2019高考数学一轮总复习第9章平面解析几何第一节直线与方程模拟创新题文1
2019年高考数学(理)一轮复习精品课时练习:第九章 解析几何 Word版含解析
2019年高考数学(理)一轮复习精品课时练习第九章解析几何第一节直线与方程本节主要包括3个知识点:1.直线的倾斜角与斜率、两直线的位置关系;2.直线的方程;3.直线的交点、距离与对称问题.突破点(一)直线的倾斜角与斜率、两直线的位置关系[基本知识]1.直线的倾斜角(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l倾斜角的范围是[0,π).2.直线的斜率公式(1)定义式:若直线l的倾斜角α≠π2,则斜率k=tan_α.(2)两点式:P1(x1,y1),P2(x2,y2)在直线l上,且x1≠x2,则l的斜率k=y2-y1 x2-x1.3.两条直线平行与垂直的判定[基本能力]1.判断题(1)根据直线的倾斜角的大小不能确定直线的位置.()(2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( )(4)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (5)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) 答案:(1)√ (2)× (3)× (4)× (5)× 2.填空题(1)若过两点A (-m,6),B (1,3m )的直线的斜率为12,则m =________. 答案:-2(2)如图中直线l1,l 2,l 3的斜率分别为k 1,k 2,k 3,则k 1,k 2,k 3的大小关系为________.解析:设l 1,l 2,l 3的倾斜角分别为α1,α2,α3.由题图易知0<α3<α2<90°<α1<180°,∴tan α2>tan α3>0>tan α1,即k 2>k 3>k 1.答案:k 2>k 3>k 1(3)已知直线l 1:x =-2,l 2:y =12,则直线l 1与l 2的位置关系是________.答案:垂直(4)已知直线l 1:ax +(3-a )y +1=0,l 2:x -2y =0.若l 1⊥l 2,则实数a 的值为________. 解析:由题意,得a a -3=-2,解得a =2.答案:2[全析考法]1.直线都有倾斜角,但不一定都有斜率,二者的关系具体如下:2.tan α的单调性,如图所示:(1)当α取值在⎣⎡⎭⎫0,π2内,由0增大到π2⎝⎛⎭⎫α≠π2时,k 由0增大并趋向于正无穷大;(2)当α取值在⎝⎛⎭⎫π2,π内,由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 由负无穷大增大并趋近于0. 解决此类问题,常采用数形结合思想.[例1] (1)直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π (2)已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.[解析] (1)因为直线x sin α+y +2=0的斜率k =-sin α,又-1≤sin α≤1,所以-1≤k ≤1.设直线x sin α+y +2=0的倾斜角为θ,所以-1≤tan θ≤1,而θ∈[0,π),故倾斜角的取值范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. (2)如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k PA =-2,k l =-1m .∴-1m ≤-2或-1m ≥32.解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为⎣⎡⎦⎤-23,12. [答案] (1)B (2)⎣⎡⎦⎤-23,12 [易错提醒]直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).两直线的位置关系两直线位置关系的判断方法(1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合.[例2] (1)已知直线l 1:3x +2ay -5=0,l 2:(3a -1)x -ay -2=0,若l 1∥l 2,则a 的值为( )A .-16B .6C .0D .0或-16(2)已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.[解析] (1)由l 1∥l 2,得-3a -2a (3a -1)=0,即6a 2+a =0,所以a =0或a =-16,经检验都成立.故选D.(2)l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa=-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] (1)D (2)1或0 [方法技巧]已知两直线一般方程的两直线位置关系的表示到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.[全练题点]1.[考点一]设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线的倾斜角α的取值范围是( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,即切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 2.[考点一]直线l 过点A (1,2),且不经过第四象限,则直线l 的斜率的取值范围为( ) A.⎣⎡⎦⎤0,12 B .[0,1] C .[0,2]D.⎝⎛⎭⎫0,12 解析:选C 因为直线过点A (1,2),且不经过第四象限,作出图象,如图所示,当直线位于如图所示的阴影区域内时满足条件,由图可知,当直线l 过A 且平行于x 轴时,斜率取得最小值,k min =0;当直线l 过A (1,2),O (0,0)时,斜率取得最大值,k max =2,所以直线l 的斜率的取值范围是[0,2].故选C.3.[考点二]若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为( )A .-1B .0C .1D .2解析:选C ∵直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,∴⎩⎪⎨⎪⎧-m +(2-m )=0,m +2(2-m )≠0,解得m =1.故选C. 4.[考点二]直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则n 的值为( )A .-12B .-14C .10D .8解析:选A 由直线mx +4y -2=0与直线2x -5y +n =0垂直,得2m -20=0,m =10,直线10x +4y -2=0过点(1,p ),有10+4p -2=0,解得p =-2,点(1,-2)又在直线2x -5y +n =0上,则2+10+n =0.解得n =-12.故选A.5.[考点二](2018·温州五校联考)已知直线l 1:ax +2y +6=0,l 2:x +(a -1)y +a 2-1=0,若l 1⊥l 2,则a =________.解析:因为直线l 1:ax +2y +6=0与l 2:x +(a -1)y +a 2-1=0垂直,所以a ·1+2·(a -1)=0,解得a =23.答案:23突破点(二) 直线的方程[基本知识]直线方程的五种形式[基本能力]1.判断题(1)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( )(2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )(3)不经过原点的直线都可以用x a +yb =1表示.( )答案:(1)× (2)√ (3)× 2.填空题(1)直线l 经过点(0,1)且倾斜角为60°,则直线l 的方程为________________. 解析:∵k =tan 60°=3,又直线l 过点(0,1), ∴由点斜式方程得,y -1=3(x -0). 即3x -y +1=0. 答案:3x -y +1=0(2)经过点A (2,-3),倾斜角等于直线y =x 的2倍的直线方程为________________. 解析:直线y =x 的斜率k =1,故倾斜角为π4,所以所求的直线的倾斜角为π2,则所求的直线方程为x =2.答案:x =2(3)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =____________. 解析:显然a =0不符合题意,当a ≠0时,令x =0,则l 在y 轴的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a,解得a =1或a =-2.答案:1或-2[全析考法]求直线方程[例1] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程; (3)求过A (2,1),B (m,3)两点的直线l 的方程.[解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程, 解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2, 解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (3)①当m =2时,直线l 的方程为x =2; ②当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,代入方程2x -(m -2)y +m -6=0,即为x =2, 所以直线l 的方程为2x -(m -2)y +m -6=0.[易错提醒](1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应先判断截距是否为零).与直线方程有关的最值问题[例2] (1)已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.(2)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.[解析] (1)由题得A (2,0),B (0,1),由动点P (a ,b )在线段AB 上,可知0≤b ≤1, 且a +2b =2,从而a =2-2b ,故ab =(2-2b )b =-2b 2+2b =-2⎝⎛⎭⎫b -122+12. 由于0≤b ≤1,故当b =12时,ab 取得最大值12.(2)易求定点A (0,0),B (1,3). 当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB , 所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.[答案] (1)12 (2)5[方法技巧]与直线方程有关的最值问题的解题思路(1)借助直线方程,用y 表示x 或用x 表示y . (2)将问题转化成关于x (或y )的函数. (3)利用函数的单调性或基本不等式求最值.[全练题点]1.[考点一]直线3x -y =0绕原点逆时针旋转90°,再向右平移1个单位长度,所得直线的方程为( )A .x +3y -3=0B .x +3y -1=0C .3x -y -3=0D .x -3y +3=0解析:选B 直线y =3x 绕原点逆时针旋转90°,得y =-13x ,再向右平移1个单位长度,得y =-13(x -1),即x +3y -1=0.2.[考点二]已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8B .2 2 C. 2 D .16解析:选A ∵点P (x ,y )在直线x +y -4=0上,∴y =4-x ,∴x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.3.[考点二]当k >0时,两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形面积的最大值为________.解析:直线2x +ky -2=0与x 轴交于点(1,0).由⎩⎪⎨⎪⎧kx -y =0,2x +ky -2=0,解得y =2kk 2+2,所以两直线kx -y =0,2x +ky -2=0与x 轴围成的三角形的面积为12×1×2k k 2+2=1k +2k ,又k +2k≥2k ·2k =22,故三角形面积的最大值为24. 答案:244.[考点二](2018·苏北四市模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)-2b =0,即2b +3a =ab ,2a +3b=1.又a ,b 为正数,所以2a +3b =(2a +3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:255.[考点一]△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 所在直线的方程. 解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点, 由截距式得AD 所在直线的方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则BC 的垂直平分线DE 的斜率k 2=2.由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0),即2x -y +2=0.突破点(三) 直线的交点、距离与对称问题[基本知识]1.两条直线的交点2.三种距离[基本能力]1.判断题(1)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (2)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( ) (3)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(4)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB的中点在直线l 上.( )答案:(1)√ (2)× (3)√ (4)√ 2.填空题(1)两条直线l 1:2x +y -1=0和l 2:x -2y +4=0的交点为________.解析:由⎩⎪⎨⎪⎧2x +y -1=0,x -2y +4=0,可解得⎩⎨⎧x =-25,y =95.所以两直线交点坐标为⎝⎛⎭⎫-25,95. 答案:⎝⎛⎭⎫-25,95 (2)原点到直线x +2y -5=0的距离是________. 解析:d =|0+0-5|5= 5.答案: 5(3)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________. 解析:由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1. 答案:2-1(4)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.答案:2[全析考法]交点问题[例1] (1)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.[解析] (1)由⎩⎪⎨⎪⎧ kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1.又∵0<k <12,∴x =k k -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.(2)解方程组⎩⎪⎨⎪⎧ 2x -y =-10,y =x +1,可得⎩⎪⎨⎪⎧x =-9,y =-8,所以交点坐标为(-9,-8),代入y =ax -2,得-8=a ·(-9)-2,所以a =23.[答案] (1)B (2)23[方法技巧]1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程联立组成的方程组,得到的方程组的解,即交点的坐标.2.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.距离问题[例2] (1)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295(2)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为_____________________________.[解析] (1)因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)设所求直线的方程为y -4=k (x -3), 即kx -y -3k +4=0,由已知及点到直线的距离公式可得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,解得k =2或k=-23,即所求直线的方程为2x +3y -18=0或2x -y -2=0. [答案] (1)C (2)2x +3y -18=0或2x -y -2=0[易错提醒](1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |; (2)利用两平行线间的距离公式要先把两直线方程中x ,y 的系数化为对应相等.对称问题1若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得{ x =2a -x 1,y =2b -y 1,进而求解2.轴对称问题的两种类型及求解方法若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎨⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2) (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. [解] (1)设A ′(x ,y ),由已知 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0. (3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),因为P ′在直线l 上, 所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.[方法技巧]解决两类对称问题的关键解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键要抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.[全练题点]1.[考点一]过点⎝⎛⎭⎫65,-25且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -⎝⎛⎭⎫-25=-2⎝⎛⎭⎫x -65,即2x +y -2=0.故选C. 2.[考点三]点P (2,5)关于直线x +y =0对称的点的坐标是( )A .(5,2)B .(2,-5)C .(-5,-2)D .(-2,-5)解析:选C 设P (2,5)关于直线x +y =0的对称点为P 1,则PP 1的中点应在x +y =0上,可排除A ,B ;而(-2,-5)与P (2,5)显然关于原点对称,而不关于直线x +y =0对称.故选C.3.[考点二]若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 B. 2 C .3 2D .2 3解析:选C 点M 在直线x +y -6=0上,到原点的最小距离等价于原点O (0,0)到直线x +y -6=0的距离,即d =|0+0-6|12+12=62=3 2.故选C.4.[考点二]已知A (-2,1),B (1,2),点C 为直线y =13x 上的动点,则|AC |+|BC |的最小值为( )A .2 2B .2 3C .2 5D .27解析:选C设B 关于直线y =13x 的对称点为B ′(x 0,y 0),则⎩⎪⎨⎪⎧y 0-2x 0-1=-3,y 0+22=13×x 0+12,解得B ′(2,-1).由平面几何知识得|AC |+|BC |的最小值即是|B ′A |=(2+2)2+(-1-1)2=2 5.故选C.5.[考点二]已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为__________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-796.[考点一]经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________________.解析:法一:由方程组⎩⎪⎨⎪⎧ x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).∵l ⊥l 3,直线l 3的斜率为34,∴直线l 的斜率k 1=-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.法二:设直线l 的方程为x -2y +4+λ(x +y -2)=0,则其可化为(1+λ)x +(λ-2)y +(4-2λ)=0,因为直线l 与直线l 3:3x -4y +5=0垂直,所以3(1+λ)-4(λ-2)=0,解得λ=11.则直线l 的方程为12x +9y -18=0,即4x +3y -6=0.答案:4x +3y -6=0[全国卷5年真题集中演练——明规律]1.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3D .2解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.2.(2013·全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎦⎤1-22,13 D.⎣⎡⎭⎫13,12解析:选B 法一:(1)当直线y =ax +b 与AB ,BC 相交时,如图①所示.易求得:x M =-b a ,y N =a +b a +1.由已知条件得:⎝⎛⎭⎫1+b a ·a +b a +1=1,∴a =b 21-2b .∵点M 在线段OA 上,∴-1<-ba <0,∴0<b <a .∵点N 在线段BC 上,∴0<a +b a +1<1,∴b <1.由⎩⎪⎨⎪⎧b 21-2b>b ,b21-2b >0,b >0,解得13<b <12.(2)当直线y =ax +b 与AC ,BC 相交时,如图②所示. 设MC =m ,NC =n ,则S △MCN =12mn =12,∴mn =1.显然,0<n <2,∴m =1n >22.又0<m ≤2且m ≠n .∴22<m ≤2且m ≠1. 设D 到AC ,BC 的距离为t ,则t m =DN MN ,t n =DM MN ,∴t m +t n =DN MN +DM MN=1. ∴t =mn m +n ,∴1t =1m +1n =1m +m .而f (m )=m +1m ⎣⎡⎭⎫22<m ≤2且m ≠1的值域为⎝⎛⎦⎤2,322, 即2<1t ≤322,∴23≤t <12.∵b =1-CD =1-2t ,∴1-22<b ≤13. 综合(1)、(2)可得:1-22<b <12. 法二:由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b>0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为B.[课时达标检测][小题对点练——点点落实]对点练(一) 直线的倾斜角与斜率、两直线的位置关系 1.直线x +3y +1=0的倾斜角是( )A.π6B.π3C.2π3D.5π6解析:选D 由直线的方程得直线的斜率为k =-33,设倾斜角为α,则tan α=-33,所以α=5π6.2.三条直线l 1:x -y =0,l 2:x +y -2=0,l 3:5x -ky -15=0构成一个三角形,则k 的取值范围是( )A .k ∈RB .k ∈R 且k ≠±1,k ≠0C .k ∈R 且k ≠±5,k ≠-10D .k ∈R 且k ≠±5,k ≠1解析:选C 由l 1∥l 3得k =5;由l 2∥l 3得k =-5;由x -y =0与x +y -2=0得x =1,y =1,若(1,1)在l 3上,则k =-10.故若l 1,l 2,l 3能构成一个三角形,则k ≠±5且k ≠-10.故选C.3.(2018·山东省实验中学月考)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C 的位置关系是________.解析:由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a ,bx -sin B ·y +sin C =0的斜率k 2=b sin B ,故k 1k 2=-sin A a ·bsin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y+sin C =0垂直.答案:垂直4.若直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.解析:设直线l 的斜率为k ,则直线方程为y -2=k (x -1), 在x 轴上的截距为1-2k ,令-3<1-2k <3,解得k <-1或k >12.故其斜率的取值范围为(-∞,-1)∪⎝⎛⎭⎫12,+∞. 答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞对点练(二) 直线的方程1.两直线x m -y n =a 与x n -ym =a (其中a 是不为零的常数)的图象可能是( )解析:选B 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号,故选B.2.过点(2,1),且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2解析:选A ∵直线y =-x -1的斜率为-1,则倾斜角为34π.依题意,所求直线的倾斜角为3π4-π4=π2,∴其方程为x =2.3.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析:选D 设点B 的坐标为(a,0)(a >0),由OA =AB ,得12+32=(1-a )2+(3-0)2,则a =2. ∴点B (2,0).易知k AB =-3,由两点式,得AB 的方程为y -3=-3(x -1).4.(2018·北京西城区月考)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=05.已知直线l 过点P (2,-1),在x 轴和y 轴上的截距分别为a ,b ,且满足a =3b .则直线l 的方程为__________________.解析:①若a =3b =0,则直线过原点(0,0), 此时直线斜率k =-12,直线方程为x +2y =0.②若a =3b ≠0,设直线方程为x a +y b =1,即x 3b +yb =1.因为点P (2,-1)在直线上,所以b =-13.从而直线方程为-x -3y =1,即x +3y +1=0. 综上所述,所求直线方程为x +2y =0或x +3y +1=0. 答案:x +2y =0或x +3y +1=0对点练(三) 直线的交点、距离与对称问题1.若点P (a ,b )与Q (b -1,a +1)关于直线l 对称,则直线l 的倾斜角α为( ) A .135° B .45° C .30°D .60°解析:选B 由题意知,PQ ⊥l ,∵k PQ =a +1-bb -1-a =-1,∴k l =1,即tan α=1,∴α=45°.故选B.2.已知点A (1,-2),B (m,2)且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1解析:选C 因为线段AB 的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,代入解得m =3.3.P 点在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则P 点坐标为( ) A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,解得x =1或x =2,故P (1,2)或(2,-1).4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B 直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2恒过定点(0,2).5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c +2a 的值为________.解析:由题意得,63=a-2≠c -1,∴a =-4,c ≠-2.则6x +ay +c =0可化为3x -2y +c2=0.∴21313=⎪⎪⎪⎪⎪⎪⎪⎪c2+113,∴c +2=±4,∴c +2a =±1. 答案:±16.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4), ∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)7.过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为_________________.