各级公路设计参数.

各级公路设计参数.
各级公路设计参数.

各等级设计参数表

各级公路设计平曲线长度不宜过短,从线形设计要求方面考虑,曲线长度按最小值的5-8倍即1 000-1 500m较适宜,故本次修订列出平曲线最小长度的“一般值”,取“最小值”长度的3倍。

平面设计中采用小转角、大半径圆曲线一般均属条件限制不得已而为之。小转角设置大半径圆曲线系曲线长度规定所致,否则路容将出现扭折,还会引起曲率看上去比实际大得多的错觉。鉴于小转角的不利的一面,对其使用还存在不同的看法,并把7°-10°转角亦归于小转角之列,要求少用。

以7°作为引起驾驶者错觉的临界角度也只是一种经验值,因为通过选择合适的圆曲线半径,或设置足够的长度的曲线可以改善视觉效果,这才提出小转角的最小曲线长度的限制问题。

驾驶者在大半径圆曲线上行驶时,方向盘几乎与直线上一样无须调整。当圆曲线半径大于9 000m时,视线集中的300-600m范围内的视觉效果同直线没有区别,因此圆曲线半径不宜过大。

回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求的最小坡率0.3%计,故规定超高渐变率不得小于0.3%,即1/330。

仅规定“直线的长度不宜过长”,给设计人员留下空间去作分析、判断,以使设计更加符合实际。

如日本、德国规定直线最大长度不宜超过设计速度的20倍,即

72s行程;西班牙规定不宜超过80%的设计速度的90s行程;法国认为长直线宜采用半径5000m以上的圆曲线代替;

《标准》(2003)规定的圆曲线最小半径“极限值”系在超高最大值为8%时经计算调整的取值。

(1)回旋线长度最小按3s行程计。

(2)小圆曲线的回旋线内移值按行驶力学上要求的小于10cm 计。

本规范规定复曲线间回旋线的省略,以设缓和曲线两圆位移差小于0.10m为条件。理由是从一个圆曲线过渡到另一个圆曲线,驾驶者在方向盘操作上,比从直线过渡到圆曲线困难;设计速度大于或等于80km/h时,大圆半径与小圆半径之比,仍规定小于1.5时可省略回旋线,较澳大利亚推荐的半径比1.3有所提高。理由是只要满足半径比小于1.5,即能保证内移差不超过0.10m,同时半径比加大有利于复曲线半径组合的选择。

根据为修订《标准》(97)而立项的《公路横向力系数》专题研究结论,并参考美国及澳大利亚的经验,本规范规定高速公路、一级公路最大超高值为8%和10%,正常情况下采用8%;对设计速度高,或经验算运行速度高的路段宜采用10%。二、三、四级公路限定最大超高为8%是适宜的。但对于积雪冰冻地区,考虑我国以货车为主的特点,限定最大超高为6%比较安全。

回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求的最小坡率0.3%计,故规定超高渐变率不得小于

0.3%,即1/330。

表7-1 潮湿状态下的停车视距

车的视距考虑,所以

会车视距应不小于停车视距的2倍。当受地形限制,无法保证会车视距时,允许采用停车视距,但该路段应采取划线等实施分道行驶。

7.9.3 货车存在空载时制动性能差、轴间荷载难以保证均匀分布、一条轴侧滑会引发

其他车轴失稳、半挂车铰接刹车不灵等现象。尽管货车驾驶者因眼睛位置高,比小客车驾

驶者看得更远,但仍需要比小客车更长的停车视距。

本次修订,货车停车视距的眼高规定为2.00m,物高规定为

0.10m ,并规定对下列相

关路段进行视距检验:

(1)减速车道及出口端部;

(2)主线下坡路段且纵面竖曲线半径小于一般值的路段;

(3)主线分、汇流处,车道数减少,且该处纵面竖曲线半径小于一般值的路段;

(4)要求保证视距的圆曲线内侧,当圆曲线半径小于2倍“一般值”或路堑边坡陡于1:1.5的路段;

(5)公路与公路、公路与铁路平面交叉附近。

位于市镇附近及混合交通量大的路段,桥上和引道的纵坡还应考虑非机动车的爬坡能力,故不宜过大。

所以当汽车交通量较大时,各级公路尽量采用较小的纵坡,对最大纵坡应慎用。

“坡长是指变坡点间的水平直线距离”,本次修订,增列了二级公路设置爬坡车道规定。

以采用较小合成坡度

8%为宜。应保证路面有

0.3%-0.5%的合成坡度。

为确保安全,应对该路段的圆曲线半径、超高、视距等采用运行速度进行检验。选用大半径的圆曲线时,也应持谨慎的态度。

纵面线形的驼峰、暗凹、跳跃、断背和折曲等会造成驾驶者视觉的中断,因此,应予以避免。

竖曲线设计的要求 图

8-1 典型爬坡车道

纵面线形的优劣很大程度上取决于竖曲线半径的大小。选用本规范条文中大于表9.3.4所列的竖曲线半径,有利于获得视觉良好的线形。《标准》(2003)中给出竖曲线最小半径的“一般值”和“极限值”是满足停车视距所需的最小半径。

竖曲线长度太短,汽车行驶时会感到不适或视觉上存在问题。对于凹形竖曲线,如果半径较小,两个同向凹形竖曲线间存在直线坡段时,在视觉上会产生断背的感觉。对于反向竖曲线,竖曲线半径较小时,汽车从凹(凸)形竖曲线驶向凸(凹)形竖曲线,当离心力加速度的变化值大于0.5m/s2时,应在反向竖曲线间设置直坡段。

平、纵线形组合设计的原则为“相互对应”,且平曲线稍长于竖曲线,即所谓的“平包竖”。国内、外研究资料表明,当平曲线半径小于2000m、竖曲线半径小于15 000m时,平、竖曲线的相互对应对线形组合显得十分重要;随着平、竖曲线半径的增大,其影响逐渐减小;当平曲线半径大于6000m、竖曲线半径为25000m时,对线形的影响就显得不敏感了。因此,线形设计的“相互对应,且平包竖”的设计原则需视平、竖曲线的半径而掌握其对应、符合的程度。

