Enantioselective Organocatalytic Reductive Amination

合集下载

(R)-1,3-二甲基哌嗪-2-酮的合成研究

(R)-1,3-二甲基哌嗪-2-酮的合成研究

(R)-1,3-二甲基哌嗪-2-酮的合成研究高崇阳;陈锦春;彭伟【摘要】以L-丙氨酸为原料,经二碳酸二叔丁酯保护氨基、CDI缩合酰胺化反应、Mitsunobu反应、HCl去保护四步反应,以59.4%的总收率合成了(R)-1,3-二甲基哌嗪-2-酮,其结构经1H NMR确认无误,并对分子内Mitsunobu反应条件进行了优化.与其它合成路线的研究结果相比较,该路线减少了副产物反应的发生,缩短了反应步骤,降低了分离难度,提高了收率和产品纯度,更适合规模化合成.【期刊名称】《广州化工》【年(卷),期】2017(045)016【总页数】3页(P50-51,88)【关键词】Mitsunobu反应;哌嗪-2-酮;合成【作者】高崇阳;陈锦春;彭伟【作者单位】烟台大学化学化工学院,山东烟台 264005;烟台大学化学化工学院,山东烟台 264005;烟台大学化学化工学院,山东烟台 264005【正文语种】中文【中图分类】TQ465.5哌嗪-2-酮是一类重要的杂环化合物,广泛存在于多种天然产物和药物分子结构中[1-4],具有哌嗪酮骨架结构的化合物通常具有较好的生物活性。

图1展示了HIV蛋白酶抑制剂Indivanir、抗血吸虫病和土壤传播蠕虫病毒药物Praziquantel的化学结构。

哌嗪-2-酮衍生物是药物分子中重要的活性结构砌块,因此,对其研究方法比较多。

(R)-1,3-二甲基哌嗪-2-酮是合成 BET溴区抑制剂AZD5153的重要中间体[5],尚未有文献报道该中间体的合成,但有其类似物合成方法,本文报道了以L-丙氨酸为原料的(R)-1,3-二甲基哌嗪-2-酮的合成研究。

首先,L-丙氨酸与二碳酸二叔丁酯在氢氧化钠溶液下保护氨基得到化合物1[6],然后在CDI下与2-甲氨基乙醇缩合得到酰胺(2)[7],我们对该化合物2采用了三种方法进行成环反应:(1)化合物2在酸性条件下去保护得化合物3,然后通过Mitsunobu反应分子内成环得到目标产物6;(2)化合物2通过Appel反应对醇羟基溴代,然后在酸性条件下去保护,最后分子内发生亲核取代得到目标产物6;(3)化合物3先Mitsunobu 反应成环得到化合物5,然后在酸性条件在去保护得到目标产物6。

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

有机化学1.David A. Evans,* Daniel Seidel, Magnus Rueping, Hon Wai Lam, Jared T. Shaw, and C. Wade Downey, A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction, J. AM. CHEM. SOC. 2003, 125, 12692-12693.2. Brian D. Dangel and Robin Pol,Catalysis by Amino Acid-Derived Tetracoordinate Complexes: Enantioselective Addition of Dialkylzincs to Aliphatic and Aromatic Aldehydes, Org. Lett. 2007, 2, 3003.3. Benjamin List, Proline-catalyzed asymmetric reactions, Tetrahedron, 2002, 58, 5573.4. Vishnu Maya, Monika Raj, and Vinod K. Singh, Highly Enantioselective Organocatalytic Direct Aldol Reaction in an Aqueous Medium, Org. Lett. 2007, 9, 2593.5. Sanzhong Luo, Jiuyuan Li, Hui Xu, Long Zhang, and Jin-Pei Cheng, Chiral Amine-Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts, Org. Lett. 2007, 9, 3675.6. Xiao-Ying Xu, Yan-Zhao Wang, and Liu-Zhu Gong, Design of Organocatalysts for Asymmetric Direct Syn-Aldol Reactions, Org. Lett. 2007, 9, 4247.7. Jung Woon Yang, Maria T. Hechavarria Fonseca, Nicola Vignola, and Benjamin List, Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of a,b-Unsaturated Aldehydes, Angew. Chem. Int. Ed. 2005, 44, 108–110.8. Giuseppe Bartoli, Massimo Bartolacci, Marcella Bosco, et. al., The Michael Addition of Indoles to r,â-Unsaturated Ketones Catalyzed by CeCl3â7H2O-NaI Combination Supported on Silica Gel, J. Org. Chem. 2003, 68, 4594-4597.9. Jayasree Seayad, Abdul Majeed Seayad, and Benjamin List, Catalytic Asymmetric Pictet-Spengler Reaction, J. AM. CHEM. SOC. 2006, 128, 1086-1087.10. Jingjun Yin, Matthew P. Rainka, Xiao-Xiang Zhang, and Stephen L. Buchwald, A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination, J. AM. CHEM. SOC. 9 VOL. 124, NO. 7, 2002 1162.11. Ulf M. Lindstro¨m, Stereoselective Organic Reactions in Water, Chem. Rev. 2002, 102, 2751-2772 .12. Sanzhong Luo, Hui Xu, Jiuyuan Li, Long Zhang, and Jin-Pei Cheng, A Simple Primary-Tertiary Diamine-Brønsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones, J. AM. CHEM. SOC. 2007, 129, 3074-3075.13. Xin Cui, Yuan Zhou, Na Wang, Lei Liu and Qing-Xiang Guo, N-Phenylurea as an inexpensive and efficient ligand for Pd-catalyzed Heck and room-temperature Suzuki reactions, TL, 2007, 48, 163.14. Yoshiharu Iwabuchi, Mari Nakatani, Nobiko Yokoyama, and Susumi Hatakeyama, Chiral Amine-Catalyzed Asymmetric Baylis-Hillman Reaction: A Reliable Route to Highly Enantiomerically Enriched (r-Methylene-â-hydroxy)esters, J. Am. Chem. Soc. 1999, 121, 10219-10220.15. Satoko Kezuka, Taketo Ikeno, and Tohru Yamada, Optically Active â-Ketoiminato Cationic Cobalt(III) Complexes: Efficient Catalysts for Enantioselective Carbonyl-Ene Reaction of Glyoxal Derivatives, Org. Lett. 2001, 3, 1937.分析化学16. Lei Liu, Qin-Xiang Guo, Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation , Chem. Rev. 2001, 101, .17. Sui-Yi Lin, Shi-Wei Liu, Chia-Mei Lin, and Chun-hsien Chen,Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles, Anal. Chem. 2002, 74, 330-33518. Mikhail V. Rekharsky and Yoshihisa Inoue, Complexation and Chiral Recognition Thermodynamics of 6-Amino-6-deoxy-â-cyclodextrin with Anionic, Cationic, and Neutral Chiral Guests: Counterbalance between van der Waals and Coulombic Interactions, J. AM. CHEM. SOC., 2002, 124: 813-82619. Yu Liu, Li Li, Zhi Fan, Heng-Yi Zhang, Xue Wu, Xu-Dong Guan, Shuang-Xi Liu, Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calix[4]arene Derivative, nano letters, 2002, 2:257-262.20. CARLITO B. LEBRILLA, The Gas-Phase Chemistry of Cyclodextrin InclusionComplexes, Acc. Chem. Res. 2001, 34: 653-66121. Jian-Jun Wu, Yu Wang, Jian-Bin Chao, Li-Na Wang, and Wei-Jun Jin. Room Temperature Phosphorescence of 1-Bromo-4-(bromoacetyl) Naphthalene Induced Synergetically by -cyclodextrin and Brij30 in the Presence of Oxygen. The Journal of Physical Chemistry: B, 2004, 108: 8915-8919.22. Xiang-feng Guo, Xu-hong Qian, and Li-hua Jia. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc. 2004,126: 2272-2273.23. Yu Wang, Jian-Jun Wu, Yu-Feng Wang, Li-Pin Qin, Wei-Jun Jin. Selective Sensing of Cu (Ⅱ) at ng ml-1level Based on Phosphorescence Quenching of 1-Bromo-2-methylnaphthalene Sandwiched in Sodium Deoxycholate Dimer. Chem. Commun. 2005, 1090-1091.24. Yong-fen Chen and Zeev Rosenzweig(2002) Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem., 74: 5132-513825. Thorfinnur Gunnlaugsson, Mark Glynn, Gillian M. Tocci (née Hussey), Paul E. Kruger, Frederick M. Pfeffer Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews 2006, 250: 3094–3117.26. E.M. Martin Del Valle, Cyclodextrins and their uses: a review, Process Biochemistry 2004, 39 : 1033–104627. Ahmet Gu rses, Mehmet Yalcin, Cetin Dogar,Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables, Waste Management 22 (2002) 491–428. K. Lang, J. Mosinger, D.M. Wagnerová, V oltammetric studies of anthraquinone dyes adsorbed at a hanging mercury drop electrode using fast pulse techniques, Coordination Chemistry Reviews 248 (2004) 321–35029. You Qin Li, Yu Jing Guo, Xiu Fang Li, Jing Hao Pan, Electrochemical studies of the interaction of Basic Brown G with DNA and determination of DNA, 2007,71: 123-128.30. P.J. Almeida, J.A. Rodrigues, A.A. Barros, A.G. Fogg, Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Analytica Chimica Acta 385 (1999) 287-293.无机化学31. Silvia Miret, Robert J. Simpson, and Andrew T. McKie, PHYSIOLOGY ANDMOLECULAR BIOLOGY OF DIETARY IRON ABSORPTION, Annu. Rev. Nutr. 2003. 23:283–301.32. Joy J. Winzerling and John H. Law, COMPARATIVE NUTRITION OF IRON AND COPPER, Annu. Rev. Nutr. 1997. 17:501–26.33. Kurt Dehnicke and Andreas Greiner, Unusual Complex Chemistry of Rare-Earth Elements: Large Ionic Radii—Small Coordination Numbers, Angew. Chem. Int. Ed. 2003, 42, No. 12, 1341-1354.34. Todor Dudev, Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins, Chem. Rev. 2003, 103, 773-787.35. Maria M. O. Pena, Jaekwon Lee and Dennis J. Thiele, A Delicate Balance: Homeostatic Control of Copper Uptake and Distribution, J. Nutr. 129: 1251–1260, 1999.36. Elza V. Kuzmenkina, Colin D. Heyes, and G. Ulrich Nienhaus, Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions, PNAS, October 25, 2005, vol. 102 _ no. 43 _ 15471–15476.37. Simon Silver, Bacterial resistances to toxic metal ions - a review, Gene 179 (1996) 9-19.38. David A Zacharias, Geoffrey S Baird and Roger Y Tsien, Recent advances in technology for measuring and manipulating cell signals, Current Opinion in Neurobiology 2000, 10:416–421.39. Edward Luk Laran T. Jensen Valeria C. Culotta, The many highways for intracellular trafficking of metals, J Biol Inorg Chem (2003) 8: 803–809.40. JOHN B. VINCENT, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res. 2000, 33, 503-510.41. Mark D. Harrison, Christopher E. Jones, Marc Solioz, Intracellular copper routing: the role of copper chaperones, TIBS 25 – JANUARY 2000, 29-32.42. R.J.P. Williams, My past and a future role for inorganic biochemistry, Journal of Inorganic Biochemistry 100 (2006) 1908–1924.43. Gray H B., ‘Biological Inorganic Chemistry at the Beginning of the 21th Century’, PNAS, 2003, 100(7), 3563-3583.物理化学/应用化学44.Chemistry of Aerogels and Their Applications, Alain C. Pierre and Ge´rard M.Pajonk, Chem. Rev. 2002, 102, -4265.45.Mechanisms of catalyst deactivation, Calvin H. Bartholomew, Applied Catalysis A:General 212 (2001) 17–60.anic chemistry on solid surfaces, Zhen Ma, Francisco Zaera, Surface ScienceReports , 61 (2006) 229–281.47.Heterogeneous catalysis: looking forward with molecular simulation, J.W.Andzelm, A.E. Alvarado-Swaisgood, F.U. Axe, M.W. Doyle, G. Fitzgerald 等,Catalysis Today,50 (1999) 451-477.48.Current Trends in the Improvement and Development of Catalyst PreparationMethods,N. A. Pakhomov and R. A. Buyanov,Kinetics and Catalysis, V ol. 46, No. 5, 2005, pp. 669–683.49.Temperature-programmed desorption as a tool to extract quantitative kinetic orenergetic information for porous catalysts,J.M. Kanervo ∗, T.J. Keskitalo, R.I.Slioor, A.O.I. Krause,Journal of Catalysi s 238 (2006) 382–393.50.Adsorption _ from theory to practice,A. Da˛browski,Advances in Colloid andInterface Science93(2001)135-224.51.Characterization of solid acids by spectroscopy,Eike Brunner,Catalysis Today,38 (1997) 361-376.52.Chemical Strategies To Design Textured Materials: from Microporous andMesoporous Oxides to Nanonetworks and Hierarchical Structures,Galo J. de A. A.Soler-Illia, Cle´ment Sanchez等,Chem. Rev.2002, 102, 4093-4138.53.Solid-State Nuclear Magnetic Resonance,Cecil Dybowski,Shi Bai, and Scott vanBramer,Anal. Chem. 2004, 76, 3263-3268.54.Aerogel applications,Lawrence W. Hrubesh,Journal of Non-Crystalline Solids225_1998.335–342.55.Application of computational methods to catalytic systems,Fernando Ruette,Morella S´anchezb, Anibal Sierraalta, Journal of Molecular Catalysis A: Chemical 228 (2005) 211–225.56.Applications of molecular modeling in heterogeneous catalysis research,Linda J.Broadbelt1, Randall Q. Snurr,Applied Catalysis A: General 200 (2000) 23–46. 57.IR spectroscopy in catalysis,Janusz Ryczkowski,Catalysis Today 68 (2001)263–381.58.The surface chemistry of catalysis: new challenges ahead,Francisco Zaera,Surface Science 500 (2002) 947–965.药学60. Peishan Xie, Sibao Chen, Yi-zeng Liang, Xianghong Wang, Runtao Tian, Roy Upton,Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine,J. Chromatogr. A 1112 (2006) 171–180.61. Yi-Zeng Lianga, Peishan Xieb, Kelvin Chan, Quality control of herbal medicines, Journal of Chromatography B, 812 (2004) 53–70.62. 刘昌孝, 代谢组学的发展与药物研究开发, 天津药学2005 年4 月第17 卷第2 期.63. 徐曰文,林东海,刘昌孝,代谢组学研究现状与展望,药学学报2005, 40 (9) : 769 – 774。