解析:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,∴l 1与l 2交点为(1,2),设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,解得k =0或k =43,∴直线方程为y =2或4x -3y +2=0. 答案:y =2或4x -3y +2=0[大题综合练——迁移贯通]1.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a ,|ab |=⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2.2.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标; (2)当点P 到直线l 的距离最大时,求直线l 的方程.解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,所以直线l 恒过定点(-2,3). (2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大. 又直线PA 的斜率k PA =4-33+2=15,所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.3.过点P (4,1)作直线l 分别交x ,y 轴正半轴于A ,B 两点. (1)当△AOB 面积最小时,求直线l 的方程; (2)当|OA |+|OB |取最小值时,求直线l 的方程. 解:设直线l :x a +yb =1(a >0,b >0), 因为直线l 经过点P (4,1),所以4a +1b =1. (1)因为4a +1b =1≥24a ·1b =4ab, 所以ab ≥16,当且仅当a =8,b =2时等号成立, 所以当a =8,b =2时,S △AOB =12ab 最小,此时直线l 的方程为x 8+y2=1,即x +4y -8=0.(2)因为4a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫4a +1b =5+a b +4b a≥5+2 a b ·4ba=9, 当且仅当a =6,b =3时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x 6+y3=1,即x +2y -6=0.第二节 圆的方程本节主要包括2个知识点: 1.圆的方程; 2.与圆的方程有关的综合问题.突破点(一) 圆的方程[基本知识]1.圆的定义及方程点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.[基本能力]1.判断题(1)确定圆的几何要素是圆心与半径.( )(2)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝⎛⎭⎫-a 2,-a ,半径为12-3a 2-4a +4的圆.( )(4)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( )答案:(1)√ (2)× (3)× (4)√ (5)√ 2.填空题(1)圆x 2+y 2-4x +8y -5=0的圆心为________,半径为________. 解析:圆心坐标为(2,-4), 半径r =12(-4)2+82-4×(-5)=5.答案:(2,-4) 5(2)圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________________.解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C的标准方程为x2+(y-3)2=2.答案:x2+(y-3)2=2(3)若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是________.解析:因为点(1,1)在圆(x-a)2+(y+a)2=4的内部,所以(1-a)2+(1+a)2<4.即a2<1,故-1<a<1.答案:(-1,1)[全析考法]1.求圆的方程的两种方法(1)圆心在过切点且与切线垂直的直线上.(2)圆心在圆的任意弦的垂直平分线上.(3)两圆相切时,切点与两圆圆心共线.[例1](1)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________________.(2)已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________________.(3)若不同的四点A(5,0),B(-1,0),C(-3,3),D(a,3)共圆,则a的值为________.[解析](1)依题意,设圆心坐标为C(a,0),则|CA|=|CB|,即(a-5)2+(0-1)2=(a-1)2+(0-3)2,则a=2.故圆心为(2,0),半径为10,所以圆C的方程为(x-2)2+y2=10.(2)过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8.(3)法一:设过A ,B ,C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0, 分别代入A ,B ,C 三点坐标,得⎩⎪⎨⎪⎧25+5D +F =0,1-D +F =0,9+9-3D +3E +F =0,解得⎩⎪⎨⎪⎧D =-4,E =-253,F =-5.所以A ,B ,C 三点确定的圆的方程为x 2+y 2-4x -253y -5=0.因为D (a,3)也在此圆上,所以a 2+9-4a -25-5=0. 所以a =7或a =-3(舍去).即a 的值为7.法二:由题易知AB ∥CD ,所以圆的一条对称轴既是AB 的垂直平分线又是CD 的垂直平分线,而AB 的垂直平分线方程为x =2,故-3+a2=2,解得a =7.[答案] (1)(x -2)2+y 2=10 (2)(x -1)2+(y +4)2=8 (3)7 [方法技巧]1.确定圆的方程必须有三个独立条件不论是圆的标准方程还是一般方程,都有三个字母(a,b ,r 或D ,E ,F )的值需要确定,因此需要三个独立的条件.利用待定系数法得到关于a ,b ,r (或D ,E ,F )的三个方程组成的方程组,解之得到待定字母系数的值,从而确定圆的方程.2.几何法在圆中的应用在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.与圆有关的对称问题1.圆的轴对称性圆关于直径所在的直线对称. 2.圆关于点对称(1)求已知圆关于某点对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某点对称,则此点为两圆圆心连线的中点. 3.圆关于直线对称(1)求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置. (2)两圆关于某条直线对称,则此直线为两圆圆心连线的垂直平分线. [例2] (2018·河南六市模拟)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4[解析] 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ), 则⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得⎩⎪⎨⎪⎧a =1,b =3,∴圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(1,3), 从而所求圆的方程为(x -1)2+(y -3)2=4. [答案] D[全练题点]1.[考点一]圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 圆的半径r =(1-0)2+(1-0)2=2,圆心坐标为(1,1),所以圆的标准方程为(x -1)2+(y -1)2=2.2.[考点一](2018·福建厦门质检)圆C 与x 轴相切于T (1,0),与y 轴正半轴交于两点A ,B ,且|AB |=2,则圆C 的标准方程为( )A .(x -1)2+(y -2)2=2B .(x -1)2+(y -2)2=2C .(x +1)2+(y +2)2=4D .(x -1)2+(y -2)2=4解析:选A 由题意得,圆C 的半径为1+1=2,圆心坐标为(1,2),∴圆C 的标准方程为(x -1)2+(y -2)2=2,故选A.3.[考点二]已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14B.⎝⎛⎭⎫0,14 C.⎝⎛⎭⎫-14,0 D.⎣⎡⎭⎫-14,+∞ 解析:选A 将圆的方程化成标准形式得(x +1)2+(y -2)2=4,若圆关于已知直线对称,则圆心(-1,2)在直线上,代入整理得a +b =1,故ab =a (1-a )=-⎝⎛⎭⎫a -122+14≤14,故选A. 4.[考点二]圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为________________.解析:圆心(1,0)关于直线y =-x 对称的点为(0,-1),所以圆C 的方程为x 2+(y +1)2=1.答案:x 2+(y +1)2=15.[考点二]若圆(x +1)2+(y -3)2=9上的相异两点P ,Q 关于直线kx +2y -4=0对称,则k 的值为________.解析:圆是轴对称图形,过圆心的直线都是它的对称轴.已知圆的圆心为(-1,3),由题设知,直线kx +2y -4=0过圆心,则k ×(-1)+2×3-4=0,解得k =2.答案:26.[考点一、二](2018·湖北襄阳四中模拟)已知点C (-1,0),以C 为圆心的圆与直线x -3y -3=0相切.(1)求圆C 的方程;(2)如果圆C 上存在两点关于直线mx +y +1=0对称,求m 的值. 解:(1)因为圆与直线相切, 所以圆心到直线的距离即为半径长.由题意,得圆心到直线的距离d =|-1-3|1+3=2,故所求圆的方程为(x +1)2+y 2=4.(2)因为圆C 上存在两点关于直线对称,所以直线过圆心C ,所以-m +1=0,解得m =1.突破点(二) 与圆的方程有关的综合问题 (对应学生用书P148)圆的方程是高中数学的一个重要知识点,高考中,除了圆的方程的求法外,圆的方程与其他知识的综合问题也是高考考查的热点,常涉及轨迹问题和最值问题.解决此类问题的关键是数形结合思想的运用.[全析考法]与圆有关的轨迹问题[例1] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ). 在R t △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.[方法技巧] 求与圆有关的轨迹问题的四种方法[例2] (1)yx 的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值.[解] 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率, 所以设yx =k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1= 3,解得k =±3. 所以yx 的最大值为3,最小值为- 3.(2)y -x 可看成是直线y =x +b 在y 轴上的截距.当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. (3)x 2+y 2表示圆上的一点与原点距离的平方.由平面几何知识知,x 2+y 2在原点和圆心的连线与圆的两个交点处分别取得最小值,最大值.因为圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43, 最小值是(2-3)2=7-4 3.[方法技巧] 与圆有关最值问题的求解策略。
近年高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程演练文(2021年整理)
2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第9章平面解析几何第1讲直线的倾斜角、斜率与直线方程分层演练文的全部内容。
第1讲直线的倾斜角、斜率与直线方程一、选择题1.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( )A.4x-3y-3=0 B.3x-4y-3=0C.3x-4y-4=0 D.4x-3y-4=0解析:选D.由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l:x-2y-2=0的斜率为错误!,则tan α=错误!,所以直线l的斜率k=tan 02α=错误!=错误!=错误!.所以由点斜式可得直线l的方程为y-0=错误!(x-1),即4x-3y-4=0.2.直线ax+by+c=0同时要经过第一、第二、第四象限,则a,b,c应满足()A.ab>0,bc<0 B.ab>0,bc>0C.ab<0,bc〉0 D.ab〈0,bc<0解析:选A.由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-错误!x-错误!.易知-错误!〈0且-错误!〉0,故ab>0,bc〈0.3.两直线错误!-错误!=a与错误!-错误!=a(其中a为不为零的常数)的图象可能是( )解析:选B.直线方程错误!-错误!=a可化为y=错误!x-na,直线错误!-错误!=a可化为y=错误!x-ma,由此可知两条直线的斜率同号.4.已知直线x+a2y-a=0(a〉0,a是常数),当此直线在x,y轴上的截距之和最小时,a的值是( )A.1 B.2 C.错误!D.0解析:选A.直线方程可化为xa+错误!=1,因为a>0,所以截距之和t=a+错误!≥2,当且仅当a=错误!,即a=1时取等号.5.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是()A.[-2,2]B.(-∞,-2]∪[2,+∞)C.[-2,0)∪(0,2]D.(-∞,+∞)解析:选C.令x=0,得y=错误!,令y=0,得x=-b,所以所求三角形的面积为错误!错误!|-b|=错误!b2,且b≠0,错误!b2≤1,所以b2≤4,所以b的取值范围是[-2,0)∪(0,2].6.若直线错误!+错误!=1(a>0,b>0)过点(1,1),则a+b的最小值等于( )A.2 B.3C.4 D.5解析:选C.将(1,1)代入直线错误!+错误!=1,得错误!+错误!=1,a >0,b>0,故a+b=(a+b)(错误!+错误!)=2+错误!+错误!≥2+2=4,等号当且仅当a=b时取到,故选C.二、填空题7.直线l过原点且平分▱ABCD的面积,若平行四边形的两个顶点为B (1,4),D(5,0),则直线l的方程为________.解析:直线l平分平行四边形ABCD的面积,则直线l过BD的中点(3,2),则直线l:y=23 x.答案:y=错误!x8.过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为________.解析:(1)当直线过原点时,直线方程为y=-错误!x;(2)当直线不过原点时,设直线方程为错误!+错误!=1,即x-y=a.代入点(-3,5),得a=-8.即直线方程为x-y+8=0.答案:y=-53x或x-y+8=09.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.解析:直线l的方程变形为a(x+y)-2x+y+6=0,由{x+y=0,,-2x+y+6=0解得x=2,y=-2,所以直线l恒过定点(2,-2).答案:(2,-2)10.已知直线l:x-my+错误!m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB之积为3,则实数m的取值范围是____________.解析:设M(x,y),由k MA·k MB=3,得错误!·错误!=3,即y2=3x2-3.联立错误!得错误!x2+错误!x+6=0.要使直线l:x-my+错误!m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB之积为3,则Δ=错误!错误!-24错误!≥0,即m2≥错误!.所以实数m的取值范围是错误!∪错误!.答案:错误!∪错误!三、解答题11.已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(-3,4);(2)斜率为错误!.解:(1)设直线l的方程为y=k(x+3)+4,它在x轴,y轴上的截距分别是-错误!-3,3k+4,由已知,得(3k+4)×错误!=±6,解得k1=-错误!或k2=-错误!.故直线l的方程为2x+3y-6=0或8x+3y+12=0.(2)设直线l在y轴上的截距为b,则直线l的方程是y=16x+b,它在x轴上的截距是-6b,由已知,得|-6b·b|=6,所以b=±1.所以直线l的方程为x-6y+6=0或x-6y-6=0.12.如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=错误!x 上时,求直线AB的方程.解:由题意可得k OA=tan 45°=1,k OB=tan(180°-30°)=-错误!,所以直线l OA:y=x,l OB:y=-错误!x.设A(m,m),B(-3n,n),所以AB的中点C错误!,由点C在直线y=错误!x上,且A,P,B三点共线得错误!解得m=3,所以A(错误!,错误!).又P(1,0),所以k AB=k AP=错误!=错误!,所以l AB:y=错误!(x-1),即直线AB的方程为(3+错误!)x-2y-3-错误!=0.1.直线l过点P(1,4),分别交x轴的正半轴和y轴的正半轴于A、B 两点,O为坐标原点,当|OA|+|OB|最小时,求l的方程.解:依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A 错误!;令x =0,可得B (0,4-k ).|OA |+|OB |=()1-4k +(4-k )=5-错误!=5+错误!≥5+4=9.所以当且仅当-k =错误!且k 〈0,即k =-2时,|OA |+|OB |取最小值.这时l 的方程为2x +y -6=0.2.如图,在矩形ABCD 中,AB =6,AD =4,矩形内的点M 到AB 与AD 的距离分别为1和错误!,过M 的直线交AB 、AD 分别为P 、Q ,求错误!·错误!的最大值及取最大值时P 、Q 的位置.解:分别以AB 和AD 所在的直线为x 轴与y 轴,建立直角坐标系xAy .则M 错误!,C (6,4).设P (a ,0),Q (0,b )(a 〉0,b 〉0),则直线PQ 的方程为错误!+错误!=1,所以错误!+错误!=1,错误!·错误!=(a -6,-4)·(-6,b -4)=-(6a +4b )+52. 又错误!(6a +4b )=13+6错误!≥13+6×2错误!=25.所以6a +4b ≥25,当且仅当a =b 且错误!+错误!=1,即a =b =错误!时,6a +4b 取得最小值25.所以错误!·错误!≤-25+52=27.所以,当AP =AQ =错误!时,错误!·错误!的最大值为27.。
高考数学一轮复习 第九章 平面解析几何9 (1)
高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。
2019版高考数学一轮复习训练: 基础与考点过关 第九章 平面解析几何
第九章 平面解析几何1. (原创)设m 为常数,则过点A (2,-1),B (2,m )的直线的倾斜角是 W. 答案:90°解析:因为过点A (2,-1),B (2,m )的直线x =2垂直于x 轴,故其倾斜角为90°. 2. (必修2P 80练习1改编)若过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为 W.答案:1解析:由1=4-mm +2,得m +2=4-m ,解得m =1.3. (原创)若直线l 的斜率k 的变化范围是[-1,3],则它的倾斜角的变化范围是 W.答案:⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π 解析:由-1≤k≤3,即-1≤tan α≤3,∴ α∈⎣⎢⎡⎦⎥⎤0,π3∪⎣⎢⎡⎭⎪⎫3π4,π.4. (必修2P 80练习6改编)已知两点A (4,0),B (0,3),点C (8,a )在直线AB 上,则a = W.答案:-3解析:由k AB =k BC 得3-4=a -38,解得a =-3.5. (必修2P 80练习4改编)若直线l 沿x 轴的负方向平移2个单位,再沿y 轴的正方向平移3个单位后,又回到原来的位置,则直线l 的斜率为 W.答案:-32解析:设直线上任一点为(x ,y ),平移后的点为(x -2,y +3),利用斜率公式得直线l 的斜率为-32.1. 直线倾斜角的定义 在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴所在的直线绕着交点按逆时针方向旋转至和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°;直线的倾斜角α的取值范围是[0,π)W.2. 直线斜率的定义倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.直线的斜率常用k 表示,即k =tan α.由正切函数的单调性可知,倾斜角不同的直线其斜率也不同.3. 过两点的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)的直线,当x 1≠x 2时,斜率公式为k =tan α=y 2-y 1x 2-x 1,该公式与两点的顺序无关;当x 1=x 2时,直线的斜率不存在,此时直线的倾斜角为90°W.[备课札记], 1 直线的倾斜角和斜率之间的关系), 1) 如果三条直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,其中l 1:x-y =0,l 2:x +2y =0,l 3:x +3y =0,则α1,α2,α3从小到大的排列顺序为 W.答案:α1<α2<α3解析:由tan α1=k 1=1>0,所以α1∈⎝ ⎛⎭⎪⎫0,π2.tan α2=k 2=-12<0,所以α2∈⎝ ⎛⎭⎪⎫π2,π,α2>α1.tan α3=k 3=-13<0,所以α3∈⎝ ⎛⎭⎪⎫π2,π,α3>α1,而-12<-13,正切函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,所以α3>α2.综上,α1<α2<α3.变式训练已知经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 的值为 W.答案:-3解析:由2y +1-(-3)4-2=2y +42=y +2=tan 3π4,得y +2=-1,所以y =-3., 2 求直线的倾斜角和斜率) , 2) 已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB倾斜角的一半,求直线l 的斜率.解:设直线l 的倾斜角为α,则直线AB 的倾斜角为2α,由题意可知tan 2α=34,∴ 2tan α1-tan 2α=34. 整理得3tan 2α+8tan α-3=0,解得tan α=13或tan α=-3.∵ tan 2α=34>0,∴ 0°<2α<90°,∴ 0°<α<45°,∴ tan α>0,故直线l 的斜率为13.变式训练如图,已知直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求直线l 1,l 2的斜率.解:直线l 1的斜率k 1=tan α1=tan 30°=33. ∵ 直线l 2的倾斜角α2=90°+30°=120°,∴ 直线l 2的斜率k 2=tan 120°=tan (180°-60°)=-tan 60°=- 3. , 3 求直线的倾斜角和斜率的取值范围) , 3) 已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点.(1) 求直线l 的斜率k 的取值范围; (2) 求直线l 的倾斜角α的取值范围. 解:如图,由题意可知,k PA =4-0-3-1=-1,k PB =2-03-1=1.(1) 要使直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是(-∞,-1]∪[1,+∞).(2) 由题意可知,直线l 的倾斜角介于直线PB 与PA 的倾斜角之间. 又PB 的倾斜角是45°,PA 的倾斜角是135°, 所以α的取值范围是[45°,135°]. 变式训练若直线mx +y +1=0与连结点A (-3,2),B (2,3)的线段相交,求实数m 的取值范围.解:直线的斜率为k =-m ,且直线经过定点P (0,-1),因为直线PA ,PB 的斜率分别为-1,2,所以斜率k 的取值范围是(-∞,-1]∪[2,+∞),即实数m 的取值范围是(-∞,-2]∪[1,+∞).1. 已知A (-1,23),B (0,3a ),C (a ,0)三点共线,则此三点所在直线的倾斜角α的大小是 W.答案:120°解析:若a =0,则点B ,C 重合,不合题意.由A ,B ,C 三点共线得k AB =k BC ,即3a -230+1=0-3a a -0,解得a =1,所以B (0,3).此三点所在直线的斜率k AB =3-230+1=-3,即tan α=- 3.又0°≤α<180°,所以α=120°.2. 直线xcos α+3y +2=0的倾斜角的取值范围是 .答案:⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π 解析:由直线的方程可知其斜率k =-cos α3∈⎣⎢⎡⎦⎥⎤-33,33.设直线的倾斜角为θ,则tan θ∈⎣⎢⎡⎦⎥⎤-33,33,且θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π. 3. 已知实数x ,y 满足y =-2x +8,且2≤x≤3,求yx的最大值和最小值.解:如图,由于点(x ,y )满足关系式2x +y =8,且2≤x≤3可知,点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以y x 的最大值为2,最小值为23.4. 已知直线kx +y -k =0与射线3x -4y +5=0(x≥-1)有交点,求实数k 的取值范围.解:kx +y -k =0⇒k (x -1)+y =0,直线过定点(1,0)⇒由题意作图可得:由题意可看出: k∈⎝ ⎛⎭⎪⎫-∞,-34∪⎣⎢⎡⎭⎪⎫14,+∞.(或者由两直线方程联立,消去y 得x =4k -53+4k ≥-1,即4k -14k +3≥0⇒k ≥14或k <-34)1. 已知x 轴上的点P 与点Q (-3,1)连线所成直线的倾斜角为30°,则点P 的坐标为 W.答案:(-23,0)解析:设P (x ,0),由题意得k PQ =tan 30°=33,即1-3-x =33,解得x =-23,故点P 的坐标为(-23,0).2. 如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则它们的大小关系为 W.答案:k 1<k 3<k 2 解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3. 已知函数f (x )=asin x -bcos x.若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为 W.答案:3π4解析:由f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x 知,函数f (x )的图象关于直线x =π4对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π2,所以-b =a ,所以直线ax -by +c =0的斜率为a b =-1.设直线ax -by +c =0的倾斜角为α,则tan α=-1,因为α∈[0,π),所以α=3π4,即直线ax -by +c =0的倾斜角为3π4.4. 若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 W.答案:⎝ ⎛⎭⎪⎫π6,π2 解析:如图,直线l :y =kx -3过定点P (0,-3).又A (3,0),所以k PA =0-(-3)3-0=33,所以直线l 的斜率范围为⎝ ⎛⎭⎪⎫33,+∞,由于直线的倾斜角的取值范围为[0,π),所以满足条件的直线l 的倾斜角的范围是⎝ ⎛⎭⎪⎫π6,π2.1. 求斜率要熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 要正确理解倾斜角的定义,明确倾斜角的取值范围,倾斜角与斜率的关系是k =tanα(α≠90°),其中α为倾斜角,因此求倾斜角的取值范围通常需从斜率的范围入手,而求斜率的范围则常需考虑倾斜角的取值范围,但都需要利用正切函数的性质,借助图象或单位圆数形结合,注意直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎢⎡⎭⎪⎫0,π2与⎝ ⎛⎭⎪⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k∈(-∞,0).第2课时 直线的方程(对应学生用书(文)123~124页、(理)128~129页)1. (必修2P 82练习1(1)~(4)改编)过点P (-2,0),且斜率为3的直线的方程是 W.