Nonlinear observability and an invariance principle for switched systems

合集下载

noninferior统计学

noninferior统计学

noninferior统计学非劣性统计学(noninferior statistics)是一种用于比较两种不同治疗方法或产品的统计方法。

它的目的是确定一种新的治疗方法或产品是否与已有的方法或产品具有相当的效果,而不是证明它是否优于已有的方法或产品。

在临床试验和药物研发等领域,非劣性统计学被广泛使用。

在传统的统计假设检验中,我们通常关注的是是否有足够的证据来支持某种假设。

例如,我们想知道一种新的药物是否比现有的药物更有效。

在这种情况下,我们的零假设是新药物的效果与现有药物相同,备择假设是新药物的效果更好。

然后,我们收集数据,计算出一个统计量,并根据这个统计量的概率分布来判断我们是否有足够的证据来拒绝零假设。

然而,在一些情况下,我们并不关心新的治疗方法是否更好,而是想确定它是否足够好以至于可以替代现有的方法。

这就是非劣性试验的目标。

在非劣性试验中,我们的零假设是新的治疗方法的效果不劣于现有的方法,备择假设是新的治疗方法的效果劣于现有的方法。

我们收集数据,并使用适当的统计方法来计算一个置信区间,以确定新的治疗方法是否在预先设定的非劣性边界内。

为了进行非劣性试验,我们需要确定一个合适的非劣性边界。

这个边界通常是根据临床经验和专家意见来确定的。

它代表了在实际临床应用中被认为是可接受的差异。

如果新的治疗方法的效果低于非劣性边界,我们就可以说它不具备非劣性,无法替代现有的方法。

在进行非劣性试验时,我们还需要注意样本大小的计算。

为了保证试验的统计功效和可靠性,我们需要确定适当的样本大小。

样本大小的计算通常基于非劣性边界、预计的效应大小和试验的统计功效等因素。

除了非劣性试验,非劣性统计学还可以应用于其他领域。

例如,在药物研发中,我们可以使用非劣性统计学来评估新药物的副作用是否可接受。

在产品质量控制中,我们可以使用非劣性统计学来确定新的生产方法是否能够保持产品的质量水平。

非劣性统计学是一种重要的统计方法,用于比较两种不同治疗方法或产品的效果。

《机器学习基石》课程笔记12 -- Nonlinear Transformation

《机器学习基石》课程笔记12 -- Nonlinear Transformation

林轩田《机器学习基石》课程笔记12­­NonlinearTransformation上一节课,我们介绍了分类问题的三种线性模型,可以用来解决binary classification和multiclass classification问题。

本节课主要介绍非线性的模型来解决分类问题。

一、Quadratic Hypothesis之前介绍的线性模型,在2D平面上是一条直线,在3D空间中是一个平面。

数学上,我们用线性得分函数s来表示:。

其中,x为特征值向量,w为权重,s是线性的。

线性模型的优点就是,它的VC Dimension比较小,保证了。

但是缺点也很明显,对某些非线性问题,可能会造成很大,虽然,但是也造成很大,分类效果不佳。

为了解决线性模型的缺点,我们可以使用非线性模型来进行分类。

例如数据集D不是线性可分的,而是圆形可分的,圆形内部是正类,外面是负类。

假设它的hypotheses可以写成:基于这种非线性思想,我们之前讨论的PLA、Regression问题都可以有非线性的形式进行求解。

下面介绍如何设计这些非线性模型的演算法。

还是上面介绍的平面圆形分类例子,它的h(x)的权重w0=0.6,w1=­1,w2=­1,但是h(x)的特征不是线性模型的,而是。

我们令,,,那么,h(x)变成:这种的转换可以看成是x空间的点映射到z空间中去,而在z域中,可以用一条直线进行分类,也就是从x空间的圆形可分映射到z空间的线性可分。