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

著作一:荧光分析法 (第三版)许金钩 王尊本 主编

有机化学1.David A. Evans,* Daniel Seidel, Magnus Rueping, Hon Wai Lam, Jared T. Shaw, and C. Wade Downey, A New Copper Acetate-Bis(oxazoline)-Catalyzed, Enantioselective Henry Reaction, J. AM. CHEM. SOC. 2003, 125, 12692-12693.2. Brian D. Dangel and Robin Pol,Catalysis by Amino Acid-Derived Tetracoordinate Complexes: Enantioselective Addition of Dialkylzincs to Aliphatic and Aromatic Aldehydes, Org. Lett. 2007, 2, 3003.3. Benjamin List, Proline-catalyzed asymmetric reactions, Tetrahedron, 2002, 58, 5573.4. Vishnu Maya, Monika Raj, and Vinod K. Singh, Highly Enantioselective Organocatalytic Direct Aldol Reaction in an Aqueous Medium, Org. Lett. 2007, 9, 2593.5. Sanzhong Luo, Jiuyuan Li, Hui Xu, Long Zhang, and Jin-Pei Cheng, Chiral Amine-Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts, Org. Lett. 2007, 9, 3675.6. Xiao-Ying Xu, Yan-Zhao Wang, and Liu-Zhu Gong, Design of Organocatalysts for Asymmetric Direct Syn-Aldol Reactions, Org. Lett. 2007, 9, 4247.7. Jung Woon Yang, Maria T. Hechavarria Fonseca, Nicola Vignola, and Benjamin List, Metal-Free, Organocatalytic Asymmetric Transfer Hydrogenation of a,b-Unsaturated Aldehydes, Angew. Chem. Int. Ed. 2005, 44, 108–110.8. Giuseppe Bartoli, Massimo Bartolacci, Marcella Bosco, et. al., The Michael Addition of Indoles to r,â-Unsaturated Ketones Catalyzed by CeCl3â7H2O-NaI Combination Supported on Silica Gel, J. Org. Chem. 2003, 68, 4594-4597.9. Jayasree Seayad, Abdul Majeed Seayad, and Benjamin List, Catalytic Asymmetric Pictet-Spengler Reaction, J. AM. CHEM. SOC. 2006, 128, 1086-1087.10. Jingjun Yin, Matthew P. Rainka, Xiao-Xiang Zhang, and Stephen L. Buchwald, A Highly Active Suzuki Catalyst for the Synthesis of Sterically Hindered Biaryls: Novel Ligand Coordination, J. AM. CHEM. SOC. 9 VOL. 124, NO. 7, 2002 1162.11. Ulf M. Lindstro¨m, Stereoselective Organic Reactions in Water, Chem. Rev. 2002, 102, 2751-2772 .12. Sanzhong Luo, Hui Xu, Jiuyuan Li, Long Zhang, and Jin-Pei Cheng, A Simple Primary-Tertiary Diamine-Brønsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones, J. AM. CHEM. SOC. 2007, 129, 3074-3075.13. Xin Cui, Yuan Zhou, Na Wang, Lei Liu and Qing-Xiang Guo, N-Phenylurea as an inexpensive and efficient ligand for Pd-catalyzed Heck and room-temperature Suzuki reactions, TL, 2007, 48, 163.14. Yoshiharu Iwabuchi, Mari Nakatani, Nobiko Yokoyama, and Susumi Hatakeyama, Chiral Amine-Catalyzed Asymmetric Baylis-Hillman Reaction: A Reliable Route to Highly Enantiomerically Enriched (r-Methylene-â-hydroxy)esters, J. Am. Chem. Soc. 1999, 121, 10219-10220.15. Satoko Kezuka, Taketo Ikeno, and Tohru Yamada, Optically Active â-Ketoiminato Cationic Cobalt(III) Complexes: Efficient Catalysts for Enantioselective Carbonyl-Ene Reaction of Glyoxal Derivatives, Org. Lett. 2001, 3, 1937.分析化学16. Lei Liu, Qin-Xiang Guo, Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation , Chem. Rev. 2001, 101, .17. Sui-Yi Lin, Shi-Wei Liu, Chia-Mei Lin, and Chun-hsien Chen,Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles, Anal. Chem. 2002, 74, 330-33518. Mikhail V. Rekharsky and Yoshihisa Inoue, Complexation and Chiral Recognition Thermodynamics of 6-Amino-6-deoxy-â-cyclodextrin with Anionic, Cationic, and Neutral Chiral Guests: Counterbalance between van der Waals and Coulombic Interactions, J. AM. CHEM. SOC., 2002, 124: 813-82619. Yu Liu, Li Li, Zhi Fan, Heng-Yi Zhang, Xue Wu, Xu-Dong Guan, Shuang-Xi Liu, Supramolecular Aggregates Formed by Intermolecular Inclusion Complexation of Organo-Selenium Bridged Bis(cyclodextrin)s with Calix[4]arene Derivative, nano letters, 2002, 2:257-262.20. CARLITO B. LEBRILLA, The Gas-Phase Chemistry of Cyclodextrin InclusionComplexes, Acc. Chem. Res. 2001, 34: 653-66121. Jian-Jun Wu, Yu Wang, Jian-Bin Chao, Li-Na Wang, and Wei-Jun Jin. Room Temperature Phosphorescence of 1-Bromo-4-(bromoacetyl) Naphthalene Induced Synergetically by -cyclodextrin and Brij30 in the Presence of Oxygen. The Journal of Physical Chemistry: B, 2004, 108: 8915-8919.22. Xiang-feng Guo, Xu-hong Qian, and Li-hua Jia. A Highly Selective and Sensitive Fluorescent Chemosensor for Hg2+in Neutral Buffer Aqueous Solution. J. Am. Chem. Soc. 2004,126: 2272-2273.23. Yu Wang, Jian-Jun Wu, Yu-Feng Wang, Li-Pin Qin, Wei-Jun Jin. Selective Sensing of Cu (Ⅱ) at ng ml-1level Based on Phosphorescence Quenching of 1-Bromo-2-methylnaphthalene Sandwiched in Sodium Deoxycholate Dimer. Chem. Commun. 2005, 1090-1091.24. Yong-fen Chen and Zeev Rosenzweig(2002) Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem., 74: 5132-513825. Thorfinnur Gunnlaugsson, Mark Glynn, Gillian M. Tocci (née Hussey), Paul E. Kruger, Frederick M. Pfeffer Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews 2006, 250: 3094–3117.26. E.M. Martin Del Valle, Cyclodextrins and their uses: a review, Process Biochemistry 2004, 39 : 1033–104627. Ahmet Gu rses, Mehmet Yalcin, Cetin Dogar,Electrocoagulation of some reactive dyes: a statistical investigation of some electrochemical variables, Waste Management 22 (2002) 491–428. K. Lang, J. Mosinger, D.M. Wagnerová, V oltammetric studies of anthraquinone dyes adsorbed at a hanging mercury drop electrode using fast pulse techniques, Coordination Chemistry Reviews 248 (2004) 321–35029. You Qin Li, Yu Jing Guo, Xiu Fang Li, Jing Hao Pan, Electrochemical studies of the interaction of Basic Brown G with DNA and determination of DNA, 2007,71: 123-128.30. P.J. Almeida, J.A. Rodrigues, A.A. Barros, A.G. Fogg, Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Analytica Chimica Acta 385 (1999) 287-293.无机化学31. Silvia Miret, Robert J. Simpson, and Andrew T. McKie, PHYSIOLOGY ANDMOLECULAR BIOLOGY OF DIETARY IRON ABSORPTION, Annu. Rev. Nutr. 2003. 23:283–301.32. Joy J. Winzerling and John H. Law, COMPARATIVE NUTRITION OF IRON AND COPPER, Annu. Rev. Nutr. 1997. 17:501–26.33. Kurt Dehnicke and Andreas Greiner, Unusual Complex Chemistry of Rare-Earth Elements: Large Ionic Radii—Small Coordination Numbers, Angew. Chem. Int. Ed. 2003, 42, No. 12, 1341-1354.34. Todor Dudev, Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins, Chem. Rev. 2003, 103, 773-787.35. Maria M. O. Pena, Jaekwon Lee and Dennis J. Thiele, A Delicate Balance: Homeostatic Control of Copper Uptake and Distribution, J. Nutr. 129: 1251–1260, 1999.36. Elza V. Kuzmenkina, Colin D. Heyes, and G. Ulrich Nienhaus, Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions, PNAS, October 25, 2005, vol. 102 _ no. 43 _ 15471–15476.37. Simon Silver, Bacterial resistances to toxic metal ions - a review, Gene 179 (1996) 9-19.38. David A Zacharias, Geoffrey S Baird and Roger Y Tsien, Recent advances in technology for measuring and manipulating cell signals, Current Opinion in Neurobiology 2000, 10:416–421.39. Edward Luk Laran T. Jensen Valeria C. Culotta, The many highways for intracellular trafficking of metals, J Biol Inorg Chem (2003) 8: 803–809.40. JOHN B. VINCENT, Elucidating a Biological Role for Chromium at a Molecular Level, Acc. Chem. Res. 2000, 33, 503-510.41. Mark D. Harrison, Christopher E. Jones, Marc Solioz, Intracellular copper routing: the role of copper chaperones, TIBS 25 – JANUARY 2000, 29-32.42. R.J.P. Williams, My past and a future role for inorganic biochemistry, Journal of Inorganic Biochemistry 100 (2006) 1908–1924.43. Gray H B., ‘Biological Inorganic Chemistry at the Beginning of the 21th Century’, PNAS, 2003, 100(7), 3563-3583.物理化学/应用化学44.Chemistry of Aerogels and Their Applications, Alain C. Pierre and Ge´rard M.Pajonk, Chem. Rev. 2002, 102, -4265.45.Mechanisms of catalyst deactivation, Calvin H. Bartholomew, Applied Catalysis A:General 212 (2001) 17–60.anic chemistry on solid surfaces, Zhen Ma, Francisco Zaera, Surface ScienceReports , 61 (2006) 229–281.47.Heterogeneous catalysis: looking forward with molecular simulation, J.W.Andzelm, A.E. Alvarado-Swaisgood, F.U. Axe, M.W. Doyle, G. Fitzgerald 等,Catalysis Today,50 (1999) 451-477.48.Current Trends in the Improvement and Development of Catalyst PreparationMethods,N. A. Pakhomov and R. A. Buyanov,Kinetics and Catalysis, V ol. 46, No. 5, 2005, pp. 669–683.49.Temperature-programmed desorption as a tool to extract quantitative kinetic orenergetic information for porous catalysts,J.M. Kanervo ∗, T.J. Keskitalo, R.I.Slioor, A.O.I. Krause,Journal of Catalysi s 238 (2006) 382–393.50.Adsorption _ from theory to practice,A. Da˛browski,Advances in Colloid andInterface Science93(2001)135-224.51.Characterization of solid acids by spectroscopy,Eike Brunner,Catalysis Today,38 (1997) 361-376.52.Chemical Strategies To Design Textured Materials: from Microporous andMesoporous Oxides to Nanonetworks and Hierarchical Structures,Galo J. de A. A.Soler-Illia, Cle´ment Sanchez等,Chem. Rev.2002, 102, 4093-4138.53.Solid-State Nuclear Magnetic Resonance,Cecil Dybowski,Shi Bai, and Scott vanBramer,Anal. Chem. 2004, 76, 3263-3268.54.Aerogel applications,Lawrence W. Hrubesh,Journal of Non-Crystalline Solids225_1998.335–342.55.Application of computational methods to catalytic systems,Fernando Ruette,Morella S´anchezb, Anibal Sierraalta, Journal of Molecular Catalysis A: Chemical 228 (2005) 211–225.56.Applications of molecular modeling in heterogeneous catalysis research,Linda J.Broadbelt1, Randall Q. Snurr,Applied Catalysis A: General 200 (2000) 23–46. 57.IR spectroscopy in catalysis,Janusz Ryczkowski,Catalysis Today 68 (2001)263–381.58.The surface chemistry of catalysis: new challenges ahead,Francisco Zaera,Surface Science 500 (2002) 947–965.药学60. Peishan Xie, Sibao Chen, Yi-zeng Liang, Xianghong Wang, Runtao Tian, Roy Upton,Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine,J. Chromatogr. A 1112 (2006) 171–180.61. Yi-Zeng Lianga, Peishan Xieb, Kelvin Chan, Quality control of herbal medicines, Journal of Chromatography B, 812 (2004) 53–70.62. 刘昌孝, 代谢组学的发展与药物研究开发, 天津药学2005 年4 月第17 卷第2 期.63. 徐曰文,林东海,刘昌孝,代谢组学研究现状与展望,药学学报2005, 40 (9) : 769 – 774。

有机催化的对映选择性Diels–Alder反应

有机催化的对映选择性Diels–Alder反应

概述本文概述了非对称反应历史上的Diels–Alder反应。

Diels–Alder反应是经济性原子反应最重要的反应之一[1],出自由奥托博士1928年发表的著名论文,而且Diels–Alder反应仍然是目前研究最多、利用最广泛之一的反应[2]。