答案:y =3x +6解析:设所求直线方程为y =3x +b ,由题意可知3×(-2)+b =0,∴ b =6,故y =3x +6.2. (必修2P 87练习4改编)如果ax +by +c =0表示的直线是y 轴,则系数a ,b ,c 满足条件 W.答案:a≠0且b =c =0解析:ax +by +c =0表示的直线是y 轴,即x =0,∴ b =c =0,a ≠0.3. (必修2P 87练习1改编)直线x 3-y4=1在两坐标轴上的截距之和为 W.答案:-1解析:令x =0,得y =-4;令y =0,得x =3. 故直线在两坐标轴上的截距之和为-4+3=-1.4. (必修2P 85练习4改编)下列说法中正确的是 W.(填序号) ① 经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; ② 经过定点A (0,b )的直线都可以用方程y =kx +b 表示;③ 不经过原点的直线都可以用方程x a +yb=1表示;④ 经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.答案:④解析:对于①②,斜率有可能不存在,对于③,截距也有可能为0. 5. (必修2P 85练习2(2)(3)改编)若一直线经过点P (1,2),且在y 轴上的截距与直线2x +y +1=0在y 轴上的截距相等,则该直线的方程是 W.答案:3x -y -1=0解析:直线2x +y +1=0在y 轴上的截距为-1,由题意,所求直线过点(0,-1),又所求直线过点P (1,2),故由两点式得直线方程为y +12+1=x -01-0,即3x -y -1=0.1. 直线方程的五种形式111222(1) 当x 1=x 2,且y 1≠y 2时,直线垂直于x 轴,方程为x =x 1W. (2) 当x 1≠x 2,且y 1=y 2时,直线垂直于y 轴,方程为y =y 1W. (3) 当x 1=x 2=0,且y 1≠y 2时,直线即为y 轴,方程为x =0W. (4) 当x 1≠x 2,且y 1=y 2=0时,直线即为x 轴,方程为y =0W. (5) 直线的斜率k 与倾斜角α之间的关系如下表:若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),且线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式., 1 求直线方程), 1) 已知直线l 过点P (5,2),分别求满足下列条件的直线方程. (1) 直线l 在x 轴上的截距是在y 轴上的截距的2倍;(2) 直线l 与两坐标轴围成的三角形面积为52.解:(1) 当直线l 过原点时,直线l 的斜率为25,∴ 直线方程为y =25x ,即2x -5y =0;当直线l 不过原点时,设直线方程为x 2a +y a =1,将x =5,y =2代入得a =92,∴ 直线方程为x +2y -9=0.综上,直线l 的方程为2x -5y =0或x +2y -9=0. (2) 显然直线与坐标轴不垂直. ∵ 直线l 经过点P (5,2),且能与坐标轴围成三角形,∴ 可设直线l 的方程为y -2=k (x -5)(k≠0),则直线在x 轴上的截距为5-2k,在y 轴上的截距为2-5k ,由题意,得12|5-2k |·|2-5k|=52,即(5k -2)2=5|k|.当k>0时,原方程可化为(5k -2)2=5k ,解得k =15或k =45;当k<0时,原方程可化为(5k -2)2=-5k ,此方程无实数解;故直线l 的方程为y -2=15(x -5)或y -2=45(x -5),即x -5y +5=0或4x -5y -10=0.变式训练求过点(-3,4),且在两坐标轴上的截距之和为12的直线方程.解:由题设知截距不为0,设直线方程为x a +y 12-a =1,又直线过点(-3,4),从而-3a+412-a=1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. , 2 含参直线方程问题), 2) 已知直线l :kx -y +1+2k =0 (k∈R ). (1) 求证:直线l 过定点;(2) 若直线不经过第四象限,求k 的取值范围;(3) 若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(1) 证明:直线l 的方程是k (x +2)+(1-y )=0, 令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1, ∴ 无论k 取何值,直线l 总经过定点(-2,1).(2) 解:由方程知,当k≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解得k>0;当k =0时,直线为y =1,符合题意,故k≥0.(3) 解:由l 的方程,得A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k>0,解得k>0.∵ S =12·OA ·OB =12·⎪⎪⎪⎪⎪⎪-1+2k k ·|1+2k|=12·(1+2k )2k =12·⎝⎛⎭⎪⎫4k +1k +4≥12×(2×2+4)=4,“=”成立的条件是k>0且4k =1k ,即k =12,∴ S min =4,此时l :x -2y +4=0. 变式训练已知直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y +6-2m =0. (1) 求实数m 的取值范围;(2) 若直线l 的斜率不存在,求实数m 的值;(3) 若直线l 在x 轴上的截距为-3,求实数m 的值; (4) 若直线l 的倾斜角是45°,求实数m 的值. 解:(1) 当x ,y 的系数不同时为零时,方程表示一条直线,令m 2-2m -3=0,解得m =-1或m =3;令2m 2+m -1=0解得m =-1或m =12.所以实数m 的取值范围是(-∞,-1)∪(-1,+∞).(2) 由(1)易知,当m =12时,方程表示的直线的斜率不存在.(3) 依题意,有2m -6m 2-2m -3=-3,所以3m 2-4m -15=0,所以m =3或m =-53,由(1)知所求m =-53.(4) 因为直线l 的倾斜角是45°,所以斜率为1.由-m 2-2m -32m 2+m -1=1,解得m =43或m =-1(舍去).所以当直线l 的倾斜角为45°时,m =43., 3 直线方程的综合应用), 3) 为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△EFA 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解:如图,建立平面直角坐标系,则E (30,0),F (0,20),∴ 线段EF 的方程为x 30+y20=1(0≤x≤30).在线段EF 上取点P (m ,n ),作PQ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =PQ·PR=(100-m )(80-n ).又m 30+n 20=1(0≤m≤30),∴ n =20⎝ ⎛⎭⎪⎫1-m 30.∴ S =(100-m )⎝⎛⎭⎪⎫80-20+23m =-23(m -5)2+18 0503(0≤m≤30).∴ 当m =5时,S 有最大值,∴ 当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且这个顶点距AD 边5 m 时,草坪面积最大.备选变式(教师专享)如图,互相垂直的两条道路l 1,l 2相交于点O ,点P 与l 1,l 2的距离分别为2千米、3千米,过点P 建一条直线道路AB ,与l 1,l 2分别交于A ,B 两点.(1) 当∠BAO=45°时,试求OA 的长;(2) 若使△AOB 的面积最小,试求OA ,OB 的长.解:以l 1为x 轴,l 2为y 轴,建立平面直角坐标系,则O (0,0),P (3,2). (1) 由∠BAO=45°知,OA =OB ,可设A (a ,0),B (0,a )(a >0),直线l 的方程为x a +ya=1.∵ 直线l 过点P (3,2),∴ 3a +2a=1⇒a =5,即OA =5千米. (2) 设A (a ,0),B (0,b )(a >0,b >0),则直线l 的方程为x a +yb=1.∵ 直线l 过点P (3,2),∴ 3a +2b =1,b =2aa -3(a >3).从而S △ABO =12a ·b =12a ·2a a -3=a 2a -3,令a -3=t ,t >0,则a 2=(t +3)2=t 2+6t +9,故有S △ABO =t 2+6t +9t =t +9t +6(t >0).设f (t )=t +9t+6,可证f (t )在(0,3)上单调递减,在(3,+∞)上单调递增,∴ 当t =3时,f (t )min =f (3)=12,此时a =6,b =4,直线l 的方程为x 6+y4=1,即OA =6千米,OB =4千米.1. 若直线(2m 2+m -3)x +(m 2-m )y =4m -1 在x 轴上的截距为1,则实数m 的值是 W.答案:2或-12解析:令y =0,则(2m 2+m -3)x =4m -1,∴ x =4m -12m 2+m -3=1,∴ m =2或-12.2. 若方程(a 2-a -2)x +(a 2+a -6)y +a +1=0表示垂直于y 轴的直线,则a 为 W.答案:-1解析:因为方程表示垂直于y 轴的直线,所以a 2-a -2=0且a 2+a -6≠0,解得a =-1.3. 已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.当OA +OB 取得最小值时,直线l 的方程是 W.答案:x +y -2=0解析:设A (a ,0),B (0,b )(a>0,b>0),直线l 的方程为x a +yb=1,已知直线l 过点M (1,1),则OA +OB =a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.4. 已知直线l 过点(0,5),且在两坐标轴上的截距之和为2,则直线l 的方程为 W.答案:5x -3y +15=0解析:∵ 直线过点(0,5),∴ 直线在y 轴上的截距为5. ∵ 在两坐标轴上的截距之和为2, ∴ 直线在x 轴上的截距为-3.∴ 直线l 的方程为x -3+y5=1,即5x -3y +15=0.5. 已知在△ABC 中,A (1,-4),B (6,6),C (-2,0).求(1) △ABC 中平行于BC 边的中位线所在直线的一般式方程和截距式方程; (2) BC 边的中线所在直线的一般式方程和截距式方程. 解:(1) 平行于BC 边的中位线就是AB ,AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2,所以这条直线的方程为y +21+2=x +1272+12,整理得6x -8y -13=0, 化为截距式方程为x 136-y138=1.(2) 因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117-y11=1.1. 若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则实数m 满足条件 W.答案:m≠1解析:2m 2+m -3,m 2-m 不能同时为0.2. 若直线(2t -3)x +2y +t =0不经过第二象限,则t 的取值范围是 W.答案:⎣⎢⎡⎦⎥⎤0,32 解析:直线方程可化为y =⎝ ⎛⎭⎪⎫32-t x -t 2,由题意得⎩⎪⎨⎪⎧32-t≥0,-t2≤0,解得0≤t≤32.3. 不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点 . 答案:(-2,3)解析:把直线方程(m -1)x -y +2m +1=0, 整理得(x +2)m -(x +y -1)=0, 则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. 4. 已知直线x +2y =2与x 轴、y 轴分别相交于A ,B 两点.若动点P (a ,b )在线段AB 上,则ab 的最大值为 W.答案:12解析:由题意知A (2,0),B (0,1),所以线段AB 的方程可表示为x2+y =1,x ∈[0,2].又动点P (a ,b )在线段AB 上,所以a 2+b =1,a ∈[0,2].又a 2+b≥2ab 2,所以1≥2ab2,解得0≤ab≤12,当且仅当a 2=b =12,即P ⎝ ⎛⎭⎪⎫1,12时,ab 取得最大值12. 5. 已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1),Q 2(a 2,b 2)(a 1≠a 2)的直线方程.解:由题意,知P (2,3)在已知直线上, ∴ ⎩⎪⎨⎪⎧2a 1+3b 1+1=0,2a 2+3b 2+1=0, ∴ 2(a 1-a 2)+3(b 1-b 2)=0,即b 1-b 2a 1-a 2=-23,∴ 所求直线方程为y -b 1=-23(x -a 1),∴ 2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0.1. 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况;而选用两点式时不要忽视与坐标轴垂直的情况.2. 解决直线方程的综合问题时,除灵活选择方程的形式外,还要注意题目中的隐含条件,若与最值或范围相关的问题可考虑构建目标函数进行转化求最值.[备课札记]第3课时 直线与直线的位置关系(对应学生用书(文)125~126页、(理)130~131页)1. (原创)“a=3”是“直线ax +3y =1与直线x +y =1平行”的 条件. 答案:充要解析:若a =3,直线ax +3y =1与直线x +y =1显然平行;若直线ax +3y =1与直线x+y =1平行,由a 1= 31 ≠ 11,易得a =3.2. (必修2P 93练习6改编)过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为 W.答案:2x +y -1=0解析:设直线方程为2x +y +c =0,又直线过点P (-1,3),则-2+3+c =0,c =-1,即所求直线方程为2x +y -1=0.3. (必修2P 95练习3改编)若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k = W.答案:-12解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =-1,y =-2, ∴ 点(-1,-2)在x +ky =0上,即-1-2k =0,∴ k =-12.4.(必修2P 105练习1改编)已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a .1解析:由题意知|a -2+3|2=1,∴ |a +1|= 2.又∵ a>0,∴ a =2-1.5. (必修2P 106习题10改编)与直线7x +24y =5平行,并且距离等于3的直线方程是 W.答案:7x +24y +70=0或7x +24y -80=0解析:设直线方程为7x +24y +c =0,则d =|c +5|242+72=3,∴ c =70或-80.1. 两条直线的位置关系设两条直线的方程是l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,两条直线的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.若方程组有惟一解,则两条直线相交,此解就是交点坐标W.若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.若方程组有无数组解,则两条直线重合W.3. 几种距离(1) 两点间的距离: 平面上的两点A (x 1,y 1),B (x 2,y 2)间的距离公式:d (A ,B )=AB =(x 1-x 2)2+(y 1-y 2)2. (2) 点到直线的距离:点P (x 1,y 1)到直线l :Ax +By +C =0的距离d =|Ax 1+By 1+C|A 2+B2. (3) 两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.4. 常见的三大直线系方程(1) 与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m∈R 且m≠C). (2) 与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m∈R ).(3) 过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5. 中心对称(1) 点关于点对称:若点M (x 1,y 1)与N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2) 直线关于点对称问题的主要解法:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用l 1∥l 2,由点斜式得到所求的直线方程.6. 轴对称(1) 点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在对称轴l 上,且连结P 1P 2的直线垂直于对称轴l ,由方程组⎩⎪⎨⎪⎧A ⎝ ⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,A (y 1-y 2)=B (x 1-x 2),可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中A≠0,x 1≠x 2).特别地,若直线l :Ax +By +C =0满足|A|=|B|,则P 1(x 1,y 1)与P 2(x 2,y 2)坐标关系为⎩⎪⎨⎪⎧Ax 1+By 2+C =0,Ax 2+By 1+C =0.(2) 直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[备课札记], 1 两直线的平行与垂直), 1) 已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值:(1) l 1⊥l 2,且直线l 1过点(-3,-1);(2) l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1) ∵ l 1⊥l 2,∴ a (a -1)-b =0. ∵ 直线l 1过点(-3,-1),∴ -3a +b +4=0.故a =2,b =2. (2) ∵ 直线l 2的斜率存在,l 1∥l 2,∴ 直线l 1的斜率存在.∴ k 1=k 2,即ab=1-a.∵ 坐标原点到这两条直线的距离相等,∴ l 1,l 2在y 轴上的截距互为相反数,即4b=b.故a =2,b =-2或a =23,b =2.变式训练已知直线l 1经过点A (3,a ),B (a -1,2),直线l 2经过点C (1,2),D (-2,a +2),分别在下列条件下求a 的值:(1) l 1∥l 2; (2) l 1⊥l 2.解:设直线l 2的斜率为k 2,则k 2=2-(a +2)1-(-2)=-a3.(1) 若l 1∥l 2,则直线l 1的斜率k 1=-a3.又k 1=2-a a -4,则2-a a -4=-a 3,解得a =1或a =6.经检验,当a =1或a =6时,l 1∥l 2. (2) 若l 1⊥l 2.① 当k 2=0时,此时a =0,k 1=-12,不符合题意.② 当k 2≠0时,直线l 2的斜率存在,此时k 1=2-aa -4.由k 2k 1=-1,得-a 3·2-aa -4=-1,解得a =3或a =-4.经检验,当a =3或a =-4时,l 1⊥l 2. , 2 两直线的交点) , 2) 已知△ABC 的顶点B (3,4),AB 边上的高CE 所在直线方程为2x +3y -16=0,BC 边上的中线AD 所在直线方程为2x -3y +1=0,求AC 的长.解:∵ k CE = -23,AB ⊥CE ,∴ k AB =32, ∴ 直线AB 的方程为3x -2y -1=0.由⎩⎪⎨⎪⎧3x -2y -1=0,2x -3y +1=0,解得A (1,1), 设C (a ,b ), 则D ⎝ ⎛⎭⎪⎫3+a 2,4+b 2,∵ C 点在CE 上,BC 的中点D 在AD 上, ∴ ⎩⎪⎨⎪⎧2a +3b -16=0,2·3+a 2-3·4+b2+1=0,得C (5,2), 由两点间距离公式得AC 的长为17. 变式训练已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1),∴ l AC :2x +y -11=0.联立l AC ,l CM 得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,∴ C (4,3).设B (x 0,y 0),则AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0, ∴ ⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴ B (-1,-3), ∴ k BC =65,∴ 直线BC 的方程为y -3=65(x -4),即6x -5y -9=0., 3 点到直线及两平行直线之间的距离) , 3) 已知点P (2,-1).(1) 求过P 点且与原点距离为2的直线l 的方程;(2) 求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3) 是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1) 过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1), 可见,过P (2,-1)且垂直于x 轴的直线满足条件. 此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2),即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34. 此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2) 过P 点与原点O 距离最大的直线是过P 点且与OP 垂直的直线,由l⊥OP,得k l k OP =-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3) 不存在.理由:由(2)可知,过P 点不存在到原点距离大于5的直线,因此不存在过P 点且到原点距离为6的直线.备选变式(教师专享)已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1) 若点A (5,0)到l 的距离为3,求直线l 的方程; (2) 求点A (5,0)到直线l 的距离的最大值. 解:(1) 由直线l 经过直线l 1与l 2交点知,其直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.∵ 点A (5,0)到直线l 的距离为3,∴ |10+5λ-5|(2+λ)2+(1-2λ)2=3, 即2λ2-5λ+2=0,∴ λ=2或λ=12,∴ 直线l 的方程为x =2或4x -3y -5=0.(2) 设直线l 1与l 2的交为P ,由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得P (2,1),如图,过点P 作任一直线l ,设d 为点A 到l 的距离,则d≤PA(当l⊥PA 时等号成立).∴ d max =PA =(5-2)2+(0-1)2=10., 4 对称问题), 4) 已知直线l :2x -3y +1=0,点A (-1,-2).求: (1) 点A 关于直线l 的对称点A′的坐标;(2) 直线m :3x -2y -6=0关于直线l 的对称直线m′的方程; (3) 直线l 关于点A (-1,-2)对称的直线l′的方程. 解:(1) 设A′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴ A ′⎝ ⎛⎭⎪⎫-3313,413. (2) 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m′上.设对称点为M′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M′⎝ ⎛⎭⎪⎫613,3013. 设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,解得N (4,3).∵ m ′经过点N (4,3),∴ 由两点式得直线m′的方程为9x -46y +102=0.(3) 设P (x ,y )为l′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P′(-2-x ,-4-y ).∵ P ′在直线l 上,∴ 2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0. 备选变式(教师专享) 光线通过点A (2,3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.解:设点A (2,3)关于直线l 的对称点为A′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1,解得A′(-4,-3).由于反射光线经过点A′(-4,-3)和B (1,1),所以反射光线所在直线的方程为y -1-3-1=x -1-4-1,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝ ⎛⎭⎪⎫-23,-13.所以入射光线所在直线的方程为y -3-13-3=x -2-23-2,即5x -4y +2=0.1. (2016·上海卷文)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2.解析:利用两平行线间距离公式得d =|-1-1|22+12=255. 2. 将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(m ,n )重合,则m +n 的值是 W.答案:345解析:点(0,2)与点(4,0)关于y -1=2(x -2)对称,则点(7,3)与点(m ,n )也关于y -1=2(x -2)对称,则⎩⎪⎨⎪⎧n +32-1=2⎝ ⎛⎭⎪⎫m +72-2,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315.∴ m +n =345.3. 已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是 .答案:x +2y -3=0解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.4. 在平面直角坐标系中,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是 W.答案:(2,4) 解析:设P 为平面上一点,则由三角形两边之和大于第三边知PA +PC≥AC,PB +PD≥BD,所以四边形ABCD 对角线的交点到四点距离之和最小,直线AC 的方程为y -2=2(x -1),直线BD 的方程为y -5=-(x -1),由⎩⎪⎨⎪⎧y -2=2(x -1),y -5=-(x -1),得交点坐标为(2,4).5. △ABC 的两条高所在直线的方程分别为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.解:可以判断A 不在所给的两条高所在的直线上,则可设AB ,AC 边上的高所在直线的方程分别为2x -3y +1=0,x +y =0,则可求得AB ,AC 边所在直线的方程分别为y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,x -y +1=0. 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得B (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得C (-2,-1), 所以BC 边所在直线的方程为2x +3y +7=0.1. 在平面直角坐标系xOy 中,直线l :(2k -1)x +ky +1=0,则当实数k 变化时,原点O 到直线l 的距离的最大值为 W.答案: 5解析:直线l 过定点P (1,-2),原点O 到直线l 的距离的最大值即为OP =12+(-2)2= 5.2. 若过点P (1,2)作一直线l ,使点M (2,3)和点N (4,-1)到直线l 的距离相等,则直线l 的方程为 W.答案:2x +y -4=0或x +2y -5=0解析:当直线l 经过MN 的中点时,其方程为x +2y -5=0;当过M ,N 两点的直线平行于直线l 时,直线l 的方程为2x +y -4=0.3. 已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是 W.答案:⎝ ⎛⎭⎪⎫-16,12解析:由方程组⎩⎪⎨⎪⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴ 交点坐标为⎝ ⎛⎭⎪⎫2-4k 2k +1,6k +12k +1.∵ 交点位于第一象限,∴ ⎩⎪⎨⎪⎧2-4k2k +1>0,6k +12k +1>0,解得-16<k <12.∴ 实数k 的取值范围是⎝ ⎛⎭⎪⎫-16,12. 4. 