z域中的直线对应于x域中的圆形。

因此,我们把这个过程称之为特征转换(Feature Transform)。

通过这种特征转换,可以将非线性模型转换为另一个域中的线性模型。

已知x域中圆形可分在z域中是线性可分的,那么反过来,如果在z域中线性可分,是否在x域中一定是圆形可分的呢?答案是否定的。

由于权重向量w取值不同,x域中的hypothesis可能是圆形、椭圆、双曲线等等多种情况。

统计学术语中英对照

统计学术语中英对照

population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 叙述统计学inferential/inductive statistics 推论 ...抽样调查(sampliing survey单纯随机抽样(simple random sampling系统抽样(systematic sampling分层抽样(stratified sampling整群抽样(cluster sampling多级抽样(multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics)实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 叙述统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Word 资料Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性模式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display 盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive叙述统计学: Descriptive statistics 期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statistical hypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple random sampling分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signed ranktests魏克森等级和检定: Wilcoxon rank sum tests连检定法: Run test离散的均匀密度: Discrete uniform densities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniform densities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysisWord 资料.Word 资料存活分析 : Survival analysis 时间序列分析 : Time series analysis 线性模式 : Linear models 品质工程 : Quality engineering 机率论 : Probability theory 统计计算 : Statistical computing 统计推论 : Statistical inference 随机过程 : Stochastic processes 决策理论 : Decision theory 离散分析 : Discrete analysis 数理统计 : Mathematical statistics 统 计 名 词 市 调 辞 典 众数(Mode) 普查(census) 指数(Index) 问卷(Questionnaire) 中位数(Median) 信度(Reliability) 百分比(Percentage) 母群体(Population) 信赖水准(Confidence level) 观察法(Observational Survey) 假设检定(Hypothesis Testing) 综合法(Integrated Survey) 卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling) 差距量表(Interval Scale) 序列偏差(Series Bias) 类别量表(Nominal Scale) 次级资料(Secondary Data) 顺序量表(Ordinal Scale) 抽样架构(Sampling frame) 比率量表(Ratio Scale) 集群抽样(Cluster Sampling) 连检定法(Run Test) 便利抽样(Convenience Sampling) 符号检定(Sign Test) 抽样调查(Sampling Sur) 算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error) 展示会法(Display Survey) 调 查 名 词 准确效度(Criterion-Related Validity) 元素(Element) 邮寄问卷法(Mail Interview) 样本(Sample) 信抽样误差(Sampling error) 效度(Validity) 封闭式问题(Close Question) 精确度(Precision) 电话访问法(Telephone Interview) 准确度(Validity) 随机抽样法(Random Sampling) 实验法(Experiment Survey) 抽样单位(Sampling unit) 资 讯 名 词 市场调查(Marketing Research) 决策树(Decision Trees) 容忍误差(Tolerated erro) 资料采矿(Data Mining) 初级资料(Primary Data) 时间序列(Time-Series Forecasting) 目标母体(Target Population) 回归分析(Regression) 抽样偏差(Sampling Bias) 趋势分析(Trend Analysis) 抽样误差(sampling error) 罗吉斯回归(Logistic Regression) 架构效度(Construct Validity) 类神经网络(Neural Network) 配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test) 人员访问法(Interview) 判别分析法(Discriminant Analysis) 集群分析法(cluster analysis) 规则归纳法(Rules Induction) 内容效度(Content Validity) 判断抽样(Judgment Sampling) 开放式问题(Open Question) OLAP(Online Analytical Process) 分层随机抽样(Stratified Random sampling) 资料仓储(Data Warehouse) 非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge Discovery Absolute deviation, 绝对离差 Absolute number, 绝对数 Absolute residuals, 绝对残差 Acceleration array, 加速度立体阵 Acceleration in an arbitrary direction, 任意方向上的加速度 Acceleration normal, 法向加速度 Acceleration space dimension, 加速度空间的维数 Acceleration tangential, 切向加速度 Acceleration vector, 加速度向量 Acceptable hypothesis, 可接受假设 Accumulation, 累积 Accuracy, 准确度 Actual frequency, 实际频数.Word 资料Adaptive estimator, 自适应估计量 Addition, 相加Addition theorem, 加法定理 Additive Noise, 加性噪声 Additivity, 可加性 Adjusted rate, 调整率 Adjusted value, 校正值 Admissible error, 容许误差 Aggregation, 聚集性 Alpha factoring,α因子法Alternative hypothesis, 备择假设 Among groups, 组间 Amounts, 总量Analysis of correlation, 相关分析 Analysis of covariance, 协方差分析 Analysis Of Effects, 效应分析 Analysis Of Variance, 方差分析 Analysis of regression, 回归分析Analysis of time series, 时间序列分析 Analysis of variance, 方差分析 Angular transformation, 角转换ANOVA (analysis of variance ), 方差分析 ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析 Arcing, 弧/弧旋Arcsine transformation, 反正弦变换 Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸 Arithmetic mean, 算术平均数 Arrhenius relation, 艾恩尼斯关系 Assessing fit, 拟合的评估 Associative laws, 结合律Asymmetric distribution, 非对称分布 Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率 Asymptotic variance, 渐近方差 Attributable risk, 归因危险度 Attribute data, 属性资料 Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关 Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率 Bar chart, 条形图 Bar graph, 条形图 Base period, 基期Bayes' theorem , Bayes 定理 Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布 Best-trim estimator, 最好切尾估计量 Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归 Binomial distribution, 二项分布 Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布 Bivariate normal population, 双变量正态总体 Biweight interval, 双权区间Biweight M-estimator, 双权M 估计量 Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP 统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点 Canonical correlation, 典型相关 Caption, 纵标目Case-control study, 病例对照研究 Categorical variable, 分类变量 Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系 Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标 Central tendency, 集中趋势 Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测 Chance, 机遇Chance error, 随机误差 Chance variable, 随机变量Characteristic equation, 特征方程.Word 资料Characteristic root, 特征根 Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则 Chernoff faces, 切尔诺夫脸谱图 Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解 Circle chart, 圆图 Class interval, 组距Class mid-value, 组中值 Class upper limit, 组上限 Classified variable, 分类变量 Cluster analysis, 聚类分析 Cluster sampling, 整群抽样 Code, 代码Coded data, 编码数据 Coding, 编码Coefficient of contingency, 列联系数 Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数 Coefficient of partial correlation, 偏相关系数 Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数 Coefficient of regression, 回归系数 Coefficient of skewness, 偏度系数 Coefficient of variation, 变异系数 Cohort study, 队列研究 Collinearity, 共线性 Column, 列Column effect, 列效应Column factor, 列因素 Combination pool, 合并 Combinative table, 组合表 Common factor, 共性因子Common regression coefficient, 公共回归系数 Common value, 共同值Common variance, 公共方差 Common variation, 公共变异 Communality variance, 共性方差 Comparability, 可比性Comparison of bathes, 批比较 Comparison value, 比较值Compartment model, 分部模型 Compassion, 伸缩Complement of an event, 补事件 Complete association, 完全正相关 Complete dissociation, 完全不相关 Complete statistics, 完备统计量Completely randomized design, 完全随机化设计 Composite event, 联合事件 Composite events, 复合事件 Concavity, 凹性Conditional expectation, 条件期望 Conditional likelihood, 条件似然 Conditional probability, 条件概率 Conditionally linear, 依条件线性 Confidence interval, 置信区间 Confidence limit, 置信限Confidence lower limit, 置信下限 Confidence upper limit, 置信上限 Confirmatory Factor Analysis , 验证性因子分析 Confirmatory research, 证实性实验研究 Confounding factor, 混杂因素 Conjoint, 联合分析 Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布 Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布 Contamination, 污染Contamination model, 污染模型 Contingency table, 列联表 Contour, 边界线Contribution rate, 贡献率 Control, 对照, 质量控制图Controlled experiments, 对照实验 Conventional depth, 常规深度 Convolution, 卷积Corrected factor, 校正因子 Corrected mean, 校正均值Correction coefficient, 校正系数 Correctness, 正确性Correlation coefficient, 相关系数 Correlation, 相关性.Word 资料Correlation index, 相关指数 Correspondence, 对应 Counting, 计数 Counts, 计数/频数 Covariance, 协方差 Covariant, 共变Cox Regression, Cox 回归 Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则 Critical ratio, 临界比 Critical region, 拒绝域 Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析 Cross-section survey, 横断面调查 Crosstabs , 交叉表 Crosstabs 列联表分析Cross-tabulation table, 复合表 Cube root, 立方根Cumulative distribution function, 分布函数 Cumulative probability, 累计概率 Curvature, 曲率/弯曲 Curvature, 曲率Curve Estimation, 曲线拟合 Curve fit , 曲线拟和 Curve fitting, 曲线拟合Curvilinear regression, 曲线回归 Curvilinear relation, 曲线关系 Cut-and-try method, 尝试法 Cycle, 周期Cyclist, 周期性 D test, D 检验Data acquisition, 资料收集 Data bank, 数据库Data capacity, 数据容量 Data deficiencies, 数据缺乏 Data handling, 数据处理 Data manipulation, 数据处理 Data processing, 数据处理 Data reduction, 数据缩减 Data set, 数据集Data sources, 数据来源Data transformation, 数据变换 Data validity, 数据有效性 Data-in, 数据输入 Data-out, 数据输出 Dead time, 停滞期Degree of freedom, 自由度 Degree of precision, 精密度 Degree of reliability, 可靠性程度 Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量 Dependent variable, 因变量 Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法 Design, 设计Determinacy, 确定性 Determinant, 行列式 Determinant, 决定因素 Deviation, 离差Deviation from average, 离均差 Diagnostic plot, 诊断图Dichotomous variable, 二分变量 Differential equation, 微分方程Direct standardization, 直接标准化法 Direct Oblimin, 斜交旋转 Discrete variable, 离散型变量 DISCRIMINANT, 判断Discriminant analysis, 判别分析 Discriminant coefficient, 判别系数 Discriminant function, 判别值 Dispersion, 散布/分散度 Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布 Distribution shape, 分布形状Distribution-free method, 任意分布法 Distributive laws, 分配律 Disturbance, 随机扰动项Dose response curve, 剂量反应曲线 Double blind method, 双盲法 Double blind trial, 双盲试验Double exponential distribution, 双指数分布 Double logarithmic, 双对数 Downward rank, 降秩Dual-space plot, 对偶空间图.Word 资料DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan 新法Error Bar, 均值相关区间图 Effect, 实验效应 Eigenvalue, 特征值 Eigenvector, 特征向量 Ellipse, 椭圆Empirical distribution, 经验分布 Empirical probability, 经验概率单位 Enumeration data, 计数资料Equal sun-class number, 相等次级组含量 Equally likely, 等可能 Equivariance, 同变性 Error, 误差/错误Error of estimate, 估计误差 Error type I, 第一类错误 Error type II, 第二类错误 Estimand, 被估量Estimated error mean squares, 估计误差均方 Estimated error sum of squares, 估计误差平方和 Euclidean distance, 欧式距离 Event, 事件 Event, 事件Exceptional data point, 异常数据点 Expectation plane, 期望平面 Expectation surface, 期望曲面 Expected values, 期望值 Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差) Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析 Explore Summarize, 探索-摘要 Exponential curve, 指数曲线 Exponential growth, 指数式增长 EXSMOOTH, 指数平滑方法 Extended fit, 扩充拟合 Extra parameter, 附加参数 Extrapolation, 外推法Extreme observation, 末端观测值 Extremes, 极端值/极值 F distribution, F 分布 F test, F 检验Factor, 因素/因子Factor analysis, 因子分析 Factor Analysis, 因子分析 Factor score, 因子得分 Factorial, 阶乘Factorial design, 析因试验设计 False negative, 假阴性False negative error, 假阴性错误 Family of distributions, 分布族 Family of estimators, 估计量族 Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查 Field survey, 现场调查Finite population, 有限总体 Finite-sample, 有限样本 First derivative, 一阶导数First principal component, 第一主成分 First quartile, 第一四分位数 Fisher information, 费雪信息量 Fitted value, 拟合值Fitting a curve, 曲线拟合 Fixed base, 定基Fluctuation, 随机起伏 Forecast, 预测Four fold table, 四格表 Fourth, 四分点Fraction blow, 左侧比率 Fractional error, 相对误差 Frequency, 频率Frequency polygon, 频数多边图 Frontier point, 界限点Function relationship, 泛函关系 Gamma distribution, 伽玛分布 Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布 Gauss-Newton increment, 高斯-牛顿增量 General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型 Geometric mean, 几何平均数 Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型 Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度.Word 资料Graeco-Latin square, 希腊拉丁方 Grand mean, 总均值 Gross errors, 重大错误Gross-error sensitivity, 大错敏感度 Group averages, 分组平均 Grouped data, 分组资料 Guessed mean, 假定平均数 Half-life, 半衰期Hampel M-estimators, 汉佩尔M 估计量 Happenstance, 偶然事件 Harmonic mean, 调和均数 Hazard function, 风险均数 Hazard rate, 风险率 Heading, 标目Heavy-tailed distribution, 重尾分布 Hessian array, 海森立体阵 Heterogeneity, 不同质Heterogeneity of variance, 方差不齐 Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法 High-leverage point, 高杠杆率点 High-Low, 低区域图Higher Order Interaction Effects ,高阶交互作用 HILOGLINEAR, 多维列联表的层次对数线性模型 Hinge, 折叶点 Histogram, 直方图Historical cohort study, 历史性队列研究 Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M 估计量 Hyperbola, 双曲线Hypothesis testing, 假设检验 Hypothetical universe, 假设总体 Image factoring,, 多元回归法 Impossible event, 不可能事件 Independence, 独立性Independent variable, 自变量 Index, 指标/指数Indirect standardization, 间接标准化法 Individual, 个体Inference band, 推断带Infinite population, 无限总体 Infinitely great, 无穷大 Infinitely small, 无穷小 Influence curve, 影响曲线Information capacity, 信息容量 Initial condition, 初始条件 Initial estimate, 初始估计值 Initial level, 最初水平 Interaction, 交互作用Interaction terms, 交互作用项 Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距 Interval estimation, 区间估计Intervals of equal probability, 等概率区间 Intrinsic curvature, 固有曲率 Invariance, 不变性 Inverse matrix, 逆矩阵 Inverse probability, 逆概率Inverse sine transformation, 反正弦变换 Iteration, 迭代Jacobian determinant, 雅可比行列式 Joint distribution function, 分布函数 Joint probability, 联合概率Joint probability distribution, 联合概率分布 K-Means Cluster 逐步聚类分析 K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度 Kaplan-Merier chart, Kaplan-Merier 图Kendall's rank correlation, Kendall 等级相关 Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal 及Wallis 检验/多样本的秩和检验/H 检验 Kurtosis, 峰度 Lack of fit, 失拟Ladder of powers, 幂阶梯 Lag, 滞后Large sample, 大样本Large sample test, 大样本检验 Latin square, 拉丁方Latin square design, 拉丁方设计 Leakage, 泄漏Least favorable configuration, 最不利构形 Least favorable distribution, 最不利分布 Least significant difference, 最小显著差法.Word 资料Least square method, 最小二乘法Least Squared Criterion ,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合 Least-absolute-residuals line, 最小绝对残差线 Legend, 图例L-estimator, L 估计量L-estimator of location, 位置L 估计量 L-estimator of scale, 尺度L 估计量 Level, 水平Leveage Correction ,杠杆率校正 Life expectance, 预期期望寿命 Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布 Likelihood function, 似然函数 Likelihood ratio, 似然比 line graph, 线图Linear correlation, 直线相关 Linear equation, 线性方程Linear programming, 线性规划 Linear regression, 直线回归 Linear Regression, 线性回归 Linear trend, 线性趋势 Loading, 载荷Location and scale equivariance, 位置尺度同变性 Location equivariance, 位置同变性 Location invariance, 位置不变性 Location scale family, 位置尺度族Log rank test, 时序检验 Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布 Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换 Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布 Logit transformation, Logit 转换 LOGLINEAR, 多维列联表通用模型 Lognormal distribution, 对数正态分布 Lost function, 损失函数 Low correlation, 低度相关 Lower limit, 下限Lowest-attained variance, 最小可达方差 LSD, 最小显著差法的简称 Lurking variable, 潜在变量 Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数 Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布 Matched data, 配对资料Matched distribution, 匹配过分布 Matching of distribution, 分布的匹配 Matching of transformation, 变换的匹配 Mathematical expectation, 数学期望 Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量 Maximum likelihood method, 最大似然法 Mean, 均数 Mean squares between groups, 组间均方 Mean squares within group, 组内均方 Means (Compare means), 均值-均值比较 Median, 中位数Median effective dose, 半数效量 Median lethal dose, 半数致死量 Median polish, 中位数平滑 Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量 Minimum distance estimation, 最小距离估计 Minimum effective dose, 最小有效量 Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量 MINITAB, 统计软件包 Minor heading, 宾词标目 Missing data, 缺失值Model specification, 模型的确定 Modeling Statistics , 模型统计 Models for outliers, 离群值模型 Modifying the model, 模型的修正 Modulus of continuity, 连续性模 Morbidity, 发病率Most favorable configuration, 最有利构形 MSC (多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较 Multiple correlation , 复相关.Word 资料Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归 Multiple response , 多重选项 Multiple solutions, 多解Multiplication theorem, 乘法定理 Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样 Multivariate T distribution, 多元T 分布 Mutual exclusive, 互不相容Mutual independence, 互相独立 Natural boundary, 自然边界 Natural dead, 自然死亡 Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关 Negatively skewed, 负偏Newman-Keuls method, q 检验 NK method, q 检验No statistical significance, 无统计意义 Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性 Nonlinear regression, 非线性相关 Nonparametric statistics, 非参数统计 Nonparametric test, 非参数检验 Nonparametric tests, 非参数检验 Normal deviate, 正态离差 Normal distribution, 正态分布 Normal equation, 正规方程组 Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围 Normal value, 正常值 Normalization 归一化Nuisance parameter, 多余参数/讨厌参数 Null hypothesis, 无效假设 Numerical variable, 数值变量 Objective function, 目标函数 Observation unit, 观察单位 Observed value, 观察值 One sided test, 单侧检验One-way analysis of variance, 单因素方差分析 Oneway ANOVA , 单因素方差分析 Open sequential trial, 开放型序贯设计 Optrim, 优切尾Optrim efficiency, 优切尾效率 Order statistics, 顺序统计量 Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归 Ordinal variable, 有序变量 Orthogonal basis, 正交基Orthogonal design, 正交试验设计 Orthogonality conditions, 正交条件 ORTHOPLAN, 正交设计 Outlier cutoffs, 离群值截断点 Outliers, 极端值OVERALS , 多组变量的非线性正规相关 Overshoot, 迭代过度 Paired design, 配对设计 Paired sample, 配对样本 Pairwise slopes, 成对斜率 Parabola, 抛物线Parallel tests, 平行试验 Parameter, 参数Parametric statistics, 参数统计 Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图) Partial correlation, 偏相关 Partial regression, 偏回归 Partial sorting, 偏排序 Partials residuals, 偏残差 Pattern, 模式PCA (主成分分析)Pearson curves, 皮尔逊曲线 Peeling, 退层Percent bar graph, 百分条形图 Percentage, 百分比 Percentile, 百分位数Percentile curves, 百分位曲线 Periodicity, 周期性 Permutation, 排列 P-estimator, P 估计量 Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量 Pivot, 枢轴量 Planar, 平坦Planar assumption, 平面的假设 PLANCARDS, 生成试验的计划卡PLS (偏最小二乘法) Point estimation, 点估计.Word 资料Poisson distribution, 泊松分布 Polishing, 平滑Polled standard deviation, 合并标准差 Polled variance, 合并方差 Polygon, 多边图 Polynomial, 多项式Polynomial curve, 多项式曲线 Population, 总体Population attributable risk, 人群归因危险度 Positive correlation, 正相关 Positively skewed, 正偏Posterior distribution, 后验分布 Power of a test, 检验效能 Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析 Principal axis factoring,主轴因子法Principal component analysis, 主成分分析 Prior distribution, 先验分布 Prior probability, 先验概率 Probabilistic model, 概率模型 probability, 概率Probability density, 概率密度 Product moment, 乘积矩/协方差 Profile trace, 截面迹图 Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样 Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查 Proximities, 亲近性Pseudo F test, 近似F 检验 Pseudo model, 近似模型 Pseudosigma, 伪标准差Purposive sampling, 有目的抽样 QR decomposition, QR 分解Quadratic approximation, 二次近似 Qualitative classification, 属性分类 Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q 图 Quantitative analysis, 定量分析 Quartile, 四分位数Quick Cluster, 快速聚类 Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计 Random event, 随机事件 Randomization, 随机化 Range, 极差/全距Rank correlation, 等级相关 Rank sum test, 秩和检验 Rank test, 秩检验Ranked data, 等级资料 Rate, 比率 Ratio, 比例Raw data, 原始资料 Raw residual, 原始残差 Rayleigh's test, 雷氏检验 Rayleigh's Z, 雷氏Z 值 Reciprocal, 倒数Reciprocal transformation, 倒数变换 Recording, 记录Redescending estimators, 回降估计量 Reducing dimensions, 降维 Re-expression, 重新表达 Reference set, 标准组Region of acceptance, 接受域 Regression coefficient, 回归系数Regression sum of square, 回归平方和 Rejection point, 拒绝点Relative dispersion, 相对离散度 Relative number, 相对数 Reliability, 可靠性Reparametrization, 重新设置参数 Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和 residual variance (剩余方差) Resistance, 耐抗性 Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R 估计量 R-estimator of scale, 尺度R 估计量 Retrospective study, 回顾性调查 Ridge trace, 岭迹Ridit analysis, Ridit 分析 Rotation, 旋转.Word 资料Rounding, 舍入 Row, 行Row effects, 行效应 Row factor, 行因素 RXC table, RXC 表 Sample, 样本Sample regression coefficient, 样本回归系数 Sample size, 样本量Sample standard deviation, 样本标准差 Sampling error, 抽样误差SAS(Statistical analysis system ), SAS 统计软件包 Scale, 尺度/量表Scatter diagram, 散点图 Schematic plot, 示意图/简图 Score test, 计分检验 Screening, 筛检 SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图 Semi-logarithmic paper, 半对数格纸 Sensitivity curve, 敏感度曲线 Sequential analysis, 贯序分析 Sequence, 普通序列图Sequential data set, 顺序数据集 Sequential design, 贯序设计 Sequential method, 贯序法 Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法 Sigmoid curve, S 形曲线 Sign function, 正负号函数 Sign test, 符号检验 Signed rank, 符号秩Significant Level, 显著水平 Significance test, 显著性检验 Significant figure, 有效数字Simple cluster sampling, 简单整群抽样 Simple correlation, 简单相关Simple random sampling, 简单随机抽样 Simple regression, 简单回归 simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计 Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布 Skewness, 偏度Slash distribution, 斜线分布 Slope, 斜率Smirnov test, 斯米尔诺夫检验 Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关 Specific factor, 特殊因子Specific factor variance, 特殊因子方差 Spectra , 频谱Spherical distribution, 球型正态分布 Spread, 展布SPSS(Statistical package for the social science), SPSS 统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换 Stabilizing variance, 稳定方差 Standard deviation, 标准差 Standard error, 标准误Standard error of difference, 差别的标准误 Standard error of estimate, 标准估计误差 Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布 Standardization, 标准化 Starting value, 起始值 Statistic, 统计量Statistical control, 统计控制 Statistical graph, 统计图Statistical inference, 统计推断 Statistical table, 统计表Steepest descent, 最速下降法 Stem and leaf display, 茎叶图 Step factor, 步长因子Stepwise regression, 逐步回归 Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样 Stratified sampling, 分层抽样 Strength, 强度 Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t 化残差.Word 资料Sub-class numbers, 次级组含量 Subdividing, 分割Sufficient statistic, 充分统计量 Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和 Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和 Sure event, 必然事件 Survey, 调查Survival, 生存分析 Survival rate, 生存率Suspended root gram, 悬吊根图 Symmetry, 对称Systematic error, 系统误差 Systematic sampling, 系统抽样 Tags, 标签Tail area, 尾部面积 Tail length, 尾长 Tail weight, 尾重 Tangent line, 切线Target distribution, 目标分布 Taylor series, 泰勒级数 Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势 Testing of hypotheses, 假设检验 Theoretical frequency, 理论频数 Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限 Tolerance upper limit, 容忍上限 Torsion, 扰率Total sum of square, 总平方和 Total variation, 总变异 Transformation, 转换 Treatment, 处理 Trend, 趋势Trend of percentage, 百分比趋势 Trial, 试验Trial and error method, 试错法 Tuning constant, 细调常数 Two sided test, 双向检验Two-stage least squares, 二阶最小平方 Two-stage sampling, 二阶段抽样 Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析 Two-way table, 双向表Type I error, 一类错误/α错误 Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称 Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量 Ungrouped data, 不分组资料 Uniform coordinate, 均匀坐标 Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法 Upper limit, 上限 Upward rank, 升秩Vague concept, 模糊概念 Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性 Variable, 变量 Variance, 方差 Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转 Volume of distribution, 容积 W test, W 检验Weibull distribution, 威布尔分布 Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran 检验Weighted linear regression method, 加权直线回归 Weighted mean, 加权平均数Weighted mean square, 加权平均方差 Weighted sum of square, 加权平方和 Weighting coefficient, 权重系数 Weighting method, 加权法 W-estimation, W 估计量W-estimation of location, 位置W 估计量 Width, 宽度。