这项调查延续超过了60年,它提供了各种各样的不饱和体系以二烯烃以及亲二烯体的详细信息以及可能的各种影响因素。

Diels–Alder反应也是最古老的有机转换反应之一,作为手性助剂可获得光学纯化合物的快捷方式[3]。

第一个己烯框架有四个连续立体衰减的过程,这是一个活跃的研究领域。

一个取代环己烯的建设框架其中的拆分方法在近代被恩德斯和同事通过三重串联反应证实了,新方法已经被其他实验工作者进一步应用。

除了lewis酸的催化,通过文献的阅览对其他催化方法也有了大体上的了解。

几种Diels–Alder反应中表明有一个相当大的比率增加水作为溶剂或含有氢键的环境。

Diels–Alder反应合成的多功能性进一步为发现生物催化方法提供运输反应创造了条件。

在不含金属的环境中,以适当的速度在温和条件下与选择性适当的产物反应。

在这种情况下,有机小分子作为有机催化剂是一个好的选择酶,适合有些更具体,更复杂的情况[4]。

有机催化在过去的十年的快速发展,已经取得了伟大的多样化的成果。

在这些过程有重要的醇醛缩合等反应,傅克反应,曼尼希,斯特和亨利的反应[5], 还有Diels–Alder环加成反应。

在已有的催化Diels–Alder 反应中,一个单独的有关专门有机催化方法,还没有出现,比如有关多米诺和脯氨酸在有机催化中反应。

目前更受到关注的是有机催化Diels–Alder环加的发展。

有机合成中Diels-Alder 反应是生成结构复杂的化合物的典型方法之一,合成复杂的大分子是这个世纪化学家热点研究的话题[6],并且是具有挑战的项目。

Diels-Alder 反应能合成我们理想中具有立体选择性的结构复杂多环化合物,在这个方面取得了瞩目的成果。

不对称催化亲电氟化反应研究进展

不对称催化亲电氟化反应研究进展

不对称催化亲电氟化反应研究进展汪忠华;巫辅龙;吴范宏【摘要】在有机氟化学领域中,α-氟代羰基化合物具有特异的生物活性,在有机合成中也可以作为合成砌块,其合成方法学的研究是目前研究的热点和难点之一.不对称亲电氟代反应是直接构建α-氟代羰基骨架的有效方法,主要用到的催化剂包括钌、铜、钪为催化中心的金属催化剂和奎宁、手性有机磷酸为主的有机小分子催化剂.介绍了最近催化对映体选择性亲电氟化反应领域研究情况.【期刊名称】《上海应用技术学院学报(自然科学版)》【年(卷),期】2015(015)001【总页数】10页(P9-18)【关键词】不对称催化;对映体选择性亲电氟化反应;金属催化剂;有机催化剂【作者】汪忠华;巫辅龙;吴范宏【作者单位】上海应用技术学院化学与环境工程学院,上海 201418;上海应用技术学院化学与环境工程学院,上海 201418;上海应用技术学院化学与环境工程学院,上海 201418【正文语种】中文【中图分类】O622氟元素是地球上第十三大丰富的元素,但自然界中的含氟天然产物却很少,这可能是由于氟原子的强电负性和低的亲核性导致的.氟原子的引入,能诱导化合物的物理化学和生物特性,如生物活性、新陈代谢的稳定和药动力学的特性发生显著改变.氟原子的大小介于氢原子和氧原子之间[1],C—F键长也相似地介于C—H和C—O键之间,但C—F键能在三者中最强.因此,当分子中氢原子被氟原子取代后,其空间大小并不会有显著变化,但分子的电子云分布、偶极矩、脂溶性、稳定性等都有明显改变.分子中引入氟的方法很多,不对称催化亲电氟化反应是其中之一,它是制备手性α-氟代羰基化合物的一种有效途径,α-氟代羰基结构常常在药物分子中出现.氟红霉素(Flurithromycin)是法玛西亚公司(Pharmacia)开发的一种新型大环内酯类呼吸道感染的主要致病菌肺炎链球菌抗生素[2].氟林卡那(Flindokalner,MaxiPost)是百时美施贵宝公司(Bristol Myers Squibb)开发的一种大钾离子通道开放剂[3].氟红霉素和氟林卡那的结构式见图1.不对称催化亲电氟化反应主要通过手性催化剂作用,亲电氟代试剂作用于底物羰基的邻位并引入氟原子而完成.2000年,Hintermann等[4-5]报道了第一个对映选择性催化氟化反应,使用氟化试剂Selectfluor和催化量为5 mol%的手性四价钛配合物,对不同取代基的β-酮酸酯进行了对映选择性氟化反应研究,对映体选择性最好的为82%.2005年,Enders等[6]报道了第一例以(S)-脯氨酸衍生物为手性有机催化剂,Selectfluor为氟化试剂诱导的对映选择性氟化反应,研究了醛、酮的不对称氟化反应,但对映体过量率并不理想,只有34%,之后发现,氟化试剂的选择性对反应非常重要,同时必须抑制氟化产物的烯醇化.同样,2005年,Beeson等[7]研究发现了一种普遍能够对醛类衍生物氟代后得到很高的对映体选择性(ee值)的有机催化剂咪唑烷酮化合物.在23°C反应中N-氟代双苯磺酰胺(NFSI)为氟化试剂,催化量为2.5 mol%的咪唑烷酮化合物为有机催化剂,氟代后也能得到很高的ee值,可达到98%.随后,Mauro等[8]以NFSI为氟化试剂,采用不同手性催化剂对直链脂肪醛的不对称氟化反应进行了系统研究,筛选出高效催化剂咪唑烷酮化合物并应用于含有不同取代基的脂肪醛的氟化,得到较高对映选择性的α-氟代醛衍生物(86%~96%ee).Steiner等[9]同样也在2005年报道了对于不是很稳定的咪唑烷酮化合物催化生成苯乙醛,也能够以高收率和高对映体选择率得到相应的氟化产物,进而将醛基还原,可制备更稳定的、高光学纯度的2-氟代醇衍生物.在不对称亲电氟代反应中,常用的亲电氟代试剂有Selectfluor、氟代吡啶、NFSI 等[10-18],具体结构如图2所示.所用催化剂主要包括钌、铜、钪为催化中心的金属催化剂和奎宁、手性磷酸为主的有机小分子催化剂.本文报道自2009年以来,金属催化剂、有机金属催化剂和有机小分子催化剂对α-羰基化合物不对称亲电氟代反应的研究进展.1.1 钌为催化中心在有关文献报道中,有效的氟代试剂大多只有3种,分别为Selectfluor,N-fluoropyridinium和N-fluorobenzenesulfonimide(NFSI).2009年,Martin 等[19]报道了以Ag HF2为氟代试剂,钌为催化剂的2-烷基苯基乙醛不对称氧化α-氟化反应如图3所示.反应过程中氟化试剂Ag HF22.4倍物质的量,催化剂[RuCl2(PNNP)]SbF6量为5 mol%,1,2-二氯乙烷为溶剂,反应温度为60°C,反应时间为24 h,对不同α-位上的苯基乙醛进行了研究,不同苯乙醛衍生物经过氟代反应后最高的收率可达35%,ee值为27%,见表1.R的取代基位阻变大后,相应的产率和ee值也会变小,表明产物的反应受位阻的影响.虽然在反应过程中产率和ee值都比较低,但新氟化试剂的研究为今后研究和发展提供了更广阔的空间.1.2 铜为催化中心2009年,Assalit等[20]报道了以Cu(OTf)2与胺手性配体形成的复合物为催化剂,酮酯化合物在二氯甲烷中经NFSI作用的不对称亲电氟代反应(见图4),得到相对应产物6a、6b和6c的ee值和较好的收率,不同配体4和5b对应的产物产率和ee值分别为75%(9%ee)和78%(17%ee)、77%(27%ee)和60%(32%ee)、54%(18%ee)和55%(27%ee).手性配体5b和化合物4相比,不同反应底物6a、6b和6c对应产物的收率影响不大,但手性配体5b得到对应产物的ee值明显高于化合物4,这很可能取决于配体的空间位阻,如表2、图5所示.除此之外,研究还发现,当以化合物5a为配体,化合物6b为反应底物时,氟化试剂NFSI与Selectfluor和N,N-difluoro-2,2’-bipyridinium bis-(tetrafluoroborate)相比,具有反应时间短和收率高的优势(分别对应的收率和时间为64%迅速反应,63%反应3 d和13 d后仍无反应),如表2所示.对不同金属催化剂的考察发现,二价铜的催化效果优于其他金属催化试剂(收率为77%,27%ee),如表3所示.1.3 钪为催化剂的氟化反应2012年,Li等[21]以一步法直接在吲哚酮五元环的N原子相对的C3位置上引入氟原子,完成氟代亲电反应,如图6所示.在反应过程中,Li等以NFSI(1.2 mol)作为氟化试剂,5 mol%~10 mol%的9-Sc(OTf)3(见图6)为催化剂,120 mol%Na2CO3为碱,CHCl3为溶剂,得到的收率最高达98%和99%ee.还研究了以化合物9为配体(见图7)的不同金属(如:Ni(ClO4)2· 6H2O、Mg(OTf)2、(OTf)3和La(OTf)3)催化剂对反应收率和ee的影响,结果表明,反应收率和ee普遍偏低.在5种金属催化剂中钪的催化效果最好,9f为配体时ee值最高可以到达88%(见图8和表4).这也同样体现出了不同金属配体化合物的几何构型的差异对对映体选择性的影响[22].当改变配体取代基的空间位阻后,发现小位阻的配体反而得到的ee有所下降(取代基位阻大小:9b>9c>9d>9e,对应的ee值分别为87%、75%、50%和13%,见表4).化合物12为Bristol Meyer Squibb为治疗中风研发的氟化羟吲哚[23],其合成须经过3步反应.但在Li的报道中提出了一种一步合成化合物12(Maxipost)的方法,还对化合物12的合成进行了条件优化,以81%的收率和96%的ee值得到化合物12,如图9所示.2.1 奎宁生物碱为催化剂奎宁生物碱是一种作为不对称亲电氟代反应的主要催化剂,这主要是由于奎宁生物碱具有高效的催化效果.但在反应过程中,奎宁生物碱必须先和氟化试剂结合,才能和氟代底物发生反应得到较好的对映体选择性[24],如图10和表5所示.通过X-ray对DHQB的结构分析如图11所示,研究者认为晶体结构表现出来的DHQB其中的一部分(右下方)和另一部分(左上方)相比空间位阻比较大,故左上方部分能够容易地诱导来自氟试剂的一个氟原子.这样空间结构就像口袋一样,处在DHQB之间,能够形成对对映体选择性氟化转变的有利手性环境.金鸡纳碱DHQB和Selectfluor组合的氟代反应机理大致如图12所示.在过去大部分以奎宁生物碱为催化剂的亲电氟化反应中,使用的氟化试剂普遍为Selectfluor、N-fluoropyridinium和NFSI.2011年,Yasui等[25]报道了一种新的氟化试剂N-Fluoro-(3,5-di-tertbutyl-4-methoxy)benzenesulfonimide(NFBSI),如图13所示.NFBSI与NFSI相比位阻大大增加,但是当NFSBSI和NFSI在相同的反应条件下反应时,能够提高对映体的选择性,增加幅度可高达18%,比如:1.2倍物质的量的氟化试剂NFSI和NFBSI分别与硅醚衍生物15a和15b在10 mol%的奎宁生物碱催化剂,6.0倍物质的量的K2CO3,乙腈为溶剂,反应温度为0°C到室温,反应时间为2 d的情况下明显可见,NFBSF为氟化试剂对应的对映体的选择性明显高于NFSI,分别为70%ee和52%ee(16a),58% ee和40%ee(16b),高于18%(见图14),主要是由于NFBSI的空间位阻的增大,大大增加了其对对映体的选择性.2.2 手性磷酸为催化剂Hamashima等[26-29]以手性有机磷化合物为催化剂,开发了由羟基架桥的手性复核Pd(μ-OH)配合物17a(见图15),从而实现手性金属磷催化剂与氟化试剂发生氟化反应.Phipps等[30]在2013年报道了纯粹的以(S-3,3’-双-2,4,4-三环己基-苯基)-[1,1’]-联萘-3,3’-二氧磷酸((S)-TCYP)为催化剂(见图16)也能够实现不对称亲电氟化反应(见图17),并且对映体选择性非常高,为今后的研究工作提供更好的研究思路和方法,尽可能摆脱有机金属配体对氟化反应的依赖.在反应过程中加入碳酸钠可以加快反应速率,得到较高的对映体选择性.氟化试剂与碳酸钠反应能够形成具有活性的Selectfluor碳酸盐,该盐离子有可能诱导氟原子转移.之后,Wu等[31]也在2013年报道了以(S-3,3’-双-2,4,4-三异丙基-苯基)-[1,1’]-联萘-3,3’-二氧磷酸((S)-TRIP)和(R)-6,6’-二(2,4,6-三异丙基苯)-1,1’-螺二茚-7,7’-二氧磷酸((R)-STRIP)为催化剂(见图18)的不对称氟化反应.报道中,以烯烃化合物20a和20b为底物(见图18和表6),Selectfluor(1.35 equiv.)为氟化试剂,Na2CO3(1.45 equiv.)为碱,催化剂为TRIP(10%mol),反应温度为10°C,经过18 h反应后,也可以得到很好的ee值,最高可达90%ee(见表6).由表6可见,不同溶剂和不同催化试剂对相同反应底物经过不对称氟化反应后得到的对映体也不尽相同.为此,通过以(R)-STRIP为催化剂改变酰胺衍生物氟代反应底物的结构作为研究,在甲苯为溶剂,Selectfluor(1.35 equiv.)为氟代试剂,Na2CO3(1.45 equiv.)为碱,室温反应18 h后,也可得到较好的对映体选择性的产物24,如图19和表7所示.当改变R取代基时,对映体的选择性也会发生明显变化.当烷甲基数目增大,从1个甲基变成3个(序号1~3)时,空间位阻明显增大,相应地,对映体选择性也从30%ee优化到75%ee.其原因主要是空间位阻增大,当位阻增大时,空间位阻的效应明显大于电子效应(t-Bu>i-Pr>Me).当R取代基为二氟甲基时,对映体选择性为30%ee(序号5),这与甲基取代时一样,主要原因可能是氟原子构型和其空间旋转的共同作用,从而减小空间位阻.由表6(序号5、6)可知,氟原子的增加,对映体选择性就会明显增加(氟原子的取代数目由2个变成3个对应的对映体选择性分别为30%ee和82%ee).通过对比可以看到R为3个Cl取代基团的对映体选择性(93%ee)明显高于3个F原子的取代对映体选择性(82%ee),故空间位阻的影响明显大于吸电子效应(见表7,序号6、7).从某种意义上,新的有机小分子作为不对称亲电氟化反应的催化剂的发现为今后研究提供了更加宽广的思路,摆脱金属有机配体作为催化剂的思维.对映体选择性氟化反应仍然是研究的热门领域,这必将引起对不对称催化亲电氟代反应的关注和研究,从而不断促进氟化反应的发展和创新.特别是现今医药行业对含氟药物日益扩大需求,因此,合成具有生物活性新的氟代产物和研究其药用价值将具有更加重大的意义.【相关文献】[1] Hagan D O.Understanding organofluorine chemistry. An introduction to the C—F bond[J].Chem Soc Rev,2008,37(2):308-319.[2] Grassi G G,Alesina R,Bersani C,et al.In vitro activity of flurithromycin,a novel macrolide antibiotic[J].Chemioterapia,1986,5(3):177-184.[3] Young B L,Cooks R G,Madden M C,et al.Chiral purity assay for Flindokalner using tandem mass spectrometry:Method development,validation,and benchmarking [J].J Pharmaceut Biomed Ana,2007,43(5):1602-1608.[4] Hintermann L,Togni A.Catalytic enantioselective fluorination ofβ-ketoesters [J].Angew Chem Int Ed,2000,39(23):4359-4362.[5] Hintermann L,Perseghini M,Togni A,et al.Titanium-catalyze stereoselective geminal heterodihalogenation ofβ-ketoesters[J].Org Lett,2003,5(10):1709-1712. [6] Enders D,Hüttl M R M.Direct organocatalytic alpha-fluorination of aldehydes and ketones[J].Synlett,2005,6:991-993.[7] Beeson T D,Mac Millan D W C.Enantioselective organocatalyticα-fluorination of aldehydes[J].J Am Chem Soc,2005,127(24):8826-8828.[8] Mauro Marigo,Doris Fielenbach,Ala Braunton,et al.Enantioselective formationof stereogenic carbonfluorine centers by a simple catalytic method[J].Angew Chem Int Ed,2005,44:3703-3706.[9] Steiner D D,Mase N,Barbas C F.Direct asymmetric α-fluorination of aldehydes [J].Angew Chem Int Ed,2005,44:3706-3710.[10]Pihko P M.Enantioselectiveα-fluorination of carbonyl compounds:Organocatalysis or metal catalysis[J]. Angew Chem Int Ed,2006,45(4):544-547. [11] Hamashima Y,Sodeoka M.Enantioselective fluorination reactions catalyzed by chiral palladium complexes[J].Synlett,2006,10:1467-1478.[12] Prakash G K S,Beier P.Construction of asymmetric fluorinated carbon centers [J].Angew Chem Int Ed,2006,45(14):2172-2174.[13] Bobbio C,Gouverneur V.Catalytic asymmetric fluorinations[J].Org Biomol Chem,2006,4(11):2065-2075.[14] Shibata N,Ishimaru T,Nakamura S,et al.New approaches to enantioselective fluorination:Cinchona alkaloids combinations and chiral ligands?/metal complexes [J].Fluorine Chem,2007,128(5):469-483.[15] Brunet V A,O’Hagan D.Catalytic asymmetric fluorination comes of age[J].Angew Chem Int Ed,2008,47(7):1179-1182.[16] Ma J A,Cahard D.Update 1 of:Asymmetric fluorination,trifluoromethylation,and perfluoroalkylation reactions[J].Chem Rev,2008,108(9):1-43.[17] Furuya T,Kuttruff C A,Ritter T,et al.Carbon-fluorine bond formation[J].Drug Discov Devel,2008,11(6):803-819.[18] Ueda M,Kano T,Maruoka anocatalyzed direct asymmetricα-halogenationof carbonyl compounds[J].Org Biomol Chem,2009,7(10):2005-2012.[19] Martin A,Antonio T,Antonio M.Asymmetric oxidativeα-fluorination of 2-alkylphenylacetaldehydes with Ag HF2and ruthenium/PNNP catalysts[J].Science Direct,Journal of Fluorine Chemistry,2009,130(8):702-707.[20] Assalit A,Billard T,Chambert S,et al.2,2’-Bipyridine-3,3’-dicarboxylic carbohydrate esters and amides.Synthesis and preliminary evaluation as ligands in Cu(II)-catalysed enantioselective electrophilic fluorination[J].Tetrahedron:Asymmetry,2009,20(5):593-601.[21] Li Jun,Cai Yunfei,Chen Weiliang,et al.Highly enantioselective fluorination of unprotected 3-substituted oxindoles:One-step synthesis of BMS 204352(MaxiPost)[J].J Org Chem,2012,77(20):9148-9155.[22]姜永莉,刘兆鹏.对映选择性亲电氟化反应研究进展[J].有机化学,2009,29(9):1362-1370.[23] Hewawasam P,Gribkoff V K,Pendri Y,et al.The synthesis and characterization of BMS-204352(Maxi-Post)and related 3-fluorooxindoles as openers of maxi-K potassium channels[J].Bioorg Med Chem Lett,2002,12(7):1023-1026.[24] Shibata N,Suzuki E,Asahi T,et al.Enantioselective fluorination mediated by cinchona alkaloid derivatives/Selectfluor combinations:Reaction scope and structural information for N-fluorocinchona alkaloids[J].J Am Chem Soc,2001,123(29):7001-7009.[25] Yasui H,Yamamoto T,Ishimaru T,et al.N-Fluoro-(3,5-di-tert-butyl-4-methoxy)benzenesulfonimide(NFBSI):A sterically demanding electrophilic fluorinating reagent for enantioselective fluorination[J]. Journal of Fluorine Chemistry,2011,132(3):222-225.[26] Hamashima Y,Yagi K,Takano H,et al.An efficient enantioselective fluorination of variousβ-ketoesters catalyzed by chiral palladium complexes[J].J Am Chem Soc,2002,124(49):14530-14531.[27] Hamashima Y,Suzuki T,Takano H,et al.Catalytic enantioselective fluorination of oxindoles[J].J Am Chem Soc,2005,127(29):10164-10165.[28] Hamashima Y,Suzuki T,Shimura Y,et al.An efficient catalytic enantioselective fluorination ofβ-ketophosphonates using chiral palladium complexes[J]. Tetrahedron Lett,2005,9(46):1447-1450.[29] Suzuki T,Goto T,Hamashima Y,et al.Enantioselective fluorination of tert-butoxycarbonyl lactones and lactams catalyzed by chiral Pd(II)-bisphosphine complexes[J].J Org Chem,2007,72(1):246-250.[30] Phipps R J,Toste F D.Chiral anion phase-transfer catalysis applied to the direct enantioselective fluorinative dearomatization of phenols[J].J Am Chem Soc,2013,135(4):1268-1271.[31] Wu J,Wang Yiming,Drljevic A,et al.A combination of directing groups and chiral anion phase-transfer catalysis for enantioselective fluorination of alkenes[J].Proc Natl Acad Sci,2013,110(34):13729-13733.。