桥梁、桥头引道与路线衔接必须舒顺才能满足行车与安全的要求。

桥梁、桥头引道与路线的线形连续、均衡;而特殊大桥则应尽量顺直,以方便桥梁结构设计。

由于线形与环境景观的不良配合,会给驾驶者造成精神压力或因错觉引发交通事故。线形与环境景观的协调设计首先要考虑交通安全。

规定平面交叉的锐角不应小于70°,在特殊情况下可到60°。

一般公路上行驶的车辆有各种客车、货车和铰接式挂车。转弯设

计中应采用其中尺寸较大的挂车,即《标准》(2003)中规定的总长为16m的“鞍式列车”作为设计车型。偶尔有超长车通行的交叉,用上述设计车型控制设计时,由于路幅有一定余宽,因而一般情况下能满足超长车以很慢的速度行驶时所循行迹的要求。对于转弯角度大(>90°)和半径小、路幅窄的曲线,应对超长车的通行作适当修正,如减缓路缘曲线和增设或加宽铺面路肩。增设或加宽铺面路肩后,路缘线仍保持不变。

公路与公路互通式立体交叉的最小间距仍维持4km的规定。

为使驾驶者及时发现互通式立体交叉的出口,按规定行迹驶离主线,从而防止误行,避免撞及分流鼻,保证行驶安全,互通式立体交叉的引道上应保证对出口位置的判断视距(其物高为0),这一视距应为“识别视距”。只有在条件受限时方能采用1.25倍的停车视距。本次修订,将保证识别视距作为首先考虑的要求,这与《路规》(94)有所区别。

判断出口时,驾驶者应看到分流鼻端的标线,故物高为0。对此,在确定凸曲线半径时应注意。

路与铁路立体交叉范围内存在的主要问题是平、纵面线形和视距问题。其视距必须满足停车视距的要求。公路、铁路在交叉范围内路线以直线为宜,交角也宜尽量正交。必须斜交时,其锐角应不小于70°;受地形条件或其他特殊情况限制时,应不小于60°。

相对于相交公路的路基宽度,道口铺砌宽度和公路行道宽度不得缩减。主要是考虑到缩减断面宽度,对于汽车与其他机动车、非机动车和行人通过道口的安全不利。即在对向同时有汽车,或道口上有性能差的机动车、非机动车占道时,应保证双向交通正常安全运行。对于公路交通量大的设置看守道口,道口处的公路断面应适当增宽。

一二级公路上行驶的拖拉机按路侧干扰因素计

三四级公路上行驶的拖拉机每辆折算为4 辆小客车

二级公路作为干线公路时设计速度宜采用 80km/h

二级公路作为集散公路时混合交通量较大平面交叉间距较小的路段设计速度宜采用

60km/h

一二级公路设计路段不宜小于10km

一条公路应采用同一净高高速公路,一级公路二级公路的净高应为5.00m 三级公路

四级公路的净高应为4.50m

高速公路一级公路以及二级公路的连续上坡路段当通行能力运行安全受到影响时应

设置爬坡车道爬坡车道宽度应为3.50m

各级公路路基宽度

二级公路三级公路四级公路

设计速度(km/h) 80 60 40 30 20

车道数 2 2 2 2 2 或1

路基宽度一般 12.00 10.00 8.50 7.50

最小值 10.00 8.50

各级公路路基宽度为车道宽度与路肩宽度之和当设有中间带加减速车道爬坡车道紧急停车带错车道等时应计入这些部分的宽度

2 二级公路因交通量交通组成等需设置慢车道的路段设计速度

为80km/h 时其路基宽度可采用15.0m 设计速度为60km/h 时可采用12.0m

表 3.0.12-2 二三四级公路停车视距会车视距与超车视距

设计速度 km/h 80 60 40 30 20

停车视距 m 110 75 40 30 20

会车视距 m 220 150 80 60 40

超车视距 (m) 550 350 200 150 100

双车道公路应间隔设置具有超车视距的路段

直线的最大与最小长度应有所限制一条公路的直线与曲线的长

度设计应合理表3.0.14 圆曲线最小半径

设计速度 km/h 120 100 80

60 40 30 20

一般值 (m) 1000 700 400 200 100

65 30

极限值 m 650 400 250 125 60

30 15

不设超最小半径m

高路拱≤2.0% 5500 4000 2500 1500 600 350 150

路拱>2.0% 7500 5250 3350 1900 800 450 200

直线与小于表3.0.14 所列不设超高的圆曲线最小半径相衔接处

应设置回旋线回旋线参数

及其长度应根据线形设计以及对安全视觉景观等的要求选用较

大的数值

最大纵坡应符合表3.0.16 规定

表3.0.16 最大纵坡

设计速度(km/h) 120 100 80 60 40 30 20

最大纵坡(%) 3 4 5 6 7 8 9

表3.0.17-1 最小坡长

设计速度(km/h) 120 100 80 60 40 30 20

最小坡长(m) 300 250 200 150 120 100 60

表 3.0.17-2 不同纵坡最大坡长

设计

速度

(km/

h)

最大坡长(m)

纵坡坡度(%)

120 100 80 60 40 30 20

3 900 1000 1100 1200

4 700 800 900 1000 1100 1100 1200

5 600 700 800 900 900 1000

6 500 600 700 700 800

7 500 500 600

8 300 300 400

9 200 300

10 200

桥上纵坡不宜大于 4% 桥头引道纵坡不宜大于5%

平面交叉右转弯车道的设计速度不宜大于 40km/h 左转弯车道的设计速度不宜大于

20km/h

架空送电线路与公路相交叉时宜为正交必须斜交时应大于45

各级公路设计参数.