航天器姿态确定(研究现状)

航天器姿态确定(研究现状)

链接地址 /xiaozu/257088?ref=minifeed&sfet=211&fin=1&ff_id=71996187
法优于TRIAD法[3]。此后,Shuster又基于QUEST测量模型证明了:1) Wahba问题 等价于最大似然估计问题[18],并进一步提出了广义Wahba问题[19];2) TRIAD法是 一个最大似然估计器[20]; 3)该测量模型的方差阵在EKF公式中可以等效地用非奇异 阵 2 I 33 代替[16], 该模型也是Shuster教授一生中最引以为自豪的[21]。 针对大视场敏 感器情形,Cheng利用一阶泰勒近似进一步扩展了QUEST测量模型[22]。对于连续 旋转理论, Shuster在文献[23]中正式提出并将该方法应用于解决一般性的姿态奇异 问题,该方法后来在FOAM法[4]、ESOQ2 法[8]中均得到应用。 近年来,虽然没有新的确定性算法出现,但随着Wahba问题本质的探索[19], 现有算法与最大似然估计关系的揭示[19,20,24]以及方差分析的完善[13]等文献出现, 让 科研工作者对确定性算法有了更深刻的了解,并可进一步掌握方差分析这一有力 工具[25]。 (2) 状态估计法 单纯依靠矢量观测进行姿态解算的确定性方法要求参考矢量足够精确,且易 受敏感器的失准误差、测量误差等因素影响,往往难以满足高精度的定姿要求。 与这类方法相反,状态估计法中的状态量并不仅限于姿态参数,还包括矢量观测 中的一些不确定性参数;另外,现代航天器上的姿态确定系统往往采用多个姿态 敏感器进行组合测量,由于不同敏感器在测量精度、数据更新率上具有较大差异, 一般也需要采用状态估计法进行信息融合。根据姿态角速度信息的获取方式可将 姿态确定方案分为有陀螺方案和无陀螺方案,前者的姿态角速度由速率积分陀螺 测量得到,而后者的姿态角速度一般通过姿态动力学传播得到。 常用的姿态描述参数有方向余弦阵(Direction Cosine Matrix, DCM)、欧拉角 (Euler Angles)、旋转矢量(Rotation Vector)、姿态四元数(Quaternion)或欧拉对称参 数(Euler Symmetric Parameters)、罗德里格参数(Rodrigues Parameters)或吉布斯向量 (Gibbs Vector)、修正罗德里格参数(Modified Rodrigues Parameters, MRPs)、凯莱克莱参数(Cayley-Klein Parameters)等,目前航天器上最常用的姿态参数是四元数, 其优点主要在于用其表示的姿态运动学方程为线性形式,计算量小,且不存在奇 异性。在 1964 年,Stuelpnagel从数学上证明了三维参数用来表示姿态不可能是全 局且非奇异的[26],因此,虽然旋转矢量[27]、MRPs[28]作为姿态描述参数也有一定应 用,但就描述航天器姿态而言始终不如四元数流行。不过,在航姿系统中常采用 旋转矢量进行快速姿态解算[29],而欧拉角由于其明显的物理意义也常被用于描述 火箭或导弹的姿态,至于欧拉运动学方程中的奇异问题,可采用双欧拉角法进行 有效解决。另外,文献[30]对姿态描述参数及其运动学方程进行了系统的综述。 扩展卡尔曼滤波(extended Kalman filter, EKF)技术[31-34]常被用于航天器实时姿 态确定,根据姿态参数的选取不同和观测量的不同形式,常见的实现方式有乘性 扩展卡尔曼滤波[34,35](multiplicative ex-tended Kalman filter, MEKF)和加性扩展卡尔

7非监督学习方法

7非监督学习方法

7非监督学习方法1. 聚类(Clustering):聚类是非监督学习最常见的方法之一,它将数据样本分成若干组或簇,每个簇内的样本相似度较高,而不同簇之间的样本相似度较低。

聚类算法包括K-means、层次聚类、DBSCAN等,它们通过计算样本之间的距离或相似度来实现聚类。

4. 关联规则挖掘(Association Rule Mining):关联规则挖掘用于发现数据集中项集之间的关联关系。

关联规则通常是形如“A=>B”的形式,表示在满足条件A的情况下,可能发生条件B。

关联规则挖掘在市场篮子分析、网络安全和推荐系统等领域有重要应用。

5. 自编码器(Autoencoder):自编码器是一种神经网络模型,它包含一个编码器和一个解码器,用于学习数据的压缩表示。

自编码器通过最小化输入数据和重构数据之间的差距来学习有意义的数据表示,并且可以用于降维、特征提取和异常检测等任务。

6. 高斯混合模型(Gaussian Mixture Model, GMM):GMM是一种概率模型,它假设数据是由多个高斯分布组成的混合模型。

GMM可以通过最大似然估计来对数据进行建模,进而实现聚类、密度估计和生成样本等任务。

7. 异常检测(Anomaly Detection):异常检测用于发现与正常数据模式不符的异常样本。

异常样本可能表示潜在的欺诈、故障或其他异常情况。

异常检测方法包括基于统计学、基于距离的和基于密度的方法等,它们通过与正常数据的差异来识别异常样本。

以上七种非监督学习方法在不同的场景和任务中有着广泛的应用。

通过学习数据之间的内在模式和结构,非监督学习能够帮助我们发现数据中隐藏的信息,并提供新的见解和知识。

operation would result in non-manifold bodies

operation would result in non-manifold bodies

operation would result in non-manifold bodies在计算机图形学和几何建模领域,非流形体是指在三维空间中形状的一种特殊类型。