合成化学Chapter 2-1

合成化学Chapter 2-1

34
Example 3 在合成中的应用
35
5. 芳环的烷基化反应(Alkylation of aromatic compounds) 1)芳基卤化物与烯醇盐的反应 (Reactions of aromatic halide with enolates)
Example
Mechanism
36
关键是要有形成苯炔的条件。
此类化合物比较活泼,一般用乙醇钠等中强。
Eg:
14

应用一 :制备取代丙酮(甲基酮)类化合物
单取代丙酮
二取代丙酮
15

应用二 :制备螺环化合物
16
3. 选择性 (Selectivity)
3.1 Chemoselectivity (C-alkylation & O-alkylation)
Example 1
5
6
7
稳定碳负离子的反应
在有机合成中的应用
烷基化反应: E = 烷化剂
缩合反应: E = 醛、酮、酯等
增长碳链
合成b-羟基羰基化合物 or ,b-不饱和羰基化合物
Michael 加成:E =
合成1,5-二羰基化合物
8
烷基化反应 (alkylation)
亲电试剂 (Electrophilic reagent)为烷基时与碳负离子发生的反应。
37
2)Friedel-Craft Reaction
Note: 当烷基化试剂的碳原子数在3个以上时,烷基化往往会发生异构化, 其原因是碳正离子发生重排,另外,当芳环上连有吸电子基团,烷基化 很难发生,甚至不发生。
38
6、 不对称酮的选择性烷基化反应 (Selective alkylation of asymmetric ketones)

手性有机小分子催化的不对称合成反应精品文档

手性有机小分子催化的不对称合成反应精品文档

Thiourea and Urea作为氢键活化的反应
R1
R1
X
R2
NN HH
R2
Etter urea catalyst: R1=NO2, R2=H, X=O Schreiner catalyst: R1=R2=CF3, X=S
OO ON
OO
ON cat.
O ON O
OO
ON cat.
Jacobsen’s Thiourea catalysts
Through Iminium strategy
MacMillan, 2019, 123, 4370
List, 2019, 127
93% ee
Works in my group: Asymmetric Direct Vinylogous Michael Addition
NC CN
+R R1 X
280 630
Ar Ar
O
OH
O
OH
Ar Ar
Rawal catalyst: R=naphthyl
T B S O
H R cat.(0.2eq) T B S O O toluene,-40--78oC
R O
ቤተ መጻሕፍቲ ባይዱ
N
N
A cC l O
R
O
up to 98% ee
Rawal et al, Nature, 2019
Primary amine as iminium catalyst
Ph
NC CN
+R
N H
Ph OH
C
X
O
NR
NC CN
C
H
O
R
H

L-脯氨酸衍生物催化的不对称Michael加成反应

L-脯氨酸衍生物催化的不对称Michael加成反应

L-脯氨酸衍生物催化的不对称Michael加成反应刘杰 (有机化学)摘要:有机小分子有着不含贵金属、温和、廉价、对环境友好等优点,其应用已成为催化领域的重要发展趋势。

有机小分子催化的不对称合成反应是目前研究最为活跃的领域之一。

Michael加成反应在有机合成中是一种非常重要的形成碳碳键的反应。

近来,许多手性小分子催化剂被用于催化不对称Michael加成反应。

脯氨酸作为一种结构简单而且含量丰富的手性小分子催化剂在多种不对称催化反应中表现出的非常好的催化性能。

本文的主要工作是从以下两个方面对脯氨酸衍生物催化的不对称Michael加成反应进行了研究:(1)设计并制备了四种Merrifield树脂负载的含脯氨酸单元的手性小分子催化剂,经过实验,发现其中一种在催化Michael加成反应时是非常有效的,当使用5 mol%的该催化剂来催化环己酮和取代硝基苯乙烯时,产率最高可以达到92 %,ee值最高可以达到98 %,d. r.值最高可以达到99:1。

另外该催化剂可以循环使用5次以上,产率上只有很小的减少,而ee值基本不发生改变。

(2)设计并制备了一种糖-四氢吡咯催化剂,通过“Click”反应将 D-glucose 骨架与四氢吡咯连接在一起,在催化 Michael 加成反应时取得了良好效果,仅需要10 mol%的催化剂,在无溶剂条件下室温下反应24小时,产率高达98 %,ee 值大于99 %,d. r.大于99:1。

以上结果与一些天然氨基酸催化的Michael加成反应相比,不仅提高了产率和立体选择性,而且扩大了底物的范围,增大了反应的广谱性。

另外,我们还对功能化离子液体系中发生的 Heck 反应进行了研究。

设计并制备了三种功能化离子液,其中一种在催化Heck反应时非常有效。

该离子液既可作为配体又可作为碱。

在优化条件下,产率较高,且循环六次产率基本没有发生改变。

关键词:有机小分子催化,不对称Michael加成反应,脯氨酸衍生物,Heck 反应,功能化离子液,Pd粉L-Proline’s derivatives Catalyzed AsymmetricMichael AdditionJie Liu(Organic Chemistry)Abstract:Organic catalysts without noble metals have played an important role in the development of the catalytic reaction, due to their moderate effect, cost efficiency, environment friendly and other advantages. Organocatalytic asymmetric reaction is an increasingly active area in oraganic sythesis.The Michael addition reaction is one of the most important carbon-carbon bond-forming reactions in organic synthesis. Asymmetric organocatalytic Michael addition has attracted intense interests in the recent few years due to its stability, cheapness and the generation of multiple chiral centers in a single step. Recently, quite a number of small chiral organic molecules have been developed as stereoselective catalysts for asymmetric Michael reactions. Proline has been gradually recognized as a simple, abundant and powerful chiral catalyst for many asymmetric reactions.In this context, Asymmetric Michael addition reaction is studied from two sides as following.(1) One of the four Merrifield resin-supported pyrrolidine-based chiral organocatalysts,through A3-coupling reaction linkage have been developed and found to be highly effective catalysts for the Michael addition reaction of ketones with nitrostyrenes. The reactions generated the corresponding products in good yields (up to 98 %), excellent enantioselectivies (up to 98 % ee) and high diastereoselectivities (up to 99:1 d.r.). In addition, the catalysts can be reused at least five times without a significant loss of catalytic activity and stereoselectivity.(2) A modular sugar-based pyrrolidine was prepared and was found to be a highly enantioselective and cooperative organocatalyst for asymmetric Michael addition of ketones to nitrostyrenes. In the presence of 10 mol% of the organocatalysts,a pyrrolidine unit anchored to a natural D-glucose backbone through click chemistry, the Michael additions of ketones to nitrostyrenes underwent smoothly to generate the corresponding adducts in good yields (up to 98 %), high enantioselectivities (up to >99 % ee) and excellent diastereoselectivities (up to >99:1 d.r.) under solvent-free reaction conditions.In contrast to the above catalysts, some natural amino acids catalyzed the Michael addition reactions in low yields and stereoselectivities, or the substrates are very limited.In addition, we made research on the study of Heck reaction in ionic liquids. A kind of amino-functionalized ionic liquids has been prepared and investigated as ligand and base for the Heck reactions between aryl iodides and bromides with olefins in the presence of a catalytic amount of Pd submicron powder in [Bmim]PF6. The reactions generated the corresponding products in excellent yields under mild reaction conditions. The generality of this catalytic system to the different substrates also gave the satisfactory results. The key feature of the reaction is that Pd species and ionic liquids were easily recovered and reused for six times with constant activity.Keywords: Organocatalysis, Asymmetric Michael addition reaction, proline’s derivates Heck reaction; functionalized ionic liquids; Pd submicron powder.目 录第一章研究背景 (2)1.1 不对称合成的意义 (2)1.2 不对称合成的方法 (3)1.3 手性催化法 (4)1.4 脯氨酸简介 (5)参考文献 (20)第二章 Merrifield树脂负载的脯氨酸衍生物催化的不对称Michael加成反应 (28)2.1 引言 (28)2.2 结果与讨论 (28)2.3 实验部分 (34)2.4 化合物的结构表征 (37)参考文献 (41)第三章糖-四氢吡咯催化不对称Michael加成反应的研究 (43)3.1 引言 (43)3.2 结果与讨论 (43)3.3 实验部分 (48)3.4 化合物的结构表征 (49)参考文献 (55)第四章功能化离子液体系中钯催化的Heck反应 (57)4.1 引言 (57)4.2 结果与讨论 (58)4.3 实验部分 (63)4.4 化合物的结构表征 (64)参考文献 (67)附I 部分化合物谱图 (70)附录II 硕士期间发表论文题录 (77)致 谢 (78)第一章 研究背景1.1 不对称合成的意义手性(chirality)一词源于希腊语,在多种学科中表示一种重要的对称特点。

F Chem

F Chem

Restricted Confidential
Recent Progress
Palladium-Mediated Fluorination of Arylboronic Acids
Tobias Ritter group
29
Angew. Chem. Int. Ed. 2008, 47, 5993 –5996. For Mechanism: J. AM. CHEM. SOC. 2010, 132, 3793–3807
6. 过渡金属催化的氟化学
25
Science 2009, 325, 1661
Restricted Confidential
6. 过渡金属催化的氟化学
First example of PdII-catalyzed C-H trifluoromethylation
26
J. Am. Chem. Soc. 2010, 32, 3648 – 3649.
Restricted Confidential
Recent Progress
F F HF.Pyridine R1 R2 THF, 0-20oC R1=H, R2=C4H9 R1=R2=C2H5 R1 70% 75% R2
Review of use in organic synthesis: G. A. Olah et al., J. Fluorine Chem. 1986, 33, 377-396.
“高档液晶”
Restricted Confidential
5
Fluoxetine (Prozac)
20 mg capsules
Fluoxetine (also known by the tradenames Prozac, Sarafem, Fontex, among others) is an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class. Fluoxetine was first documented in 1974 by scientists from Eli Lilly and Company.[1] It was presented to the U.S. Food and Drug Administration in February 1977, with Eli Lilly receiving final approval to market the drug in December 1987. Fluoxetine went off-patent in August 2001.

吲哚类生物碱的合成研究进展

吲哚类生物碱的合成研究进展

吲哚类生物碱的合成研究进展姜建辉【摘要】吲哚类生物碱是具有吲哚分子骨架的一类化合物,具有多种良好的生理活性.文章综述了近年来新发现吲哚类生物碱的合成研究进展,介绍了(-)-Arboricine,(±)-cis-Trikentrin A,(-)-Corynantheidol等化合物的合成方法.【期刊名称】《广州化学》【年(卷),期】2011(036)002【总页数】6页(P45-50)【关键词】吲哚类生物碱;合成【作者】姜建辉【作者单位】塔里木大学生命科学学院,新疆阿拉尔843300【正文语种】中文【中图分类】O626自然界是人类获取各种天然有机化合物的主要传统途径之一。

我国古人在对大自然进行探索实践的过程中积累了大量的经验。

在这一过程中,发现了很多植物的各个不同部位有着广泛的药物利用价值[1]。

随着人们认识自然的能力不断提高和知识的不断积累,开始逐步意识到植物所具有的不同效力与其中所含的不同有效活性物质密切相关,从而开启了天然产物化学研究的大门。

随着有机化学学科知识的系统建立与完善,天然产物化学也得以迅速发展,从各种自然资源中分离提取到了数以百万计的有效活性物质。

其中天然产物中最为重要的一类有效活性物质就是生物碱。

生物碱(alkaloids)又称植物碱,是一类广泛存在于生物体内(大多数是植物,个别存在于动物体内,如肾上腺素等),大多具有显著生物活性的含氮的碱性化合物。

现在除植物以外,人们从海洋生物、微生物、真菌及昆虫的代谢产物中发现了不少含氮化合物,有时也称它们为生物碱[2]。

1 生物碱的分类和活性1806年德国药剂师泽图钠从鸦片中分离出吗啡碱以来,经过200多年的艰难曲折,已分离出生物碱20 000多种。

在自然界中,生物碱种类繁多,按母核的基本结构主要分为以下十二种:1)有机胺类;2)吡咯烷类;3)吡啶类;4)喹啉类;5)异喹啉类;6)喹唑酮类;7)吲哚类;8)莨菪烷类;9)亚胺唑类;10)嘌呤类;11)甾体类;12)萜类。

天然产物在不对称催化中的应用研究进展

天然产物在不对称催化中的应用研究进展

天然产物在不对称催化中的应用研究进展陈卫红;石浩【摘要】主要对由天然产物制备的手性催化剂,及其在不对称催化反应中的应用进行综述.【期刊名称】《浙江化工》【年(卷),期】2013(044)005【总页数】6页(P17-22)【关键词】天然产物;手性催化剂;不对称反应;进展【作者】陈卫红;石浩【作者单位】浙江工业大学药学院,浙江杭州310014;浙江工业大学药学院,浙江杭州310014【正文语种】中文0 前言不对称催化是获得光学纯化合物最有效的方法之一,由于其是一个手性增量的过程,使用少量手性配体或手性修饰剂即可获得大量手性化合物,因而被广泛应用。

近年来不对称催化反应迅速发展,一些典型的反应已经应用到工业化中。

然而多数手性催化剂转化率较低,稳定性不高,难以回收和重复使用,没有广泛适用的万能手性催化剂。

因此,如何设计合成高效、新型的手性催化剂,提高手性催化剂的选择性和稳定性是该研究领域面临的挑战。

天然产物具有价廉、易得、稳定等特点,再加上其本身通常含有多个手性中心,结构易修饰,可通过化学反应合成多个手性化合物。

因此,以其为手性前体合成手性催化剂的研究越来越受到人们的关注,并取得了一定的进展。

本文就近年来以天然产物为手性前体进行结构改造合成的手性催化剂及其在不对称反应中的应用作一综述。

1 天然产物衍生的手性催化剂1.1 生物碱衍生的手性催化剂金鸡纳生物碱是一类光活性天然生物碱,其廉价易得,在不对称催化反应中有较高的立体选择性。

因此由天然金鸡纳碱衍生的手性催化剂被广泛应用。

2006年,Tillman等[1]在金鸡纳生物碱结构中引入硫脲基团,催化丙二酸酯与N 保护亚胺的不对称Mannich反应(fig.1)。

研究表明该反应催化得到的β-氨基酯,其收率可达95%,最高ee值达99%。

2009年,Cheng等[2]用经过修饰的金鸡纳碱催化2-氧代吲哚和N-Ts保护的芳基醛亚胺的不对称Mannich反应(fig.2)。

(R)-3,3'-二羧酸-1,1'-联萘酚的合成

(R)-3,3'-二羧酸-1,1'-联萘酚的合成

(R)-3,3'-二羧酸-1,1'-联萘酚的合成蒋胜前;王周玉;蒋珍菊;李建惠【摘要】Chiral binaphthol and its derivatives are important organic compounds, which are widely used in asymmitric synthesis.In this paper (R)-3,3′-dicarboxylic acid -1,1′-binaphthylol was obtained from chiral binaphthol through three steps. The total yield was 68%. The structures of the derivatives are characterized by the infrared spectrum, ultra-violet spectrum and elemental analysis.%手性联萘酚及其衍生物是一类重要的有机化合物,广泛应用于不对称合成中.本文以手性联萘酚为原料,三步合成了(R)-3,3'-二羧酸-1,1'-联萘酚,三步总收率达到了68%.最后用红外、紫外和元素分析对中间体和最终产物的结构进行了表征.【期刊名称】《西华大学学报(自然科学版)》【年(卷),期】2011(030)002【总页数】3页(P99-101)【关键词】联萘酚;衍生物;羧酸联萘酚;合成【作者】蒋胜前;王周玉;蒋珍菊;李建惠【作者单位】西华大学生物工程学院,四川成都610039;西华大学生物工程学院,四川成都610039;西华大学生物工程学院,四川成都610039;西华大学生物工程学院,四川成都610039【正文语种】中文【中图分类】O621.3;O643.31926年具有C2对称轴的联二萘酚(BINOL)首次被合成出来[1],经过科学家们几十年的不断研究探索,手性BINOL及其衍生物以其独特的立体化学性质在不对称金属催化领域得到了广泛的应用[2-3]。

异氰基乙酸酯参与的不对称加成反应研究进展

异氰基乙酸酯参与的不对称加成反应研究进展

异氰基乙酸酯参与的不对称加成反应研究进展曹文杰;李珅【摘要】The research progress on asymmetric addition reactions participating by isocyanoacetate is re-viewed.According to the type of electrophilic reagents in reactants,the advances of asymmetric addition reac-tions of isocyanoacetate with aldehydes,ketones,imines or olefins in different catalytic systems are summarized.%综述了异氰基乙酸酯参与的不对称加成反应的最新进展,按照反应物中亲电试剂的类型,介绍了异氰基乙酸酯与醛、酮、亚胺、烯烃等化合物在不同催化体系下发生的不对称加成反应。

