal pullup resistor). The MAX6387/MAX6388/MAX6389 have an auxiliary input for monitoring a second voltage. The MAX6390 offers a manual reset input with a longer V CC reset timeout period (1120ms or 1200ms) and a shorter manual reset timeout (140ms or 150ms).The MAX6381/MAX6382/MAX6383 are available in 3-pin SC70 packages and the MAX6384–MAX6390 are avail-able in 4-pin SC70 packages.________________________ApplicationsComputers ControllersIntelligent InstrumentsCritical µP and µC Power Monitoring Portable/Battery-Powered Equipment Dual Voltage SystemsFeatureso Factory-Set Reset Threshold Voltages Ranging from +1.58V to +4.63V in Approximately 100mV Increments o ±2.5% Reset Threshold Accuracy Over Temperature (-40°C to +125°C)o Seven Reset Timeout Periods Available: 1ms,20ms, 140ms, 280ms, 560ms, 1120ms, 1200ms (min)o 3 Reset Output OptionsActive-Low Push-Pull Active-High Push-Pull Active-Low Open-Draino Reset Output State Guaranteed Valid Down to V CC = 1Vo Manual Reset Input (MAX6384/MAX6385/MAX6386)o Auxiliary RESET IN(MAX6387/MAX6388/MAX6389)o V CC Reset Timeout (1120ms or 1200ms)/Manual Reset Timeout (140ms or 150ms) (MAX6390)o Negative-Going V CC Transient Immunity o Low Power Consumption of 6µA at +3.6V and 3µA at +1.8V o Pin Compatible withMAX809/MAX810/MAX803/MAX6326/MAX6327/MAX6328/MAX6346/MAX6347/MAX6348, and MAX6711/MAX6712/MAX6713o Tiny 3-Pin SC70 and 4-Pin SC70 PackagesMAX6381–MAX6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits________________________________________________________________Maxim Integrated Products1Pin Configurations19-1839; Rev 1; 04/01Ordering InformationOrdering Information continued at end of data sheet.Typical Operating Circuit appears at end of data sheet.Selector Guide appears at end of data sheet.Note:Insert reset threshold suffix (see Reset Threshold table)after "XR" or "XS". Insert reset timeout delay (see Reset Timeout Delay table) after "D" to complete the part number. Sample stock is generally held on standard versions only (seeStandard Versions table). Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.*MAX6390 is available with D4 or D7 timing only.For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 6381–M A X 6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset CircuitsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..........................................................-0.3V to +6.0V RESET Open-Drain Output....................................-0.3V to +6.0V RESET , RESET (Push-Pull Output).............-0.3V to (V CC + 0.3V)MR , RESET IN.............................................-0.3V to (V CC + 0.3V)Input Current (V CC ).............................................................20mA Output Current (All Pins).....................................................20mAContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.9mW/°C above +70°C)........235mW 4-Pin SC70 (derate 3.1mW/°C above +70°C)........245mW Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX6381–MAX6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits_______________________________________________________________________________________3M A X 6381–M A X 6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 4______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)215436789-40-105-25203550658095110125SUPPLY CURRENT vs. TEMPERATURE(NO LOAD)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )25292735333137394143-40-105-25203550658095110125POWER-DOWN RESET DELAYvs. TEMPERATURETEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )0.940.980.961.021.001.061.041.08-40-10520-253550658095110125NORMALIZED POWER-UP RESET TIMEOUTvs. TEMPERATUREM A X 6381/90 t o c 03TEMPERATURE (°C)N O R M A L I Z E D R E S E T T I M E O U T P E R I O D0.9900.9851.0150.9950.9901.0001.0051.0101.020-40-10520-253550958011065125M A X 6381/90 t o c 04TEMPERATURE (°C)N O R M A L I Z E D R E S E TT H R E S H O L D NORMALIZED RESET THRESHOLDvs. TEMPERATURE00.40.20.80.61.01.2063912OUTPUT VOLTAGE LOW vs. SINK CURRENTI SINK (mA)V O L (V )01.00.52.01.52.53.00500750250100012501500OUTPUT VOLTAGE HIGH vs. SOURCE CURRENTI SOURCE (µA)V O H (V )45001100010010MAXIMUM TRANSIENT DURATION vs. RESET COMPARATOR OVERDRIVE15050350250500200100400300RESET COMPARATOR OVERDRIVE, V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )3.53.93.74.54.34.14.74.95.35.15.5-40-105-25203550658095110125RESET IN TO RESET DELAYvs. TEMPERATUREM A X 6381/90 t o c 08TEMPERATURE (°C)R E S E T I N D E L A Y (µs )MAX6381–MAX6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits_______________________________________________________________________________________5M A X 6381–M A X 6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 6_______________________________________________________________________________________Detailed DescriptionRESET OutputA µP reset input starts the