一个非流形体具有一个或多个不符合流形特性的区域。

流形是指一个无边界、表面光滑、内部无孔洞的物体,而非流形体则违反了这些性质。

非流形体在计算机图形学中经常出现,因为在建模和形状编辑过程中,一些操作可能会导致这种类型的物体。

下面是一些可能导致非流形体的操作:1. 重叠面:当一个物体的两个面共享相同的边或边集时,就会出现重叠面。

这可能是由于复制、移动或变形等操作导致的,会导致一个或多个非流形体形成。

2. 孔洞:一个非流形体可能有一个或多个孔洞,即在物体内部形成的空心区域。

这可能是由于布尔运算(如取交集、取并集)或其他形状编辑操作导致的。

3. 自交:自交是指一个物体的某个部分与其它部分相交。

这可能是由于旋转、拉伸、挤压等操作导致的,会导致非流形体的产生。

4. 嵌塞:嵌塞是指一个物体的某个部分被另一个物体或其自身部分所包围。

这可能是由于复制、移动、布尔运算等操作导致的。

5. 物体边界:非流形体的边界可能会有额外的不连续部分,即在其中一个顶点出现了一个无界的半边。

这种情况可以由于顶点的合并、分裂、删除等操作引起。

非流形体的存在可能会影响后续的计算和渲染过程。

例如,非流形体在进行体现场计算(CSG)和有限元分析时可能会导致错误的结果。

此外,在图形渲染过程中,非流形体可能会导致阴影、光照、纹理映射等效果的不准确或意外变化。

为了处理非流形体,通常需要进行修复操作,将其转换为流形体。

修复非流形体的方法有很多,一些常用的方法包括:1. 网格替代:通过重新生成一个流形网格替代非流形网格。

这可能涉及到重建表面或拓扑结构,以确保生成的网格符合流形特性。

2. 清理操作:通过一系列操作,例如顶点合并、边合并、面合并等,来清理非流形体中的不连续和重叠部分。

3. 网格修剪:通过删除非流形体中的不规则部分或孔洞,使其成为一个流形体。

Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System1

Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System1
VOLUME 129
MONTHLY WEATHER REVIEW
APRIL 2001
Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity
1. Introduction For more than a decade, it has been widely accepted that land surface processes and their modeling play an important role, not only in large-scale atmospheric models including general circulation models (GCMs) (e.g., Mintz 1981; Rowntree 1983, etc.), but also in regional and mesoscale atmospheric models (Rowntree and Bolton 1983; Ookouchi et al. 1984; Mahfouf et al. 1987; Avissar and Pielke 1989; Chen and Avissar 1994a,b, etc.). Mesoscale models that resolve wavelengths from 1 to 100 km (i.e., from meso-␥ to meso-␤ scales) are often used for three applications: 1) regional climate simulations, 2) numerical weather prediction, and 3) air quality monitoring. Therefore, during the last few years, we have witnessed rapid progress in developing and testing land surface models in mesoscale atmospheric models (e.g., Bougeault et al. 1991; Giorgi et al. 1993; Bringfelt 1996; Smirnova et al. 1996; F. Chen et al. 1997; Pielke et al. 1997).

遗传育种相关名词中英文对照

遗传育种相关名词中英文对照

遗传育种相关名词中英文对照中英文对照的分子育种相关名词 3"untranslated region (3"UTR) 3"非翻译区 5"untranslated region (5; UTR) 5"非翻译区 A chromosome A 染色体 AATAAA 多腺苷酸化信号aberration 崎变 abiogenesis 非生源说 accessory chromosome 副染色体 accessory nucleus 副核 accessory protein 辅助蛋白 accident variance 偶然变异 Ac-Ds system Ac-Ds 系统 acentric chromosome 无着丝粒染色体acentric fragment 无着丝粒片段 acentric ring 无着丝粒环 achromatin 非染色质 acquired character 获得性状acrocentric chromosome 近端着丝粒染色体 acrosyndesis 端部联会 activating transcription factor 转录激活因子activator 激活剂 activator element 激活单元 activator protein( AP)激活蛋白 activator-dissociation system Ac-Ds 激活解离系统 active chromatin 活性染色质 activesite 活性部位 adaptation 适应 adaptive peak 适应高峰adaptive surface 适应面 addition 附加物 addition haploid 附加单倍体 addition line 附加系 additiveeffect 加性效应 additive gene 加性基因 additive genetic variance 加性遗传方差additive recombination 插人重组additive resistance 累加抗性 adenosine 腺昔adenosine diphosphate (ADP )腺昔二鱗酸adenosine triphosphate( ATP)腺昔三憐酸adjacent segregation 相邻分离A- form DNA A 型 DNAakinetic chromosome 无着丝粒染色体akinetic fragment 无着丝粒片断alien addition monosomic 外源单体生物alien chromosome substitution 外源染色体代换alien species 外源种 alien-addition cell hybrid 异源附加细胞杂种 alkylating agent 焼化剂 allele 等位基因allele center 等位基因中心 allele linkage analysis 等位基因连锁分析 allele specific oligonucleotide(ASO)等位基因特异的寡核苷酸 allelic complement 等位(基因)互补 allelic diversity 等位(基因)多样化 allelic exclusion 等位基因排斥 allelic inactivation 等位(基因)失活 allelic interaction 等位(基因)相互作用allelic recombination 等位(基因)重组 allelicreplacement 等位(基因)置换 allelic series 等位(基因)系列 allelic variation 等位(基因)变异 allelism 等位性 allelotype 等位(基因)型 allodiploid 异源二倍体 allohaploid 异源单倍体 allopatric speciation 异域种alloploidy 异源倍性 allopolyhaploid 异源多倍单倍体allopolyploid 异源多倍体 allosyndesis 异源联会allotetraploid 异源四倍体 alloheteroploid 异源异倍体alternation of generation 世代交替 alternative transcription 可变转录 alternative transcription initiation 可变转录起始 Alu repetitive sequence, Alu family Alu 重复序列,Alu 家族ambiguous codon 多义密码子 ambisense genome 双义基因组 ambisense RNA 双义 RNA aminoacyl-tRNA binding site 氨酰基 tRNA 接合位点 aminoacyl-tRNA synthetase 氨酰基 tRNA 连接酶 amixis 无融合amorph 无效等位基因amphidiploid 双二倍体amphipolyploid 双多倍体amplicon 扩增子amplification 扩增 amplification primer 扩增引物analysis of variance 方差分析 anaphase (分裂)后期anaphase bridge (分裂)后期桥anchor cell 锚状细胞 androgamete 雄配子aneuhaploid 非整倍单倍体aneuploid 非整倍体 animal genetics 动物遗传学annealing 复性 antibody 抗体anticoding strand 反编码链anticodon 反密码子anticodon arm 反密码子臂anticodon loop 反密码子环 antiparallel 反向平行antirepressor 抗阻抑物antisense RNA 反义 RNAantisense strand 反义链 apogamogony 无融合结实apogamy 无配子生殖apomixis 无融合生殖 arm ratio (染色体)臂比artificial gene 人工基因 artificial selection 人工选择 asexual hybridization 无性杂交 asexual propagation 无性繁殖 asexual reproduction 无性生殖assortative mating 选型交配 asynapsis 不联会 asynaptic gene 不联会基因atavism 返祖 atelocentric chromosome 非端着丝粒染色体 attached X chromosome 并连 X 染色体 attachmentsite 附着位点 attenuation 衰减 attenuator 衰减子autarchic gene 自效基因auto-alloploid 同源异源体 autoallopolyploid 同源异源多倍体 autobivalent 同源二阶染色体 auto-diploid 同源二倍体;自体融合二倍体 autodiploidization 同源二倍化autoduplication 自体复制 autogenesis 自然发生autogenomatic 同源染色体组 autoheteroploidy 同源异倍性autonomous transposable element 自主转座单元autonomously replicating sequence(ARS)自主复制序列autoparthenogenesis 自发单性生殖 autopolyhaploid 同源多倍单倍体 autopolyploid 同源多倍体 autoradiogram 放射自显影图 autosyndetic pairing 同源配对 autotetraploid 同源四倍体 autozygote 同合子 auxotroph 营养缺陷体 B chromosome B 染色体 B1,first backcross generation 回交第一代 B2,second backcross generation 回交第二代back mutation 回复突变 backcross 回交backcross hybrid 回交杂种 backcross parent 回交亲本 backcross ratio 回交比率 background genotype 背景基因型 bacterial artification chromosome( BAC )细菌人工染色体Bacterial genetics 细菌遗传学 Bacteriophage 噬菌体balanced lethal 平衡致死 balanced lethal gene 平衡致死基因 balanced linkage 平衡连锁 balanced load 平衡负荷balanced polymorphism 平衡多态现象 balanced rearrangements 平衡重组balanced tertiary trisomic 平衡三级三体balanced translocation 平衡异位balancing selection 平衡选择band analysis 谱带分析 banding pattern (染色体)带型basal transcription apparatus 基础转录装置 base analog 碱基类似物base analogue 类減基base content 减基含量base exchange 碱基交换 base pairing mistake 碱基配对错误 base pairing rules 碱基配对法则 base substitution 减基置换 base transition 减基转换 base transversion 减基颠换 base-pair region 碱基配对区base-pair substitution 碱基配对替换 basic number of chromosome 染色体基数 behavioral genetics 行为遗传学behavioral isolation 行为隔离 bidirectionalreplication 双向复制 bimodal distribution 双峰分布binary fission 二分裂binding protein 结合蛋白binding site 结合部位 binucleate phase 双核期biochemical genetics 生化遗传学 biochemical mutant 生化突变体biochemical polymorphism 生化多态性 bioethics 生物伦理学 biogenesis 生源说 bioinformatics 生物信息学biological diversity 生物多样性 biometrical genetics 生物统计遗传学(简称生统遗传学) bisexual reproduction 两性生殖 bisexuality 两性现象 bivalent 二价体 blending inheritance 混合遗传 blot transfer apparatus 印迹转移装置 blotting membrane 印迹膜 bottle neck effect 瓶颈效应 branch migration 分支迁移 breed variety 品种breeding 育种,培育;繁殖,生育 breeding by crossing 杂交育种法 breeding by separation 分隔育种法 breeding coefficient 繁殖率 breeding habit 繁殖习性 breeding migration 生殖回游,繁殖回游 breeding period 生殖期breeding place 繁殖地 breeding population 繁殖种群breeding potential 繁殖能力,育种潜能 breeding range繁殖幅度 breeding season 繁殖季节 breeding size 繁殖个体数 breeding system 繁殖系统 breeding true 纯育breeding value 育种值 broad heritability 广义遗传率bulk selection 集团选择 C0,acentric 无着丝粒的Cl,monocentric 单着丝粒 C2, dicentric 双着丝粒的C3,tricentric 三着丝粒的 candidate gene 候选基因candidate-gene approach 候选基因法 Canpbenmodel 坎贝尔模型carytype 染色体组型,核型 catabolite activator protein 分解活化蛋白catabolite repression 分解代谢产物阻遏catastrophism 灾变说 cell clone 细胞克隆 cell cycle 细胞周期 cell determination 细胞决定 cell division 细胞分裂 cell division cycle gene(CDC gene) 细胞分裂周期基因 ceU division lag 细胞分裂延迟 cell fate 细胞命运cell fusion 细胞融合 cell genetics 细胞的遗传学 cell hybridization 细胞杂交 cell sorter 细胞分类器 cell strain 细胞株 cell-cell communication 细胞间通信center of variation 变异中心 centimorgan(cM) 厘摩central dogma 中心法则 central tendency 集中趋势centromere DNA 着丝粒 DNA centromere interference 着丝粒干扰centromere 着丝粒 centromeric exchange ( CME)着丝粒交换centromeric inactivation 着丝粒失活 centromeric sequence( CEN sequence)中心粒序列 character divergence 性状趋异chemical genetics 化学遗传学chemigenomics 化学基因组学chiasma centralization 交叉中化chiasma terminalization 交叉端化chimera 异源嵌合体Chi-square (x2) test 卡方检验 chondriogene 线粒体基因 chorionic villus sampling 绒毛膜取样 chromatid abemition 染色单体畸变chromatid break 染色单体断裂chromatid bridge 染色单体桥chromatid interchange 染色单体互换 chromatid interference 染色单体干涉 chromatid segregation 染色单体分离chromatid tetrad 四分染色单体chromatid translocation 染色单体异位chromatin agglutination 染色质凝聚chromosomal aberration 染色体崎变chromosomal assignment 染色体定位chromosomal banding 染色体显带chromosomal disorder 染色体病chromosomal elimination 染色体消减 chromosomal inheritance 染色体遗传chromosomal interference 染色体干扰chromosomal location 染色体定位chromosomal locus 染色体位点 chromosomal mutation 染色体突变chromosomal pattern 染色体型chromosomal polymorphism 染色体多态性 chromosomal rearrangement 染色体质量排chromosomal reproduction 染色体增殖chromosomal RNA 染色体 RNAchromosomal shift 染色体变迁,染色体移位chromosome aberration 染色体畸变 chromosome arm 染色体臂chromosome association 染色体联合chromosome banding pattern 染色体带型chromosome behavior 染色体动态chromosome blotting 染色体印迹chromosome breakage 染色体断裂chromosome bridge 染色体桥 chromosome coiling 染色体螺旋chromosome condensation 染色体浓缩chromosome constriction 染色体缢痕chromosome cycle 染色体周期chromosome damage 染色体损伤chromosome deletion 染色体缺失chromosome disjunction 染色体分离chromosome doubling 染色体加倍chromosome duplication 染色体复制chromosome elimination 染色体丢失 chromosome engineering 染色体工程chromosome evolution 染色体进化 chromosome exchange 染色体交换chromosome fusion 染色体融合 chromosome gap 染色体间隙chromosome hopping 染色体跳移chromosome interchange 染色体交换chromosome interference 染色体干涉chromosome jumping 染色体跳查chromosome knob 染色体结 chromosome loop 染色体环chromosome lose 染色体丢失chromosome map 染色体图 chromosome mapping 染色体作图chromosome matrix 染色体基质chromosome mutation 染色体突变 chromosome non-disjunction 染色体不分离 chromosome paring 染色体配对chromosome polymorphism 染色体多态性 chromosome puff 染色体疏松 chromosome rearrangement 染色体质量排chromosome reduplication 染色体再加倍 chromosome repeat 染色体质量叠 chromosome scaffold 染色体支架chromosome segregation 染色体分离 chromosome set 染色体组chromosome stickiness 染色体粘性chromosome theory of heredity 染色体遗传学说chromosome theory of inheritance 染色体遗传学说chromosome thread 染色体丝chromosome walking 染色体步查chromosome-mediated gene transfer 染色体中介基因转移 chromosomology 染色体学 CIB method CIB 法;性连锁致死突变出现频率检测法 circular DNA 环林 DNA cis conformation 顺式构象 cis dominance 顺式显性 cis-heterogenote 顺式杂基因子 cis-regulatory element 顺式调节兀件 cis-trans test 顺反测验cladogram 进化树 cloning vector 克隆载体 C-meiosis C 减数分裂C-metaphase C 中期C-mitosis C 有丝分裂 code degeneracy 密码简并coding capacity 编码容量 coding ratio 密码比 coding recognition site 密码识别位置 coding region 编码区coding sequence 编码序列 coding site 编码位置 coding strand 密码链 coding triplet 编码三联体 codominance 共显性 codon bias 密码子偏倚 codon type 密码子型coefficient of consanguinity 近亲系数 coefficient of genetic determination 遗传决定系数 coefficient of hybridity 杂种系数 coefficient of inbreeding 近交系数coefficient of migration 迁移系数 coefficient of relationship 亲缘系数 coefficient of variability 变异系数 coevolution 协同进化 coinducer 协诱导物 cold sensitive mutant 冷敏感突变体colineartiy 共线性combining ability 配合力comparative genomics 比较基因组学competence 感受态competent cell 感受态细胞competing groups 竞争类群 competition advantage 竞争优势competitive exclusion principle 竞争排斥原理complementary DNA (cDNA)互补 DNAcomplementary gene 互补基因 complementation test 互补测验complete linkage 完全连锁 complete selection 完全选择 complotype 补体单元型 composite transposon 复合转座子 conditional gene 条件基因 conditional lethal 条件致死conditional mutation 条件突变 consanguinity 近亲consensus sequence 共有序列 conservative transposition 保守转座 constitutive heterochromatin 组成型染色质continuous variation 连续变异convergent evolution 趋同进化cooperativity 协同性 coordinately controlled genes 协同控制基因 core promoter element 核心启动子 core sequence 核心序列 co-repressor 协阻抑物correlation coefficient 相关系数 cosegregation 共分离 cosuppression 共抑制cotranfection 共转染cotranscript 共转录物 cotranscriptional processing 共转录过程 cotransduction 共转导cotransformation 共转化 cotranslational secrection 共翻译分泌counterselection 反选择coupling phase 互引相 covalently closed circular DNA(cccDNA)共价闭合环状 DNAcovariation 相关变异criss-cross inheritance 交叉遗传 cross 杂交crossability 杂交性crossbred 杂种cross-campatibility 杂交亲和性 cioss-infertility 杂交不育性 crossing over 交换crossing-over map 交换图crossing-over value 交换值crossover products 交换产物 crossover rates 交换率crossover reducer 交换抑制因子crossover suppressor 交换抑制因子crossover unit 交换单位 crossover value 值crossover-type gamete 交换型配子C-value paradox C 值悖论 cybrid 胞质杂种 cyclin 细胞周期蛋白cytidme 胞苷 cytochimera 细胞嵌合体cytogenetics 细胞遗传学 cytohet 胞质杂合子cytologic 细胞学的cytological map 细胞学图cytoplasm 细胞质cytoplasmic genome 胞质基因组 cytoplasmic heredity 细胞质遗传 cytqplasmic incompatibility 细胞质不亲和性cytoplasmic inheritance 细胞质遗传cytoplasmic male sterility 细胞质雄性不育cytoplasmic mutation 细胞质突变 cytofdasmic segregation 细胞质分离cytoskeleton 细胞骨架Darwin 达尔文 Darwinian fitness 达尔文适合度Darwinism 达尔文学说 daughter cell 子细胞 daughter chromatid 子染色体 daughter chromosome 子染色体deformylase 去甲酰酶 degenerate code 简并密码degenerate primer 简并引物 degenerate sequence 简并序列 degenerated codon 简并密码子degeneration 退化 degree of dominance 显性度delayed inheritance 延迟遗传 deletant 缺失体deletion 缺失。