【期刊名称】《化学与生物工程》【年(卷),期】2016(033)009【总页数】8页(P5-11,49)【关键词】不对称合成;Aldol 反应;异氰基乙酸酯【作者】曹文杰;李珅【作者单位】天津大学理学院,天津 300072;天津大学理学院,天津 300072【正文语种】中文【中图分类】O621.34手性作为自然界的基本属性之一,与生命息息相关,而具有光学活性的手性化合物在医药、香料和生命科学等领域具有重要的应用。

不对称催化合成的出现与发展是20世纪以来化学界的重要成就之一。

在不对称催化反应中,仅需加入少量的手性催化剂就能获得单一手性构型的化合物,2001年的诺贝尔化学奖就授予了分子手性催化的主要贡献者[1-3]。

异氰基乙酸酯是有机合成中重要的合成子,能够参与多种反应。

近年来,利用异氰基乙酸酯合成手性杂环化合物的不对称催化反应得到了广泛研究。

在这些反应中,反应机理通常是异氰基乙酸酯在手性催化剂的作用下脱去亚甲基上的一个氢原子,生成具有亲核性的活性中间体,再与C=O、C=N或C=C等不饱和键发生加成/环化反应,生成具有手性的唑啉、咪唑啉和吡咯等杂环化合物。

3-取代吲哚衍生物的不对称催化合成

3-取代吲哚衍生物的不对称催化合成

3-取代吲哚衍生物的不对称催化合成孟飞飞;张培卫【摘要】作为生物活性分子的有效组成部分,3-取代手性吲哚衍生物在有机合成中具有广泛的应用,其不对称合成方法的研究格外令人注目.近年来,由吲哚及其类似物一步合成3-取代手性吲哚衍生物的报道剧增.根据合成过程中所用手性催化剂的种类,综述了近几年来由吲哚及其类似物为原料一步构建3-取代手性吲哚衍生物的研究进展.【期刊名称】《广州化工》【年(卷),期】2013(041)007【总页数】3页(P56-58)【关键词】手性;3-取代吲哚;不对称反应【作者】孟飞飞;张培卫【作者单位】贵州大学,贵州贵阳550025【正文语种】中文【中图分类】O62手性是自然界的本质属性之一。

对于手性药物,两个对映体往往具有不同的生物学活性、毒性,反应停就是最典型的例子。

直接利用光学纯的手性药物不仅可以排除由于无效或不良对映体所引起的毒副作用,还能减少药剂量和生物体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。

因而具有十分广阔的市场前景和巨大的经济价值。

在制备光学活性产物的诸多方法中,最理想的是催化不对称合成,它具有手性增殖、高对映选择性、经济,易于实现工业化的优点,其中的手性实体仅为催化量。

不对称催化反应在近三十年来发展迅速,已经成为有机化学的研究热点。

Secheme 1吲哚在自然界中是分布最广的杂环化合物之一[1-5],由于它们具有广泛的生物活性和独特的药理活性,3-取代手性吲哚衍生物的合成在研究领域一直是个热点[6]。

大量文献报道,3-取代手性吲哚及其衍生物具有许多生物特性[7-8]。

色氨酸是必要的氨基酸,也是各种色胺、吲哚和2,3-二氢吲哚(包含在二次代谢物中)的生物合成的前体;麦角酸二乙基酸胺(lysergids)是己知药力最强的迷幻剂;长春新碱是一种二聚的叫噪生物碱,在白血病的治疗中非常有用。

它们(Secheme 1)是合成许多生物活性化合物和天然产物的重要结构单元,因此在不对称合成3-取代吲哚及其衍生物方面开展研究具有重要的意义。

脯氨酸催化的不对称Aldol反应的研究进展

脯氨酸催化的不对称Aldol反应的研究进展

第17卷第4期化 学 研 究Vol .17 No .42006年12月CHE M I CAL RESE ARCH Dec .2006脯氨酸催化的不对称Aldol 反应的研究进展柯 桢,马 楠,王筱平3,韩 超(同济大学化学系,上海200092)收稿日期:2006-06-23.作者简介:柯桢(1982-),男,硕士生,主要从事不对称合成研究,E Οmail:kezhen_mm19@.3通讯联系人.摘 要:不对称合成是手性药物制备的核心环节,A ldol 反应是重要的形成C —C 键的反应之一,在全合成中有广泛应用.脯氨酸的两个异构体均价廉易得,作为一个非金属不对称催化试剂,它催化的不对称A ldol 反应立体选择性高,有很好的应用前景.本文就近二十年来脯氨酸催化A ldol 反应的机理,溶剂效应,最新进展三方面进行了介绍.关键词:脯氨酸;不对称催化剂;A ldol 反应中图分类号:O 621.3文献标识码:A 文章编号:1008-1011(2006)04-0096-06Advance of Asy mmetri c Aldol Reacti ons Cat alyzed by Proli n eKE Zhen,MA Nan,WANG Xiao 2p ing 3,HAN Chao(D epart m ent of Che m istry,Tongji U niversity,Shanghai 200092,China )Abstract:The A ldol reacti on is an excep ti onally useful strategic C —C bond 2f or m ing reacti on f or thestereoselective constructi on of cyclic and acyclic molecules .The synthetic value of the A ldol reacti onshas been p r oven by their app licati on in the t otal synthesis of natural p r oducts .The advantages of p r o 2line based aldolisati on reacti on are that the methodol ogy is metal free and that both enanti omers of thecatalyst are cheap and easily available .Pr oline catalysed aldolisati on reacti on shows both high yieldsand stereoselectivity .The catalytic enanti oselective versi on of this reacti on has received considerableattenti on in recent years .Keywords:p r oline;unsy mmetric catalysts;A ldol reacti on 近年来,脯氨酸(p r oline )催化的不对称A ldol 反应在不对称合成中应用广泛,不仅在于它是廉价易得的手性原料,而且与其结构也有很大关系.首先,它含有羧基、氨基双官能团,既能起酸催化剂又能起碱催化剂的作用,或者起协同作用,在这一点上类似于酶的作用.另外,作为一个双齿配体,它可与金属形成金属配合物.与其它氨基酸不同的是,脯氨酸中的氨基为吡咯环二级胺,可与金属形成双环[3,3,0]辛烷类物质,它的氨基易于形成亚胺,烯胺中间体.1 分子内不对称A ldol 反应20世纪70年代,Haj os 和Parrish 首次报道了脯氨酸催化的分子内不对称A ldol 反应[1].随后Eder,Sau 2er 和W iecher 等人报道了在脯氨酸和HCl O 4共同催化下,高选择性地得到A ldol 缩和产物(Sche me 1).因此,脯氨酸催化的分子内不对称A ldol 环化反应被命名为Haj os 2Parrish ΟEder ΟSauer 2W iechert 反应.继而,该反应被人们用来合成许多有用的化合物,如类固醇和许多天然产物. 第4期柯桢等:脯氨酸催化的不对称A ldol反应的研究进展97Sche me1 2003年,Chandrakala等人首次发现了不对称enolex o2A ldol反应[2].作者认为Haj os2Parrish2Eder2Sauer2 W iechert反应的过渡态对应于本文机理部分的过渡态E,属于enolendo类型的分子内A ldol反应.作者发现反应(Sche me2),属于enolex o类型,对应于本文机理部分的过渡态F.同时,Douglas M将p r oline催化的enolex o2A ldol反应应用到(+)ΟCocaine的合成中,用以形成基本骨架[3](Sche me3).Sche me2Sche me32 分子间不对称A ldol反应2.1 醛酮间的A ldol反应2000年,L ist小组[4]报道了脯氨酸催化的分子间不对称A ldol反应.文中提到,用大大过量的丙酮与醛反应,才能实现分子间的不对称A ldol反应(Sche me4).Figure1中列出的是在相同条件下,醛与酮反应的A ldol产物(结构、产率和ee值).从Figure1中可以看出,反应的对映选择性与醛的结构密切相关,当丙酮与芳香醛反应,ee值在70%左右,产率在54%~94%之间;丙酮与α位有支链的脂肪醛反应,选择性和产率普遍较高;而丙酮与三级醛反应,ee值甚至超过99%.2001年,L ist小组[5]又报道了丙酮与α位没有支链的脂肪醛反应的研究.结果发现,当用丙酮或者氯仿代替DMS O时,减少脯氨酸用量(10%~20%),则以30%的收率和70%左右的ee值得到交叉Adl ol反应产物.同时可以看出,当醛的β位较大时,如叔丁基,选择性和产率将明显下降.Sche me4由于酮要过量,使得脯氨酸催化的不对称A ldol反应只适合使用廉价的小分子酮,如丙酮、丁酮、环戊酮和羟基丙酮等.在报道了脯氨酸催化下的丙酮与醛的不对称A ldol反应后不久,L ist小组[6]又考察了羟基丙 化 学 研 究2006年98酮与醛的不对称A ldol反应,以较高的收率和选择性得到了anti二醇.Figure1从Figure2中(dr:非对映异构体比例,本文特指anti:syn;ee值:主要产物的对映体过量)可以看出,用邻氯苯甲醛时,反应的dr和ee值均比较低;用α位有支链的环己醛和异丁醛时,反应产率中等,但反应的dr 和ee值较高;用α位有支链的(R)2甘油醛时,反应的对映选择性比较高(97%ee),但非对映选择性和反应收率不是很好.Figure2Thomas B[7]利用羟胺类物质和p r oline催化的A ldol产物进行原位反应,以高产率和高ee值得到N2alkyl2 C2hydr oxy2nitr ones(Sche me5).Jesús Casas将此反应发展了醛酮的α2羟甲基化反应[8],其它研究小组相继报道了脯氨酸作为催化剂在不对称A ldol反应中的应用,该反应被广泛的应用到合成中.Sche me52.2 醛醛间不对称A ldol反应2002年,Mac M illan小组[9]报道了醛与醛在脯氨酸催化下发生交叉A ldol反应,以较好的收率和较高的选择性得到了交叉A ldol反应产物(Sche me6).Figure3中列出的是醛与醛在脯氨酸催化下发生交叉A ldol 反应得到的产物(结构、产率、dr和ee值).可以看出,产物的ee值普遍较高,但反应的非对映选择性受作为电子受体的醛的影响较大,用异丁醛作为电子受体时,反应的非对映选择性明显要比其它醛作为电子受体高.Sche me6A lan首次报道了α2氧代醛之间的A ldol反应[10],且产物可作为合成糖类化合物的前体(Sche me7). Rajes wari[11]等人用α2氨基醛与其它醛反应制得β2羟基氨基醛,可方便地制备β羟基氨基酸类衍生物. 第4期柯桢等:脯氨酸催化的不对称A ldol反应的研究进展99Figure3Sche me73 溶剂效应Pr oline催化的A ldol反应常采用干燥的DMS O作为溶剂,不利于后处理.近年来,逐渐考察了其它溶剂. Peter Kotrusz[12],Teck2Peng[13]等考察了质子性溶剂[bm i m]PF6(12n2butyl23Οmethy2l2i m idaz olium hexafluor o phos phate)对A ldol反应的影响,[b m i m]PF6可减少p r oline的用量.此外,可以将p r oline负载在其它载体上进行非均相催化,催化剂可重复利用,简化后处理.A r mando Córdova[14]首次报道了在此溶剂中进行的两分子醛间的A ldol缩合反应(Sche me8).T omoya Kitazume[15]讨论了在[e m i m][OTf]类质子性溶剂中进行的α2卤代酮和醛的A ldol反应,并进一步得到光学活性的环氧丙烷类单元.Sche me8Annika等人发现加入适量水可提高反应速度和对映选择性[16].A r mando Córdova[17]报道了在BPS(0.01 mol・L-1磷酸盐缓冲液,2.7mmol・L-1KCl,137mmol・L-1NaCl,pH=7.4)缓冲溶液中进行的p r oline 催化的A ldol反应,并发现加入十二烷基硫酸钠(S DS)有利于反应进行.Maurizi o[18]将(2S,4R)242羟基脯氨酸负载在poly(ethyleneglycol)(M5000)上实现非均相A ldol反应.w4 机理研究目前对脯氨酸催化的A ldol反应机理共提出了如下几种过渡态(Figure4).A,B,C,D,E为分子内A ldol反应的过渡态,F,G为分子间反应的过渡态.A由Haj os[1]提出,在这个过渡态中,环上羰基被活化为Carbinola m ine,进而发生亲核取代反应生成C—C键,这个机理很快遭到Jung[19]的反对,因为机理中涉及到一个S2反应,但是构象仍然保留.随后Jung和Eschenmoser讨论了侧链烯胺的N单分子p r oline催化的机理[20].Aga m i提出侧链烯胺的双分子p r oline催化机理(B),其中一个p r oline参与侧链形成烯胺,另一个作为质子转移的中介[21].动力学研究和所观察到的非线性效应支持了双分子p r oline参与的非对映选择的决定性步骤[22].Benja m in L ist研究认为,非线性效应是由测量手段的不精确导致,采用较精确的HP LC得到很好的线性效应[23].由于p r oline在很多有机溶剂中的溶解度不是很好,S wa m inathan提 化 学 研 究2006年100出在晶体表面进行协同催化的过渡态(C),然而很多p r oline催化的A ldol反应是在均相条件下进行的.通过密度泛函分析计算,Houk[24]提出了D模型.E模型是Chandrakala Pidathala等人根据D模型提出的enolexoΟA ldol反应模型.F模型跟D有相似之处,是根据金属烯醇化物反应Zi m mer mannΟTraxler模型提出的.然而根据量子化学计算表明N—H键并不能降低过渡态能量[25],进而提出G模型,G模型由密度泛函分析计算得出,并得到实验证实[26].L inh Hoang通过对逆向A ldol反应的动力学测定间接证实了一分子p r oline参与过渡态的机理.Figure45 结束语脯氨酸的两个异构体来源广泛、廉价、稳定,结构简单,由它催化的A ldol反应立体选择性高,无须金属参与,有酶催化的特点,显示了优良的催化性能,有很好的应用前景,同时其催化机理也有重要的理论研究价值.总之,脯氨酸作为天然手性分子中的一员,必将为不对称催化开拓一个新的领域.参考文献:[1](a)Haj os Z G,Parrish D R.A sy mmetric synthesis of op tically active polycyclic organic compounds[J].Ger O ffen,1971,DE2102623.(b)Haj os Z G,Parrish D R.A sy mmetric synthesis of bicyclic inter mediates of natural p r oduct chem istry[J].J O rg Che m,1974,39(12):1615-1621.[2]Chandrakala P,L inh H,Benja m in L.D irect catalytic asy mmetric enolexo aldolizati ons[J].A nge w Che m Int Ed,2003,42(24):2785-2788.[3]DouglasM M,W illiam H P.T otal synthesis of(+)Οcocaine via desy mmetrizati on of a mes oΟdialdehyde[J].O rg L ett,2004,6(19):3305-3308.[4]L ist B,Lerner R A,Barbas C F.Pr olineΟcatalyzed direct asy mmetric aldol reacti ons[J].J Am Che m Soc,2000,122(10):2395-2396.[5]L ist B,Pojarliev P,Castell o C.Pr olineΟcatalyzed asy mmetric aldol reacti ons bet w een ket ones and unsubstituted aldehydes[J].O rg L ett,2001,3(4):573-575.[6]L ist B.Pr olineΟcatalyzed asy mmetric reacti ons[J].Tetrahedron,2002,58(28):5573-5590.[7]Anders B,Thomas P,W ei Z,et al.For mati on of op tically active functi onalizedΟhydr oxy nitr ones using a p r oline catalyzed A ldolreacti on of aldehydes withcarbonyl compounds and hydr oxyla m ines[J].Synlett,2003,12:1915-1918.[8]Jesús C,Henrik S.D irect organocatalytic asy mmetricΟhydr oxy methylati on of ket ones and aldehydes[J].Tetrahedron L ett,2004,45(32):6117-6119.[9]Northrup A B,Mac M illan D W C.The first direct and enanti oselective cr ossΟaldol reacti on of aldehydes[J].J Am Che m Soc,第4期柯桢等:脯氨酸催化的不对称A ldol反应的研究进展101 2002,124(24):6798-6799.[10]A lan B,I an K M.Enanti oselective organoΟcatalytic direct aldol reacti ons of oxy aldehydes:Step one in a t w oΟstep synthesis ofcarbohydrates[J].A nge w Che m Int Ed,2004,43(16):2152-2154.[11]Rajes wari T,Fujie T,Carl os F B.D irect organocatalytic asy mmetric aldol reacti ons of am ino aldehydes:expedient syntheses ofhighly enanti omerically enriched antihydr oxyl a m ino acids[J].O rg L ett,2004,6(20):3541-3544.[12]Peter K,I veta K.Pr olineΟcatalyzed asy mmetric aldol reacti on in the r oom temperature i onic liquid[b m i m]PF6[J].Che m Co m2m un,2002,21:2510-2511.[13]TeckΟPeng Loh.LΟPr oline in an i onic liquid as an efficient and reusable catalyst f or direct asy mmetric aldol reacti ons[J].Tetra2hedron L ett,2002,43(48):8741-8743.[14]A r mando C.D irect catalytic asy mmetric cr ossΟaldol reacti ons in i onic liquid media[J].Tetrahedron L ett,2004,45(20):3949-3952.[15]Tomoya K.Synthesis of fluorinated materials catalyzed by p r oline or antibody38C2in i onic liquid[J].J Fluor Che m,2003,121(2):205-212.[16]Annika IN,Annina U,Petri M P.Pr olineΟcatalyzed ket oneΟaldehyde A ldol reacti ons are accelerated by water[J].Synlett,2004,11:1891-1896.[17]A r mando C,Wolfgang N,Carl os F B.D irect organocatalytic aldol reacti ons in buffered aqueous media[J].Che m Co mm un,2002,24:3024-3025.[18]Maurizi o B.Poly(ethylene glycol)Οsupported p r oline:A versatile catalyst f or the enanti oselective aldol and i m inoaldol reacti ons[J].A dv Synth Catal,2002,344(5):533-542.[19]JungM E.A revie w of annulati on[J].Tetrahedron,197632:3-31.[20]B r own K L,Dunitz J D,Eschen moser A,et al.Structural studies on crystalline ena m ines[J].Helv Chi m A cta,1978,61(8):3108-3135.[21]Agam i C,M eynier F,Puchot C,et al.Stereoche m istryΟ59.Ne w insights int o the mechanis m of the p r olineΟcatalyzed asy mmet2ric Robins on cyclizati on;structure of t w o inter mediates.A sy mmetric dehydrati on[J].Tetrahedron,1984,40:1031-1038.[22]Puchot S O,Dunach Z S,S wa m inathan S.Pr oline mediated asy mmetric ket ol cyclizati on:a te mp late reacti on[J].Tetrahedron:A symm etry,1999,10:1631-1634[23]Benja m in L,L inh H,Harry J M.Ne w mechanistic studies on the p r olineΟcatalyzed aldol reacti on[J].PNAS,2004,101(16):5841.[24](a)Bah manyar S,Houk K N.The origin of stereoselectivity in p r olineΟcatalyzed intra molecular aldol reacti ons[J].J Am Che mS oc,2001,123:12911-12912.(b)Bah manyar S,L ist B.Quantu m mechanical p redicti ons of the stereoselectivities of p r oline Οcatalyzed asy mmetric inter molecular aldol reacti ons[J].J Am Che m S oc,2003,125(9):2475-2479.[25]L ist B.A sy mmetric a m inocatalysis[J].S yn lett,2001,11:1675-1686.[26]Cle mente F R,Houk K N.Density functi onal calculati ons:Computati onal evidence for the ena m ine mechanis m of intra molecularaldol reacti ons catalyzed by p r oline[J].A nge w Che m In t Ed,2004,43(43):5766-5768.。