已知直线l 1:2x -y -2=0和直线l 2:x +2y -1=0关于直线l 对称,则直线l 的斜率为 W.答案:-3或13解析:(解法1)在直线l 上任取一点P (x ,y ),点P 到直线l 1和直线l 2的距离相等.|2x -y -2|22+(-1)2=|x +2y -1|12+22,整理得,直线l 的方程为3x +y -3=0或x -3y -1=0,所以直线l 的斜率为-3或13.(解法2)设l 1的倾斜角为α.因为l 1⊥l 2,所以l 的倾斜角为α±π4,所以直线l 的斜率为tan ⎝⎛⎭⎪⎫α±π4. 因为tan α=2,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=-3,tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αtanπ4=13, 所以直线l 的斜率为-3或13.1. 在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2. 运用公式d =|C 1-C 2|A 2+B2求两平行直线间的距离时,一定要把x ,y 项系数化为相等的系数.3. 对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.[备课札记]第4课时 圆 的 方 程(对应学生用书(文)127~128页、(理)132~133页)1. (必修2P 111练习4改编)圆x 2+y 2-4x +6y =0的圆心坐标是 W. 答案:(2,-3)解析:由(x -2)2+(y +3)2=13知,圆心坐标为(2,-3). 2. (必修2P 111习题7改编)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为 W.答案:(x -2)2+y 2=10解析:设圆心坐标为(a ,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,∴ 圆心为(2,0),半径为10,∴ 圆C 的标准方程为(x -2)2+y 2=10.3. (必修2P 111练习6改编)经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程为 W.答案:x 2+y 2-7x -3y +2=0解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.将A ,B ,C 三点代入,整理得方程组⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,∴ 所求圆的一般方程为x 2+y 2-7x -3y +2=0.4. 已知点P (1,1)在圆x 2+y 2-ax +2ay -4=0的内部,则a 的取值范围是 W. 答案:(-∞,2)解析:由圆的一般方程知a∈R ,因为点P 在圆内,所以1+1-a +2a -4<0,解得a<2.5. (原创)已知实数x ,y 满足x 2+(y +3)2=4,则(x -3)2+(y -1)2的最大值为 W.答案:49解析:(x -3)2+(y -1)2表示圆x 2+(y +3)2=4上一动点P (x ,y )到点(3,1)的距离d 的平方,因为圆心(0,-3)到点(3,1)的距离为5,所以d 的最大值为5+2=7,所以d 2的最大值为49.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径W.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r>0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2W.(2) 特殊的,x 2+y 2=r 2(r>0)的圆心为(0,0),半径为r W. 3. 圆的一般方程方程x 2+y 2+Dx +Ey +F =0变形为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1) 当D 2+E 2-4F>0时,该方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 22(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3) 当D 2+E 2-4F <0时,该方程不表示任何图形.4. 点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系:(1) 若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2W.(2) 若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2W.(3) 若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2W. [备课札记]1 确定圆的方程) 1) 求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程.解:(解法1)设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心C ⎝ ⎛⎭⎪⎫-D2,-E 2,∴ k CB =6+E 28+D 2.∵ 圆C 与直线l 相切,∴ k CB ·k l =-1,即6+E 28+D 2·⎝ ⎛⎭⎪⎫-13=-1 ①.又有(-2)2+(-4)2-2D -4E +F =0 ②,又82+62+8D +6E +F =0 ③.联立①②③,可得D =-11,E =3,F =-30,∴ 所求圆的方程为x 2+y 2-11x +3y -30=0. (解法2)设圆的圆心为C ,则CB⊥l, 可得CB 所在直线的方程为y -6=3(x -8),即3x -y -18=0 ①. 由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1).又k AB =6+48+2=1,∴ AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0 ②.由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴ 所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴ 所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.变式训练圆经过点A (2,-3)和B (-2,-5). (1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解:(1) 要使圆的面积最小,则AB 为圆的直径,圆心C (0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5.(2) 因为k AB =12,AB 中点为(0,-4),所以AB 中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式,得半径r =10,因此,所求的圆的方程为(x +1)2+(y +2)2=10.备选变式(教师专享) 已知一圆的圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分,求圆的方程. 解:如图,因为圆周被直线3x +4y +15=0分成1∶2两部分,所以∠AOB=120°,而圆心O (0,0)到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6,所以所求圆的方程为x 2+y 2=36., 2 与参数有关的圆方程问题), 2) 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于l :x +2y -5=0的对称点也在圆上,求实数a 的值;(2) 求圆心C 到直线ax +y -a 2=0的距离的取值范围.解:(1) 将圆C 的方程配方得(x -a )2+(y +1)2=a 2-a.由题意知圆心C (a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7.(2) 由圆方程可知, a 2-a >0,解得a >1或a <0.由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).变式训练已知圆C :(x -a )2+(y -b )2=1,设平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为 W. 答案:37解析:作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域边界的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.备选变式(教师专享)设△ABC 顶点坐标为A (0,a ),B (-3a ,0),C (3a ,0),其中a>0,圆M 为△ABC 的外接圆.(1) 求圆M 的方程;(2) 当a 变化时,圆M 是否过某一定点,请说明理由.解:(1) 设圆M 的方程为x 2+y 2+Dx +Ey +F =0. ∵ 圆M 过点A (0,a ),B (-3a ,0),C (3a ,0)∴ ⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a ,∴ 圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2) 圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0. 由⎩⎪⎨⎪⎧3+y =0,x 2+y 2+3y =0,解得⎩⎪⎨⎪⎧x =0,y =-3. ∴ 圆M 过定点(0,-3)., 3 圆方程的应用), 3) 如图,某市有一条东西走向的公路l ,现欲经过公路l 上的O 处铺设一条南北走向的公路m.在施工过程中发现在O 处的正北1百米的A 处有一汉代古迹.为了保护古迹,该市决定以A 为圆心,1百米为半径设立一个圆形保护区.为了连通公路l ,m ,欲再新建一条公路PQ ,点P ,Q 分别在公路l ,m 上(点P ,Q 分别在点O 的正东,正北方向上),且要求PQ 与圆A 相切.(1) 当点P 距O 处2百米时,求OQ 的长; (2) 当公路PQ 长最短时,求OQ 的长.。
(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第9节 第1课时 直线与圆锥曲线课件 理 新人
第9节圆锥曲线的综合问题最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知识梳理1.直线与圆锥曲线的位置关系判断直线 l 与圆锥曲线 C 的位置关系时,通常将直线 l 的方程 Ax +By +C 0(A ,B 不同时为 0)代入圆锥曲线C 的方程 F (x ,y )=0,消去 y (也可以消去 x )得一个 关于变量 x (或变量 y )的一元方程, 即Ax +By +C =0, 消去 y ,得 ax 2+bx +c =0.F (x ,y )=0(1)当a≠0时,设一元二次方程ax+bx+c=0的判别式为Δ,则:2Δ>0⇔直线与圆锥曲线相交C______;Δ=0⇔直线与圆锥曲线相切C______;Δ<0⇔直线与圆锥曲线相离C______.(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线平行l与双曲线的渐近线的位置关系是______;若平C行为抛物线,则直线l与抛物线的对称轴的位置关系是______________.2.圆锥曲线的弦长设斜率为 k (k ≠0)的直线 l 与圆锥曲线 C 相交于 A ,B 两点,A (x 1,y 1),B (x 2y 2),则|AB |= 1+k 2|x 1-x 2| 2 2 1+k ·(x +x )-4x x =__________________________1 2 1 2 1 2 = 1+k 12·|y 1-y 2|=_______________________________.1+·(y +y )-4y y 2 1 2 1 2 k[常用结论与微点提醒]1.直线与椭圆位置关系的有关结论(1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(1)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,一条与对称轴平行或重合的直线.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.((2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.( )(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.( )(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长=1+t2|y1-y2|.( )解析(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.答案(1)√ (2)× (3)×(4)√2 2x y2.直线y=kx-k+1与椭圆+=1的位置关系为( )9 4A.相交C.相离B.相切D.不确定解析直线y=kx-k+1=k(x-1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.答案 A23.(教材习题改编)已知与向量v=(1,0)平行的直线l与双曲线x4-y2=1相交于A,B两点,则|AB|的最小值为________.2解析由题意可设直线l的方程为y=m,代入x4-y2=1得x2=4(1+m2),所以x1=4(1+m2)=2 1+m2,x2=-2 1+m2,所以|AB|=|x1-x2|=4 1+m2,所以|AB|=4 1+m2≥4,即当m=0时,|AB|有最小值 4.答案 44.过抛物线 y =2x 的焦点的直线与抛物线交于 A (x 1,y 1),B (x 2,2 y 2)两点,则x 1x 2等于________. 1解析易知抛物线 y =2x 2的焦点为0, ,焦点的直线的斜率为 k ,则其方程8 2 y 2x =, 1 8 1得 2x 2-kx -=0,故x 1x 2=-161 . 1 8 为 y =kx +,由 y =kx + 8 答案-1615.已知F 1,F 2是椭圆16x +25y =1 600的两个焦点,P 是椭圆上2 2 一点,且PF 1⊥PF 2,则△F 1PF 2的面积为________.解析 由题意可得|PF 1|+|PF 2|=2a =20,|PF 1|+|PF 2| =|F 1F 2| =4c =144=(|PF 1|+|PF 2|) -2|PF 1|·|PF 2|2 2 2 2 2 =202-2|PF 1|·|PF 2|, 解得|PF |·|PF |=1 128, 所以△F PF 1的面积2为 |P F |·|PF 2|=12×128=64. 1 2 1 2 答案 64第1 课时直线与圆锥曲线考点一直线与圆锥曲线的位置关系2 2 x y 【例 1】在平面直角坐标系 xOy 中,已知椭圆 C 1:+ 2=1(a >b >0左焦点为2 a b F 1(-1,0),且点 P (0,1)在 C 1上.(1)求椭圆 C 1的方程;(2)设直线 l 同时与椭圆 C 1和抛物线 C 2:y 2=4x 相切,求直线 l 的方程.解 (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1,又点P (0,1)在曲线C 1上,0 1 ∴+ 2=1,得 b =1,则 a 2=b 2+c 2=2,2 a b 2所以椭圆 C 1的方程为x 2+y 2=1.(2)由题意可知,直线 l 的斜率显然存在且不等于 0,设直线 l 的方程为 y =m , x 2 2+y 2=1, 由 消去 y ,得(1+2k 2)x 2+4kmx +2m 2-2=0.y =kx +m因为直线 l 与椭圆 C 1相切,所以 Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0.整理得 2k 2-m 2+1=0.①2y =4x , 消去 y ,得 k 2x 2+(2km -4)x +m 2=0. 由y =kx +m 因为直线 l 与抛物线 C 2相切, 所以 Δ2=(2km -4)2-4k 2m 2=0,整理得 km =1.② 2 k =, k =- 22, 2 综合①②,解得或 m = 2 m =-2.所以直线 l 的方程为 y = 22x + 2或 y =- 22x- 2.规律方法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x2项的系数是否为零的情况,以及判别式的应用.但对于选择题、填空题要充分利用几何条件,用数形结合的方法求解.【训练 1】若直线 mx +ny =4与圆 O :x 2+y 2=4没有交点,则过点 P (m ,的直 2 2 x y 线与椭圆+=1的交点个数为( ) 9 4A.至多一个B.2 D.0C.1 4 解析∵直线 m x +ny =4和圆 O :x 2+y 2=4没有交点,∴m 2+n 2>2,∴m 2+n 2<4,4-m 2 2 2 2 2 2 m n m ∴+ <+ 9 4 9 5 36 x y =1- m 2<1,∴点(m ,n )在椭圆+=1的内∴过点(m , 9 4 4 2 2 x y n )的直线与椭圆+=1的交点有 2个,故选 B.9 4 答案 B考点二弦长问题2 2 x y 【例 2】 (2018·黄山二模)设 F 1,F 2分别是椭圆 D :+ 2=1(a >b >0)的右焦点,2 a b π 过 F 2作倾斜角为 3的直线交椭圆 D 于 A ,B 两点,F 1到直线 AB 的距离2 3,连接椭圆 D 的四个顶点得到的菱形的面积为 2 5.(1)求椭圆 D 的方程;(2)设过点 F 2的直线 l 被椭圆 D 和圆 C :(x -2)2+(y -2)2=4所截得的弦分别为 m ,n ,当 m ·n 最大时,求直线 l 的方程.解 (1)设 F 1的坐标为(-c ,0),F 2的坐标为(c ,0)(c >0),则直线 AB 的方程为 y = 3(x -c ),即 3x -y - 3c=0,|- 3c - 3c | ∴ 2=2 3,解得 c =2. ( 3)2+(-1)∵12·2a ·2b =2 5,∴ab =5,又 a 2=b 2+c 2,∴a 2=5,b 2=1, 2 ∴椭圆 D 的方程为x 5+y 2=1.|2t | t 2+1 (2)由题意知,可设直线 l 的方程为 x =ty +2,则圆心 C 到直线 l 的距离 d =, 4 ∴n =2 22-d 2= t 2+1, x =ty +2, 由x 2 得(t 2+5)y 2+4ty -1=0, +y 2= 1 5设直线 l 与椭圆 D 的交点坐标为(x 1,y 1),(x 2,y 2),-1 2 t +52 5(t 2+1) t 2+5 4t ∴y 1+y 2=- ,y 1y 2= ,∴m = 1+t 2|y 1-y 2|= , 2 t +5 8 5· t 2+1 t 2+5 8 5 ∴m ·n = = ≤2 5 4 t 2+1+ t 2+ 14 t 2+ 1当且仅当 t 2+1= ,即t =± 3时,等号成立,∴直线 l 的方程为 x - 3y -2=0或 x + 3y -2=0.规律方法弦长的三种常用计算方法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题.(2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的.【训练2】 (2018·郑州一模)已知倾斜角为 60°的直线l 通过抛物线x =4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB | =________. 2 y = 3x +1, 得y 2-14y +1=0. 解析直线 l 的方程为 y = 3x +1,由x 2=4y , 设 A (x 1,y 1),B (x 2,y 2),则 y 1+y 2=14,∴|AB |=y 1+y 2+p =14+2=16.答案 16考点三中点弦问题(多维探究)命题角度 1利用中点弦确定直线或曲线的方程2 2 x y 【例 3-1】 (1)已知椭圆 E :+ 2=1(a >b >0)的右焦点为 F (3,0),点 F 的直2 a b 线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为( ) 2 2 2 2 x y A.+=1 45 36 x y B.+=1 36 272 2 2 2 x y C.+=1 27 18 x y D.+=1 18 92 2 x y (2)(一题多解)已知 P (1,1)为椭圆+=1内一定点,经过 P 引一条弦,此弦4 2 被 P 点平分,则此弦所在的直线方程为________.解析 (1)因为直线 A B 过点 F (3,0)和点(1,-1), 2 2 2 a 1 2 x y 2 2 所以直线 A B 的方程为 y = (x -3),代入椭圆方程 2+ 2=1消去 y ,得4+ b x a b 3 2 9 4 - a 2x + a 2-a 2b 2=0,3 2 a 2 所以 A B 的中点的横坐标为 a 2 =1,即 a 2=2b 2, 24+b 2又 a 2=b 2+c 2,所以 b =c =3,a =3 2.(2)法一易知此弦所在直线的斜率存在,所以设其方程为 y=k (x -1),此弦的两 端点坐标分别为 A (x 1,y 1),B (x 2,y 2).y -1=k (x -1), 由x y 2 2 消去 y 整理得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, +=1, 4 24k (k -1) 2k 2+1∴x 1+x 2= , 4k (k -1) =2,解得 k =-12. 2k 2+1 又∵x 1+x 2=2,∴ 1 2 故此弦所在的直线方程为 y -1=- (x -1),即 x +2y -3=0.法二易知此弦所在直线的斜率存在,所以设斜率为 k ,此弦的两端点坐标分别为 A (x 1,y 1),B (x 2,y 2), 2 2 2 2 4 2 2 x y x y 则+ 1=1①,+2=1②, 1 4 2 (x 1+x 2)(x 1-x 2)(y 1+y 2)(y 1-y 2) ①-②得 + =0, 4 2x 1-x 2 2 y 1-y 2 =-12. x 1-x 2 ∵x 1+x 2=2,y 1+y 2=2,∴+y 1-y 2=0,∴k = 1 2 ∴此弦所在的直线方程为 y -1=- (x -1),即 x +2y -3=0.答案 (1)D (2)x +2y -3=0命题角度2利用中点弦解决对称问题【例3-2】若抛物线y=2x2上两点A(x1,y1),B(x2,y2)关于直线y=x+m 称,且x1x2=-12,则实数m的值为________.解析由题意可设直线A B的方程为y=-x+b,代入y=2x2得2x2+x-b=0,-b∴x1+x2=-12,x1x2==-12,2∴b=1,即直线A B的方程为y=-x+1.设A B的中点为M(x0,y0),则 x 0= 1 2x +x 2=-14,代入 y 0=-x 0+1, 5 4 1 5得 y 0=,则 M -, , 4 4 1 5又 M -, 在直线 y =x +m 上, 4 4 ∴=-+m ,∴m =32.5 1 4 43 2答案规律方法处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式含y 1-y 有 x 1+x 2,y 1+y 2, x 1-x 2 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点 A ,于直线 l 对称,则 l 垂直直线 A B 且A ,B 的中点在直线l 上的应用.【训练3】若椭圆的中心在原点,一个焦点为 (0,2),直线y=3x +7与椭圆相交所得弦的中点的纵坐标为 1,则这个椭 圆的方程为________.解析因为椭圆的中心在原点,一个焦点为(0,2),则 a 2-4,所以可设椭圆方 y 2 2 +bx 2=1, 程为b 2+4 y =3x +7, 由y 2 x 2 消去 x ,整理得(10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+=0, +b 2=1, b 2+4设直线 y =3x +7与椭圆相交所得弦的端点为(x 1,y 1),(x 2,y 2),14(b 2+4) 由一元二次方程根与系数的关系得:y 1+y 2==2. 10b 2+4 2 2 x y 解得:b 2=8.所以 a 2=12.则椭圆方程为+=1. 8 12 2 2 x y 答案 +=1 8 12。
(全国通用版)2019版高考数学大一轮复习_第九章 平面解析几何 第1节 直线的方程课件 文 新人教A版
第1节直线的方程最新考纲 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素;2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式;3.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.知识梳理1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们取x轴作为基准,向上x轴正向与直线l方向之间所成的角α叫做直线l的倾斜角.(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为.[0,π)(3)范围:直线的倾斜角α的取值范围是.2.直线的斜率π(1)定义:当直线l的倾斜角α≠时,其倾斜角α的正切值2tan α叫做这条直线的斜率,斜率通常用小写字母k表示,即k=tan α.(2)斜率公式:经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为y2-y1k=x2-x1 .3.直线方程的五种形式名称几何条件方程适用条件纵截距、斜_________________y=kx+b斜截式点斜式率_____y-y=k(x-x0)0 与x轴不垂直的直线过一点、斜_________________y-y x-x1 1=_____1 2率y2-y x-x1_________________与两坐标轴均不垂直两点式过两点x y+=1_____的直线a b_________________不过原点且与两坐标截距式纵、横截距_____轴均不垂直的直线Ax+By+C=0(A+2[常用结论与微点提醒]1.直线的倾斜角α和斜率k 之间的对应关系:0°<α<9 0° 90°<α<1 80°α 0° 90° 不存 2.求直线方程时要注意判断直线斜率是否存在;每条直线都有 k 0 k >0 k <0 在 倾斜角,但不一定每条直线都存在斜率.3.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)直线的倾斜角越大,其斜率就越大.( )(2)直线的斜率为tan α,则其倾斜角为α.( )(3)斜率相等的两直线的倾斜角不一定相等.( )(4)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.( )解析(1)当直线的倾斜角α1=135°,α2=45°时,α1>α2,但其对应斜率k1=-1,k2=1,k1<k2.(2)当直线斜率为tan(-45°)时,其倾斜角为135°.(3)两直线的斜率相等,则其倾斜角一定相等.答案(1)× (2)× (3)× (4)√2.(2018·衡水调研)直线x-y+1=0的倾斜角为( )A.30°B.45°C.120°D.150°解析由题得,直线y=x+1的斜率为1,设其倾斜角为α,则tan α=1,又0°≤α<180°,故α=45°,故选B.答案 B3.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过( )A.第一象限C.第三象限B.第二象限D.第四象限解析由已知得直线Ax+By+C=0在x轴上的截距-CA>0,在y轴上的截距-CB>0,故直线经过第一、二、四象限,不经过第三象限.答案 C4.(必修2P89B5改编)若过两点A(-m,6),B(1,3m)的直线的斜率为12,则直线的方程为________.3m-6解析由题意得1+m=12,解得m=-2,∴A(2,6),∴直线AB的方程为y-6=12(x-2),整理得12x-y-18=0.答案12x-y-18=05.(必修2P100A9改编)过点P (2,3)且在两轴上截距相等的直线方程为________. 解析当纵、横截距均为 0时,直线方程为 3x -2y =0;当纵、横截距均不时, 设直线方程为ax +ay =1,则+=1,解得 a =5.所以直线方程为 x +y -5=0. 2 3 a a 答案 3x -2y =0或x +y -5=0考点一直线的倾斜角与斜率(典例迁移)π π【例1】(1)直线2x cos α-y-3=0α∈,的倾斜角的取值范围是( )6 3π ππ πA.,B.,6 3 4 3π ππ 2πC.,D.,4 24 3(2)(一题多解)(经典母题)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,则直线l斜率的取值范围为________.解析 (1)直线2x cos α-y -3=0的斜率k =2cos α,因为 α∈, ,所以≤cos α≤ 23, π π 1 2 6 3因此 k =2·cos α∈[1, 3].设直线的倾斜角为 θ,则有 tan θ∈[1, 3]. π π 又 θ∈[0,π),所以 θ∈, , 4 3 π π 即倾斜角的取值范围是, . 