泰尔森估算法 稳健非参数统计方法

泰尔森估算法 稳健非参数统计方法

泰尔森估算法稳健非参数统计方法泰尔森估算是通过选择通过成对点的所有线的斜率的中值来稳健地将线拟合到平面中的采样点(简单线性回归)的方法。

它也被称为Sen的斜率估计,斜率选择,单中值方法,Kendall鲁棒线拟合方法,和Kendall-Theil鲁棒线。

泰尔森估算(英文:Theil–Sen estimator)是通过选择通过成对点的所有线的斜率的中值来稳健地将线拟合到平面中的采样点(简单线性回归)的方法。

它也被称为Sen 的斜率估计,斜率选择,单中值方法,Kendall 鲁棒线拟合方法,和Kendall-Theil 鲁棒线。

它以Henri Theil 和Pranab K. Sen 命名,他们分别在1950 年和1968 年以及Maurice Kendall 之后发表了关于这种方法的论文。

该估计器可以有效地计算,并且对异常值不敏感。

对于偏斜和异方差数据,它可以比非鲁棒简单线性回归明显更准确,并且就统计功效而言,即使对于正态分布的数据也能很好地与非鲁棒最小二乘法竞争。

它被称为“用于估计线性趋势的最流行的非参数技术”。

根据Theil(1950)的定义,一组二维点的Theil-Sen 估计量是由所有样本对确定的斜率的中值m。

点。

Sen(1968)扩展了这个定义来处理两个数据点具有相同x 坐标的情况。

在Sen 的定义中,人们只采用仅具有不同x 坐标的点对定义的斜率的中值。

一旦确定了斜率m,就可以通过将y 截距b 设置为值yi-mxi 的中值来确定来自采样点的线。

正如Sen 观察到的那样,这个估计量是使得Kendall tau 秩相关系数比较xi 的值与第i 次观测的残差的值近似为零。

斜率估计的置信区间可以被确定为包含由点对确定的线的中间95%的斜率的区间,并且可以通过采样点对并且确定采样的95%间隔来快速估计。

连续下坡。

根据模拟,大约600 个样本对足以确定准确的置信区间。

Theil-Sen 估计量的变化,Siegel(1982)的重复中值回归,确定每个样本点,通过斜率的中间mi那一点,然后将整体估计量确定为这些中位数的中位数。

non significant kruskal-wallis ns p值 意思

non significant kruskal-wallis ns p值 意思

non significant kruskal-wallis ns p值意思“Non significant Kruskal-Wallis ns p 值”是一种统计学结果的表达方式,用于描述 Kruskal-Wallis 检验的结果。

下面是对该结果的解释:1. Kruskal-Wallis 检验:这是一种非参数统计方法,用于比较多个独立样本的总体分布是否存在显著差异。

它不要求数据服从特定的分布形状,可以用于分析无序分类数据或等级数据。

2. 非显著(Non significant):这表示经过 Kruskal-Wallis 检验后,没有发现足够的证据来拒绝零假设。

零假设通常是指各个样本的总体分布相同或没有差异。

因此,“非显著”意味着我们不能得出这些样本之间存在显著差异的结论。

3. p 值:p 值是用于判断统计显著性的指标。

它表示在零假设为真的情况下,观察到当前结果或更极端结果的概率。

通常,p 值小于或等于显著性水平(通常为 0.05 或 0.01)时,我们可以拒绝零假设,认为存在显著差异。

4. ns:"ns"是"not significant"的缩写,意思是不显著。

它是对 p 值结果的一种简洁表示方式。

综上所述,“Non significant Kruskal-Wallis ns p 值”表示在 Kruskal-Wallis 检验中,没有发现样本之间存在显著差异,因此我们不能拒绝零假设。

p 值被表示为"ns",意味着结果不显著。

这可能表明在所比较的样本中,总体分布可能是相似的,或者差异可能是由于随机因素所致。

需要注意的是,这只是对统计结果的一种描述,具体解释还需要结合实际研究背景和数据特征进行综合分析。

非成分等时替代模型原理

非成分等时替代模型原理

非成分等时替代模型原理
非成分等时替代模型(Non-compositional Equivalent Model)是一种替代模型方法,其原理是通过建立与原始模型相同或近似精度的模型来代替原始模型,从而优化计算。