有机小分子催化讲解

有机小分子催化讲解

有机⼩分⼦催化讲解引⾔⾃从2000年以来,在Benjamin. List,Carlos F. Barbas III和David W. C. MacMillan 等⼈推动之下,有机催化(Organocatalysis)开始了伟⼤的复兴。

也就是从那时候开始我对这⼀领域产⽣了浓厚的兴趣,阅读了不少⽂献。

从本贴开始,将以回复的形式介绍有机催化领域的经典⽂献。

希望能对chem8er有点帮助。

本贴是为chem8⽽写,转贴请注明出处。

⾸先,罗列⼀些⽂献。

以下⽂献都是review,不是原始⽂献。

要想对此领域有深⼊的了解还是要读原始⽂献⽐较好。

专著两本:a) A. Berkessel, H. GrQger, Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2005; b)Enantioselective Organocatalysis (Ed.: P. I. Dalko) Wiley-VCH, Weinheim, 2007。

这两本书书籍中⼼都有。

专刊两期:Acc. Chem. Res. 2004. 37, 487-621;Chem. Rev. 2007, 107, 5413-5883。

每期⼤概⼗篇⽂章,包括了organcatalyst的各个分⽀。

零散的review很多,简单罗列⼀下,不是很全。

特别是专门介绍某⼀分⽀的review 没有列出,否则太多了。

a) P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2001, 40, 3726-3748; b) E. R. Jarvo, S. J. Miller, Tetrahedron 2002, 58, 2481-2495; c) B. List, Tetrahedron 2002, 58, 5573-5590; d) P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43, 5138-5175; e) J. Seayad, B. List, Org. Biomol. Chem. 2005, 3, 719-724; f) B. List, Chem. Commun. 2006, 819-824; g) M. Marigo, K. A. J?rgensen, Chem. Commun. 2006, 2001-2011; h) F. Cozzi, Adv. Synth. Catal. 2006, 348, 1367-1390; i) M. J. Gaunt, C. C. C.Johansson, A. McNally, N. T. V o, Drug Discovery Today 2007, 12, 8-27; j) R. M. de Figueiredo, M. Christmann, Eur. J. Org. Chem. 2007, 2575-2600; k) D. Enders, C. Grondal, M. R. M. HRttl, Angew. Chem. Int. Ed. 2007, 46, 1570-1581; l) A. Ting, S.E. Schaus, Eur. J. Org. Chem. 2007, 5797-5815;m) S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 1701-1716; n) A. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713-5743; o) C.F. Barbas III, Angew. Chem. Int. Ed. 2008, 47, 42-47; p) A. Dondoni, A. Massi, Angew.Chem. Int. Ed. 2008, 47, 4638-4660。

手性硫脲催化剂不对称催化反应及氢键活化作用研究

手性硫脲催化剂不对称催化反应及氢键活化作用研究

手性硫脲催化剂不对称催化反应及氢键活化作用研究陈盛楷;买昊;赵志伟;赵博文;刘颖;鲜亮【摘要】手性硫脲在不对称催化反应中是一类典型的双功能有机小分子催化剂.文章综述了对称催化反应中手性硫脲的氢键活化理论模型研究现状,重点阐述了手性硫脲催化剂对底物的氢键活化作用的影响规律,并对未来的研究方向提出了观点.【期刊名称】《西北民族大学学报(自然科学版)》【年(卷),期】2014(035)001【总页数】5页(P17-21)【关键词】手性硫脲;不对称催化;氢键活化【作者】陈盛楷;买昊;赵志伟;赵博文;刘颖;鲜亮【作者单位】西北民族大学化工学院,甘肃兰州730124;西北民族大学化工学院,甘肃兰州730124;西北民族大学化工学院,甘肃兰州730124;西北民族大学化工学院,甘肃兰州730124;西北民族大学化工学院,甘肃兰州730124;西北民族大学化工学院,甘肃兰州730124【正文语种】中文【中图分类】O643.320 引言不对称催化(包括化学催化和生物催化)是惟一具有手性放大作用的手性合成方法,在药物化学、材料科学以及合成化学等领域有着广泛的应用 .在不对称催化中,手性催化剂的设计合成是关键步骤.新型手性催化剂的出现,可以拓宽催化剂的底物适用范围,提高立体选择性,并用于合成手性药物或天然产物的手性砌块.而新型手性催化剂不对称催化反应机理或模型的研究,又用以指导设计合成更高效的手性催化剂.自从Jacobsen等[1]首次发表了关于Strecker反应的手性硫脲的不对称催化反应以来,手性硫脲在不对称催化反应中的应用渐成热点(图1)[2].硫脲衍生物可以通过便宜易得的异硫氰酸酯偶联反应获得[3].原料易得、反应途径简单可靠、产率高等特点促进了手性硫脲在不对称催化领域中更加广泛的应用 .最近十年,有关该类反应的研究报道迅速增加,合成的手性硫脲催化剂的种类不断增多、结构更加复杂、涉及的反应类型也更加多样,对反应机理的研究也有了相当的进展 .这显示了有机不对称催化领域的研究人员对于该类手性有机小分子催化剂的研究兴趣日益增加[4~7].1 手性硫脲不对称催化的氢键活化理论模型氢键活化理论模型首先由Jacobsen等[8]提出,认为有机催化反应主要通过氢键共给体或非共价作用机理,利用氢键作用加速有机化学反应速率或者控制立体构型 .该类催化反应和Brφnsted酸催化反应并没有显著的区别 .手性硫脲及其衍生物的结构特点决定了氢键活化作用在不对称催化当中起到了关键作用(如图2所示).图1 近年公开报道的一些典型手性硫脲催化剂图2 硫脲衍生物的基本结构硫脲结构中存在着N-H功能团,在反应中可以起到弱Brφnsted酸作用,能够和不同底物的亲核基团发生氢键相互作用.硫脲中硫羰基的硫原子HSAB软碱上的孤对电子可以和过渡金属Lewis酸发生配位作用[8],也能够和不同底物的亲电基团发生非共价键的相互作用 .硫脲化合物的这种酸碱双功能结构特点使得该类化合物无论对亲电试剂或亲核试剂都具有相当的活化作用[2].手性硫脲氢键活化的最大优势在于能够使得催化剂以多个催化位点和一个或两个底物同时发生非共价键的键合作用,从而活化底物 .在不对称催化反应中,硫脲的这些结构特点被利用来按照反应设计需求适当地组织催化反应作用位点,并控制催化反应选择性[4].图3 手性硫脲双氢键催化亚胺氢氰化反应[9]Jacobsen等[9]2009年研究了双氢键硫脲对映选择性催化亚胺氢氰化反应 .该反应中,氰根底物通过硫脲活泼氢形成了双氢键的中间体结构,而酰基氧也和亚胺底物形成了非共价氢键作用,从而促成了过渡态中间体的稳定性 .同时,手性硫脲催化剂的空间结构限制了过渡态中间体的空间结构,从而导致了对映选择性催化反应的发生.该氢键活化模型适用于绝大多数现在已知的手性硫脲对映选择性催化反应,如Mannich反应、Michael加成、aza-Henry反应、Strecker反应、Morita-Baylis-Hillman反应、Pictet-Spengler反应、aza-Diels-Alder反应和Petasis反应等[4].图4 双氢键不对称催化模型的NMR和DFT研究[10]2012年,王等[10]利用核磁共振及DFT计算等方法,展示了双官能团金鸡纳碱硫脲是如何在Michael反应中利用氢键作用对底物进行活化的 .在这其中,N-H 分别和两个底物发生氢键作用,显著强化了催化剂-底物复合物的稳定性.DFT计算获得的对映选择性理论值(100%ee)和非对映立体选择性(60∶1dr)与实验测定值(98%ee和>30∶1dr)非常吻合 .这就证明了硫脲双氢键作用活化底物理论模型能够适用于该类反应.在不对称催化反应研究中,绝大多数手性硫脲催化剂均在N上保留了两个活泼氢 .按照氢键活化理论,这种结构是有利于硫脲以Lewis酸性对底物产生选择性的氢键键合活化作用 .其中,应用最多的手性硫脲催化剂多具有刚性的苯基结构,并且在硫羰基相连的N上构筑了3,5-二(三氟甲基)苯基结构[11],而在另一侧的N上连接一个中心手性结构的取代基 .三氟甲基的存在能够通过调节硫脲主体结构的电子效应而影响催化剂对反应底物的非共价键合活化作用 .尽管Akiyama等[12]认为单氢键结构也能够对底物起到活化作用,但是,仅含有一个活泼氢的手性硫脲催化剂的不对称催化研究仍非常少见.图5 含3,5-二(三氟甲基)苯基取代基团的手性硫脲催化剂[11]在已报道的反应中,N原子上的活泼氢能够和F、Cl、Br和O等氢键的受体原子发生氢键键合作用,形成方向一定的分子间氢键结构 .这种结构对底物的结构和构象具有了一定的选择性,能够“迫使”底物以一定的方向和手性硫脲键合并被活化 .在此过程中,手性硫脲骨架结构另一侧的手性结构对底物也同样施加影响,从而促使底物以一定的构象与另外一个底物发生反应 .在这个过程中,含手性结构的取代基主要有两种方式对底物或者中间体和过渡态施加影响:其一是适当的空间位阻作用;其二,若取代基上存在着氢键的供体或受体原子,能够施加非共价键键合作用,从而对产物的立体结构产生积极的作用[13].图6 手性硫脲对底物的氢键影响作用[13]另外,除了常见的中心手性结构硫脲催化剂以外,也有少量对含联萘轴手性结构的手性硫脲催化剂对映选择性催化作用的研究报道[14].该类催化利用联萘本身构造的轴手性环境对底物施加非对称的空间位阻作用,并在双氢键的活化作用下,共同对底物造成手性的催化影响作用.Wang等的研究表明在Michael加成反应中,尽管使用的催化剂的用量只有1%,而所获得的e.e.值最高为97%,产率在78%~92%之间 .这表明中心手性硫脲的不对称催化活性较好之外,轴手性硫脲也具有较高的催化活性,并且双氢键的催化作用模式也可以用于解释轴手性硫脲的不对称催化反应机理.图7 含联萘轴手性硫脲催化Michael加成反应[14]虽然氢键活化理论较好地解释了手性硫脲的不对称催化反应机理,但MacMillan等[15]提出的SOMO理论则认为一些手性硫脲催化的反应符合手性胺生成烯胺亚胺正离子中间体的机理 .另外,也有一些报道[16]证明,硫脲配体N-H被甲基取代以后,其活性反而有所上升 .这显示了氢键活化理论模型并不能完全涵盖所有手性硫脲的不对称催化反应.图8 潜手性酮非对称还原反应中单氢键手性硫脲催化剂结构[16]2 结论在手性硫脲不对称催化反应研究当中,氢键活化理论无论从实验上,还是从理论计算上都得到了证实,但少量的反应结果并不符合该理论模型 .这说明手性硫脲的不对称催化理论研究仍有待深入 .另一方面,含一个N-H键硫脲手性催化剂仍需要进行更多的研究以探索单氢键理论模型是否同样适用于更多不同结构手性硫脲的不对称催化反应.同时,尽管轴手性有机小分子在Shibasaki类催化剂中显示了良好的对映选择性催化活性,但是,轴手性硫脲的不对称催化反应研究报道相对较少,而构建适当结构的此类手性硫脲催化剂并应用于立体选择性催化反应将是该领域中研究的一个重要方向.参考文献:[1]M.S.Sigman,E.N.Jacobsen Schiff base catalysts for the asymmetric strecker reaction identified and optimized from parallel synthetic libraries [J].J.Am.Chem.Soc.1998,120:4901-4902.[2]林国强,李月明,陈耀全,孙兴文,陈新滋.手性合成-不对称反应及其应用(第四版)[M].北京:科学出版社,2010.57-63.[3]L.Xian,J.Zhao,M.Chen.Synthesis,Characterization,and Crystal Structure of N-p-Bromophenyl-N’-Phenylacetylthiourea[J].J.Chem.Crystallogr,2009,39:612-614.[4]P.J.Walsh,M.C.Kozlowski.Fundamentals of Asymmetric Catalysis[M].California:Univ Sci Books,2007.157-160.[5]张志海,董秀琴,滕怀龙,陶海燕,王春江.含多氢键给体的氨基-硫脲类有机小分子催化剂的设计、合成及应用[J].科学通报,2009,54(22):3407-3419.[6]W.T.Meng,Y.Zheng,J.Nie,H.Y.Xiong,anocatalytic Asymmetric One-Pot Sequential Conjugate Addition/Dearomative Fluorination:Synthesis of Chiral Fluorinated Isoxazol-5(4H)-ones [J].Chem.2013,78:559-567.[7]Q.Guo,J.C.G.Zhao.Highly Enantioselective Three-Component Direct Mannich Reactions of Unfunctionalized Ketones Catalyzed by Bifunctional Organocatalysts[J].Org.Lett.2013,15:508-511.[8]H.Xu,S.J.Zuend,M..P Woll,Y.Tao,E.N.Jacobsen.Asymmetric Cooperative Catalysis of Strong BrØnsted Acid-Promoted Reactions Using Chiral Ureas[J].Science,2010,327:986-990.[9]S.J.Zuend,E.N.Jacobsen.Mechanism of Amido-Thiourea Catalyzed Enantioselective Imine Hydrocyanation:Transition State Stabilization via Multiple Non-Covalent Interactions[J].J.Am.Chem.Soc,2009,131(42):15358-15374.[10]J.L.Zhu,Y.Zhang,C.Liu,A.M.Zheng,W.Wang.Insights into the Dual Activation Mechanism Involving Bifunctional Cinchona Alkaloid Thiourea Organocatalysts:An NMR and DFT Study[J].Chem,2012,77(21):9813-9825.[11]O.BasleØ,W.Raimondi,M.del M.S.Duque,D.Bonne,T.Constantieux,J.Rodriguez.Highly Diastereo-and EnantioselectiveOrganocatalytic Michael Addition ofα-Ketoamides to Nitroalkenes [J].Org.Lett.2010,12(22):5246-5249.[12]T.Akiyama,J.Itoh,K.Fuchibe.Recent Progress in Chiral BrØnsted Acid Catalysis[J].Adv.Synth.Catal,2006,348:999-1010.[13]S.Sakamoto,T.Inokuma,anocatalytic Asymmetric Neber Reaction for the Synthesis of 2H-Azirine Carboxylic Esters[J].Org.Lett.2011,13(24):6374-6377.[14]J.Wang,H.Li,W.Duan,L.Zu,anocatalytic Asymmetric Michael Addition of 2,4-Pentandione to Nitroolefins [J].Org.Lett.2005,7(21):4713-4716.[15]T.D.Beeson,A.Mastracchio,J.B.Hong,K.Ashton,D.W.C.MacMillan.Enantioselective Organocatalysis Using SOMO Activation [J].Science,2007,27:582-585.[16]F.Touchard,P.Gamez,F.Fache,M.Lemaire.Chiral thiourea as ligand for the asymmetric reduction of prochiral ketones[J].Tetrahedron Lett.1997,38:2275-2278.。

