青山区2016年中考备考数学训练题(二)参考答案
包头市2016年中考数学试卷参考答案与试题解析
包头市2016年中考数学试卷参考答案与试题解析一、选择题1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.【考点】解一元一次方程;相反数.【解析】先根据相反数的意义列出方程,解方程即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C2.下列计算结果正确的是()A.2+=2B. =2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+1【考点】二次根式的乘除法;幂的乘方与积的乘方;完全平方公式.【解析】依次根据合并同类二次根式,二次根式的除法,积的乘方,完全平方公式的运算.【解答】解:A、2+不是同类二次根式,所以不能合并,所以A错误;B、=2,所以B正确;C、(﹣2a2)3=﹣8a6≠﹣6a6,所以C错误;D、(a+1)2=a2+2a+1≠a2+1,所以D错误.故选B3.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣1【考点】解一元一次不等式.【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.【解答】解:去分母,得:3x﹣2(x﹣1)≤6,去括号,得:3x﹣2x+2≤6,移项、合并,得:x≤4,故选:A.4.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和4【考点】中位数;算术平均数.【解析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:2,3,4,4,5,6,故中位数为:(4+4)÷2=4;平均数为:(2+3+4+4+5+6)÷6=4.故选:B .5.120°的圆心角对的弧长是6π,则此弧所在圆的半径是( ) A .3 B .4 C .9 D .18 【考点】弧长的计算. 【解析】根据弧长的计算公式l=,将n 及l 的值代入即可得出半径r 的值. 【解答】解:根据弧长的公式l=,得到:6π=,解得r=9. 故选C .6.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A . B . C . D .【考点】列表法与树状图法.【解析】根据题意,通过列树状图的方法可以写出所有可能性,从而可以得到至少有两枚硬币正面向上的概率.【解答】解:由题意可得,所有的可能性为:∴至少有两枚硬币正面向上的概率是: =, 故选D .7.若关于x 的方程x 2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m 的值是( ) A .﹣B . C .﹣或D .1 【考点】一元二次方程的解.【解析】由根与系数的关系可得:x 1+x 2=﹣(m+1),x 1•x 2=,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出m 的值. 【解答】解:由根与系数的关系可得: x 1+x 2=﹣(m+1),x 1•x 2=,又知个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2=,解得m=﹣;若是﹣1时,则m=.故选:C.8.化简()•ab,其结果是()A. B. C. D.【考点】分式的混合运算.【解析】原式括号中两项通分并利用同分母分式的加减法则计算,约分即可得到结果.【解答】解:原式=••ab=,故选B9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.【考点】角平分线的性质;特殊角的三角函数值.【解析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A,再由特殊角的三角函数的定义求得结论.【解答】解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°=,故选A.10.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个【考点】命题与定理.【解析】交换原命题的题设和结论得到四个命题的逆命题,然后利用反例、零指数幂的意义、全等三角形的判定与性质和菱形的判定与性质判断各命题的真假.【解答】解:当a=0,b=﹣1时,a2<b2,所以命题“若a>b,则a2>b2”为假命题,其逆命题为若a2>b2;,则a>b“,此逆命题也是假命题,如a=﹣2,b=﹣1;若a>1,则(a﹣1)0=1,此命题为真命题,它的逆命题为:若(a﹣1)0=1,则a>1,此逆命题为假命题,因为(a﹣1)0=1,则a≠1;两个全等的三角形的面积相等,此命题为真命题,它的逆命题为面积相等的三角形全等,此逆命题为假命题;四条边相等的四边形是菱形,这个命题为真命题,它的逆命题为菱形的四条边相等,此逆命题为真命题.故选D.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)【考点】一次函数图象上点的坐标特征;轴对称-最短路线问题.【解析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE【考点】相似三角形的判定与性质;勾股定理;矩形的判定与性质.【解析】过点D作DH⊥BC,利用勾股定理可得AB的长,利用相似三角形的判定定理可得△ADE∽△BEC,设BE=x,由相似三角形的性质可解得x,易得CE,DE 的关系.【解答】解:过点D作DH⊥BC,∵AD=1,BC=2,∴CH=1,DH=AB===2,∵AD∥BC,∠ABC=90°,∴∠A=90°,∵DE⊥CE,∴∠AED+∠BEC=90°,∵∠AED+∠ADE=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴,设BE=x,则AE=2,即,解得x=,∴,∴CE=,故选B.二、填空题13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为 1.102×106.【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1102000用科学记数法表示为 1.102×106,故答案为:1.102×106.14.若2x﹣3y﹣1=0,则5﹣4x+6y的值为 3 .【考点】代数式求值.【解析】首先利用已知得出2x﹣3y=1,再将原式变形进而求出答案.【解答】解:∵2x﹣3y﹣1=0,∴2x﹣3y=1,∴5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.故答案为:3.15.计算:6﹣(+1)2= ﹣4 .【考点】二次根式的混合运算.【解析】首先化简二次根式,进而利用完全平方公式计算,求出答案.【解答】解:原式=6×﹣(3+2+1)=2﹣4﹣2=﹣4.故答案为:﹣4.16.已知一组数据为1,2,3,4,5,则这组数据的方差为 2 .【考点】方差.【解析】先求出这5个数的平均数,然后利用方差公式求解即可.【解答】解:平均数为=(1+2+3+4+5)÷5=3,S2= [(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故答案为:2.17.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 22.5 度.【考点】矩形的性质.【解析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAC=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.18.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.【考点】切线的性质.【解析】在RT△POC中,根据∠P=30°,PC=3,求出OC、OP即可解决问题.【解答】解:∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=,PC=2OC=2,∴PB=PO﹣OB=,故答案为.19.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,=,则k的值为﹣3.