该方法的核心思想是通过拟合输入-输出样本信息来构造原始模型的近似函数,实现未知输出值的预测。

非成分等时替代模型在数学意义上讲,就是通过对输入-输出样本信息进行拟合来构造原始模型的近似函数,最终实现对未知输出值的预测。

在计算过程中,由于其计算量小、计算速度快的特点,可以大幅减小模拟-优化方法的计算负荷。

非成分等时替代模型的应用非常广泛,可以用于各种不同的领域和问题。

例如,在能源领域中,可以用它来解决稳态和动态的工程问题;在交通领域中,可以用它来解决路径规划、拥堵预测等问题。

此外,非成分等时替代模型还可以用于机器学习等领域中,如深度学习、神经网络等。

非成分等时替代模型的选择和使用需要根据具体问题来决定。

在选择模型时,需要考虑模型的精度、稳定性、计算复杂度等因素。

同时,在使用模型时,需要注意数据的预处理、特征选择、参数调整等问题。

总之,非成分等时替代模型是一种有效的建模方法,可以用于各种不同的领域和问题。

通过建立与原始模型相同或近似精度的模型来代替原始模型,可以大幅减小计算负荷,提高计算效率。

noninferior统计学

noninferior统计学

noninferior统计学noninferior统计学是一种常用的统计学方法,用于比较两个或多个治疗方法的效果。

在医学研究中,我们经常需要比较新的治疗方法与传统的治疗方法或者已经证明有效的治疗方法之间的差异。

noninferior统计学方法可以帮助我们确定新的治疗方法是否不劣于传统的方法。

在进行比较时,我们需要设定一个非劣效边界,也就是一个接受的差异范围。

如果新的治疗方法的效果落在这个范围内,我们就可以认为新的方法是不劣于传统方法的。

noninferior统计学方法的目标就是通过统计分析来确定新的治疗方法是否达到了这个要求。

为了使用noninferior统计学方法,我们首先需要确定一个主要的临床效果指标。

这个指标可以是生存率、治疗成功率、疾病缓解时间等等,具体取决于研究的对象和目的。

然后,我们需要确定一个非劣效边界,这个边界应该是临床上可接受的差异范围。

通常,我们会根据临床经验和专家意见来确定这个边界。

接下来,我们需要进行实验或者观察研究,收集相关数据。

在收集数据时,我们需要保证数据的质量和可靠性,并且需要遵守道德和伦理规范。

收集到数据后,我们可以使用适当的统计方法进行分析。

在noninferior统计学中,我们通常会使用假设检验方法来进行分析。

假设检验的目的是判断新的治疗方法是否达到了非劣效边界。

我们会根据收集到的数据,计算出一个统计量,然后将这个统计量与一个临界值进行比较。

如果统计量小于临界值,我们就可以认为新的治疗方法是不劣于传统方法的。

除了假设检验方法,noninferior统计学还可以使用置信区间方法来进行分析。

置信区间是一个范围,可以帮助我们确定新的治疗方法的效果。

如果置信区间的下限大于非劣效边界,我们可以认为新的方法是不劣于传统方法的。

值得注意的是,noninferior统计学方法并不意味着新的治疗方法就一定是优于传统方法的。

它只是帮助我们确定新的方法是否不劣于传统方法。

在选择治疗方法时,我们还需要考虑其他因素,比如安全性、副作用、成本等等。

no significant risk levels的计算公式

no significant risk levels的计算公式

no significant risk levels的计算公式
"No Significant Risk Levels"(NSRLs)是一类针对化学物质风险评估的指导性标准。

NSRLs的计算公式如下:
NSRL = (NOAEL 或LOAEL) / (BW x UF)
其中,
•NOAEL:无观察到不良影响水平(No Observed Adverse Effect Level),即在动物试验中最高剂量下未观察到有害作用的
水平。

•LOAEL:最低观察到有害影响水平(Lowest Observed Adverse Effect Level),即在动物试验中最低剂量下观察到有害作
用的水平。

•BW:人体体重,通常使用平均体重值,例如60千克(kg)。

•UF:安全因子,考虑到动物试验结果与人体实际情况的差异,通常取10或100。

NSRL的单位通常表示为每天的可接受剂量(mg / day)。

NSRL值表示在该水平下,暴露于该化学物质的人群将不会受到明显的健康风险。

请注意,这仅是估算值,应谨慎使用。

具体的风险评估还需要考虑其他因素,例如暴露途径、持续时间、年龄和健康状况等。

无监督式机器学习 替代指标

无监督式机器学习 替代指标

无监督式机器学习替代指标
机器学习分为监督式机器学习、无监督式机器学习和半监督式机器学习。

其划分的标准是训练样本是否包含人为标注的结果。

无监督式机器学习:与监督学习相比,训练集没有人为标注的结果。

常见的无监督学习算法有聚类。

今天,就来聊聊无监督式机器学习:首先从大家熟悉的聚类分析开始吧,聚类分析是无监督式机器学习的一个典型应用,也是探索性数据挖掘中的一种常用方法。

利用聚类分析能够将看似无序的对象进行分组、归类,以达到更好地理解研究对象的目的。

聚类样本要求组内对象相似性较高,组间对象相似性较低。

首先,需要对数据集进行预处理,通常包括数据降维、特征选择或抽取等;
第二步,根据数据集的特点进行聚类算法的设计或选择;
第三步,聚类算法的测试与评估;
第四步,聚类结果的展示与解释,通过聚类分析从数据集中获得有价值的知识。

中文信息处理

中文信息处理

e(base|Vt) =
V 表示训练数据中统计出来的词典,即不同词构成的一个集合。 0 ≤ α ≤ 1; α = 1 又称为加一平滑,或 Laplace 平滑
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
编程作业:有监督的隐马尔科夫词性标注(共 15 分)