几种4-取代-L-脯氨酸衍生物的合成

几种4-取代-L-脯氨酸衍生物的合成

几种4-取代-L-脯氨酸衍生物的合成陈策;王舟;毛宇鸿;马银辉;王伟【摘要】以Boc-(4R)-羟基-(2S)-脯氨酸为原料,在NaH作用下与苄位溴代试剂发生醚化反应,合成了几种4-取代L-脯氨酸类手性催化剂,即在(4R)-羟基-(2S)-脯氨酸的4-位上引入不同的苄氧基以期提高其催化活性和脂溶性,并通过1H NMR、13C NMR和HRMS对合成产物的结构进行表征,确定其为目标产物.实验结果还表明,当苯环上连有强的吸电子基团时反应很难进行,而当连有给电子基团时反应相对较容易进行且反应条件较温和.%In order to improve the liposolubility of chiral catalysts and increase their enantiose-lectivity, several chiral catalysts of 4-substituted-L-proline derivatives were designed and synthesized from Boc-(4R)-hydroxy-(2S)-proline, which was treated with NaH in anhydrous tet-rahydrofuran and followed by etherification with ArCH2 Br to form final products. The final products were then characterized by 1H NMR,13C NMR and HRMS and confirmed as the target product. The experiment results also showed that the reaction hardly proceeded as the benzene ring is linked with an electron-withdrawing group,whereas the reaction proceeded easily if the benzene ring is linked with an electron-donating group and the reaction conditions in this case can be more moderate.【期刊名称】《化学研究》【年(卷),期】2013(024)002【总页数】4页(P111-114)【关键词】4-取代-L-脯氨酸衍生物;Boc-(4R)-羟基-(2S)-脯氨酸;手性催化剂;合成【作者】陈策;王舟;毛宇鸿;马银辉;王伟【作者单位】陕西师范大学化学化工学院,陕西西安710062;陕西师范大学化学化工学院,陕西西安710062;陕西师范大学化学化工学院,陕西西安710062;陕西师范大学化学化工学院,陕西西安710062;陕西师范大学化学化工学院,陕西西安710062【正文语种】中文【中图分类】O621.4目前有机小分子催化剂在各领域的广泛应用,引起了越来越多的化学工作者的关注. 脯氨酸及其衍生物作为有机小分子催化剂的杰出代表,它具有酶催化剂和金属有机催化剂所不具备的多项优点:来源广泛、价格便宜、反应操作简单且选择性高等,它主要用于醛酮的直接Aldol反应[1-3]、不对称Mannich反应[4-5]和不对称Michael加成反应[6-7]等的不对称催化,并且大部分反应都可以得到比较理想的收率和立体选择性. 然而脯氨酸在催化反应时还存在较多不足之处,如催化剂的用量大(30%)、在有机溶剂中的溶解性较小、可回收性差等. 2000年LIST等人[8-9]在研究中发现,在脯氨酸的4-位上引入不同取代基时,不仅可以增加催化剂催化反应的立体选择性,而且还可以改善催化剂的溶解性,催化剂的用量也有明显降低. 为此作者设计在保留脯氨酸的催化活性中心的同时,在亲水性极强的脯氨酸分子的非催化部位引入不同的疏水性基团,增加其在有机溶剂中的溶解度,同时提高催化活性. 据此设计合成了几种4-取代-L-脯氨酸类手性催化剂,即在4-羟基-L-脯氨酸的4-位上引入不同的苄氧基实现了这一目标. 目前有关这方面工作的文献报道很少,且大多数报道都采用了高沸点的N,N-二甲基甲酰胺作为溶剂[10],此溶剂很难除去,给反应的后处理带来了不便,而且不利于回收,也给环境带来了一定污染. 作者采用THF作为溶剂,很好地解决了这一问题,在合成的几种目标化合物中,(4R)-(4-甲氧基苄氧基)-(2S)-脯氨酸为新化合物,未见文献报道.1 实验部分1.1 仪器与试剂Bruker AM-300超导核磁共振仪(美国Bruke公司);X-5型显微熔点测定仪(北京泰克仪器有限公司);高分辨质谱仪(美国Bruke公司,ESI). Boc-4-羟基-L-脯氨酸(分析纯,上海求得生物化工有限公司),氢化钠(60%),苄基溴,4-甲基苄基溴,THF(严格无水处理后现蒸现用),二氯甲烷,乙酸乙酯,正己烷均为市售分析纯试剂, 4-甲氧基苄基溴(实验室自制),4-溴苄基溴(实验室自制).1.2 合成路线目标化合物的合成路线见图1.图1 4-取代-L-脯氨酸衍生物的合成路线Fig.1 The synthetic route of 4-substituted-L-proline derivatives1.3 4-取代-L-脯氨酸衍生物的合成[11-13]1.3.1 (4R)-(4-甲基苄氧基)-(2S)-脯氨酸(1a)的合成将2.81 g (12.1 mmol)化合物2溶于80 mL 无水THF中. 冰浴条件下,加入1.02 g (25.5 mmol) 60 % NaH,室温下搅拌3 h,然后将4.2 g (24.6 mmol) 4-甲基苄基溴溶于5 mL THF中再缓慢滴加到上述体系中,室温反应5 h,加入冰水淬灭反应. 用乙酸乙酯萃取(20 mL×3),水相在0 ℃下用5 mol/L HCl调节pH至3~4,然后再用乙酸乙酯萃取(30 mL×3),合并有机相,无水硫酸钠干燥,浓缩除去溶剂得黄色油状物(3a) 3.33g,产率82.2%.Boc-(4R)-(4-甲基苄氧基)-(2S)-脯氨酸(3a):1H NMR(CDCl3) δ:1.44(s,9H,(-CH3) 3C), 2.05~2.12 (m,2H,3-CH2), 2.33(s,3H,-CH3), 3.45~3.71(m,2H,5-CH2), 4.16(s,1H,2-CH), 4.44~4.50 (m,3H,4-CH,PhCH2), 7.13~7.18(dd,4H,ArH). 13C NMR(CDCl3) δ: 21.13, 25.60, 36.66, 52.03, 58.05, 68.85, 80.62, 81.59, 128.88, 128.60, 134.60, 137.62, 156.30, 178.47.称取1.34 g (4.16 mmol)化合物3a溶解在8 mL干燥的二氯甲烷中,然后将8 mL三氟乙酸溶解在8 mL二氯甲烷中,冰浴条件下逐滴加入到上述体系中,搅拌30 min后停止反应,减压除去三氟乙酸和二氯甲烷,得褐色黏稠状液体(4R)-苄氧基-(2S)-脯氨酸三氟乙酸盐. 加入1 mL 水溶解,然后用氨水调节pH至6.5左右,加入丙酮搅拌析出白色固体,抽滤,真空干燥,得白色固体(1a) 0.92 g,产率94.2%.(4R)-(4-甲基苄氧基)-(2S)-脯氨酸(1a):1H NMR(D2O) δ: 1.89~2.05(m,2H,3-CH2), 2.32 (s,3H, Ph-CH3), 2.55~3.33(m,2H,5-CH2), 4.08~4.11(d,1H, 2-CH), 4.29(s,1H,4-CH ), 4.52(s,2H, PhCH2), 6.99~7.25(dd,4H,ArH). HRMS(ESI): [M+]=235.113 8.1.3.2 化合物1b,1c和3d的合成利用与合成1a相似的方法,分别合成出了1b,1c和3d.Boc-(4R)-(4-甲氧基苄氧基)-(2S)-脯氨酸(3b):淡黄色固体1.04 g,产率 35.7%. 1H NMR(CD3SOCD3) δ: 1.39(s,9H,(-CH3)3C), 1.94~1.99(m,1H,3-CHH),2.31~2.39(m,1H,3-CHH),3.42~3.50(m,2H,5-CH2), 3.84(s,3H,-OCH3),4.01~4.12(m,2H,4-CH,2-CH), 4.40~4.46 (s,2H, PhCH2), 7.07~7.32(dd,4H,ArH). 13C NMR(CD3SOCD3) δ: 28.55, 36.23, 51.92, 56.73, 58.14, 69.27, 76.83, 79.47, 110.88,112.97, 128.97, 132.78,155.33,174.53.(4R)-(4-甲氧基苄氧基)-(2S)-脯氨酸(1b):淡黄色固体0.38 g,产率51.3%. 1H NMR(D2O) δ: 1.99~2.15(m,2H, 3-CH2), 2.45~3.03(m,2H,5-CH2),3.75(s,3H,Ph-OCH3),4.01~4.09 (d,1H, 2-CH), 4.33(s,1H,4-CH), 4.49(s,2H PhCH2), 7.01~7.29(dd,4H,ArH). HRMS(ESI): [M+]=251.109 7.Boc-(4R)-(4-溴苄氧基)-(2S)-脯氨酸(3c):黏稠状黄色液体2.44 g,产率67.7%.1H NMR (CDCl3) δ: 1.46(s,9H,(-CH3)3C),2.13~2.15(m,1H,3-CHH), 2.33~2.43(m,1H,3-CHH), 3.48~3.73(m,2H,5-CH2), 4.17(s,1H,2-CH), 4.37~4.68(m,3H,4-CH,PhCH2), 7.17~7.48(dd,4H,ArH). 13C N MR(CDCl3) δ: 28.34, 37.25, 52.36, 58.25, 58.25, 70.45, 80.66, 81.70, 122.22, 129.22, 131.62, 137.61, 156.23, 178.23.(4R)-(4-溴苄氧基)-(2S)-脯氨酸(1c):淡黄色固体1.56 g,产率90.5%.1HNMR(D2O) δ: 2.12~2.18(m, 1H,3-CHH), 2.24~2.32(m 1H,3-CHH), 3.50~3.69(m,2H,5-CH2), 4.14~4.16(d,1H,2-CH2),4.40(s,1H,4-CH), 4.72(s,2H, PhCH2), 7.21~7.56(dd,4H,ArH). HRMS(ESI): [M+]=299.010 2.Boc-(4R)-(4-硝基苄氧基)-(2S)-脯氨酸(3d):淡黄色固体0.42 g,产率19.5%.1H NMR(CDCl3) δ: 1.36(s,9H,(-CH3) C), 1.88~1.95(m,1H,3-CHH), 2.18~2.24(m,1H,3-CHH),3.35~3.50 (m,2H,5-CH2),4.12(m,1H,2-CH), 4.38(s,1H,4-CH), 4.62~4.68(m,2H,PhCH2), 7.87~8.17(dd,4H,ArH). 13C NMR(CDCl3) δ: 27.89, 38.69, 54.13, 60.73, 69.33, 76.39, 81.70, 129.78, 123.90, 148.92,142.87, 158.76, 173.56.(4R)-(4-硝基苄氧基)-(2S)-脯氨酸(1d):由于Boc-(4R)-(4-硝基苄氧基)-(2S)-脯氨酸产率较低,未进行下一步脱保护反应.2 结果与讨论2.1 结构表征目标产物的结构都通过1H NMR和13C NMR谱进行了表征,由以上1H NMR 和13C NMR数据可知,在苯环区均出现了相应的特征峰,而在脱Boc这一步由于较为简单,只做1H NMR谱表征,由核磁数据可知在化学位移1.4左右的Boc 的吸收峰已明显消失,证实确为合成的目标产物,最后还通过HRMS对产物结构进行了表征,更进一步证实了所得产物即为目标产物.2.2 苯环上不同取代基团对反应产率的影响实验结果显示,苯环上不同取代基对反应有很大的影响,当苯环上有给电子基团时反应在室温下就能够进行,而且反应时间较短,后处理较简单. 当苯环上有强的吸电子基团时反应很难发生,必须加热回流,而且还要加入催化剂KI和相转移催化剂PEG-400反应才能够发生,产率较低,反应时间也较长. 究其原因,可能是电子效应和位阻效应的双重影响造成的. 实验数据见表1.表1 3a-3d合成情况对比表Table 1 The comparison table of the synthesis of 3a-3d产物温度/℃KIPEG-400反应时间/h产率/%3a室温——582.23b66—催化量1035.73c66——1567.73d66催化量催化量2419.5在脱Boc保护这一步,TFA(三氟乙酸)的量对反应也有很大的影响,以(4R)-(4-甲基苄氧基)-(2S)-脯氨酸的合成为例,探讨了TFA与二氯甲烷体积比对反应的影响,发现三氟乙酸∶二氯甲烷=1∶2(体积比)时去保护效果最好. 结果见表2.表2 TFA与二氯甲烷体积比对脱Boc保护的影响Table 2 The influence of the volume ratio of TFA and dichloromethane on de-Boc protected体积比1∶51∶41∶31∶21∶1产率/%—36.469.394.289.53 结论实验以Boc-(4R)-羟基-(2S)-脯氨酸为原料,在NaH作用下与苄位溴代试剂发生醚化反应,合成了几种4-取代-L-脯氨酸类手性催化剂,并通过1H NMR、13C NMR和HRMS对产物的结构进行了表征,确定为所合成的目标化合物. 实验结果还表明,当苯环上连有强的吸电子基团时反应很难进行且产率较低,而当连有给电子基团时反应相对较容易进行且反应条件较温和,产率较高. 我们还探讨了TFA与二氯甲烷体积比对脱Boc保护的影响,发现三氟乙酸∶二氯甲烷=1∶2时去保护效果最好. 有关催化剂的应用还在进一步研究中.参考文献:[1] MACHAJEWSKI T D, WONG C H. The catalytic asymmetric aldol reaction[J]. Angew Chem Int Ed, 2000, 39(8): 1352-1374.[2] ALCAIDE B, ALMENDROS P. The direct catalytic asymmetric aldol reaction[J]. Eur J Org Chem, 2002, 10: 1595-1601.[3] MESTRES R. A green look at the aldol reaction[J]. Green Chem, 2004,6(12): 583-603.[4] AHRENDT K A, BORTHS C J, MACMILLAN D W C. New strategies for organic catalysis: The fist highly enantioselective organocatalytic diels-alder reaction[J]. J Am Chem Soc, 2000, 122: 4243-4244.[5] LIST B. The direct catalytic asymmetric three-component Mannich reaction[J]. J Am Chem Soc, 2000, 122: 9336-9337.[6] MOZIKOWSKI A P, MUGRAGE B B. Synthesis of optically active thiadecalins and thiahy-drindans by a proline-catalyzed intramolecular Michael reaction[J]. J Org Chem, 1989, 54: 2274-2275.[7] LRAI Y, TAKASHI T, YAMAZAKI T, et al. Heterocyeles in asymmetrie synthesis. Part 1. Construction of the chiral building blocks for enantioslective alkaloid synthesis via an asymmetric intramolecular Miehcel reaction[J]. J Chem Soc Perkin Trans, 1992, 1: 509-516.[8] LIST B, POJARLIEV P, MARTIN H. Efficient proline-catalyzed Michael additions of unmodified ketones to nitro olefins[J]. Org Lett, 2001, 3: 2423-2425.[9] LIST B, LEMER R A, BARBAS C F. Proline-catalyzed direct asymmetric aldol reactions[J]. J Am Chem Soc, 2000, 122: 2395-2396.[10] DAVID C T, AGNES V, ARNAB K C, et al. Discovery of inhibitors of the channel-activating protease prostasin(CAP1/PRSS8) utilizing structure-based design[J]. Bioorg Med Chem Lett, 2008, 18: 5895-5899.[11] ELIZABETH M S, GERALD F S, BERNARD R N, et al. Synthesis and pharmacological activity of angiotensin converting enzyme inhibitors:N-(mercaptoacyl)-4-substituted-(S)-proines [J]. J Med Chem, 1988, 31: 875-885.[12] 沈宗旋,丁一,李明,等. 4(R)-(2,4,6-三甲基苄氧基)-(S)-脯氨酸促进的直接不对称羟醛反应[J]. 有机化学,2005, 25(9):1113-1115.[13] 韩玉峰,沈宗旋,蒋虹,等. 手性催化剂4(R)-苄氧基-(S)-脯氨酸的合成及其对不对称羟醛反应的催化活性[J]. 应用化学,2004,21(6):641-643.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Enantioselective Organocatalytic Reductive AminationR.Ian Storer,Diane E.Carrera,Yike Ni,and David W.C.MacMillan*Di V ision of Chemistry and Chemical Engineering,California Institute of Technology,Pasadena,California91125Received October23,2005;E-mail:dmacmill@The reductive amination reaction remains one of the most powerful and widely utilized transformations available to practi-tioners of chemical synthesis in the modern era.1A versatile coupling reaction that enables the chemoselective union of diverse ketone and amine containing fragments,reductive amination can also provide rapid and general access to stereogenic C-N bonds, a mainstay synthon found in natural isolates and medicinal agents. While a variety of protocols have been described for the asymmetric reduction of ketimines(a strategy that requires access to preformed, bench stable imines),2it is surprising that few laboratory methods are known for enantioselective reductive amination.1b,3Moreover, the use of this ubiquitous reaction for the union of complex fragments remains unprecedented in the realm of asymmetric catalysis,a remarkable fact given the widespread application of both racemic and diastereoselective variants.In this communication, we report the first organocatalytic reductive amination,a biomimetic reaction that allows the asymmetric coupling of complex fragments using chiral hydrogen-bonding catalysts and Hantzsch esters.4,5 It has long been established that nature has perfected reductive amination as an in vivo chemical tool for the enantioselective synthesis of essential biomonomers.As a preeminent example, transferase enzymes utilize hydrogen bonding to selectively activate pyruvate-derived ketimines toward hydride delivery from NADH, thereby ensuring the enantiocontrolled formation of naturally occurring amino acids.6With this in mind,we recently questioned whether the conceptual blueprints of biochemical amination might be translated to an enantioselective reductive coupling wherein enzymes and cofactors are replaced by small organic catalysts and NADH analogues.7Specifically,we proposed that exposure of ketone and amine coupling partners to a chiral hydrogen-bonding catalyst8would result in the intermediate formation of an iminium species that in the presence of a suitable Hantzsch ester would undergo enantioselective hydride reduction,thereby allowing asym-metric reductive amination