各等级设计参数表 各级公路设计平曲线长度不宜过短,从线形设计要求方面考虑,曲线长度按最小值的5-8倍即1 000-1 500m较适宜,故本次修订列出平曲线最小长度的“一般值”,取“最小值”长度的3倍。 平面设计中采用小转角、大半径圆曲线一般均属条件限制不得已而为之。小转角设置大半径圆曲线系曲线长度规定所致,否则路容将出现扭折,还会引起曲率看上去比实际大得多的错觉。鉴于小转角的不利的一面,对其使用还存在不同的看法,并把7°-10°转角亦归于小转角之列,要求少用。 以7°作为引起驾驶者错觉的临界角度也只是一种经验值,因为通过选择合适的圆曲线半径,或设置足够的长度的曲线可以改善视觉效果,这才提出小转角的最小曲线长度的限制问题。 驾驶者在大半径圆曲线上行驶时,方向盘几乎与直线上一样无须调整。当圆曲线半径大于9 000m时,视线集中的300-600m范围内的视觉效果同直线没有区别,因此圆曲线半径不宜过大。 回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求的最小坡率0.3%计,故规定超高渐变率不得小于0.3%,即1/330。 仅规定“直线的长度不宜过长”,给设计人员留下空间去作分析、判断,以使设计更加符合实际。 如日本、德国规定直线最大长度不宜超过设计速度的20倍,即

72s行程;西班牙规定不宜超过80%的设计速度的90s行程;法国认为长直线宜采用半径5000m以上的圆曲线代替; 《标准》(2003)规定的圆曲线最小半径“极限值”系在超高最大值为8%时经计算调整的取值。 (1)回旋线长度最小按3s行程计。 (2)小圆曲线的回旋线内移值按行驶力学上要求的小于10cm 计。 本规范规定复曲线间回旋线的省略,以设缓和曲线两圆位移差小于0.10m为条件。理由是从一个圆曲线过渡到另一个圆曲线,驾驶者在方向盘操作上,比从直线过渡到圆曲线困难;设计速度大于或等于80km/h时,大圆半径与小圆半径之比,仍规定小于1.5时可省略回旋线,较澳大利亚推荐的半径比1.3有所提高。理由是只要满足半径比小于1.5,即能保证内移差不超过0.10m,同时半径比加大有利于复曲线半径组合的选择。 根据为修订《标准》(97)而立项的《公路横向力系数》专题研究结论,并参考美国及澳大利亚的经验,本规范规定高速公路、一级公路最大超高值为8%和10%,正常情况下采用8%;对设计速度高,或经验算运行速度高的路段宜采用10%。二、三、四级公路限定最大超高为8%是适宜的。但对于积雪冰冻地区,考虑我国以货车为主的特点,限定最大超高为6%比较安全。 回旋线过长,超高渐变率过小,将导致曲线段路面排水不畅。因此应按排水要求的最小坡率0.3%计,故规定超高渐变率不得小于

道路平面线形设计

Ch3 道路平面线形设计 【本章主要内容】 §3-1 平面线形概述 §3-2 直线 §3-3 圆曲线 §3-4 缓和曲线(3h) §3-5 平面线形的组合与衔接 §3-6 行车视距 §3-7 道路平面设计成果 【本章学习要求】 掌握平面线型的基本组成要素:直线、圆曲线、缓和曲线的设计标准、影响因素及确定方法、要素计算;行车视距的种类及保证;平面设计的设计成果;了解平面线型的组合设计。 本章重点:缓和曲线设计与计算、平面设计注意事项,难点:缓和曲线。

§3-1 道路平面线形概述 基本要求:掌握平面线形的概念,平面线形三要素, 了解汽车行驶轨迹对道路线形的要求。 重点:平面线形的概念。 难点:平面线形三要素。 1 平面线形的概念 平面线形—道路中线在平面上的水平投影,反映道路的走向。 2 平面线形三要素 2.1 汽车行驶轨迹 大量的观测和研究表明,行驶中的汽车,其导向抡旋转面与车身纵轴之间的关系对应的行驶轨迹为: 1) 角度为0时,汽车的行驶轨迹为直线; 2) 角度不变时,汽车的行驶轨迹为圆曲线; 3) 角度匀速变化时,汽车的行驶轨迹为缓和曲线。 行驶中的汽车,其轨迹在几何性质上有以下特征: 1)轨迹是连续和圆滑的; 2)曲率是连续的; 3)曲率的变化是连续的。 直线一圆曲线一直线符合第(1)条规律 直一缓一圆一缓一直符合第(1)、(2)条规律 整条高次抛物线可能符合全部规律,但计算困难,测设麻烦。 2.2平面线形要素 直线、圆曲线、缓和曲线称为平面线形的三要素。

§3-2 直线 基本要求:了解直线的使用特点和适用条件;掌握直线的设计标准及计算。重点:直线的设计标准。 难点:路线方位角、转角的计算。 1 直线的特点 1.1 以最短的矩离连接两目的地; 1.2 线形简单,容易测绘; 1.3 长直线,行车安全性差; 1.4 山区、丘陵区难与地形与周围环境协调。 2 设计标准 2.1直线最大长度 1)限制理由 2)直线最大长度:20V。 2.2直线最小长度L min 1)同向曲线间的L min:6V。 其中直线很短时,形成所谓的―断背曲线‖。 2)反向曲线间的L min:2V。 考虑其超高和加宽缓和的需要,以及驾驶人员的操作方便。 3 直线的运用 3.1适用条件 1)路线完全不受地形、地物限制的平原区或山间的开阔谷地; 2)市镇及其近郊或规划耕区等; 3)长大桥梁、高架桥、隧道等路段; 4)平面交叉口附近,为争取较好的行车和通视条件; 5)双车道公路提供超车的路段。 3.2注意问题 1)不宜过长; 2)长直线上纵坡不宜过大; 3)长直线尽头不得设置小半径平曲线; 4)不宜过短。 4 直线的表达式(★补充) 已知直线上两点的坐标(X1,Y1)(X2,Y2)则直线的数学表达式为:Y-Y1 X-X1 Y2-Y1 X2-X1 两点间的直线长度:L=[(X1-X2)2+(Y1-Y2)2 ]1/2