实现一个二元(一阶)隐马尔科夫模型,做词性标注任务(如 果实现三元模型,分值可以适当增加) 在 train.conll 上使用极大似然估计方法确定模型参数


使用加 α 平滑方法(你也可以使用或自己提出其他平滑方法) ,估 计词性生成词的概率(发射概率) (3 分) 直接估计词性转移概率(2 分)
中文信息处理 隐马尔科夫模型,序列标注问题
李正华
苏州大学
2015 年 10 月 29 日
. . .
. .
.
. . . . . . . .
. . . . . . . .
. . . . . . . . .
. .
. .
. .
. .
.
加 α 平滑:emission probability
平滑前: e(w|t) = e(base|Vt) = 平滑后: e(w|t) = Count(w, t) + α Count(t) + α × |V| Count(base, Vt) + α Count(Vt) + α × |V| Count(w, t) Count(t) Count(base, Vt) Count(Vt)
编程作业:无监督的隐马尔科夫词性标注(共 15 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nonlinear observability and an invariance principle for switched systems∗Jo˜a o P.Hespanha Dept.of Electr.&Comp.Eng. Univ.of California,Santa Barbara hespanha@Daniel LiberzonCoordinated Science Lab.Univ.of Illinois,Urbana-Champaignliberzon@Eduardo D.SontagDept.of MathematicsRutgers Universitysontag@AbstractThis paper proposes several definitions of observability for nonlinear systems and explores relationships between them.These observability properties involve the existence of a bound on the norm of the state in terms of the norm of the output on a small time interval.As an application, we prove a LaSalle-like stability theorem for switched non-linear systems.1IntroductionFor linear time-invariant systems with outputs,there are several equivalent ways to define observability.A stan-dard approach is through distinguishability,which is the property that different initial conditions produce different outputs.This is equivalent to0-distinguishability,which says that nonzero initial conditions produce nonzero out-puts.The state of an observable linear system can be ex-plicitly reconstructed from the output measurements on a time interval of arbitrary length by inverting the observ-ability Gramian.In the nonlinear context,various definitions of observ-ability are no longer equivalent,and in general nonlinear observability is not as completely understood.In partic-ular,the distinguishability concept has a natural coun-terpart for nonlinear systems,but does not lend itself to a constructive state reconstruction procedure as readily as in the linear case.In fact,it is well known that re-covering the state of a nonlinear system from its output, even asymptotically by means of a dynamic observer,is a difficult task.Instead of building an observer,however, it is sometimes sufficient for control purposes(although still far from being trivial)to obtain a bound on the state using the output;see[14]for a discussion and references. Another concept which is related to observability is de-tectability.In[14],a variant of detectability for nonlinear systems(called“output-to-state stability”)is defined as the property that the state is bounded in terms of the supremum norm of the past output,modulo a decaying term depending on initial conditions.This turns out to be a very useful and natural property,which is dual to input-to-state stability(ISS).The present work is related to this line of research in that we are concerned with obtaining state bounds.In Section2we present several possible definitions of ob-servability for nonlinear systems with no inputs,which involve a bound on the norm of the state in terms of the ∗This work was supported by AFOSR and NSF.norm of the output on some(arbitrarily)small time in-terval.We establish implications and equivalences among these notions in Section3.We demonstrate,among other things,that the length of the time interval can affect the existence of a state bound.Systems with inputs and other generalizations are discussed in Section4. Observability is a stronger property than detectability, and we explore and clarify this relationship below.In fact,one of our definitions is obtained directly from the notion of output-to-state stability by imposing one ad-ditional requirement which says,loosely speaking,that the term describing the effects of initial conditions can be chosen to decay arbitrarily fast.In the spirit of[14],we derive a Lyapunov-like sufficient condition for this prop-erty in Section5.A motivating application for this work is extending LaSalle’s invariance principle to switched systems.As shown in[5],a switched linear system is globally asymp-totically stable if each subsystem possesses a weak Lya-punov function nonincreasing along its solutions and is observable with respect to the derivative of this function, and if one imposes a suitable non-chattering assumption on the switching signal and a coupling assumption on the multiple Lyapunov functions.This can be viewed as an invariance-like principle for switched linear systems.We generalize this result to switched nonlinear systems in Sec-tion6,using one of the observability definitions intro-duced in this paper.2Observability propertiesConsider the system˙x=f(x)y=h(x)(1) where f:R n→R n is a locally Lipschitz function with f(0)=0and h:R n→R p is a continuous function with h(0)=0.We assume that this system is both forward and backward complete(i.e.,solutions are globally defined),so that the issue of existence of its solutions on time intervals under consideration does not arise.We will denote by z J the supremum norm of a signal z on an interval J⊂[0,∞).The standard Euclidean norm will be denoted by|·|and the corresponding induced matrix norm by · . Inequalities written below are understood to hold for all initial conditions.We will say that the system(1)has Property1if1∀τ>0∃γ∈K∞:|x(0)|≤γ( y [0,τ]).(2) 1Recall that a functionα:[0,∞)→[0,∞)is said to be ofBy time invariance this can be equivalently expressed as ∀τ>0∃γ∈K∞:|x(t)|≤γ( y [t,t+τ])∀t≥0(3) or,after taking the supremum over t∈[t1,t2]for arbitrary t2≥t1≥0,as∀τ>0∃γ∈K∞: x [t1,t2]≤γ( y [t1,t2+τ])∀t2≥t1≥0.(4)This last condition includes(2)as a special case(just let t1=t2=0),and so it is easy to see that(2),(3),and(4) are equivalent.As we will show,they are actually also equivalent to∀τ>0∃γ∈K∞: x [t1,t2]≤γ( y [t1,t2])∀t2≥t1+τ.(5)Rather than bounding the state at the beginning of an interval in terms of the future output on that interval,we can bound the state at the end of an interval in terms of the past output on that interval.Let us say that the system(1)has Property1 if∀τ>0∃γ∈K∞:|x(τ)|≤γ( y [0,τ]).(6) By time invariance,this is equivalent to∀τ>0∃γ∈K∞:|x(t)|≤γ( y [t−τ,t])∀t≥τ.(7) Taking the supremum over t∈[t1,t2]for arbitrary t2≥t1≥τ,we arrive at∀τ>0∃γ∈K∞: x [t1,t2]≤γ( y [t1−τ,t2])∀t2≥t1≥τ.(8)We now define a different set of observability proper-ties,similar to the above,as follows.Let us say that the system(1)has Property2if∃τ>0,γ∈K∞:|x(0)|≤γ( y [0,τ]).(9) By time invariance,this is equivalent to∃τ>0,γ∈K∞:|x(t)|≤γ( y [t,t+τ])∀t≥0.(10) Taking the supremum over t∈[t1,t2],we can further rewrite this as∃τ>0,γ∈K∞: x [t1,t2]≤γ( y [t1,t2+τ])∀t2≥t1≥0.(11)The condition(9)is a special case of(11),and we easily see that(9),(10),and(11)are equivalent.It turns out that they are also equivalent to∃τ>0,γ∈K∞: x [t1,t2]≤γ( y [t1,t2])∀t2≥t1+τ.(12)Note that the only difference between Properties1 and2is that in the former the lengthτof the time interval can be arbitrary,while the latter requires the inequalities class K if it is continuous,strictly increasing,andα(0)=0.Ifαis also unbounded,then it is said to be of class K∞.A function β:[0,∞)×[0,∞)→[0,∞)is said to be of class KL ifβ(·,t)is of class K for eachfixed t≥0andβ(r,t)decreases to0as t→∞foreachfixed r≥0.We will writeα∈K∞,β∈KL,etc.to hold for at least one positiveτ(of course,they will then also hold for all larger values ofτ).For linear sys-tems these two properties are known to be equivalent,but for nonlinear systems this is in general not true,as we will see below.As before,we can bound the state in terms of past output rather than future output.We will say that the system(1)has Property2 if∃τ>0,γ∈K∞:|x(τ)|≤γ( y [0,τ]).(13) Again,by time invariance we can equivalently express this as∃τ>0,γ∈K∞:|x(t)|≤γ( y [t−τ,t])∀t≥τ(14) or,taking the supremum over t∈[t1,t2],as∃τ>0,γ∈K∞: x [t1,t2]≤γ( y [t1−τ,t2])∀t2≥t1≥τ.(15) Let us say that the system(1)has Property3if there exists a functionγ∈K∞such thatx [0,∞)≤γ( y [0,∞))∀x(0),t≥0.(16) This is the strong observability property,considered in [13]for the more general case of systems with inputs(cf. Section4below).In[14],the authors define the property of output-to-state stability,which is a variant of detectability and is characterized by an inequality of the form|x(t)|≤β(|x(0)|,t)+γ( y [0,t])∀x(0),t≥0(17) whereβ∈KL andγ∈K∞.Strengthening this notion, we say that the system(1)has Property4if for every ε>0and every functionν∈K there exist functions β∈KL andγ∈K∞such that the inequality(17)holds and,moreover,we haveβ(r,ε)≤ν(r)∀r≥0.(18) The condition(18)can be interpreted as saying thatβcan be chosen to decay arbitrarily fast,becauseεcan be arbitrarily small andνcan grow arbitrarily slowly.(Note that there are no additional conditions on the functionγ, which may then have to be increased.)In the same spirit as before,we introduce a variant of Property4by requiring that(18)hold for allν∈K and at least one positiveε(but not necessarily for allε). Namely,we will say that the system(1)has Property5 if there exists anε>0such that for every functionν∈K there exist functionsβ∈KL andγ∈K∞for which the conditions(17)and(18)are satisfied.3Implications and equivalencesThe following technical lemma is a straightforward conse-quence of forward completeness,continuous dependence of solutions on initial conditions,and the presence of an equilibrium at the origin.Lemma1For everyτ>0there exists a functionνf∈K∞such that along all solutions of the system(1)we have |x(t2)|≤νf(|x(t1)|)for each pair of times t1,t2satisfying 0≤t1≤t2≤t1+τ.We also need the backward in time version. Lemma2For everyτ>0there exists a functionνb∈K∞such that along all solutions of the system(1)we have |x(t1)|≤νb(|x(t2)|)for each pair of times t1,t2satisfying 0≤t1≤t2≤t1+τ.These results allow us to conclude,in particular,that Properties1and1 defined in the previous section are equivalent.Indeed,(2)implies(6)in view of Lemma1, and the converse follows from Lemma2.The equivalence between(4)and(5)is deduced with the help of Lemma1. Thus the properties expressed by conditions(2)–(8)are all equivalent.The same arguments(for a givenτ)demon-strate that the properties expressed by conditions(9)–(15) are also equivalent.The following theorem explains the relationship be-tween the above properties(we refer to the observability properties by their numbers,so that for example1⇒2 means that Property1implies Property2).Theorem3The only implications that hold among the properties introduced in Section2are:1⇔1 ⇔4⇒2⇔2 ⇔5⇒3 Remark1It is easy to see that each of the above proper-ties implies the standard0-distinguishability notion:the only invariant set in ker h is{0}.Note that the converse does not hold.As an example,consider the scalar system ˙x=x,y=arctan x.It is clearly0-distinguishable(in fact,distinguishable:the output map is invertible),but x blows up while y stays bounded.Remark2It is interesting to compare the abovefindings with the results reported in[12]for discrete-time systems. For example,the counterparts of Properties1and1 ,or2 and2 ,in discrete time(i.e.,initial-state vs.final-state observability)are no longer equivalent.To see why,it is enough to consider a system whose output map is zero and whose state becomes zero after one step.In view of the equivalences established in Theorem3, we can now give one name to Properties1,1 and4and also give one name to Properties2,2 and5.Prompted by terminology used in the controllability literature[4], let us call the system(1)small-time norm-observable if it satisfies Properties1,1 and4,and large-time norm-observable if it satisfies Properties2,2 and5.In the latter case,we will refer to everyτprovided by Properties2 and2 as a large-time norm-observability constant of(1). For linear systems,all of the above properties are equiv-alent to the usual observability.For Properties1–3this can be easily shown using the observability Gramian.Property4is less obvious,and can be viewed as a gen-eralization of the squashing lemma from[11]whose proofrelies on the well-known result about arbitrary pole place-ment by output injection.This lemma says that if(C,A)is an observable pair,then for everyε>0and everyδ>0there exist aλ>0and an output injection matrix Ksuch that we have e(A+KC)t ≤δe−λ(t−ε),which implies e(A+KC)ε ≤δ.Therefore,in the linear case the func-tionβin(17)can be chosen to satisfyβ(r,ε)≤δr withδarbitrarily small.Property4can be deduced from this if the functionνis restricted to be bounded from below by a linear function,but otherwise Property4expresses a more general fact—even for linear systems.4ExtensionsIn this section we consider,instead of(1),the system˙x=f(x,u)y=h(x)(19)where u is a measurable locally essentially bounded dis-turbance or control input taking values in a set U⊂R m, f:R n×R m→R n is a continuously differentiable function with f(0,0)=0,and h:R n→R p is a continuous func-tion with h(0)=0.Forward and backward completeness of this system mean that solutions are globally defined for all inputs.We want to investigate how the definitions of Section2and the results of Section3can be extended to this case.First,let us assume that U is a compact set and f(0,u)=0for all u∈U.Then we can define observ-ability properties for the system(19)in the same way as in Section2,simply adding the quantification“for all u∈U”.In other words,we now require that Properties1 through5hold uniformly over all inputs.It follows from the results of[10,Section5]that Lemmas1and2still hold,where solutions of the system are now parameter-ized by all initial conditions and all inputs.Therefore, the results of Section3are still true for these modified properties.Now,let us drop the assumptions that U is compact and f(0,u)≡0.In this more general situation,impos-ing uniformity over inputs is too restrictive.More mean-ingful observability properties result if we add the term χ( u J)to the right-hand sides of the inequalities(2)–(17),whereχis a class K∞function and for J one must substitute the interval over which the norm of y is taken. This is equivalent to replacing y by the vectoruyin the corresponding formulas.In particular,the inequal-ity(16)which describes Property3transforms precisely into the strong observability property[13],while the in-equality(17),which is one of the two conditions describing Property4and which corresponds to