4 3(2)法一设PA与PB的倾斜角分别为α,β,直线PA的斜率是k AP=1,直线PB的斜率是k BP=-3,当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞). 当直线l由PC变化到PB的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故斜率的取值范围是(-∞,-3]∪[1,+∞).法二设直线l的斜率为k,则直线l的方程为y=k(x-1),即kx -y-k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(-3-k)≤0,即(k-1)(k+3)≥0,解得k≥1或k≤- 3.即直线l的斜率k的取值范围是(-∞,-3]∪[1,+∞).答案(1)B (2)(-∞,-3]∪[1,+∞)【迁移探究1】若将本例(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.解设直线l的斜率为k,则直线l的方程为y=k(x+1),即kx-y+k=0.∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1+k)(-3+k)≤0,即(3k-1)(k-3)≤0,解得13≤k≤3.1即直线l的斜率的取值范围是3,3.【迁移探究2】若将本例(2)中的B点坐标改为B(2,-1),其他条件不变,求直线l倾斜角的范围.解由例1(2)知直线l的方程kx-y-k=0,∵A,B两点在直线l的两侧或其中一点在直线l上,∴(2k-1-k)(2k+1-k)≤0,即(k-1)(k+1)≤0,解得-1≤k≤1.π3π即直线l倾斜角的范围是0,∪,π.4 4规律方法 1.在分析直线的倾斜角和斜率的关系时,要根据正切函数k=tan α的性,ππππ当α取值在0,,即由0增大到α≠ 时,k由0增大到+∞,当α取值在,π2 2 2 2ππ即由α≠ 增大到π(α≠π)时,k由-∞增大到0. 2 22.斜率的两种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k=tan α率.y2-y1(2)公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式k=x2-x1(x1≠x2)求斜率.【训练1】(2018·惠州一调)直线x sin α+y+2=0的倾斜角的取值范围是( )π3πA.[0,π)B.0,∪,π4 4πππC.0,D.0,∪,π4 4 2解析设直线的倾斜角为θ,则有tan θ=-sin α.因为sin α∈[-1,1],所以1≤π 3πtan θ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π,故选B. 4 4答案 B考点二直线方程的求法【例2】根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;(3)直线过点(5,10),且到原点的距离为5.解(1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k=tan α=±13.1故所求直线方程为y=± (x+4).3即x+3y+4=0或x-3y+4=0.(2)由题设知纵、横截距不为0,设直线方程为ax +12-y a =1,又直线过点(-3,4),-3 4 从而 a +12-a =1,解得 a =-4或 a=9. 故所求直线方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线方程为x -5=0满足题意;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.|10-5k | k 2+1=5,解得 k = .3 4 由点线距离公式,得 故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.规律方法 1.在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.2.对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).【训练2】求适合下列条件的直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线 y =3x 的倾斜角的 2 倍;解 (1)设直线l 在x ,y 轴上的截距均为a , (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形.若a =0,即l 过点(0,0)和(4,1),1 ∴l 的方程为 y = x ,即 x -4y =0. 4 x y a a若 a ≠0,则设 l 的方程为+=1, 4 1 ∵l 过点(4,1),∴+=1,∴a =5,∴l 的方程为 x +y -5=0.a a 综上可知,直线 l 的方程为 x -4y =0或 x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α,则所求直线的倾斜角为∵tan 2αα.=3,∴tan 2α= 2tan α =-34.1-tan 2α又直线经过点A (-1,-3),因此所求直线方程为 y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为x -y +1=0或x +y -7=0.考点三直线方程的综合应用【例3】已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于B,△AOB的面积为S(O为坐标原点),求S的最小值并求此时直线l的方程. (1)证明直线l的方程可化为k(x+2)+(1-y)=0,x+2=0,x=-2,令解得1-y=0,y=1.∴无论k取何值,直线总经过定点(-2,1).1+2k (2)解由方程知,当 k ≠0时直线在 x 轴上的截距为- ,在 y 轴上的截距为 1k 1+2k - ≤-2, 解得 k >0;+2k ,要使直线不经过第四象限,则必须有 k 1+2k ≥1,当k =0时,直线为y =1,符合题意,故 k 的取值范围是 [0,+ ∞).(3)解由题意可知 k ≠0,再由 l 的方程,得 A ,0,B (0,1+2k ). 1+2k - k1+2k - <0, 解得 k >0.k 1+2k >0,依题意得1(1+2k )2 1 ·|1+2k |=2· = 4k +k +4≥2×(2×2+4)=4, 1 1 1 2 1 1+2k ∵S = ·|OA |·|OB |= · 2 k k 2 “=”成立的条件是 k >0且 4k =1k ,即 k=, 1 2∴S min =4,此时直线l 的方程为x -2y +4=0.规律方法 1.含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.2.求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.【训练3】(一题多解)已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A,B两点,如图所示,求△ ABO的面积的最小值及此时直线l的方程.解法一设直线方程为ax +by =1(a >0,b >0), 点 P (3,2)代入得+=1≥2 ab 6,得 ab ≥24, 3 2 a b1 从而 S △ABO = ab ≥12,23 2 b 2 当且仅当=时等号成立,这时 k =-=-, a b a 3 从而所求直线方程为2x +3y -12=0.法二依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3)(k <0), 2且有 A 3-,0,B (0,2-3k ),k 1 2 2 ∴S △ABO = (2-3k )3- k 4 (-k ) 2 4 1 2 1 12+(-9k )+ 12+2(-9k )· (-k ) = ≥1 = ×(12+12)=12. 2当且仅当-9k =-4k ,即 k =-时,等号成立, 2 3即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.。
高考数学一轮复习考点与题型总结:第九章 平面解析几何
精品基础教育教学资料,仅供参考,需要可下载使用!第九章 平面解析几何第一节 直线的倾斜角、斜率与直线的方程一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角叫做直线 l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上, 且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1; (2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1; (3)y 轴的方程为x =0; (4)x 轴的方程为y =0. 考点一 直线的倾斜角与斜率[典例] (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析] (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2) 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP=-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,- 3 ].故直线l 斜率的取值范围是(-∞,- 3 ]∪[1,+∞). [答案] (1)B (2)(-∞,- 3 ]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0. ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0, 即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 答案:⎣⎡⎦⎤13,3 3.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二 直线的方程[典例] (1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为________________.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为________________.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.[解析] (1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0. (3)设C (x 0,y 0),则M ⎝⎛⎭⎫5+x 02,y 0-22,N ⎝⎛⎭⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3), 所以M ⎝⎛⎭⎫0,-52,N (1,0), 所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.[答案] (1)x +2y +1=0或2x +5y =0 (2)3x -y +6=0 (3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________. 解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y +1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为x a +1+y a =1,则6a +1+-2a=1,解得a =2或a =1,则直线的方程是x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三 直线方程的综合应用[典例] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解] 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1,所以2a +1b=1.|MA ―→|·| MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝⎛⎭⎫-∞,-66∪⎝⎛⎭⎫66,+∞ C.⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ D.⎣⎡⎦⎤-22,22 解析:选C 设M (x ,y ),由k MA ·k MB =3,得y x +1·y x -1=3,即y 2=3x 2-3.联立⎩⎨⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0(m ≠0), 则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66. ∴实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞.[课时跟踪检测]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B. 3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C 由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a表示的直线可能是( )解析:选C 当a >0时,直线的斜率k =a >0,在y 轴上的截距b =-1a <0,各选项都不符合此条件;当a <0时,直线的斜率k =a <0,在y 轴上的截距b =-1a >0,只有选项C符合此条件.故选C.5.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析:选C 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 对于直线mx +ny +3=0,令x =0得y =-3n ,即-3n =-3,n =1.因为3x -y =33的斜率为60°,直线mx +ny +3=0的倾斜角是直线3x -y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn=-3,m = 3.7.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.8.若直线l :kx -y +2+4k =0(k ∈R)交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( )A .x -2y +4=0B .x -2y +8=0C .2x -y +4=0D .2x -y +8=0解析:选B 由l 的方程,得A ⎝⎛⎭⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎪⎨⎪⎧-2+4k k <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪2+4k k ·|2+4k |=12·(2+4k )2k =12⎝⎛⎭⎫16k +4k +16≥12(2×8+16)=16,当且仅当16k =4k ,即k =12时等号成立.此时l 的方程为x -2y +8=0.9.以A (1,1),B (3,2),C (5,4)为顶点的△ABC ,其边AB 上的高所在的直线方程是________________.解析:由A ,B 两点得k AB =12,则边AB 上的高所在直线的斜率为-2,故所求直线方程是y -4=-2(x -5),即2x +y -14=0.答案:2x +y -14=010.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.答案:4x -3y -4=011.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞ 12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.第二节 两直线的位置关系一、基础知识1.两条直线平行与垂直的判定 (1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直①如果两条直线l 1,l 2的斜率存在, 设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两平行直线间的距离公式两条平行直线Ax +By +C 1=0与Ax +By +C 2=0 间的距离d =|C 1-C 2|A 2+B 2.二、常用结论(1)与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为: ①垂直:Bx -Ay +m =0;②平行:Ax +By +n =0. (2)与对称问题相关的四个结论:①点(x ,y )关于点(a ,b )的对称点为(2a -x,2b -y ).②点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x,2b -y ). ③点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ). ④点(x ,y )关于直线x +y =k 的对称点为(k -y ,k -x ),关于直线x -y =k 的对称点为(k +y ,x -k ).考点一 两条直线的位置关系[典例] 已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.[解] (1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[解题技法]1..由一般式确定两直线位置关系的方法[题组训练]1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为() A.7B.9C.11 D.-7解析:选A由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.2.(2019·保定五校联考)直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件,故选C.考点二距离问题[典例](1)过点P(2,1)且与原点O距离最远的直线方程为()A.2x+y-5=0B.2x-y-3=0C.x+2y-4=0 D.x-2y=0(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是5,则m+n =( )A .0B .1C .-2D .-1[解析] (1)过点P (2,1)且与原点O 距离最远的直线为过点P (2,1)且与OP 垂直的直线,因为直线OP 的斜率为1-02-0=12,所以所求直线的斜率为-2,故所求直线方程为2x +y -5=0.(2)因为l 1,l 2平行,所以1×n =2×(-2),1×(-6)≠2×m ,解得n =-4,m ≠-3,所以直线l 2:x -2y -3=0.又l 1,l 2之间的距离是 5,所以|m +3|1+4=5,解得m =2或m =-8(舍去),所以m +n =-2,故选C.[答案] (1)A (2)C[解题技法]1.点到直线的距离的求法可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. 2.两平行线间的距离的求法(1)利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离.(2)利用两平行线间的距离公式. [题组训练]1.已知点P (2,m )到直线2x -y +3=0的距离不小于25,则实数m 的取值范围是________________.解析:由题意得,点P 到直线的距离为|2×2-m +3|22+12≥25,即|m -7|≥10,解得m ≥17或m ≤-3,所以实数m 的取值范围是(-∞,-3]∪[17,+∞).答案:(-∞,-3]∪[17,+∞)2.如果直线l 1:ax +(1-b )y +5=0和直线l 2:(1+a )x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b )=0,同理-2(1+a )+1=0,解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,d =|-10-0|12+(-2)2=2 5.答案:2 5考点三 对称问题[典例] 已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点A ′的坐标;(2)求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程. [解] (1)设A ′(x ,y ),再由已知得 ⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′方程为9x -46y +102=0.[变透练清]1.(变结论)在本例条件下,则直线l 关于点A (-1,-2)对称的直线l ′的方程为________________.解析:法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上. 易知M ′(-3,-5),N ′(-6,-7), 由两点式可得 l ′的方程为2x -3y -9=0. 法二:设P (x ,y )为l ′上任意一点, 则P (x ,y )关于点A (-1,-2)的对称点为 P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=02.(2019·合肥四校联考)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.答案:6x -y -6=0[解题技法]1.中心对称问题的两个类型及求解方法 (1)点关于点对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1进而求解.(2)直线关于点对称①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程; ③轨迹法,设对称直线上任一点M (x ,y ),其关于已知点的对称点在已知直线上. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称, 由方程组⎩⎪⎨⎪⎧A ×x 1+x 22+B ×y 1+y22+C =0,y 2-y 1x 2-x 1×⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[课时跟踪检测]1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.已知直线l 1:2ax +(a +1)y +1=0和l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B.13或-1 C.13D .-1解析:选B 因为直线l 1⊥l 2,所以2a (a +1)+(a +1)(a -1)=0,解得a =13或-1.3.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).4.(2018·揭阳一模)若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A.13 B .-1 C .-13D .1解析:选B 直线l 1:x -3y +2=0关于x 轴对称的直线为x +3y +2=0.由题意知m ≠0. 因为mx -y +b =0,即x -y m +bm=0,且直线l 1与l 2关于x 轴对称,所以有⎩⎨⎧-1m =3,bm =2,解得⎩⎨⎧m =-13,b =-23,则m +b =-13+⎝⎛⎭⎫-23=-1. 5.点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32B.54 C .-65D.56解析:选D 由题意,知⎩⎨⎧3-11+2·k =-1,2=k ·⎝⎛⎭⎫-12+b ,解得⎩⎨⎧k =-32,b =54.∴直线方程为y =-32x +54,它在x 轴上的截距为-54×⎝⎛⎭⎫-23=56.故选D. 6.(2019·成都五校联考)已知A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2x +y -7=0B .x +y -5=0C .2y -x -4=0D .2x -y -1=0解析:选B 由|P A |=|PB |得点P 一定在线段AB 的垂直平分线上,根据直线P A 的方程为x -y +1=0,可得A (-1,0),将x =2代入直线x -y +1=0,得y =3,所以P (2,3),所以B (5,0),所以直线PB 的方程是x +y -5=0,选B.7.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .2 2C .3 3D .4 2解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2. 8.已知点A (1,3),B (5,-2),在x 轴上有一点P ,若|AP |-|BP |最大,则P 点坐标为( ) A .(3.4,0) B .(13,0) C .(5,0)D .(-13,0)解析:选B 作出A 点关于x 轴的对称点A ′(1,-3),则A ′B 所在直线方程为x -4y -13=0.令y =0得x =13,所以点P 的坐标为(13,0).9.经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.解析:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0得x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.答案:4x +3y -6=010.已知点P 1(2,3),P 2(-4,5)和A (-1,2),则过点A 且与点P 1,P 2距离相等的直线方程为________.解析:当直线与点P 1,P 2的连线所在的直线平行时,由直线P 1P 2的斜率k =3-52+4=-13,得所求直线的方程为y -2=-13(x +1),即x +3y -5=0.当直线过线段P 1P 2的中点时,因为线段P 1P 2的中点坐标为(-1,4),所以直线方程为x =-1.综上所述,所求直线方程为x +3y -5=0或x =-1.答案:x +3y -5=0或x =-111.直线x -2y +1=0关于直线x =1对称的直线方程是________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=012.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=013.已知△ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求BC 边的高所在直线l 1的方程;(2)若直线l 2过C 点,且A ,B 到直线l 2的距离相等,求直线l 2的方程.解:(1)因为k BC =4-33+1=14,又直线l 1与BC 垂直,所以直线l 1的斜率k =-1k BC =-4,所以直线l 1的方程是y =-4(x -1)+1,即4x +y -5=0.(2)因为直线l 2过C 点且A ,B 到直线l 2的距离相等, 所以直线l 2与AB 平行或过AB 的中点M , 因为k AB =3-1-1-1=-1,所以直线l 2的方程是y =-(x -3)+4,即x +y -7=0. 因为AB 的中点M 的坐标为(0,2), 所以k CM =4-23-0=23,所以直线l 2的方程是y =23(x -3)+4,即2x -3y +6=0. 综上,直线l 2的方程是x +y -7=0或2x -3y +6=0.第三节 圆的方程一、基础知识1.圆的定义及方程❶标准方程强调圆心坐标为(a ,b ),半径为r .❷(1)当D 2+E 2-4F =0时,方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.二、常用结论(1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.(2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.考点一 求圆的方程[典例] (1)圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=4(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________. [解析] (1)根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.(2)法一:几何法设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ). 又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2, 所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法二:待定系数法设所求圆的标准方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得a =-1,b =-2,r 2=10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法三:待定系数法设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 由题意得⎩⎪⎨⎪⎧-D2-2×⎝⎛⎭⎫-E2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0. [答案] (1)A (2)x 2+y 2+2x +4y -5=0[题组训练]1.