算例6-1按照水平一的要求确定交通参数示例

2.5 示例 2.5.1 按照水平一的要求确定交通参数示例 华中地区某一级公路,设计年限为15年。根据OD分析,断面大型客车和货车交通量为3500辆/日,交通量年增长率为6.5%。方向系数取0.55;根据表2-3,车道系数取0.50,则设计车道初始年大型客车和货车日均交通量为962辆/日,进而计算得到15年大型客车和货车累计为850万辆,可知设计交通荷载等级为重。根据对路段每辆车实际收集到的轴载组成数据,经统计分析后,得到车辆类型分布系数列于表2-11。 表2-11 车辆类型分布系数 分别统计2~11类车辆中单轴单胎、单轴双胎、双联轴和三联轴的数量,除以各类车辆总量,按式(2-11)计算各类车辆中不同轴型平均轴数,列于表2-12。 表2-12 各种车辆类型的不同轴型平均轴数 按式(2-12)计算2~11类车辆不同轴型在不同轴重区间所占的百分比,得到不同轴型的轴重分布系数,即轴载谱。部分车辆类型的不同轴型的轴载谱如图2-23~图2-26所示。

图2-23 部分车辆类型的单轴单胎轴载谱 图2-24 部分车辆类型的单轴双胎轴载谱 图2-25 部分车辆类型的双联轴轴载谱

图2-26 部分车辆类型的三联轴轴载谱 验算的设计指标包括沥青混合料层层底拉应变和永久变形量、无机结合料稳定层层底拉应力和路基顶面竖向压应变。针对这三个设计指标,按式(2-13)计算2~11类车辆各种轴型在不同轴重区间的当量设计轴载换算系数;然后按式(2-14)计算各类车辆当量设计轴载换算系数,针对不同设计指标的各类车辆当量设计轴载换算系数,列于表2-13。 表2-13 不同设计指标的各类车辆当量设计轴载换算系数 根据表2-13的计算结果,按式按式(2-16)和(2-17)计算设计车道上的当量设计轴载累计作用次数Ne。对应于沥青混合料层层底拉应变和永久变形量的当量设计轴载累计作用次数为3.23×107次;对应于无机结合料稳定层层底拉应力的当量设计轴载累计作用次数为3.71×109次;对应于路基顶面竖向压应变的当量设计轴载累计作用次数为6.55×107次。 2.5.2 按照水平二的要求确定交通参数示例 华中地区某一级公路,设计年限15年。基本交通参数见2.5.1示例。

公路路线设计规范2006_条文说明

公路路线设计规范 JTG D20—2006 (条文说明) 2006-07-07发布2006-10-01实施 中华人民共和国交通部发布

1 总则 1.0.1 制定规范的目的。 1.0.2 制定规范的依据。 遵照交通部要求,本次修订《公路路线设计规范》(JTJ 011—94)[以下简称《路规》(94)]工作与修订《公路工程技术标准》(JTJ 01—97)[以下简称《标准》(97)]同步进行,故本稿是根据《公路工程技术标准》(JTGB01—2003)[以下简称《标准》(2003)]所规定的公路分级、控制要素、路线和路线交叉基本要求及其主要技术指标而编制的。 在2004年召开的全国公路勘察设计工作会上确立了公路设计六点新理念,本稿遵照会议精神进行了补充、完善。其后按部公路司关于设计规范与设计细则分别编制以及交公便字[2006]162号“关于《公路路线设计规范》修改意见的函”等的要求,重新进行了调整与修改,删除了本设计规范中有关“如何做”等方面的内容。 1.0.3 规范的适用范围。 本规范适用于新建和改建公路,旅游、厂矿等专用道路可参照执行。 1.0.4 路线走廊是一种不可再生的资源,应遵照统筹规划、合理布局、近远结合、综合利用的原则予以利用。工程可行性研究阶段应慎重研究并确定公路路线走向和走廊带。路线设计应综合考虑各种相关线性工程的关系,尽早做出规划,处理好已建工程和新建工程的关系和布局。在确定公路等级时应根据公路功能,并遵循照顾发展与适度超前的原则,处理好同其他工程的关系,以合理确定公路走廊。 1.0.5 设计方案是路线设计的核心。在进行总体设计过程中,应对采用不同设计速度及其对自然环境等带来的影响进行论证。当有多种方案时,应作同等深度的技术经济比较。 1.0.6 路线选定应特别强调对工程地质等自然条件的调查,在此基础上方能进行路线线位及主要平、纵面技术指标的选定。 “沿线小区域气候”是指公路沿线由于区域地形所形成的雾区、风口、暴雨中心等。 1.0.7 加强环境保护和合理利用土地资源是重要的国策,应减少因修建公路而带来的对环境、自然景观的影响,提高公路环境质量。高速公路、一级公路应特别注重线形的视觉诱导和线形的连续性,以及同沿线环境相协调,以增进舒适和安全感。 1.0.8 路线线形设计的各单项技术指标是按相应公路等级的设计速度规定的最小值。在综合考虑各种因素后所进行的组合设计必须符合第9章线形设计的有关规定。线形设计中应根据地形、地质、技术难度及其工程量大小等具体情况进行优化。一项设计并不是各项技术指标都符合规定就是好设计;也不是各项技术指标都符合最低限度要求其工程造价就最省。因之其关键就在于设计者将各种因素综合地进行考虑,创造性地进行“各种技术指标的组合(即设计)”。设计质量与水平的高低,就在于是否能结合工程实际在高限与低限之间科学合理地选择技术指标,以及遇有特殊问题时能否作出特殊处理。 公路透视图可以是某点的路线透视图,或某路段的连续路线透视图,或采用三维模型技术制作的虚拟公路透视图等。对路线线形设计的评价与检验,可采用公路透视图以检查线形设计同沿线景观的配合与协调。 公路透视图是一种最有效、最丰富的表达语言。运用计算机生成的三维模型透视图及其图像处理技术,不仅可以更为形象地进行工程评价,同时亦可用于向公众展示项目建成后的情况,征询意见,进行沟通,帮助公众直观地理解意图并作出反应。 1.0.9 《标准》(2003)在设计上引入了运行速度的概念,要求对线形设计受地形条件或其他特殊情况限制的地段,采用运行速度进行检验,以改善技术指标或采用必要的交通安全技术、管理措施。因为运行速度考虑了公路上绝大多数驾驶者的交通心理需求,以车辆的实际运行速度作为线形设计速度,从而有效地保证了路线所有相关要素,如视距、超高、纵坡、竖曲