in an in vitro setting.9This proposal was further substantiated by the significant advances in hydrogen-bonding catalysis,arising from the pioneering studies of Jacobsen,10 Corey,11Takemoto,12Rawal,13Johnston,14Akiyama,15and Terada.16 An initial evaluation of the proposed reductive amination was performed with acetophenone,p-anisidine,ethyl Hantzsch ester (HEH),and several classes of established hydrogen-bonding catalysts(eq1,Table1).While thiourea1and taddol2did not induce reductive amination,the binol phosphoric acid catalysts 3a-d(introduced by Terada and Akiyama)did indeed provide the desired amine adduct,albeit with moderate conversion and stereo-induction(entries1-5,7-65%ee).To our great delight,we found that an unprecedented ortho-triphenylsilyl variant of the Terada-Akiyama catalyst5facilitates the desired coupling in high conver-sion and with excellent levels of enantiocontrol at40°C(entry8, 94%ee).17Importantly,preliminary studies have revealed that water, generated in the initial condensation step,has a deleterious impact on both iminium formation and the hydride reduction step.As such, the introduction of5Åsieves was found to be critical to achieve useful reaction rates and selectivities.Having established the optimal conditions for hydrogen bond catalysis,we next examined the scope of the ketone component in this organocatalytic reduction.As revealed in Table2,a variety of substituted acetophenone derivatives can be successfully coupled (eq2),including electron-rich,electron-deficient,as well as ortho, meta,and para substituted aryl ketone systems(Table2,entries 1-9,60-87%yield,83-95%ee).Moreover,cyclic aryl ketones (entry10,75%yield,85%ee)and R-fluoromethyl ketones(entry 11,70%yield,88%ee)are also tolerated in this process without loss in reaction efficiencies or enantiocontrol.Pleasingly,the pyruvic acid-derived cyclic imino ester(eq3) also underwent facile reduction to yield the correspondingcyclicPublished on Web12/14/2005849J.AM.CHEM.SOC.2006,128,84-8610.1021/ja057222n CCC:$33.50©2006American Chemical Societyalanine amino ester with excellent enantioselectivity (Table 2,entry 12,82%yield,97%ee).However,implementation of the corre-sponding ethyl substituted imine 7resulted in a dramatic decrease in efficiency (82vs 27%yield).Computational studies reveal that this remarkable change in reaction rate as a function of alkyl substituent likely arises from catalyst imposed torsional constraints on substrate conformation.More specifically,imines that incorporate a methyl group are predicted to undergo selective catalyst associa-tion wherein the C d N Si-face is exposed to hydride addition (MM3-7,green dot )H).In contrast,the ethyl-containing substrate (R 2)Et,MM3-7,green dot )Me)is conformationally required to position the terminal CH 3of the ethyl group away from the catalyst framework,thereby ensuring that both enantiofacial sites of the iminium π-system are shielded (MM3-7,green dot )Me).As shown in Figure 1(Supporting Information),we have recently obtained a single-crystal X-ray structure of a catalyst-bound aryl imine that exhibits a remarkable correlation to MM3-7in terms of both hydrogen bond orientation and the specific architec-tural elements that dictate iminium enantiofacial discrimination.18Both these X-ray and calculated structures suggest that catalyst 5should be generically selective for the reduction of iminium ions derived from methyl ketones.To test this hypothesis,we next examined the amination of para substituted aryldiketone 8.In accord with our torsional-control hypothesis,diketone 8underwent chemo-selective reduction to yield monoaminated 9with a 18:1preference for coupling at the methyl ketone site (eq 4,85%yield,96%ee).We next proposed to test this methyl versus ethyl chemoselec-tivity in a productive fashion via the amination of butanone,a prochiral ketone that contains both such alkyl substituents on the same carbonyl (eq 5).In the event,the corresponding 2-amino butane product 10was furnished with notable levels of enantio-control (83%ee),thereby revealing that ketones that contain dialkyl substituents of similar steric and electronic character are viable substrates for this process (e.g.,A values:Me )1.7vs Et )1.75).Indeed,the capacity of catalyst 5to selectively function with a broad range of methyl alkyl substituted ketones has now been established (Table 3,entries 1-4,49-75%yield,83-94%ee).InTable 1.Evaluation of Phosphoric Acid Catalyst Architectureentrycat.cat.substitution (R)additivetemp (°C)%conv a%ee b13a 2-naphthyl none 8063723a 2-naphthyl 5ÅMS 80414533b H5ÅMS 8043743c 3,5-NO 2-phenyl 5ÅMS 80451653d 3,5-CF 3-phenyl 5ÅMS 80396564Si t BuPh 25ÅMS 80356175SiPh 35ÅMS 80708785SiPh 35ÅMS 408594aConversion determined by GLC analysis.b Enantiomeric excess de-termined by chiral GLC analysis (Varian CP-chirasil-dex-CB).Table anocatalytic Reductive Amination of AromaticKetonesaAbsolute stereochemistry determined by chemical correlation.b Enan-tiomeric excess determined by chiral GLC or SFC-HPLC analysis.c Performed at 5°C.d Reduction of preformed cyclicimine.C O M M U N I C A T I O N SJ.AM.CHEM.SOC.9VOL.128,NO.1,200685this context,it is important to underscore a key benefit of reductive amination versus imine reduction.Specifically,imines derived from alkyl -alkyl ketones are unstable to isolation,a fundamental limitation that is comprehensively bypassed using direct reductive amination.Last,a central tenet of this investigation was to develop an enantioselective reductive amination that can be employed in complex fragment couplings (eq 7).As revealed in Table 4,this goal has now been accomplished using a variety of electronically diverse aryl and heteroaromatic amines in combination with aryl ketones (entries 1-5,91-95%ee)as well as alkyl -alkyl carbonyls (entry 6,90%ee).In summary,we have developed the first enantioselective organocatalytic reductive amination.This mild and operationallysimple fragment coupling has been accomplished with a wide range of ketones in combination with aryl and heterocyclic amines.Further mechanistic studies of this amination reaction will be reported shortly.Acknowledgment.Financial support was provided by the NIHGMS (R01GM66142-01)and kind gifts from Amgen and Merck.This research was supported by a Marie Curie International Fellowship (to R.I.S.)within the 6th European Community Framework Programme.Joe Carpenter is thanked for catalyst preparation.Supporting Information Available:Experimental procedures,structural proofs,and X-ray and spectral data.This material is available free of charge via the Internet at .References(1)(a)For a general review,see:Ohkuma,T.;Noyori,R.In Comprehensi V eAsymmetric Catalysis,Suppl.1;Jacobsen,E.N.,Pfaltz,A.;Yamamoto,H.,Eds.;Springer:New York,2004.(b)For a review of asymmetric reductive amination,see:Tararov,V.I.;Bo ¨rner,A.Synlett 2005,203.(2)For reviews,see:(a)Blaser,H.-U.;Malan,C.;Pugin,B.;Spindler,F.;Steiner,H.;Studer,M.Ad V .Synth.Catal.2003,345,103.(b)Tang,W.;Zhang,X.Chem.Re V .2003,103,3029.(c)Riant,O.;Mostefai,N.;Courmarcel,J.Synthesis 2004,2943.(d)Carpentier,J.F.;Bette,.Chem .2002,6,913.(e)Kadyrov,R.;Riermeier,T.H.Angew.Chem.,Int.Ed.2003,42,5472.(f)Nolin,K.A.;Ahn,R.W.;Toste,F.D.J.Am.Chem.Soc.2005,127,12462.(g)Organocatalytic hydrosilylation of imines:Malkov,A.V.;Mariani,A.;MacDougall,K.N.;Kocovsky,.Lett.2004,6,2253.(3)(a)Blaser,H.-U.;Buser,H.-P.;Jalett,H.-P.;Pugin,B.;Spindler,F.Synlett1999,867.(b)Kadyrov,R.;Riermeier,T.H.Angew.Chem.,Int.Ed.2003,42,5472.(c)Williams,G.D.;Pike,R.A.;Wade,C.E.;Wills,.Lett.2003,5,4227.(d)Kadyrov,R.;Riermeier,T.H.;Dingerdissen,U.;Tararov,V.;Bo ¨rner,.Chem.2003,68,4067.(e)Chi,Y.X.;Zhou,Y.G.;Zhang,.Chem.2003,68,4120.(4)Hantzsch,A.Justus Liebigs Ann.Chem.1882,215,1.(5)For the first asymmetric (63%ee)organocatalytic HEH reduction ofimines,see:(a)Singh,S.;Batra,U.K.Indian J.Chem.,Sect.B 1989,28,1.Subsequent improvements in this ketimine reduction protocol were published (b)during the preparation and (c)at the time of submission of this manuscript:(b)Reuping,M.;Sugiono,E.;Azap,C.;Theissmann,T.;Bolte,.Lett.2005,7,378.(c)Hoffman,S.;Seayad,A.M.;List,B.Angew.Chem.,Int.Ed.2005,44,7424.(6)Alberts,B.;Bray,D.;Lewis,J.;Raff,M.;Roberts,K.;Watson,J.D.Molecular Biology of the Cell ;Garland:New York and London,2002.(7)For previous studies of asymmetric HEH reduction of enals,see:Ouellet,S.G.;Tuttle,J.B.;MacMillan,D.W.C.J.Am.Chem.Soc.2005,127,32.(8)For reviews,see:(a)Pihko,P.M.Angew.Chem.,Int.Ed.2004,43,2062.(b)Schreiner,P.Chem.Soc.Re V .2003,32,289.(9)For racemic acid-catalyzed reduction,see:Itoh,T.;Nagata,K.;Miyazaki,M.;Ishikawa,H.;Kurihara,A.;Ohsawa,A.Tetrahedron 2004,60,6649.(10)For examples,see:(a)Sigman,M.S.;Jacobsen,E.N.J.Am.Chem.Soc.1998,120,4901.(b)Yoon,T.P.;Jacobsen,E.N.Angew.Chem.,Int.Ed.2005,44,466.(c)Fuerst,D.E.;Jacobsen,E.N.J.Am.Chem.Soc.2005,127,8964.(11)(a)Corey,E.J.;Grogan,.Lett.1999,1,157.(b)Huang,J.;Corey,.Lett.2004,6,5027.(12)For examples,see:(a)Okino,T.;Nakamura,S.;Furukawa,T.;Takemoto,.Lett.2004,6,625.(b)Okino,T.;Hoashi,Y.;Furukawa,T.;Xu,X.N.;Takemoto,Y.J.Am.Chem.Soc.2005,127,119.(13)For examples,see:(a)Huang,Y.;Unni,A.K.;Thadani,A.N.;Rawal,V.H.Nature 2003,424,146.(b)Thadani,A.N.;Stankovic,A.R.;Rawal,V.H.Proc.Natl.Acad.Sci.U.S.A.2004,101,5839.(c)Unni,A.K.;Takenaka,N.;Yamamoto,H.;Rawal,V.H.J.Am.Chem.Soc.2005,127,1336.(14)Nugent,B.M.;Yoder,R.A.;Johnston,J.N.J.Am.Chem.Soc.2004,126,3418.(15)(a)Akiyama,T.;Itoh,J.;Yokota,K.;Fuchibe,K.Angew.Chem.,Int.Ed.2004,43,1566.(b)Akiyama,T.;Morita H.;Itoh J.;Fuchibe,.Lett.2005,7,2583.(16)(a)Uraguchi,D.;Terada,M.J.Am.Chem.Soc.2004,126,5356.(b)Uraguchi,D.;Sorimachi,K.;Terada,M.J.Am.Chem.Soc.2004,126,11804.(c)Uraguchi,D.;Sorimachi,K.;Terada,M.J.Am.Chem.Soc.2005,127,9360.(17)Catalysts 1and 3were prepared using procedures outlined in refs 8and12.Catalyst 5was first prepared and applied to this catalytic protocol on October 13,2004,to furnish the amine in Table 2,entry 1,in 94%ee.(18)The crystallographic data have been deposited at the CCDC,12UnionRoad,Cambridge,CB21EZ,UK,and copies can be obtain on request,free of charge,by quoting the publication citation and the deposition number 287655.JA057222NTable anocatalytic Reductive Amination of Alkyl -AlkylKetonesaAbsolute stereochemistry determined by chemical correlation.b Enan-tiomeric excess determined by chiral GLC or SFC-HPLC analysis.Table anocatalytic Coupling of Aromatic and HeterocyclicAminesaEnantiomeric excess determined by chiral SFC-HPLC.C O M M U N I C A T I O N S86J.AM.CHEM.SOC.9VOL.128,NO.1,2006。

相关文档
最新文档