output-to-state sta-bility,transforms into the input-output-to-state stability property[14].The results of[10,Section5]imply that Lemma1is valid if the inequality|x(t2)|≤νf(|x(t1)|)is replaced by|x(t2)|≤νf(|x(t1)|)+χf( u [t1,t2])for some χf∈K∞,and similarly for Lemma2.Therefore,it is nothard to check that all arguments still go through and the results still hold for the modified properties.Another way to generalize our earlier developments is to replace the forward and backward completeness assump-tion by the weaker unboundedness observability property, which means that the output becomes unbounded when-ever the state becomes unbounded.This can be done for the original system(1)as well as for the system with inputs(19).The results of[1,Section2]extend the afore-mentioned results of[10]and show that in this case,the estimates of Lemmas1and2(or the corresponding results in the presence of inputs described above)need to be mod-ified by adding a term of the formγ( y [t1,t2]),γ∈K∞to the right-hand side.It is not difficult to see that this does not affect the results of Section3.The definitions of Properties1–5should now be restricted to intervals on which solutions exist(although even when the solutions are not defined,the inequalities are formally true in the sense that∞≤∞).5Lyapunov functionsAn attractive feature of Properties4and5is that they can be characterized in terms of Lyapunov-like inequalities,as we now show.We present the result for Property4,the case of Property5being analogous.Proposition4Consider the system(1).Suppose that for everyε>0and everyν∈K there exist a C1function V:R n→R,class K∞functionsα1,α2andρ,and a positive definite locally Lipschitz functionα3:[0,∞)→[0,∞)such that we haveα1(|x|)≤V(x)≤α2(|x|)and|x|≥ρ(|y|)⇒∂V∂xf(x)≤−α3(V(x))(20) and moreoverη−1(η(r)+ε)≤α1◦ν◦α−12(r)∀r≥0(21) whereηis defined by2η(r):=− r1dsα3(s).Then Property4holds.The proof,not given due to space constraints,follows the arguments of[13,14].An informal interpretation of Proposition4is that Property4holds if there exists a positive definite radially unbounded function V which de-cays along solutions whenever|x|is sufficiently large com-pared to|y|and,moreover,this decay rate—described by the functionα3—can be made arbitrarily fast by a proper choice of V.(The“gain margin”functionρ,on the other hand,may have to be increased in order to achieve this; note that the extra condition(21)does not involveρ.)To 2We use the conventionsη(0)=∞andη−1(∞)=0,which are consistent with continuity.better understand the role ofα3,note that ifα3grows rapidly,then the graph ofηis“flat”,and consequently the functionη−1(η(·)+ε)is small.In fact,this func-tion is approximated,up to thefirst-order term inε,by r−α3(r)ε.To illustrate with the linear case,suppose thatα1(r)=c1r2,α2(r)=c2r2,andα3(r)=kr so thatη−1(η(r)+ε)=e−kεr.We see that by choosing a suf-ficiently large k we can satisfy the condition(21)if and only ifνis bounded from below by a linear function.Thus working with quadratic V and linearα3is in general not sufficient,even for linear systems.It is straightforward to extend the above result to the system(19).Property4then needs to be interpreted as explained in Section4.In the case when the inputs do not take values in a compact set and uniformity with respect to inputs is not required,one needs to replace y byuyin(20).6Invariance principleConsider the system˙x=f(x),x∈R n.One version(in fact,a special case)of the well-known LaSalle’s invariance principle can be stated as follows.If there exists a positive definite,radially unbounded,continuously differentiable (C1)function V:R n→R whose derivative along solu-tions satisfies˙V(x):=∂V∂x f(x)≤0,and if moreover the largest invariant set contained in the set{x:˙V(x)=0}is equal to{0},then the system is globally asymptotically stable.The second condition can be regarded as observ-ability(0-distinguishability)with respect to the auxiliary output y:=−˙V(x).Here the negative sign is used for convenience,so that y≥0.In this section we derive an extension of the above result to switched systems.This generalizes the earlier work on switched linear systems reported in[5].Some remarks on relationships to other LaSalle-like theorems available in the literature are provided at the end of the section. Consider a family of systems˙x=f p(x),p∈Pwhere P is afinite index set and f p:R n→R n is a locally Lipschitz function for each p∈P.We make the following two assumptions regarding these systems,which parallel the assumptions for the traditional LaSalle’s the-orem stated above.Thefirst assumption is the existence of a weak(i.e.,nonstrictly decreasing)Lyapunov func-tion for each system,and the second one is observabil-ity with respect to the derivative of this function play-ing the role of an auxiliary output(however,instead of0-distinguishability we require the stronger small-time norm-observability property;cf.Remark1in Section3).1.For each p∈P there exists a positive definite radially unbounded C1function V p:R n→R which satisfies∂V p∂xf p(x)≤0∀x.2.For each p∈P the system˙x=f p(x)y=−∂V p∂xf p(x)(22)is small-time norm-observable as defined at the end ofSection3(i.e.,has the equivalent Properties1,1 and4introduced in Section2).We now consider the switched system˙x=fσ(x)(23) whereσ:[0,∞)→P is a piecewise constant switchingsignal,continuous from the right.We denote by t i,i=1,2,...the consecutive discontinuities ofσ(the switchingtimes).Two more assumptions are needed,with regardto this switched system.Thefirst one is a rather mildnon-chattering requirement onσ(which will be furtherdiscussed below),and the second is a typical condition onthe evolution of the functions V p,p∈P encountered inresults using multiple Lyapunov functions(see[3,9,6]).3.If there are infinitely many switching times,thereexists aτ>0such that for every T≥0we canfinda positive integer i for which t i+1−τ≥t i≥T.In other words,we persistently encounter intervals of lengthat leastτbetween switching times.4.For each p∈P and every pair of consecutiveintervals[t i,t i+1),[t j,t j+1)on whichσ=p we have V p(x(t j))≤V p(x(t i+1)).In other words,the value of V p at the beginning of each interval on whichσ=p does not exceed the value of V p at the end of the previous such interval(if one exists).Theorem5Under assumptions1–4the switched sys-tem(23)is globally asymptotically stable.Proof.Stability of the origin in the sense of Lyapunov follows from assumptions1and4and thefiniteness of P as in the proof of[2,Theorem2.3].Now,take an arbitrary solution of(23).Our goal is to prove that it converges to0.We are assuming that there are infinitely many switching times,for otherwise the result immedi-ately follows from Remark1and the standard LaSalle’s theorem cited earlier.In light of assumption3and the fact that P isfinite,we can pick an infinite subsequenceof switching times t i1,t i2,...such that the correspondingintervals[t ij ,t ij+1),j=1,2,...have length no smallerthan somefixedτ>0and the value ofσon all these intervals is the same,say,q∈P.Let us denote the union of these intervals by Q and consider the auxiliary functiony Q(t):=y(t)if t∈Q 0otherwiseIn view of assumption4,for every t≥0we have t0y Q(t)≤V q(x(t i1))−V q(x(t))≤V q(x(t i1)).Since y Q is nonnegative by assumption1,we see that∞y Q(t)dt<∞,i.e.,y Q∈L1.We proceed to prove that y Q(t)→0as t→∞.Sup-pose that this is not true.Then there exist anε>0andan infinite sequence of times s1,s2,...such that the val-ues y Q(s1),y Q(s2),...are bounded away from zero byat leastε.It follows from the definition of y Q that thetimes s1,s2,...necessarily belong to Q.Now,assump-tion1guarantees that x remains bounded,hence˙x is alsobounded and so y Q is uniformly continuous on Q.There-fore,we canfind aδ>0such that each s i is contained insome interval of lengthδon which y Q(t)≥ε/2.This con-tradicts the assertion proved earlier that y Q∈L1,thusindeed y Q(t)→0.To show that x(t)converges to0,we invoke assump-tion2.Applying the condition(3)with t=t ij,j=1,2,...and using the above analysis,we conclude thatx(t ij)→0as j→∞.It then follows from stability of theorigin in the sense of Lyapunov that x(t)→0as needed.One way to satisfy assumption3is to demand thatconsecutive switching times be separated by some positivedwell timeτD.A less severe condition is provided by thefollowing concept,introduced in[7].The switching signalσis said to have average dwell timeτAD>0if for someN0>0the number of its discontinuities on an arbitraryinterval(t1,t2),denoted by Nσ(t2,t1),satisfiesNσ(t2,t1)≤N0+t2−t1τAD.Lemma6Ifσhas average dwell timeτAD,then the as-sumption3holds.As a desiredτ,one can take an arbi-trary number in the interval(0,τAD).Note that the average dwell timeτAD in the above re-sult can be arbitrarily small,as long as it exists.IfτAD isknown,then we can relax assumption2by requiring onlythat the system(22)be large-time norm-observable as de-scribed by Property2withτ<τAD.Accordingly,if thissystem is known to be large-time norm-observable but notsmall-time norm-observable,then a variant of Theorem5can be established under a suitable slow switching condi-tion.We thus introduce the following modified versionsof assumptions2and3.2 .For each p∈P the system(22)is large-time norm-observable.3 .If there are infinitely many switching times,forevery T≥0we canfind a positive integer i for whicht i+1−τ≥t i≥T,whereτis a large-time norm-observability constant of the system(22).The following result is proved by the same argumentsas Theorem5.Theorem7Under assumptions1,2 ,3 ,and4theswitched system(23)is globally asymptotically stable.The usefulness of Theorems5and7stems in part fromthe fact that it is sometimes easier tofind weak Lyapunovfunctions nonincreasing along solutions and satisfying as-sumption4(or even a common weak Lyapunov functionfor a given family of systems)than tofind Lyapunov functions strictly decreasing along solutions and satisfy-ing assumption4(or,in particular,tofind a common Lyapunov function).Under various slow switching condi-tions such as the one needed for Theorem7,it is possible to deduce global asymptotic stability of a switched system from global asymptotic stability of individual subsystems (see[7,9]).However,in the nonlinear context these re-sults require additional,often restrictive assumptions,and the resulting bounds on the switching rate may be more conservative than the one obtained from Theorem7.A different version of LaSalle’s invariance principle for systems with switching events has appeared in[15,Theo-rem1].That result states that if for a given hybrid system with afinite number of discrete states one canfind a func-tion of both the continuous and the discrete state which is nonincreasing along solutions,then all bounded solutions approach the largest invariant set inside the set of states where the instantaneous change of this function is zero. The proof is a relatively straightforward adaptation of the standard argument for continuous time-invariant systems. See also[8]for a similar result.Theorems5and7apply to a different class of systems than the hybrid systems studied in[15],because in the present setting the switching is not assumed to be state-dependent.However,one way in which a switched system of the type considered here may arise is from a hybrid system by means of an abstraction procedure.In this case,our observability assumptions would serve as suf-ficient conditions for the largest invariant set mentioned earlier to be the origin,since they guarantee that along a nonzero solution the output cannot remain identically zero on any interval between switching times.Note,how-ever,that we do not require the existence of a single func-tion nonincreasing along solutions,and instead work with multiple weak Lyapunov functions satisfying the less re-strictive assumption4.This aspect of the results pre-sented above—namely,that they rely to a large extent on separate conditions regarding the individual systems being switched—also sets them apart from LaSalle-like theorems available in the literature for certain classes of time-varying and other systems.(On the other hand,the conclusions provided by results such as Theorem1of[15] are stronger and closer in spirit to those of the classical LaSalle’s theorem.)References[1]D.Angeli and E.Sontag.Forward completeness,un-boundedness observability,and their Lyapunov char-acterizations.Systems Control Lett.,38:209–217, 1999.[2]M.S.Branicky.Multiple Lyapunov functions andother analysis tools for switched and hybrid systems.IEEE Trans.Automat.Control,43:475–482,1998.[3]R.A.DeCarlo,M.S.Branicky,S.Pettersson,andB.Lennartson.Perspectives and results on the stabil-ity and stabilizability of hybrid systems.Proc.IEEE, 88:1069–1082,2000.[4]rge-time local controllability via homo-geneous approximations.SIAM J.Control Optim., 34:1291–1299,1996.[5]J.P.Hespanha.Extending LaSalle’s invariance prin-ciple to switched linear systems.In Proc.40th IEEE Conf.on Decision and Control,pages2496–2501, 2001.[6]J.P.Hespanha.Stabilization through hybrid con-trol.In Encyclopedia of Life Support Systems.2001.Submitted.[7]J.P.Hespanha and A.S.Morse.Stability of switchedsystems with average dwell-time.In Proc.38th IEEE Conf.on Decision and Control,pages2655–2660, 1999.[8]Z.G.Li,C.Y.Wen,and Y.C.Soh.Switched con-trollers and their applications in bilinear systems.Automatica,37:477–481,2001.[9]D.Liberzon and A.S.Morse.Basic problems in sta-bility and design of switched systems.IEEE Control Systems Magazine,pages59–70,October1999. [10]Y.Lin,E.D.Sontag,and Y.Wang.A smooth con-verse Lyapunov theorem for robust stability.SIAM J.Control Optim.,34:124–160,1996.[11]F.M.Pait and A.S.Morse.A cyclic switching strat-egy for parameter-adaptive control.IEEE Trans.Au-tomat.Control,39:1172–1183,1994.[12]E.D.Sontag.On the observability of polynomialsystems,I:finite-time problems.SIAM J.Control Optim.,17:139–151,1979.[13]E. D.Sontag.Smooth stabilization implies co-prime factorization.IEEE Trans.Automat.Control, 34:435–443,1989.[14]E.D.Sontag and Y.Wang.Output-to-state stabil-ity and detectability of nonlinear systems.Systems Control Lett.,29:279–290,1997.[15]J.Zhang,K.H.Johansson,J.Lygeros,and S.S.Sastry.Dynamical systems revisited:hybrid sys-tems with Zeno executions.In N.Lynch and B.H.Krogh,editors,Proc.Third International Workshop on Hybrid Systems:Computation and Control,vol-ume1790of Lecture Notes in Computer Science, pages451–464.Springer,2000.。

相关文档
最新文档