设计交通量的计算1

班级:06030601 姓名:贾光帅 学号:061411 指导老师:徐斌

第一部分课程设计指导 1.目的与要求 交通规划是一门为解决交通问题提供基本理论基本技术的一门学科,本课设的目的是通过实地的交通调查,了解交通分布规律,对交叉口的通行能力进行一定的评价,并提出改进意见,给学生自己在以后的交通规划工作中提供必要经验。 2.任务 (1)对某一交叉口的通行能力进行调查,绘制交通调查汇总表; (2)分别求出交叉口的5min和15min的高峰小时系数; (3)通过交通调查求出交叉口的实际通行能力; (4)求出交叉口的设计通行能力,并于实际测得的交通量进行对比; 3.提交结果 (1)交通调查汇总表; (2)高峰小时系数,交叉口的实际通行能力,交叉口的设计通行能力,并对其进行评价的计算书。

第二部分交通调查汇总表及高峰小时系数,交叉口的实际通行能力的计算 调查地点是桃园桥十字交叉口,时间为8:40—9:40,历时一个小时,为一天中的高峰小时之一,所测得的交叉口实际通行交通量为高峰小时交通量。交通调查汇总表如下表所示: 交叉口车辆汇总表 地点桃园桥十字日期07月04日天气(晴)观测者 5min 时间 车 型 从北来从南来南 北 合 计 从东来从西来东 西 合 计右 转 直 行 合 计 右 转 直 行 合 计 右 转 直 行 左 转 调 头 合 计 右 转 直 行 左 转 调 头 合 计 00-05 大 车 12 11 23 6 5 11 34 2 1 7 0 10 0 5 3 1 9 19 小 车 96 67 16 3 23 55 78 24 1 41 17 22 4 84 14 39 28 1 82 16 6 05-10 大 车 3 4 7 1 6 7 14 0 2 2 0 4 3 1 6 1 11 16 6 小 车 58 80 13 8 31 80 11 1 24 9 40 19 44 9 11 2 29 27 38 0 94 20 6 10-15 大 车 15 4 19 3 4 7 26 1 6 4 0 11 0 3 4 1 8 19 小 车 96 56 15 2 17 62 79 23 1 36 26 45 5 11 2 20 27 41 0 88 20 15-20 大 车 12 4 16 4 6 10 26 2 3 2 0 7 2 5 3 1 11 18 小 车 85 74 15 9 39 81 12 27 9 33 19 15 1 68 21 23 34 3 81 14 9

线路设计常用参数

线路设计常用参数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一、线路路径、安全距离 1、与道路距离 (1) 跨越时的垂直距离 (2) 平行时的水平距离(基础边缘与公路排水沟) 类比:电力设施保护条例(先用电力线,后有建筑适用;边线延伸) 2、交叉跨越角度 (1)与广梅汕铁路交叉时,交叉角必须大于60°。 (2)与弱电线路的交叉角 3、与建筑物间的距离 (1) 跨越建筑时(最大计算弧垂,垂直距离) (2) 城市建筑(最大计算风偏,净空距离) (3) 非城市规划区建筑(无风,水平距离) 4、按塔高计算的水平距离

5、跨树距离 (1) 导线与树木间垂直距离 (2) 无准确资料时估算树木自然生长高度 6、与石场距离 条件允许:500m以外;条件不允许:200m(背向爆破面)或300m(正向爆破面)以外。 7、接地体与石油天然气埋地管道距离 8、与机场距离 与跑道端或跑道中心线距离≥4km。 9、接地体与埋地通信线免计算保证距离 10、与无线电台间距离 11、交叉跨越时塔位与控制物距离(m)

12、规程中与铁路、公路、河流、管道、索道及各种架空线路交叉或接近的基本要求

二、电气间隙 1、带电部分与杆塔构件的最小间隙 2、变电站OY引下线 3、跳线对横担底部距离 4、档中线间距离 5、上下层导地线水平偏移 6、绝缘地线绝缘子间隙 一般为15mm。

三、绝缘配合、防雷 1、爬电比距配置 (1) 爬电比距要求(按额定电压) (2)有效系数(悬垂钟罩型、深棱型玻璃和瓷绝缘子) 零~II级:~;III~IV级:~ 2、复合绝缘子防雷选择 3、等高绝缘配置绝缘子片数

设计交通量的计算

班级:06030601姓名:贾光帅学号:061411指导老师:徐斌

第一部分课程设计指导 1.目的与要求 交通规划是一门为解决交通问题提供基本理论基本技术的一门学科,本课设的目的是通过实地的交通调查,了解交通分布规律,对交叉口的通行能力进行一定的评价,并提出改进意见,给学生自己在以后的交通规划工作中提供必要经验。 2.任务 (1)对某一交叉口的通行能力进行调查,绘制交通调查汇总表; (2)分别求出交叉口的5min和15min的高峰小时系数; (3)通过交通调查求出交叉口的实际通行能力; (4)求出交叉口的设计通行能力,并于实际测得的交通量进行对比; 3.提交结果 (1)交通调查汇总表; (2)高峰小时系数,交叉口的实际通行能力,交叉口的设计通行能力,并对其进行评价的计算书。

第二部分交通调查汇总表及高峰小时系数,交叉口的实际通行能力的计算 调查地点是桃园桥十字交叉口,时间为8:40—9:40,历时一个小时,为一天中的高峰小时之一,所测得的交叉口实际通行交通量为高峰小时交通量。交通调查汇总表如下表所示: 交叉口车辆汇总表

对交通调查汇总表进行分进口的汇总如下: 南进口车辆数(辆)

对于北进口,其实际交通量为2277辆,计算其高峰小时系数: 5100%125min PHF =??高峰小时交通量 最高交通量 2277==86.6%12219 ? 15100%415min PHF =??高峰小时交通量 最高交通量 2277==95.5%5964 ? 对于南进口,其实际交通量为1254辆,计算其高峰小时系数: 5100%125min PHF =??高峰小时交通量 最高交通量 1254==62.6%12167 ? 15100%415min PHF =??高峰小时交通量 最高交通量 1254==76.1%4124 ? 对于东进口,其实际交通量为1245辆,计算其高峰小时系数: 5100%125min PHF =??高峰小时交通量 最高交通量