µP in a known state. These µP supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.Reset asserts when V CC is below the reset threshold;once V CC exceeds the reset threshold, an internal timer keeps the reset output asserted for the reset timeout period. After this interval, reset output deasserts. Reset output is guaranteed to be in the correct logic state for V CC ≥1V.Manual Reset Input (MAX6384/MAX6385/MAX6386/MAX6390)Many µP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic low on MR asserts reset. Reset remains asserted while MR is low,and for the reset active timeout period (t RP ) after MR returns high. This input has an internal 63k Ωpullup resistor (1.35k Ωfor MAX6390), so it can be left uncon-nected if it is not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs.Connect a normally open momentary switch from MR to G ND to create a manual-reset function; external debounce circuitry is not required. If MR is driven from long cables or if the device is used in a noisy environ-ment, connecting a 0.1µF capacitor from MR to G ND provides additional noise immunity.RESET IN Comparator(MAX6387/MAX6388/MAX6389)RESET IN is compared to an internal +1.27V reference.If the voltage at RESET IN is less than 1.27V, reset asserts. Use the RESET IN comparator as a user-adjustable reset detector or as a secondary power-sup-ply monitor by implementing a resistor-divider at RESET IN (shown in Figure 1). Reset asserts when either V CC or RESET IN falls below its respective threshold volt-age. Use the following equation to set the threshold:V INTH = V THRST (R1/R2 + 1)where V THRST = +1.27V. To simplify the resistor selec-tion, choose a value of R2 and calculate R1:R1 = R2 [(V INTH /V THRST ) - 1]Since the input current at RESET IN is 50nA (max),large values can be used for R2 with no significant loss in accuracy.___________Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, the MAX6381–MAX6390 are relatively immune to short dura-tion negative-going V CC transients (glitches).The Typical Operating Characteristics section shows the Maximum Transient Durations vs. Reset Comparator Overdrive, for which the MAX6381–MAX6390 do not generate a reset pulse. This graph was generated usinga negative-going pulse applied to V CC , starting above the actual reset threshold and ending below it by the magni-tude indicated (reset comparator overdrive). The graph indicates the typical maximum pulse width a negative-going V CC transient may have without causing a reset pulse to be issued. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. A 0.1µF capacitor mounted as close as possible to V CC provides additional transient immunity.Ensuring a Valid RESET Output Down to V CC = 0The MAX6381–MAX6390 are guaranteed to operate properly down to V CC = 1V. In applications that require valid reset levels down to V CC = 0, a pulldown resistor to active-low outputs (push/pull only, Figure 2) and a pullup resistor to active-high outputs (push/pull only) will ensure that the reset line is valid while the reset output can no longer sink or source current. This scheme doesnot work with the open-drain outputs of the MAX6383/MAX6386/MAX6389/MAX6390. The resistor value used is not critical, but it must be small enough not to load the reset output when V CC is above the reset threshold. For most applications, 100k Ωis adequate.MAX6381–MAX6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits_______________________________________________________________________________________7M A X 6381–M A X 6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 8Selector GuideChip InformationTRANSISTOR COUNT: 647PROCESS: BiCMOS*MR is for MAX6384/MAX6385/MAX6386/MAX6390**RESET IN is for MAX6387/MAX6388/MAX6389( ) are for MAX6382/MAX6385/MAX6388Pin Configurations (continued)MAX6381–MAX6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits_______________________________________________________________________________________9Ordering Information(continued)Note:Insert reset threshold suffix (see Reset Threshold table)after "XR" or "XS". Insert reset timeout delay (see Reset Timeout Delay table) after "D" to complete the part number. Sample stock is generally held on standard versions only (seeStandard Versions table). Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces.Contact factory for availability of nonstandard versions.*MAX6390 is available with D4 or D7 timing only.M A X 6381–M A X 6390SC70, Single/Dual Low-Voltage, Low-Power µP Reset Circuits 10______________________________________________________________________________________Package InformationSC70, Single/Dual Low-Voltage, Low-Power µP Reset CircuitsMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600____________________11©2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.MAX6381–MAX6390Package Information (continued)元器件交易网。