已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254 B.⎝⎛⎭⎫x +342+y 2=2516 C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 法一:根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎨⎧a =34,r 2=2516,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 法二:设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516. 法三:因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上, 所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |=⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22, 故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=83.已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④联立①②④,解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 答案:x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0考点二 与圆有关的轨迹问题[典例] (1)点P (4,-2)与圆x 2+y 2=4上任意一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1(2)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.[解析] (1)设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.(2)设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A ―→⊥PC ―→. 又因为P A ―→=(2-x,3-y ),PC ―→=(1-x,1-y ). 所以(2-x )·(1-x )+(3-y )·(1-y )=0. 所以点P 的轨迹方程为⎝⎛⎭⎫x -322+(y -2)2=54. [答案] (1)A (2)⎝⎛⎭⎫x -322+(y -2)2=54[变透练清]1.(变条件)若将本例(2)中点A (2,3)换成圆上的点B (1,4),其他条件不变,则这些弦的中点P 的轨迹方程为________.解析:设P (x ,y ),圆心C (1,1).当点P 与点B 不重合时,因为P 点是过点B 的弦的中点,所以PB ―→⊥PC ―→.又因为PB ―→=(1-x,4-y ),PC ―→=(1-x,1-y ). 所以(1-x )·(1-x )+(4-y )·(1-y )=0. 所以点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94; 当点P 与点B 重合时,点P 满足上述方程. 综上所述,点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94. 答案:(x -1)2+⎝⎛⎭⎫y -522=942.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥P Q , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0.[课时跟踪检测]A 级1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C. 2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x -y +4=0的距离d =|2a -1+4|5=|2a -1-6|5,解得a =1,d =5,∵直线与圆相切,∴r =d =5, ∴圆的标准方程为(x -1)2+(y -1)2=5.4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.5.已知a ∈R ,若方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则此圆的圆心坐标为( )A .(-2,-4)B.⎝⎛⎭⎫-12,-1 C .(-2,-4)或⎝⎛⎭⎫-12,-1 D .不确定解析:选A ∵方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,∴a 2=a +2≠0,解得a =-1或a =2.当a =-1时,方程化为x 2+y 2+4x +8y -5=0.配方,得(x +2)2+(y +4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a =2时,方程化为x 2+y 2+x +2y +52=0,此时方程不表示圆.故选A.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离, 即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.7.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=28.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a,0),由|CA |=|CB |, 得(a +1)2+12=(a -1)2+32,解得a =2. 半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10. 由题意知(m -2)2+(6)2<10, 解得0<m <4. 答案:(0,4)9.若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=210.(2019·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的标准方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=911.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 所以直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410, 所以|P A |=210. 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 12.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线, 所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =yx -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).B 级1.(2019·伊春三校联考)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -1)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 圆C 1:(x +1)2+(y -1)2=1,圆心C 1为(-1,1),半径为1.易知点C 1(-1,1)关于直线x -y -1=0对称的点为C 2,设C 2(a ,b ),则⎩⎪⎨⎪⎧b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧a =2,b =-2,所以C 2(2,-2),所以圆C 2的圆心为C 2(2,-2),半径为1,所以圆C 2的方程为(x -2)2+(y +2)2=1.故选B.2.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=23.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4, ∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0. 又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ), ∴x 2-3x +y 2=0.易知直线l 的斜率存在,故设直线l 的方程为y =mx , 当直线l 与圆C 1相切时, 圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程化简得 9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3,其轨迹为一段圆弧.第四节 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|) 相离外切相交内切内含图形量的关系 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题。
2019版高考数学大一轮复习人教B版全国通用文档:第九章平面解析几何9.1
§9.1直线的方程1.平面直角坐标系中的基本公式(1)两点的距离公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),则d(A,B)=|AB|=(x2-x1)2+(y2-y1)2.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,我们规定,与x 轴平行或重合的直线的倾斜角为零度角. (2)倾斜角的范围:[0°,180°). 3.直线的斜率(1)定义:通常,我们把直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线,人们常说它的斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ⎝⎛⎭⎫θ≠π2,则k =tan_θ. 4.直线方程的五种形式题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)若直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ ) 题组二 教材改编2.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +ya =1,则2a +3a =1,解得a =5.所以直线方程为x +y -5=0. 题组三 易错自纠4.(2018·石家庄模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是⎣⎡⎭⎫3π4,π.5.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过第一、二、四象限,不经过第三象限.6.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为____________. 答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0. 综上可知,直线m 的方程为x -2y +2=0或x =2.题型一 直线的倾斜角与斜率典例 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是 ( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为___________________. 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1,k BP =3-00-1=-3, ∴k ∈(-∞,- 3 ]∪[1,+∞).1.若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,求直线l 斜率的取值范围. 解 ∵P (-1,0),A (2,1),B (0,3), ∴k AP =1-02-(-1)=13,k BP =3-00-(-1)= 3.如图可知,直线l 斜率的取值范围为⎣⎡⎦⎤13,3.2.若将本例(2)中的B 点坐标改为(2,-1),其他条件不变,求直线l 倾斜角的取值范围. 解 如图,直线P A 的倾斜角为45°, 直线PB 的倾斜角为135°,由图象知l 的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华 直线倾斜角的范围是[0,π),根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.跟踪训练 已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( ) A .150° B .135° C .120° D .不存在解析 由y =2-x 2,得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,以2为半径的圆的一部分,其图象如图所示.显然直线l 的斜率存在,设过点P (2,0)的直线l 为y =k (x -2),则圆心到此直线的距离d =|-2k |1+k2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|-2k |1+k 22=22-2k 21+k 2, 所以S △AOB =12×|-2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1, 当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,由图可得k =-33⎝⎛⎭⎫k =33舍去, 故直线l 的倾斜角为150°. 题型二 求直线的方程典例 (1)求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程;(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程. 解 (1)设所求直线的斜率为k , 依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +y a =1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.跟踪训练 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)经过点P (4,1),且在两坐标轴上的截距相等; (3)直线过点(5,10),到原点的距离为5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式.设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)设直线l 在x ,y 轴上的截距均为a . 若a =0,即l 过(0,0)及(4,1)两点, ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0.题型三 直线方程的综合应用命题点1 与均值不等式相结合求最值问题典例 (2018·济南模拟)已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA →|·|MB →|取得最小值时直线l 的方程. 解 设A (a,0),B (0,b ),则a >0,b >0, 直线l 的方程为x a +y b =1,所以2a +1b=1.|MA →|·|MB →|=-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5=2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 命题点2 由直线方程解决参数问题典例 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解 由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×2×(2-a )+12×2×(a 2+2)=a 2-a +4=⎝⎛⎭⎫a -122+154, 当a =12时,四边形的面积最小.思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用均值不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或均值不等式求解.跟踪训练 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.解 方法一 设直线方程为x a +yb =1(a >0,b >0),把点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 由题意知,直线l 的斜率k 存在且k <0, 则直线l 的方程为y -2=k (x -3)(k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4(-k )≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k ,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.求与截距有关的直线方程典例 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求直线l 的方程; (2)若l 在两坐标轴上的截距互为相反数,求a . 错解展示:现场纠错解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距为0,∴a =2,方程即为3x +y =0. 当直线不经过原点时,截距存在且均不为0, 直线方程可写为x a -2a +1+ya -2=1,∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.综上,直线l 的方程为3x +y =0或x +y +2=0.(2)由a -2a +1=-(a -2),得a -2=0或a +1=-1,∴a =2或a =-2.纠错心得 在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A .30° B .60° C .150° D .120°答案 B解析 化直线方程为y =3x +a , ∴k =tan α= 3.∵0°≤α<180°,∴α=60°.2.(2018·北京海淀区模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2 答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13 B .-13C .-32D.23答案 B解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.4.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )答案 B解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 5.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.6.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤4答案 A解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4, ∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ; 当l 的倾斜角大于90°时,k ≤k PM , ∴k ≥34或k ≤-4.7.已知直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点__________. 答案 (2,-2)解析 直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2).8.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是_____. 答案 [)-3,0∪⎣⎡⎭⎫33,1解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1;当2π3≤α<π时,-3≤tan α<0,∴-3≤k <0. ∴k ∈[-3,0)∪⎣⎡⎭⎫33,1. 9.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为______.答案 x +13y +5=0解析 BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y +5=0.10.直线l 过点(-2,2)且与x 轴、y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为_____.答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过(0,0)与(-2,2)两点,直线l 的斜率k =-1,直线l 的方程为y =-x , 即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +yb=1,由题意知⎩⎪⎨⎪⎧-2a +2b =1,|a |=|b |,解得⎩⎪⎨⎪⎧a =-4,b =4,此时,直线l 的方程为x -y +4=0.11.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解 (1)由题意知,直线l 存在斜率. 设直线l 的方程为y =k (x +3)+4,它在x 轴、y 轴上的截距分别为-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,则它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.12.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -3=0 B .3x -4y -3=0 C .3x -4y -4=0 D .4x -3y -4=0答案 D解析 由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 14.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值-2和最大值2. ∴b 的取值范围是[-2,2].15.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin 2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95, 易知sin θ>0,cos θ<0,∴sin θ-cos θ=355,② 由①②解得⎩⎨⎧ sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.16.(2017·福建四地六校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4 答案 D解析 由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以a =-b ,则直线ax -by +c =0的斜率为k =a b=-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4,故选D.。
2019年高考数学一轮总复习第9章平面解析几何第一节直线与方程AB卷文1
2019年高考数学一轮总复习第9章平面解析几何第一节直线与方程AB卷文11. (2016·,7)已知A(2,5),B(4,1),若点P(x,y)在线段AB上,则2x-y的最大值为( )A.-1B.3C.7D.8解析线段AB的方程为y-1=(x-4),2≤x≤4.即2x+y-9=0,2≤x≤4,因为P(x,y)在线段AB上,所以2x-y=2x-(-2x+9)=4x-9.又2≤x≤4,则-1≤4x-9≤7,故2x-y最大值为7.答案C2.(2015·安徽,8)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是( )A.-2或12B.2或-12C.-2或-12D.2或12解析圆方程可化为(x-1)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=b与该圆相切,∴=1.解得b =2或b=12,故选D.答案D3.(2014·福建,6)已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是( )A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0解析依题意,得直线l过点(0,3),斜率为1,所以直线l的方程为y-3=x-0,即x-y+3=0.故选D.答案D4.(2013·江苏,17)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.解(1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意得=1,解得k=0或k=-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤≤3.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以点C的横坐标a的取值范围为.5.(2014·四川,9)设m∈R,过定点A的动直线x+my=0和过定点B 的动直线mx-y-m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是( )A.[,2]B.[,2]C.[,4]D.[2,4]解析易知直线x+my=0过定点A(0,0),直线mx-y-m+3=0过定点B(1,3),且两条直线相互垂直,故点P在以AB为直径的圆上运动,故|PA|+|PB|=|AB|cos∠PAB+|AB|sin∠PAB=·sin∈[,2],故选B.答案B6.(2015·江苏,12)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.解析双曲线x2-y2=1的渐近线为x±y=0,直线x-y+1=0与渐近线x-y=0平行,故两平行线的距离d==.由点P到直线x-y+1=0的距离大于c恒成立,得c≤,故c的最大值为.答案227.(2013·四川,15)在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.解析由题意可知,若P为平面直角坐标系内任意一点,则|PA|+|PC|≥|AC|,等号成立的条件是点P 在线段AC 上;|PB|+|PD|≥|BD|,等号成立的条件是点P 在线段BD 上.所以到A ,B ,C ,D 四点的距离之和最小的点为AC 与BD 的交点.直线AC 方程为2x -y =0,直线BD 方程为x +y -6=0.∴解得⎩⎪⎨⎪⎧x =2,y =4.即所求点的坐标为(2,4).答案 (2,4)。
2019版高考数学一轮复习 第九章 解析几何 第一节 直线与方程实用
考点贯通 抓高考命题的“形”与“神”
直线的倾斜角与斜率
1.直线都有倾斜角,但不一定都有斜率,二者的关系具 体如下:
斜率 k k=tan α>0 k=0 k=tan α<0 不存在
倾斜角 α
锐角
0°
钝角
90°
2.在分析直线的倾斜角和斜率的关系时,要根据正切函数 k=tan α 的单调性,如图所示:
04
课时达标检测
K12课件
3
01 突破点(一) 直线的倾斜角与斜率、 两直线的位置关系
基础联通 抓主干知识的“源”与“流”
1.直线的斜率
P1(x1,y1),P2(x2,y2)在直线 l 上,且 x1≠x2,则 l 的斜率 k y2-y1 =__x_2_-__x_1_.
2.直线的倾斜角
(1)定义:在平面直角坐标系中,对于一条与 x 轴相交的直 线,把 x 轴所在的直线绕着交点按 逆时针 方向旋转到和直线重 合时所转过的 最小正角 称为这条直线的倾斜角.当直线 l 与 x 轴 平行或重合 时,规定它的倾斜角为 0.
(2)如图所示,直线 l:x+my+m=0 过定点 A(0,-1),当 m≠0 时,kQA=32, kPA=-2,kl=-m1 .∴-m1 ≤-2 或-m1 ≥32. 解得 0<m≤12或-23≤m<0;
当 m=0 时,直线 l 的方程为 x=0,与线段 PQ 有交点. ∴实数 m 的取值范围为-23,12.
[答案] (1)0,π4∪34π,π (2)-23,12
[易错提醒] 直线倾斜角的范围是[0,π),而这个区间不是正切函数 的单调区间,因此根据斜率求倾斜角的范围时,要分0,π2与 π2,π两种情况讨论.由正切函数图象可以看出,当 α∈0,π2 时,斜率 k∈[0,+∞);当 α=π2时,斜率不存在;当 α∈π2,π 时,斜率 k∈(-∞,0).