公路水泥混凝土路面工程设计规范标准

公路水泥混凝土路面工程设计规范-----------------------作者:

-----------------------日期:公路水泥混凝土路面设计规范

1 总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。 1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践经验以及环境保护要求等,通过技术经 济分析确定。水泥混凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋 配制等。水泥混凝土路面结构应按规定的安全等级和目标可靠度,承受预期的荷 载作用,并同所处的自然环境相适应,满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。 2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土 roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土 lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限 design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes 根据路面结构的重要性和破坏可能产生后果的严重程度而划分的设计等级。 2.1.12 可靠度reliability 路面结构在规定的时间内和规定的条件下完成预定功能的概率。

设计交通量的计算

第一部分课程设计指导 1.目的与要求 交通规划是一门为解决交通问题提供基本理论基本技术的一门学科,本课设的目的是通过实地的交通调查,了解交通分布规律,对交叉口的通行能力进行一定的评价,并提出改进意见,给学生自己在以后的交通规划工作中提供必要经验。 2.任务 (1)对某一交叉口的通行能力进行调查,绘制交通调查汇总表; (2)分别求出交叉口的5min和15min的高峰小时系数; (3)通过交通调查求出交叉口的实际通行能力; (4)求出交叉口的设计通行能力,并于实际测得的交通量进行对比; 3.提交结果 (1)交通调查汇总表; (2)高峰小时系数,交叉口的实际通行能力,交叉口的设计通行能力,并对其进行评价的计算书。

第二部分交通调查汇总表及高峰小时系数,交叉口的实际通行能力的计算调查地点是桃园桥十字交叉口,时间为8:40—9:40,历时一个小时,为一天中的高峰小时之一,所测得的交叉口实际通行交通量为高峰小时交通量。交通调查汇总表如下表所示: 交叉口车辆汇总表 地点桃园桥十字日期 07月04日天气(晴)观测者

注:该调查从早上8:40开始到9:40结束,该时间段内南北方向车辆禁止左行。 对交通调查汇总表进行分进口的汇总如下: 北进口

南进口 东进口 西进口 对于北进口,其实际交通量为2277辆,计算其高峰小时系数: 5100%125min PHF =??高峰小时交通量 最高交通量 2277 = =86.6%12219 ? 15100%415min PHF =??高峰小时交通量 最高交通量 2277==95.5%5964 ? 对于南进口,其实际交通量为1254辆,计算其高峰小时系数:

最新公路水泥混凝土路面设计规范标准

1总则 1.0.1 为适应交通运输发展和公路建设的需要,提高水泥混凝土路面的设计质量和技术水平,保证工程安全可靠、经济合理,制定本规范。 1.0.2 本规范适用于新建和改建公路和水泥混凝土路面设计。 1.0.3 水泥混凝土路面设计方案,应根据公路的使用任务、性质和要求,结合当地气侯、水文、土质、材料、施工技术、实践经验以及环境保护要求等,通过技术经济分析 确定。水泥混凝土路面设计应包括结构组合、材料组成、接缝构造和钢筋配制等。 水泥混凝土路面结构应按规定的安全等级和目标可靠度,承受预期的荷载作用,并 同所处的自然环境相适应,满足预定的使用性能要求。 1.0.4 水泥混凝土路面设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1 水泥混凝土路面cement concrete pavement 以水泥混凝土做面层(配筋或不配筋)的路面,亦称刚性路面。 2.1.2 普通混凝土路面plain concrete pavement 除接缝区和局部范围外面层内均不配筋的水泥混凝土路面,亦称素混凝土路面。 2.1.3 钢筋混凝土路面jointed reinforced concrete pavement 面层内配置纵、横向钢筋或钢筋网并设接缝的水泥混凝土路面。 2.1.4 连续配筋混凝土路面continuous reinforced concrete pavement 面层内配置纵向连续钢筋和横向钢筋,横向不设缩缝的水泥混凝土路面。 2.1.5 钢纤维混凝土路面steel fiber reinforced concrete pavement 在混凝土面层中掺入钢纤维的水泥混凝土路面。 2.1.6 复合式路面composite pavement 面层由两层不同类型和力学性质的结构层复合而成的路面。 2.1.7 水泥混凝土预制块路面concrete block pavement 面层由水泥混凝土预制块铺砌成的路面。 2.1.8 碾压混凝土 roller compected concrete 采用振动碾压成型的水泥混凝土。 2.1.9 贫混凝土 lean concrete 水泥用量较低的水泥混凝土。 2.1.10 设计基准期限 design reference period 计算路面结构可靠度时,考虑各项基本度量与时间关系所取用的基准时间。 2.1.11 安全等级safety classes 根据路面结构的重要性和破坏可能产生后果的严重程度而划分的设计等级。 2.1.12 可靠度reliability 路面结构在规定的时间内和规定的条件下完成预定功能的概率。 2.1.13 目标可靠度objective reliability 作为设计依据的可靠度。 2.1.14 可靠指标reliability index 度量路面结构可靠性的一种数量指标。 2.1.15 目标可靠指标objective reliability index 作为设计依据的可靠指标。

根据车站敷设方式改进车站设计参数计算方法

根据车站敷设方式改进车站设计参数计算方法1.车站敷设方式介绍 城市轨道交通线路敷设方式主要有地下线、地面线、高架线 1.1地下线 地下线是线路在交通繁忙路段和市区内繁华地段主要采用的线路敷设形式,其线路设计的一般原则是线位尽可能沿城市道路敷设,尽量不侵入两侧的规划红线,在偏离道路或穿越街坊时,主要考虑躲避沿线的构筑物桩基础和地下各种市政管线,以确保安全和减少拆迁。地下线的施工方法主要有明挖法、暗挖法等。 1.2地面线 地面线是指在较空旷、道路和建筑物稀少的地带,采用类似普通铁路的路基作为轨道基础的线路形式。 地面线的路基高度一般要高出通过地段的最高地下水位和当地50年一遇的暴雨积水水位,以避免路基出现淹没、翻浆冒泥。 1.3高架线 高架线一般在市区外建筑稀少及空间开阔的地段采用。其线位一般沿道路的一侧或路中布置,具体设在路侧还是路中要根据规划和设站情况来决定,并结合具体情况作深入研究和经济比较。 高架桥的选型,首先要满足列车安全行驶的要求,其次要考虑结构合理、经济适用,并结合城市规划、周围环境、施工方法等一系列因素来确定,既要达到美观协调的效果,又要容易施工。 高架线的突出特点是运营噪声大,对城市景观影响也较大,市区一般不采用。 2.车站设计内容 车站的主要设施包括站台、站厅、售检票设施、通道楼梯与扶梯、照明设施、风厅风道设施、设备用房、管理用房等。 车站设计的主要内容包括:(1)站台的长度、宽度以及高度(2)通道或天桥(3)设备用房和管理用房(4)车站照明设施配置(5)无障碍设计(6)风亭、风道及其他附建物(7)车站防灾设计(8)车站装修(9)人行楼梯与扶梯(10)站厅设施等。