高考数学一轮总复习第9章平面解析几何第一节直线与方程模拟创新题文1
高考数学一轮总复习第9章平面解析几何第一节直线与方程模拟创新题文1一、选择题1.(2016·辽宁师大附中期中)已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a 等于( ) A.1或-3 B.-1或3 C.1和3D.-1或-3解析 由题意知两条直线的斜率均存在,因为两直线互相平行,所以所以a =1或-3. 答案 A2.(2015·滨州模拟)当0<k <时,直线l1:kx -y =k -1与直线l2:ky -x =2k 的交点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析 l1和l2的交点坐标为,∵0<k <,∴<0,>0,故l1和l2交点在第二象限. 答案 B3.(2016·河南南阳一模)已知a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( ) A. B.⎝ ⎛⎭⎪⎫12,16 C.D.⎝ ⎛⎭⎪⎫16,-12解析 由a +2b =1得a =1-2b ,代入直线方程得(2x -1)b =x +3y ,此式对任意b 恒成立,故有解得即直线必过定点. 答案 C 二、填空题4.(2014·厦门质检)直线xcos α+y +2=0的倾斜角的取值范围是________.解析 直线xcos α+y +2=0的斜率k =-cos α∈,设倾斜角为θ,则θ∈[0,π), k =tan θ∈,所以θ∈∪.答案 ∪⎣⎢⎡⎭⎪⎫5π6,π 创新导向题直线方程与位置关系问题5.“a =2”是“直线ax +2y -1=0与x +(a -1)y +1=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由两直线平行得=≠,解得a =2,所以“a=2”是“直线ax +2y -1=0与x +(a -1)y +1=0互相平行的充要条件”. 答案 C利用直线位置关系求参数的值6.已知M =ax +2y +a =0}且M ∩N =∅,则a =( ) A.-6或-2 B.-6 C.2或-6D.-2解析注意到可将式子=3变形为3x-y-3=0,由M∩N=∅意味着直线3x-y-3=0(去掉点(2,3))与直线ax+2y+a=0无公共点.若两直线平行,则=≠,即a=-6;若直线ax+2y+a=0恰过点(2,3),则a=-2.答案A专项提升测试模拟精选题一、选择题7.(2016·广东珠海综合测试)“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直的充要条件是4a2+a-3=0,解得a=-1或a=,所以“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的充分不必要条件,故选A.答案A8.(2015·山东烟台二模)设曲线y=在点(3,2)处的切线与直线ax+y+3=0垂直,则a=( )A.2B.-2C. D.-12解析函数y=的导函数为y′=,所以曲线在(3,2)处的切线的斜率为-,又直线ax+y+3=0的斜率为-a,所以-a·=-1,解得a=-2,选B.答案B9.(2014·黑龙江佳木斯第三次调研)与直线2x-y+1=0关于x轴对称的直线方程为( )A.2x+y+1=0B.2x-y-1=0C.2x+y-1=0D.x-2y+1=0解析设A(x,y)为所求直线上的任意一点,则A′(x,-y)在直线2x-y+1=0上,所以2x+y+1=0,此方程为所求方程,选A.答案A二、填空题10.(2015·苏州模拟)已知直线l过点M(1,1),且与x轴、y轴的正半轴分别交于点A,B,O为坐标原点,则当|MA|2+|MB|2取得最小值时,直线l的方程为________.解析设l的方程为y-1=k(x-1),因此A,B(0,1-k),|MA|2+|MB|2=2+k2+≥2+2=4,当且仅当k2=时取“=”,得k=-1.答案x+y-2=0创新导向题直线围成图形的面积问题11.在直角坐标系xOy中,设P是曲线C:xy=1(x>0)上任意一点,l 是曲线C在点P处的切线,且l交坐标轴于A,B两点,则以下结论正确的是( )A.△OAB的面积为定值2B.△OAB的面积有最小值3C.△OAB 的面积有最大值4D.△OAB 的面积的取值范围是[3,4]解析 设P(x0,y0)为曲线C :y =(x>0)上任意一点,则y0=.因为y′=-,所以过点P 的切线斜率k =-),所以切线l 的方程为y -y0=-)(x -x0).当x =0时,y =;当y =0时,x =2x0,所以S△OAB=|OA|·|OB|=|2x0|·=2,故选A. 答案 A直线方程与基本不等式的综合问题12.若直线l :+=1(a>0,b>0)经过点(1,2),则直线l 在x 轴和y 轴上的截距之和的最小值是________.解析 由直线l :+=1(a>0,b>0)可知直线在x 轴上的截距为a ,直线在y 轴上的截距为 b.求直线在x 轴和y 轴上的截距之和的最小值,即求a +b 的最小值.由直线经过点(1,2), ∴+=1,∴a +b =(a +b)⎝ ⎛⎭⎪⎫1a +2b =3++≥3+2b a ×2a b=3+2,故a +b 的最小值为3+2.答案 3+22。
2019版高考数学大一轮复习第九章平面解析几何9.1直线的方程教师用书文苏教版
9.1 直线的方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x 轴平行或重合的直线的倾斜角为0°.(2)范围:直线的倾斜角α的取值范围是[0°,180°). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上且x 1≠x 2,则l 的斜率k =y2-y1x2-x1.3.直线方程的五种形式【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × )(4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.(2016·常州模拟)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为________. 答案 -13解析 设P (m,1),Q (7,n ), 由题意知⎩⎪⎨⎪⎧m +72=1,n +12=-1,解得⎩⎪⎨⎪⎧m =-5,n =-3.所以P (-5,1),Q (7,-3),所以k =-3-17+5=-13.2.直线3x -y +a =0的倾斜角为________. 答案 60°解析 化直线方程为y =3x +a ,∴k =tan α= 3. ∵0°≤α<180°,∴α=60°.3.如图所示,直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围为__________.答案 (-∞,-12]∪[5,+∞)解析 设PA 与PB 的倾斜角分别为α、β,直线PA 的斜率k 1=5, 直线PB 的斜率k 2=-12.。
高考数学一轮总复习第9章平面解析几何第1节直线与方程模拟创新题理
【2019最新】精选高考数学一轮总复习第9章平面解析几何第1节直线与方程模拟创新题理1.(2016·福建福州模拟)设不同直线l1:2x -my -1=0,l2:(m -1)x -y +1=0.则“m=2”是“l1∥l2”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析 当m =2时,代入两直线方程中,易知两直线平行,即充分性成立.当l1∥l2时,显然m≠0,从而有=m -1,解得m =2或m =-1,但当m =-1时,两直线重合,不合要求,故必要性成立,故选C. 答案 C2.(2015·山东省实验中学期末)已知倾斜角为α的直线l 与直线x -2y +2=0平行,则tan 2α的值为( ) A. B. C.D.23解析 直线的斜率为,即直线l 的斜率为k =tan α=,所以tan 2α====,选B. 答案 B3.(2014·江西南昌调研)直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A. B.C.D.⎝ ⎛⎭⎪⎫-12,-3解析∵(2x+1)-m(y+3)=0恒成立,∴2x+1=0,y+3=0,∴x=-,y=-3.答案D创新导向题利用直线位置关系求参数值4.已知直线l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2,则实数a的值为________.解析依题意得a×1+(3-a)×(-2)=0,解得a=2.答案2利用直线方程和基本不等式求最值问题5.已知直线x+2y=2与x轴、y轴分别相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为________.解析由题意知A(2,0),B(0,1),所以线段AB的方程可表示为+y=1,x∈[0,2],又动点P(a,b)在线段AB上,所以+b=1,a∈[0,2],又+b≥2,所以1≥2,解得0≤ab≤,当且仅当=b=,即P时,ab取得最大值.答案12专项提升测试模拟精选题一、选择题6.(2016·河北邢台模拟)已知点P(x,y)为曲线y=x+上任一点,点A(0,4),则直线AP的斜率k的取值范围是( )A.[-3,+∞)B.(3,+∞)C.[-2,+∞)D.(1,+∞)解析由题意知kAP==1-+=-3≥-3.答案A7.(2016·广西南宁调研)已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为( )A.-4B.20C.0D.24解析由两直线垂直得-×=-1,∴a=10,将垂足坐标代入ax+4y-2=0,得c=-2,再代入2x -5y+b=0,得b=-12,∴a+b+c=-4.答案A二、填空题8.(2015·盐城模拟)经过两条直线2x-3y+3=0,x-y+2=0的交点,且与直线x-3y-1=0平行的直线的一般式方程为______________________.解析两条直线2x-3y+3=0,x-y+2=0的交点为(-3,-1),所以所求直线为y+1=(x+3),即x-3y=0.答案x-3y=09.(2014·深圳模拟)一条直线l过点P(1,4),分别交x轴,y轴的正半轴于A、B两点,O为原点,则△AOB的面积最小时直线l的方程为________.解析设l:+=1(a,b>0).因为点P(1,4)在l上,所以+=1.由1=+≥2⇒ab≥16,所以S△AOB=ab≥8.当==, 即a =2,b =8时取等号.故直线l 的方程为4x +y -8=0. 答案 4x +y -8=0 三、解答题10.(2016·四川乐山模拟)已知集合A =,B ={(x ,y)|(a2-1)x +(a -1)y =15},求a 为何值时,A ∩B =∅.解 集合A 、B 分别为平面xOy 上的点集,直线l1:(a +1)x -y -2a +1=0(x≠2),l2:(a2-1)x +(a -1)y -15=0.由解得a =±1.①当a =1时,显然有B =∅,所以A ∩B =∅;②当a =-1时,集合A 为直线y =3(x ≠2),集合B 为直线y =-,两直线平行,所以A ∩B =∅;③由l1可知(2,3)∉A ,当(2,3)∈B 时, 即2(a2-1)+3(a -1)-15=0, 可得a =或a =-4,此时A∩B=∅.综上所述,当a =-4,-1,1,时,A∩B=∅.创新导向题利用直线斜率求倾斜角问题11.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A. B.⎝ ⎛⎭⎪⎫π6,π2 C.D.⎣⎢⎡⎦⎥⎤π6,π2 解析 如图,直线l :y =kx -,过定点P(0,-),又A(3,0),∴kPA=,则直线PA的倾斜角为,满足条件的直线l的倾斜角的范围是.答案B数形结合求斜率取值范围问题12.已知两点M(2,-3),N(-3,-2),直线l过点P(1,1)且与线段MN相交,则直线l的斜率k的取值范围是( )A.k≥或k≤-4B.-4≤k≤34C.≤k≤4D.-≤k≤4解析由斜率公式,得kPM=-4,kPN=,当直线l的斜率k≥或k≤-4时,直线l与线段MN相交.答案A。
2019高考数学一轮复习第九章平面解析几何91直线方程与圆的方程练习文
哈哈哈哈哈哈哈哈你好§9.1 直线方程与圆的方程考纲解读考点内容解读要求 高考示例常考题型 展望热度1. 理解直线的倾斜角和斜率的观点 2017 课标全国2. 掌握过两点的直线斜率的计算公Ⅰ,20;1. 直线的倾斜角、斜式2016 四川 ,10;3.Ⅱ★★☆率与方程掌握确立两直线地点的几何因素2014 福建 ,6;选择题、以及求直线方程的几种形式2013 广东 ,7[] 4.认识斜截式与一次函数的关系填空题1.2017 课标全国掌握确立圆的几何因素2. 圆的方程2. 掌握圆的标准方程与一般方程ⅡⅢ,20;★★★3.2016 北京 ,5; 会利用待定系数法和直接法求圆的方程2016 浙江 ,10剖析解读从近几年的高考试题来看, 本节主要考察基础知识和基本方法 , 一是考察直线的倾斜角与斜率的关系、 斜率公式以及直线方程的求解; 二是圆的标准方程和一般方程的互化以及利用待定系数法、数形联合法求圆的方程,考察形式以选择题和填空题为主. 同时圆的方程作为由直线方程向曲线方程的过渡, 包含着分析法的解题思路和解题方法 , 是分析法的基础 , 所以 , 以圆为载体考察分析法的基本思想和方法是历年高考考察的要点.五年高考考点一 直线的倾斜角、斜率与方程1.(2014 福建 ,6,5 分 ) 已知直线 l 过圆 x 2+(y-3) 2=4 的圆心 , 且与直线 x+y+1=0 垂直 , 则 l 的方程是 ()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案D2.(2013 广东 ,7,5 分 ) 垂直于直线 y=x+1 且与圆 x 2+y 2=1 相切于第Ⅰ象限的直线方程是 ( )A.x+y- =0B.x+y+1=0C.x+y-1=0D.x+y+=0答案A 教师用书专用 (3)3.(2016 四川 ,10,5分 ) 设直线 l ,l 2 分别是函数 f(x)=图象上点 P ,P 处的切线 ,l1与 l 垂直相112 2哈哈哈哈哈哈哈哈你好交于点 P, 且 l ,l2 分别与 y 轴订交于点 A,B, 则△ PAB 的面积的取值范围是()1A.(0,1)B.(0,2)C.(0,+ ∞)D.(1,+ ∞)答案 A考点二圆的方程1.(2016 北京 ,5,5 分 ) 圆(x+1) 2+y2=2 的圆心到直线 y=x+3 的距离为 ( )A.1B.2C.D.2答案 C2.(2015 北京 ,2,5 分 ) 圆心为 (1,1) 且过原点的圆的方程是 ( )A.(x-1) 2+(y-1) 2=1B.(x+1) 2+(y+1) 2=1C.(x+1) 2+(y+1) 2=2D.(x-1) 2+(y-1) 2=2答案 D3.(2016 浙江 ,10,6 分 ) 已知 a∈R,方程 a2x2+(a+2)y 2+4x+8y+5a=0 表示圆 , 则圆心坐标是, 半径是. 答案(-2,-4);54.(2015 湖北 ,16,5 分) 如图 , 已知圆 C 与 x 轴相切于点 T(1,0), 与 y 轴正半轴交于两点A,B(B 在 A 的上方 ), 且|AB|=2.(1) 圆 C 的标准方程为;..(2) 圆 C 在点 B 处的切线在x 轴上的截距为.答案(1)(x-1)2+(y-) 2=2 (2)--15.(2014山东,14,5分)圆心在直线x-2y=0 上的圆 C 与 y 轴的正半轴相切, 圆 C截 x 轴所得弦的长为 2 , 则圆C 的标准方程为.答案(x-2)2+(y-1)2=46.(2013课标全国Ⅱ ,20,12分)在平面直角坐标系xOy 中, 已知圆 P 在 x 轴上截得线段长为 2 , 在 y 轴上截得线段长为2.(1)求圆心 P 的轨迹方程 ;(2) 若 P 点到直线y=x 的距离为, 求圆 P 的方程 .分析(1) 设 P(x,y),圆P的半径为r.哈哈哈哈哈哈哈哈你好由题设得y2+2=r 2,x 2 +3=r 2. 进而 y2+2=x2+3.故 P 点的轨迹方程为y2-x 2=1.(2) 设 P(x 0,y 0), 由已知得=.又 P 在双曲线y2-x 2=1 上 , 进而得由得此时,圆P的半径r=.由得此时,圆P的半径r=.故圆 P 的方程为x2+(y-1)2=3或x2+(y+1)2=3.教师用书专用(7 — 9)7.(2014湖北,17,5分)已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠ -2)和常数λ 知足:对圆O上随意一点 M,都有 |MB|= λ |MA|, 则(1)b=;(2) λ =.答案(1)-(2)8.(2013江西,14,5分)若圆C经过坐标原点和点(4,0),且与直线y=1 相切 , 则圆 C的方程是.答案(x-2)2+=9.(2015广东,20,14分)已知过原点的动直线l 与圆 C1:x 2+y2-6x+5=0 订交于不一样的两点A,B.(1)求圆 C1的圆心坐标 ;(2)求线段 AB 的中点 M的轨迹 C 的方程 ;(3) 能否存在实数k, 使得直线 L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由 .分析(1) 由已知得 , 圆 C1的标准方程为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2) 由题意可知 , 直线l的斜率必存在, 设直线l的方程为y=tx,A(x1,y 1),B(x2,y 2)(x1≠x2),线段AB 的中点M(x0,y 0),将 y=tx 代入圆 C1的方程 , 整理得 (1+t 2)x 2-6x+5=0,电视播放动画动画哈哈哈哈哈哈哈哈你好则有 x1+x2=,所以 x0=, 代入直线l 的方程 , 得 y0=.由于+ =+===3x0,所以+ = .又由于方程 (1+t 2)x 2-6x+5=0 有两个不相等的实根,所以=36-20(1+t2)>0,解得t2< ,所以<x0≤3.所以线段AB的中点M的轨迹 C 的方程为+y2= .(3) 由 (2) 知, 曲线 C: +y2= .如图 ,D ,E ,F(3,0), 直线 L 过定点 G(4,0).由2 2 2 2得 (1+k )x -(3+8k )x+16k =0.当直线 L 与曲线 C相切时 , 鉴别式=0, 解得 k=± . 联合图形能够判断, 当直线 L 与曲线 C 只有一个交点时 , 有k DG≤k≤k EG或 k=k GH或 k=k GI, 即 k∈∪.哈哈哈哈哈哈哈哈你好三年模拟A 组2016— 2018 年模拟·基础题组考点一直线的倾斜角、斜率与方程1.(2018 重庆一中期中,5) 过点 (1,1), 且在 y 轴上的截距为 3 的直线方程是 ()A.x+2y-3=0B.2x-y-1=0C.x-2y-1=0D.2x+y-3=0答案 D2.(2018 豫北六校联考 ,5) 直线 x+(a 2+1)y+1=0 的倾斜角的取值范围是 ()A. B.C. ∪D. ∪答案 B3.(2018 辽宁沈阳二中期中,7) 已知等差数列{a n} 的前n 项和为S n, 且 S2=10,S 5=55, 则过点P(n,a n) 和*Q(n+2,a n+2)(n ∈N) 的直线的斜率为 ()A.4B.3C.2D.1答案 A4.(2017 河北衡水中学周测( 十九 ),7) 已知直线 l 1:3x-y+1=0, 直线 l 2过点 (1,0), 且直线 l 2的倾斜角是 l 1的倾斜角的 2 倍 , 则直线 l 2的方程为 ( )A.y=6x+1B.y=6(x-1)C.y=D.y=- (x-1)答案 D5.(2016 四川南充模拟 ,4) 过点 P(2,3), 而且在两坐标轴上的截距互为相反数的直线l 的方程为 ()A.x-y+1=0B.x-y+1=0 或 3x-2y=0C.x+y-5=0D.x+y-5=0 或 3x-2y=0答案 B考点二圆的方程6.(2018 吉林长春调研 ,3) 已知圆 x2+y2-4x+6y=0 的圆心坐标为 (a,b), 则 a2+b2 =( )A.8B.16C.12D.13答案 D7.(2017 河北唐山二模,5) 圆 E 经过三点 A(0,1),B(2,0),C(0,-1),且圆心在x轴的正半轴上, 则圆 E 的标准方程为 ()哈哈哈哈哈哈哈哈你好A.+y2=B.+y2=C. +y2=D. +y2=答案 C8.(2017 河南洛阳期中 ,6) 已知圆 C 与直线 x-y=0 及 x-y-4=0 都相切 , 圆心在直线x+y=0 上 , 则圆 C 的方程为()A.(x+1) 2+(y-1) 2=2B.(x-1) 2+(y+1) 2=2C.(x-1) 2+(y-1) 2=2D.(x+1) 2+(y+1) 2=2答案 B9.(2016 河南许昌三模 ,6) 经过原点而且与直线x+y-2=0 相切于点 (2,0) 的圆的标准方程是 ()A.(x-1) 2+(y+1) 2=2B.(x+1) 2+(y-1) 2=2C.(x-1) 2+(y+1) 2=4D.(x+1) 2+(y-1) 2=4答案 A10.(2018 豫西南五校联考 ,14) 已知圆 C 的圆心在直线x+y=0 上, 圆 C 与直线 x-y=0 相切 , 且被直线 x-y-3=0 截得的弦长为, 则圆 C 的方程为.答案(x-1) 2+(y+1) 2=211.(2018 湘东五校模拟,15) 圆心在抛物线y= x2(x<0) 上, 而且和该抛物线的准线及y 轴都相切的圆的标准方程为.答案 (x+1) 2+ =1B 组2016— 2018 年模拟·提高题组(满分 :45 分时间:30分钟)一、选择题 ( 每题 5 分, 共 15 分)1.(2018河北衡水中学期中考试,10)在平面直角坐标系xOy 中 , 在以 (-2,0)为圆心且与直线(3m+1)x+(1-2m)y- 5=0(m∈R)相切的全部圆中, 面积最大的圆的标准方程是()A.(x+2) 2+y2=16B.(x+2) 2+y2=20C.(x+2) 2+y2=25D.(x+2) 2+y2=36答案 C电视播放动画动画哈哈哈哈哈哈哈哈你好2.