水泥混凝土路面设计参数(有用)

1、水泥混凝土路面的力学及工作特点 (1)水泥路面的力学特征 ①混凝土的强度及模量远大于基层和土基强度和模量; ②水泥混凝土本身的抗压强度远大于抗折强度; ③板块厚度相对于平面尺寸较小,板块在荷载作用下的挠度(竖向位移)很小; ④混凝土板在自然条件下,存在沿板厚方向的温度梯度,会产生翘曲现象,如受到约束,会在板内产生翘曲应力; ⑤荷载重复作用,温度梯度反复变化,混凝土板出现疲劳破坏。 (2)水泥混凝土路面的力学模式 ①弹性地基上的小挠度薄板模型; ②弹性地基:因为混凝土板下的基层与土基的应力应变很小,不超过材料的弹性区域; ③弹性板:因为板的模量高,应力承受能力强,一般受力不超过弹性比例极限应力,挠度与板厚相比很小。 ④水泥混凝土路面设计理论:弹性地基上的小挠度薄板理论。 (3)水泥混凝土路面的工作及设计特点 ①抗弯拉强度低于抗压强度,决定路面板厚度的强度设计指标是抗弯拉强度; ②车轮荷载作用主要的影响是疲劳效应; ③温度差造成板有内应力,出现翘曲变形及翘曲应力,也有疲劳特性; ④板的使用还受限于支承条件,不均匀支承及板底脱空对板内应力的分布影响极大。 2、水泥路面的主要破坏类型与设计标准 (1)水泥路面的主要破坏类型 ①断裂 ②唧泥 ③错台

④拱起 ⑤接缝挤碎 (2)水泥路面的荷载作用 重载作用 (3)水泥路面的设计标准 ①结构承载能力 控制板不出现断裂,要求荷载应力与温度应力的疲劳综合作用满足材料的设计抗拉强度,即: ; ②行驶舒适性 控制错台量,要求设置传力杆(基层及结构布置满足) ③稳定耐久性 控制唧泥与拱胀,要求基层水稳定性好,板与基层联结。 3、水泥路面结构设计的主要内容 (1)路面结构层组合设计; (2)混凝土路面板厚度设计;

履带车辆设计计算说明书

整车参数计算 根据《GB/T 3871.2-2006 农业拖拉机试验规程第2 部份:整机参数测量》标准要求进行计算: 一、基本参数 二、质量参数的计算 1、整备质量M0为1825kg ; 2、总质量M总 M总=M0+M1+ M2 =1825+300+75=2200 kg M1载质量:300kg M2驾驶员质量:75kg 3、使用质量:M总=M0+ M2 =1825+75=1900 kg 4、质心位置

根据《GB/T 3871.15-2006 农业拖拉机试验规程第15部份:质心》标准要求进行计算: 空载时:质心至后支承点的距离A0=830mm 质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm 满载时:质心至后支承点的距离A0=605mm 质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm 5、稳定性计算 a 、保证拖拉机爬坡时不纵向翻倾的条件是: 00 h A >δ=0.7 (δ为滑转率) 空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。 b 、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是: h a 2>δ=0.7 a —轨距, a =1200mm h —质心至地面距离mm 空载:12002450 ?=1.33>0.7 满载:12002546 ?=1.10>0.7 故拖拉机在空、满载运行中均能满足稳定性要求。 三、发动机匹配 根据《GB/T 1147.1-2007 中小功率内燃机第1 部份:通用技术条件》标准要求进行计算: XJ —782LT 履带式拖拉机配套用昆明云内发动机,型号为:YN38GB2型柴油机,标定功率为57kW/h ,转速为2600r/min.

公路路线设计规范附件

附件 公路路线设计规范 (JTG D20 - 2006) 条文说明

1总则 1.0.1 制定规范的目的。 1.0.2 制定规范的依据。 遵照交通部要求,本次修订《公路路线设计规范》(JTJ 011 - 94)[以下简称《路规》(94)]工作与修订《公路工程技术标准》(JTJ 01 - 97)[以下简称《标准》(97)]同步进行,故本稿是根据《公路工程技术标准》(JTG B01 - 2003)[以下简称《标准》(2003)]所规定的公路分级、控制要素、路线和路线交叉基本要求及其主要技术指标而编制的。 在2004年召开的全国公路勘察设计工作会上确立了公路设计六点新理念,本稿遵照会议精神进行了补充、完善。其后按部公路司关于设计规范与设计细则分别编制以及交公便字[2006]162号“关于《公路路线设计规范》修改意见的函”等的要求,重新进行了调整与修改,删除了本设计规范中有关“如何做”等方面的内容。 1.0.3 规范的适用范围。 本规范适用于新建和改建公路,旅游、厂矿等专用道路可参照执行。 1.0.4 路线走廊是一种不可再生的资源,应遵照统筹规划、合理布局、近远结合、综合利用的原则予以利用。工程可行性研究阶段应慎重研究并确定公路路线走向和走廊带。路线设计应综合考虑各种相关线性工程的关系,尽早做出规划,处理好已建工程和新建工程的关系和布局。在确定公路等级时应根据公路功能,并遵循照顾发展与适度超前的原则,处理好同其他工程的关系,以合理确定公路走廊。 1.0.5 设计方案是路线设计的核心。在进行总体设计过程中,应对采用不同设计速度及其对自然环境等带来的影响进行论证。当有多种方案时,应作同等深度的技术经济比较。 1.0.6 路线选定应特别强调对工程地质等自然条件的调查,在此基础上方能进行路线线位及主要平、纵面技术指标的选定。 “沿线小区域气候”是指公路沿线由于区域地形所形成的雾区、风口、暴雨中心等。