(2017 河南六市二模 ,5) 圆 (x-2) 2+y2=4 对于直线 y= x 对称的圆的方程是 ()A.(x- ) 2 2B.(x-2 2+(y-1) =4 ) +(y- ) =4C.x 2+(y-2) 2=4D.(x-1) 2+(y- ) 2=4答案 D3.(2017 安徽安庆二模 ,8) 自圆 C:(x-3) 2 +(y+4) 2=4 外一点 P(x,y) 引该圆的一条切线, 切点为 Q,PQ 的长度等于点 P 到原点 O的距离 , 则点 P 的轨迹方程为 ( )A.8x-6y-21=0B.8x+6y-21=0C.6x+8y-21=0D.6x-8y-21=0答案 D二、填空题 ( 每题 5 分, 共 15 分)4.(2018 陕西部分名校摸底测试,13) 若 P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是. 答案x-y-3=05.(2017 河南天一大联考 ( 三 ),15) 已知圆 C(圆心 C 在第一象限 ) 过点 (1,0),(7,0), 直线 y=x-1 被圆 C截得的弦长为 4 , 则圆 C 的标准方程为.答案 (x-4) 2+(y-1) 2=106.(2016 黑龙江哈尔滨二模 ,15) 在平面直角坐标系xOy 中 , 以点 (2,-3) 为圆心且与直线 2mx-y-2m- 1=0(m∈R)相切的全部圆中 , 半径最大的圆的标准方程为.答案 (x-2) 2+(y+3) 2=5三、解答题 ( 共 15 分)7.(2018 晋豫百校联考 ,20) 在平面直角坐标系xOy 中 , 曲线Γ :y=x 2- mx+2m(m∈R)与 x 轴交于不一样的两点A,B,曲线Γ与 y 轴交于点 C.(1)能否存在以 AB 为直径的圆过点 C?若存在 , 求出该圆的方程 ; 若不存在 , 请说明原因 ;(2)求证 : 过 A,B,C 三点的圆过定点 .分析曲线Γ :y=x 2- mx+2m(m∈R), 令 y=0, 得 x2-mx+2m=0.设 A(x 1,0),B(x 2,0), 则易知2=m-8m>0,x 1+x 2=m,x1x2=2m.令 x=0, 得 y=2m,即 C(0,2m).(1) 若存在以 AB为直径的圆过点C,则·2 2所以 m=0或 m=- . =0, 得 x1x2+4m=0, 即 2m+4m=0,由>0 得 m<0或 m>8,所以 m=- ,哈哈哈哈哈哈哈哈你好此时 C(0,-1),AB的中点M即圆心,半径r=|CM|=,故所求圆的方程为+y2=.(2) 证明 : 设过 A,B 两点的圆的方程为x2+y2-mx+Ey+2m=0,将 (0,2m) 代入可得 E=-1-2m,所以过 A,B,C 三点的圆的方程为 x2+y2-mx-(1+2m)y+2m=0, 整理得 x2+y2-y-m(x+2y-2)=0.令可得或故过 A,B,C 三点的圆过定点(0,1) 和.C 组2016— 2018 年模拟·方法题组方法 1求解直线的斜率及倾斜角范围的方法1.(2017 中原名校结盟12 月联考 ,6) 设点 A(-2,3),B(3,2),若直线ax+y+2=0与线段AB有交点,则实数a的取值范围是()A.∪B.C. D.∪答案 D2.(2016河南信阳调研,6)若直线l:y=kx-3与直线2x+3y-6=0的交点位于第一象限, 则直线 l 的倾斜角的取值范围是()A. B. C. D.答案 C方法 2求直线方程的方法3.(2018江西南昌二中月考,6) 曲线 y=在点P(2,4)处的切线与直线l 平行且点P 到直线 l 的距离为2, 则直线 l 的方程为 ()哈哈哈哈哈哈哈哈你好A.2x+y+2=0B.2x+y+2=0 或 2x+y-18=0C.2x-y-18=0D.2x-y+2=0或2x-y-18=0答案 B4.(2016吉林九校联考,7) 经过点 P(1,4) 的直线 l 在两坐标轴上的截距都是正的, 且截距之和最小, 则直线 l 的方程为()A.x+2y-6=0B.2x+y-6=0C.x-2y+7=0D.x-2y-7=0答案 B5.(2017 山西长治二中月考,14) 直线 l 过点 P(6,4), 且分别与 x 轴,y 轴的正方向交于A,B 两点 , 当△ ABO的面积最小时 , 直线 l 的方程为.答案 2x+3y-24=0方法 3 求圆的方程的方法6.(2018 河北石家庄质检 ,15) 过点 M(2,2) 的直线 l 与坐标轴的正方向分别订交于A,B 两点 ,O 为坐标原点 , 若△OAB的面积为 8, 则△ OAB外接圆的标准方程是.答案 (x-2) 2+(y-2) 2=87.(2016 宁夏银川一中调研,15) 两条相互垂直的直线2x+y+2=0 和 ax+4y-2=0 的交点为 P, 若圆 C 过点 P 和点M(-3,2), 且圆心在直线 y= x 上 , 则圆 C的标准方程为.答案 (x+6) 2+(y+3) 2=348.(2017 江西四校 12 月联考 ,20) 在平面直角坐标系xOy 中 , 以 O为圆心的圆与直线 x- y=4 相切 .(1)求圆 O的方程 ;(2) 圆 O与 x 轴订交于A,B 两点 , 圆 O内的动点P 使 |PA|,|PO|,|PB|成等比数列,求·的取值范围.分析(1) 依题意得 , 圆 O 的半径r 等于原点O 到直线x-y-4=0的距离,即r==2, 故圆 O 的方程为x2+y2=4.(2) 由已知不如设A(-2,0),B(2,0).设 P(x,y), 由 |PA|,|PO|,|PB| 成等比数列 , 得·=x2+y2, 即 x2-y 2=2.由于点 P 在圆 O内 , 所以由此得y2<1.电视播放动画动画哈哈哈哈哈哈哈哈你好所以·=(-2-x,- y) ·(2 -x,-y)=x2+y2-4=2y2-2<0,又易得·=2y2- 2≥ -2,所以·的取值范围为[-2,0).方法 4对称问题的办理方法9.(2017江西赣中南五校联考,5) 已知直线l 与直线 2x-3y+4=0 对于直线x=1 对称 , 则直线 l 的方程为 ()A.2x+3y-8=0B.3x-2y+1=0C.x+2y-5=0D.3x+2y-7=0答案 A10.(2018湖南师大附中联考,14) 若直线l 1:y=-x对于直线l的对称直线为l 2:x+y-2=0,则直线l的方程为.答案x+y-1=011.(2017河北衡水中学二调,17) 一条光芒经过点P(2,3) 射在直线l:x+y+1=0上,反射后经过点Q(1,1).(1) 求入射光芒所在直线的方程;(2)求这条光芒从点 P 到点 Q的长度 .分析(1) 如下图 .设点 Q'(x',y')为Q对于直线l 的对称点且QQ'交 l 于点 M.∵k l=- 1,∴k QQ'=1,∴Q Q'所在直线的方程为 y- 1=1·(x -1), 即 x-y=0,由解得 l 与 QQ'的交点 M的坐标为.又∵M为 QQ'的中点 , 由解得∴Q'( -2,-2).电视播放动画动画哈哈哈哈哈哈哈哈你好设入射光芒与l 交于点 N,则 P,N,Q' 三点共线 .由 P(2,3) 、 Q'(-2,-2)得入射光芒所在直线的方程为=, 即 5x-4y+2=0.(2) 由 (1) 知 l 是线段 QQ'的垂直均分线,∴|NQ|=|NQ'|,∴|PN|+|NQ|=|PN|+|NQ'|=|PQ'|==,即这条光芒从点P 到点 Q的长度是.电视播放动画动画。
2019-2020最新高三数学一轮复习第九篇平面解析几何第1节直线与方程基丛点练理
——教学资料参考参考范本——2019-2020最新高三数学一轮复习第九篇平面解析几何第1节直线与方程基丛点练理______年______月______日____________________部门第1节直线与方程【选题明细表】知识点、方法题号直线的倾斜角和斜率1,4,12直线的方程3,8,14直线的位置关系2,10,13直线的交点和距离问题5,9直线方程的综合应用6,7,11,15,16基础对点练(时间:30分钟)1.直线l:xsin 30°+ycos 150°+1=0的斜率是( A )(A) (B) (C)- (D)-解析:设直线l的斜率为k,则k=-=.2.(20xx大连二模)已知直线l1:(3+a)x+4y=5-3a和直线l2:2x+(5+a)y=8平行,则a等于( B )(A)-7或-1 (B)-7(C)7或1 (D)-1解析:由题意可得a≠-5,所以=≠,解得a=-7(a=-1舍去).3.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为( D )(A)4x-3y-3=0 (B)3x-4y-3=0(C)3x-4y-4=0 (D)4x-3y-4=0解析:由题意可设直线l0,l的倾斜角分别为α,2α,因为直线l0:x-2y-2=0的斜率为,则tan α=,所以直线l的斜率k=tan 2α===,所以由点斜式可得直线l的方程为y-0=(x-1),即4x-3y-4=0.4.(20xx枣庄模拟)将直线l沿y轴的负方向平移a(a>0)个单位,再沿x 轴正方向平移a+1个单位得直线l′,此时直线l′与l重合,则直线l′的斜率为( B )(A) (B)-(C) (D)-解析:设直线l:y=kx+b,l沿y轴负方向平移a个单位得l1:y=kx+b-a,再沿x轴正方向平移a+1个单位得l′:y=k(x-a-1)+b-a,即y=kx+b-ka-k-a,由l′与l重合得-a-ka-k=0,k=-.5.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2经过定点( B )(A)(0,4) (B)(0,2) (C)(-2,4) (D)(4,-2)解析:直线l1:y=k(x-4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l1与直线l2关于点(2,1)对称,故直线l2经过定点(0,2).故选B.6.不论m为何值时,直线l:(m-1)x+(2m-1)y=m-5恒过定点( D )(A)(1,-) (B)(-2,0) (C)(2,3) (D)(9,-4)解析:直线(m-1)x+(2m-1)y=m-5,化为(mx+2my-m)+(-x-y+5)=0,即直线l过x+2y-1=0与-x-y+5=0的交点,解方程组得7.(20xx合肥一模)已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是( B )(A)x-2y+1=0 (B)x-2y-1=0(C)x+y-1=0 (D)x+2y-1=0解析:因为l1与l2关于l对称,所以l1上任一点关于l的对称点都在l2上,故l与l1的交点(1,0)在l2上.又易知(0,-2)为l1上一点,设它关于l的对称点为(x,y),则解得即(1,0),(-1,-1)为l2上两点,可得l2的方程为x-2y-1=0.8.(20xx哈尔滨模拟)经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程为.解析:设所求直线方程为+=1,由已知得解得或所以2x+y+2=0或x+2y-2=0为所求.答案:2x+y+2=0或x+2y-2=09.(20xx重庆检测)已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为.解析:直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,即3x+4y+=0,所以直线l1与l2的距离为=.答案:10.(20xx浙江温州十校联考)过两直线2x-y-5=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程为.解析:联立得交点P(1,-3),设过点P且与直线3x+y-1=0平行的直线方程为3x+y+m=0,则3×1-3+m=0,解得m=0.答案:3x+y=011.已知两直线l1:ax-by+4=0和l2:(a-1) x+y+b=0,求满足下列条件的a,b的值.(1)l1⊥l2,且直线l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.解:(1)因为l1⊥l2,所以a(a-1)-b=0.又因为直线l1过点(-3,-1),所以-3a+b+4=0.故a=2,b=2.(2)因为直线l2的斜率存在,l1∥l2,所以直线l1的斜率存在,k1=k2,即=1-a.又因为坐标原点到这两条直线的距离相等,所以l1、l2在y轴上的截距互为相反数,即=b.故a=2,b=-2或a=,b=2.能力提升练(时间:15分钟)12.(20xx哈尔滨模拟)函数y=asin x-bcos x的一条对称轴为x=,则直线l:ax-by+c=0的倾斜角为( D )(A)45°(B)60°(C)120°(D)135°解析:由函数y=f(x)=asin x-bcos x的一条对称轴为x=知,f(0)=f(),即-b=a,所以直线l的斜率为-1,所以倾斜角为135°.13.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于.解析:设点(-m,n)关于直线x+y-1=0的对称点为(x0,y0),则有解得x0=1-n,y0=1+m,又点(x0,y0)在直线x-y+2=0上,所以1-n-1-m+2=0,所以m+n=2,所以+=(+)(m+n) =++≥.答案:14.(20xx淮安一调)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为.解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,解得a=1,b=0.又反射光线经过点N(2,6),所以所求直线的方程为=,即6x-y-6=0.答案:6x-y-6=015.已知直线l过点M(1,1),且与x轴,y轴的正半轴分别相交于A,B两点,O为坐标原点,求:(1)当|OA|+|OB|取得最小值时,直线l的方程;(2)当|MA|2+|MB|2取得最小值时,直线l的方程.解:(1)设A(a,0),B(0,b)(a>0,b>0).则直线l的方程为+=1,则+=1,所以|OA|+|OB|=a+b=(a+b)(+)=2++≥2+2=4,当且仅当“a=b=2”时取等号,此时直线l的方程为x+y-2=0.(2)设直线l的斜率为k,则k<0,直线l的方程为y-1=k(x-1),则A(1-,0),B(0,1-k),所以|MA|2+|MB|2=(1-1+)2+12+12+(1-1+k)2=2+k2+≥2+2=4,则当且仅当k2=,即k=-1时等号成立,则直线l的方程为y=-x+2.16.(20xx东营模拟)设直线l的方程为(a+1)x+y-2-a=0(a∈R).(1)若直线l在两坐标轴上的截距相等,求直线l的方程;(2)若a>-1,直线l与x,y轴分别交于M,N两点,O为坐标原点,求△OMN 面积取最小值时,直线l的方程.解:(1)当直线l经过坐标原点时,设直线在两坐标轴上的截距都为0,此时a+2=0,解得a=-2,此时直线l的方程为-x+y=0,即x-y=0;当直线l不经过坐标原点,即a≠-2且a≠-1时,由直线在两坐标轴上的截距相等可得=2+a,解得a=0,此时直线l的方程为x+y-2=0.所以直线l的方程为x-y=0或x+y-2=0.(2)由直线方程可得M(,0),N(0,2+a),因为a>-1,所以S△OMN=××(2+a)=×=[(a+1)++2]≥×[2+2]=2,当且仅当a+1=,即a=0时等号成立,此时直线l的方程为x+y-2=0.精彩5分钟1.(20xx高考四川卷)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是.解题关键:两直线过定点,且两直线互相垂直.解析:易求定点A(0,0),B(1,3).当P与A和B均不重合时,不难验证PA ⊥PB,所以|PA|2+|PB|2=|AB|2=10,所以|PA|·|PB|≤=5(当且仅当|PA|=|PB|=时,等号成立),当P与A或B重合时,|PA|·|PB|=0,故|PA|·|PB|的最大值是5.答案:52.(20xx黄山一模)已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则的取值范围为.解题关键:利用点到直线的距离,确定x0,y0的关系,求的范围转化为关于x0的函数,求其范围.解析:因为直线x+2y-1=0与直线x+2y+3=0平行,所以=,可得x0+2y0+1=0,因为y0>x0+2,所以-(1+x0)>x0+2,解得x0<-.设=k,所以k==--,因为x0<-,所以0<-<,所以-<<-.答案:(-,-)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【大高考】2017版高考数学一轮总复习 第9章 平面解析几何 第一
节 直线与方程模拟创新题 文 新人教A 版
一、选择题
1.(2016·辽宁师大附中期中)已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a 等于( ) A.1或-3 B.-1或3 C.1和3
D.-1或-3
解析 由题意知两条直线的斜率均存在,因为两直线互相平行,所以⎩⎪⎨⎪⎧a =3
a +2,
-2≠1
a +2,
所以
a =1或-3.
答案 A
2.(2015·滨州模拟)当0<k <1
2时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在
( ) A.第一象限 B.第二象限 C.第三象限
D.第四象限
解析 l 1和l 2的交点坐标为⎝
⎛⎭
⎪
⎫k k -1,2k -1k -1,
∵0<k <12,∴k k -1<0,2k -1
k -1>0,故l 1和l 2交点在第二象限.
答案 B
3.(2016·河南南阳一模)已知a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( )
A.⎝ ⎛⎭
⎪⎫-16,12 B.⎝ ⎛⎭
⎪⎫12,16
C.⎝ ⎛⎭⎪⎫1
2
,-16
D.⎝ ⎛⎭⎪⎫1
6
,-12
解析 由a +2b =1得a =1-2b ,代入直线方程得(2x -1)b =x +3y ,此式对任意b 恒成立,故有⎩
⎪⎨⎪⎧2x -1=0,x +3y =0,解得⎩⎪⎨⎪⎧x =1
2,y =-16,即直线必过定点⎝ ⎛⎭⎪⎫1
2,-16.
答案 C 二、填空题
4.(2014·厦门质检)直线x cos α+3y +2=0的倾斜角的取值范围是________. 解析 直线x cos α+3y +2=0的斜率
k =-
33cos α∈⎣⎢⎡
⎦⎥⎤-33
,33,设倾斜角为θ,则θ∈[0,π), k =tan θ∈⎣⎢⎡
⎦
⎥⎤-
33,33,所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π.
答案 ⎣
⎢⎡⎦⎥⎤0,π6∪⎣
⎢⎡⎭
⎪⎫5π6
,π
创新导向题
直线方程与位置关系问题
5.“a =2”是“直线ax +2y -1=0与x +(a -1)y +1=0互相平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件
D.既不充分也不必要条件
解析 由两直线平行得a 1=2a -1≠-11
,解得a =2,所以“a =2”是“直线ax +2y -1=0
与x +(a -1)y +1=0互相平行的充要条件”. 答案 C
利用直线位置关系求参数的值
6.已知M =⎩
⎨⎧(x ,y )⎪⎪
⎪⎭⎬⎫y -3x -2=3,N ={x ,y )|ax +2y +a =0}且M ∩N =∅,则a =( ) A.-6或-2 B.-6 C.2或-6
D.-2
解析 注意到可将式子
y -3
x -2
=3变形为3x -y -3=0,由M ∩N =∅意味着直线3x -y -3=0(去掉点(2,3))与直线ax +2y +a =0无公共点.若两直线平行,则3a =-12≠-3
a ,即a =
-6;若直线ax +2y +a =0恰过点(2,3),则a =-2. 答案 A
专项提升测试 模拟精选题
一、选择题
7.(2016·广东珠海综合测试)“a =-1”是“直线a 2
x -y +6=0与直线4x -(a -3)y +9=0互相垂直”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件
D.既不充分也不必要条件
解析 直线a 2
x -y +6=0与直线4x -(a -3)y +9=0互相垂直的充要条件是4a 2
+a -3=
0,解得a =-1或a =34,所以“a =-1”是“直线a 2
x -y +6=0与直线4x -(a -3)y +9
=0互相垂直”的充分不必要条件,故选A. 答案 A
8.(2015·山东烟台二模)设曲线y =x +1
x -1
在点(3,2)处的切线与直线ax +y +3=0垂直,则a =( ) A.2 B.-2 C.12
D.-12
解析 函数y =
x +1x -1的导函数为y ′=-2
(x -1)
2,所以曲线在(3,2)处的切线的斜率为-1
2
,又直线ax +y +3=0的斜率为-a , 所以-a ·⎝ ⎛⎭
⎪⎫-12=-1,解得a =-2,选B. 答案 B
9.(2014·黑龙江佳木斯第三次调研)与直线2x -y +1=0关于x 轴对称的直线方程为( )
A.2x +y +1=0
B.2x -y -1=0
C.2x +y -1=0
D.x -2y +1=0
解析 设A (x ,y )为所求直线上的任意一点,则A ′(x ,-y )在直线2x -y +1=0上,所以2x +y +1=0,此方程为所求方程,选A. 答案 A 二、填空题
10.(2015·苏州模拟)已知直线l 过点M (1,1),且与x 轴、y 轴的正半轴分别交于点A ,B ,
O 为坐标原点,则当|MA |2+|MB |2取得最小值时,直线l 的方程为________.
解析 设l 的方程为y -1=k (x -1), 因此A ⎝
⎛⎭
⎪⎫k -1k ,0,B (0,1-k ),|MA |2+|MB |2=2+k 2+1k 2≥2+2
k 2·1
k
2=4,当且仅当
k 2=1
k
2时取“=”,得k =-1.
答案 x +y -2=0
创新导向题
直线围成图形的面积问题
11.在直角坐标系xOy 中,设P 是曲线C :xy =1(x >0)上任意一点,l 是曲线C 在点P 处的。