我国常用汽车路面设计参数

第三章水泥混凝土路面交通参数的调查与分析 §3-1 交通荷载调查方法 汽车是路基路面的服务对象,路基路面的主要功能是长期保证车辆快速、安全、平稳地通行。汽车荷载又是造成路基路面结构损伤的主要成因,而且,车辆荷载的作用又是影响路面使用寿命的关键因素之—。因此,为了保证设计的路基路面结构达到预计的功能,具有良好的结构性能,车辆荷载是路面设计时考虑的重要因素。影响路面设计的车辆荷载作用的参数主要是:设计使用期内标准轴载的累计作用次数。为此,需采集交通量和轴载方面的数据,预测设计使用期内的交通增长,进行标准轴载作用次数的当量换算等交通分析。 首先应对行驶的汽车作调查分析,包括汽车轮重与轴重的大小与特性;不同车型车轴的布置等。 一、车辆的种类 道路上通行的汽车车辆主要分为客车与货车两大类。 客车又分为小客车、中客车与大客车。小客车自身重量与满载总重都比较轻,但车速高,一般可达120km/h,有的高档小车可达200km/h以上;中客车一般包括6个座位至20个座位的中型客车;大客车一般是指20个座位以上的大型客车(包括铰接车和双层客车),主要用于长途客运与城市公共交通。 货车又分为整车、牵引式挂车和牵引式半挂车。整车的货厢与汽车发动机为一整体;牵引式挂车的牵引车与挂车是分离的,牵引车提供动力,牵引后挂的挂车,有时可以拖挂两辆以上的挂车;牵引式半挂车的牵引车与挂车也是分离的,但是通过铰接相互连接,牵引车的后轴也担负部分货车的重量,货车厢的后部有轮轴系统,而前部通过铰接悬挂在牵引车上。货车总的发展趋向是向大吨位发展,特别是集装箱运输水陆联运业务开展之后,货车最大吨位已超过40—50t。 在交通调查中,一般将汽车分为十类:即小型客车、大型客车、小型载货汽车、中型载货汽车、中型载货自卸汽车、中型载货特种汽车、大型载货自卸汽车、大型载货特种汽车、载货拖拉机、大型载货汽车。每种汽车应属于何种分类,交通部工管司提供了交通调查分类图。交通调查时,只要先熟悉每种汽车应属于何种类型,便可得出某断面昼夜混合汽车交通量。 汽车的总重量通过车轴与车轮传递给路面,所以路面结构的设计主要以轴重作为荷载标准,在道路上行驶的多种车辆的组合中,重型货车与大客车起决定作用,轻型货车与中、小客车影响很小,有时可以不计。 路面结构设计与验算使用的交通量是标准轴载累计作用次数。实际计算时,对沥青路面,只将轴载大于2.5KN的汽车计入。但是在考虑路面表面特性要求时,如平整性、抗滑性等,以小汽车为主要对象,因为小车的行驶速度高,所以要求在高速行车条件下具有良好的平稳性与安全性。 二、汽车的轴型 车辆的全部质量都是通过车轮传给路面的。车辆停放在路面上时,车轮传给路面的荷载是静荷载。静荷载的大小与车辆总质量及轮轴的型式有关。 由于作用在路面的设计荷载千变万化,一般选用一种轴载作为路面结构设计的标准轴载,其它各种轴载按照一定的原则换算成标准轴载。而标准轴载一般要求对路面的响应较大、同时又能反映本国公路运输运营车辆的总体轴载水平。 为了统一设计标准和便于交通管理,各个国家对于轴重的最大限度均有明确的规定。据国际道路联合会1989年公布的统计数据,在141个成员国和地区中,轴限最大的为140kN,近40%执行100kN轴限。我国根据公路运输运营车辆的实际,公路与城市道路相关路面设计规范中均以100KN作为设计标准轴重,通常认为我国的道路车辆轴限为100kN。美国为

乘用车总体设计计算参数

汽车总体设计、计算参数 一、外形尺寸参数 1、轴距L 2、前后轮距B1与B2 3、汽车的外廓尺寸 总长、总宽、总高 GB 1589-79 4、汽车的前悬L F和后悬L R 由总布置最后确定(保证足够的接近角和离去角) (前悬处要布置发动机、水箱、弹簧前支架、保险杠、转向器等) 二、质量参数 1、汽车的装载量m G 轿车是指载客量,即座位数。 2、汽车的整备质量m0 总体设计初,可对同类型同级别且结构相似的样车及部件的质量进行测定分析,并以此为基础初步估算出新设计车个部件的质量及整车整备质量。 3、汽车的总质量m a 整备质量、载客量、行李质量m B、附加设备m F (每人按65kg计,行李质量(轿车)每人5~10kg) 4、轴荷分配 它对汽车的牵引性、通过性、制动性、操纵性和稳定性等主要使用性能以及轮胎的使用寿命都有很大影响。 轴荷分配对前后轮胎的磨损有直接影响。 三、主要性能参数 1、汽车动力性参数 汽车的动力性参数主要有直接档和I档最大动力因数、最高车速、加速时间、汽车的比功率和比转矩等。 1)直接档最大动力因数D0 max 2)I档最大动力因数D I max D I max直接影响汽车的最大爬坡能力和通过困难路段的能力以及起步并连续换档时的加速能力。它主要取决于所要求的最大爬坡度和附着条件。

3)最高车速V a max 以汽车行驶的功率平衡来确定。 GB/T 12544-90 汽车最高车速试验方法 4)汽车的比功率和比转矩 这两个参数分别表示发动机最大功率和最大转矩与汽车总质量之比。 5)加速时间 “0—100km/h”或“0—80km/h”的换档加速时间。 GB/T 12543-90汽车加速性能试验方法 表二动力性计算需要的数据

相关文档
最新文档