反比例函数y=(x<0)的图象经过点A,若S△ABO【考点】反比例函数系数k的几何意义.【解析】过点A作AD⊥x轴于点D,由∠AOB=30°可得出=,由此可是点A的坐标为=结合三角形的面积公式可用a表示出线段OB的长,再由勾(﹣3a, a),根据S△ABO股定理可用含a的代数式表示出线段BD的长,由此即可得出关于a的无理方程,解方程即可得出结论.【解答】解:过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD ⊥OD , ∴=tan ∠AOB=,∴设点A 的坐标为(﹣3a , a ).∵S △ABO =OB •AD=,∴OB=.在Rt △ADB 中,∠ADB=90°,AD=a ,AB=OB=,∴BD 2=AB 2﹣AD 2=﹣3a 2,BD=.∵OD=OB+BD=3a ,即3a=+,解得:a=1或a=﹣1(舍去).∴点A 的坐标为(﹣3,), ∴k=﹣3×=﹣3. 故答案为:﹣3.20.如图,已知△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且CD=CE ,连接DE 并延长至点F ,使EF=AE ,连接AF ,CF ,连接BE 并延长交CF 于点G .下列结论:①△ABE ≌△ACF ;②BC=DF ;③S △ABC =S △ACF +S △DCF ;④若BD=2DC ,则GF=2EG .其中正确的结论是 ①②③④ .(填写所有正确结论的序号)【考点】全等三角形的判定与性质;等边三角形的性质.【解析】①正确.根据两角夹边对应相等的两个三角形全等即可判断. ②正确.只要证明四边形ABDF 是平行四边形即可. ③正确.只要证明△BCE ≌△FDC . ④正确.只要证明△BDE ∽△FGE ,得=,由此即可证明.【解答】解:①正确.∵△ABC 是等边三角形, ∴AB=AC=BC ,∠BAC=∠ACB=60°, ∵DE=DC ,∴△DEC 是等边三角形,∴ED=EC=DC ,∠DEC=∠AEF=60°, ∵EF=AE ,∴△AEF 是等边三角形, ∴AF=AE ,∠EAF=60°, 在△ABE 和△ACF 中,,∴△ABE ≌△ACF ,故①正确. ②正确.∵∠ABC=∠FDC , ∴AB ∥DF ,∵∠EAF=∠ACB=60°, ∴AB ∥AF ,∴四边形ABDF 是平行四边形, ∴DF=AB=BC ,故②正确. ③正确.∵△ABE ≌△ACF , ∴BE=CF ,S △ABE =S △AFC , 在△BCE 和△FDC 中,,∴△BCE ≌△FDC , ∴S △BCE =S △FDC ,∴S △ABC =S △ABE +S △BCE =S △ACF +S △BCE =S △ABC =S △ACF +S △DCF ,故③正确. ④正确.∵△BCE ≌△FDC ,∴∠DBE=∠EFG ,∵∠BED=∠FEG , ∴△BDE ∽△FGE , ∴=, ∴=,∵BD=2DC ,DC=DE , ∴=2,∴FG=2EG .故④正确.三、解答题21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)【考点】列表法与树状图法;概率公式.【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程: =,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【解答】解:(1)设袋子中白球有x个,根据题意得: =,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.22.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD 的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)【考点】解直角三角形.【解析】(1)要求BC的长,只要求出BE和CE的长即可,由题意可以得到BE和CE的长,本题得以解决;(2)要求AD的长,只要求出AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.【解答】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.23.一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.【考点】一元二次方程的应用;根据实际问题列二次函数关系式.【解析】(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为xcm,根据:三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积,可列函数关系式;(2)根据:三条彩条所占面积是图案面积的,可列出关于x的一元二次方程,整理后求解可得.【解答】解:(1)根据题意可知,横彩条的宽度为xcm,∴y=20×x+2×12•x﹣2×x•x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x;(2)根据题意,得:﹣3x2+54x=×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.24.如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.【考点】圆的综合题.【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.【解答】(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF==,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×=,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴=,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.25.如图,已知一个直角三角形纸片ACB ,其中∠ACB=90°,AC=4,BC=3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN=1,CE=,求的值.【考点】三角形综合题. 【解析】(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF ≌S △DEF ,则易得S △ABC =4S△AEF,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB 即可得到AE 的长;(2)①通过证明四条边相等判断四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②,设AE=x ,则EM=x ,CE=4﹣x ,先证明△CME ∽△CBA 得到==,解出x 后计算出CM=,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)如图③,作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到FH :NH=4:7,设FH=4x ,NH=7x ,则CH=7x ﹣1,BH=3﹣(7x ﹣1)=4﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x=,则可计算出FH 和BH ,接着利用勾股定理计算出BF ,从而得到AF 的长,于是可计算出的值.【解答】解:(1)如图①,∵△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF ≌S △DEF , ∵S 四边形ECBF =3S △EDF , ∴S △ABC =4S △AEF ,在Rt △ABC 中,∵∠ACB=90°,AC=4,BC=3, ∴AB==5,∵∠EAF=∠BAC ,∴Rt △AEF ∽Rt △ABC , ∴=()2,即()2=,∴AE=;(2)①四边形AEMF 为菱形.理由如下:如图②,∵△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴AE=EM ,AF=MF ,∠AFE=∠MFE , ∵MF ∥AC ,∴∠AEF=∠MFE , ∴∠AEF=∠AFE , ∴AE=AF ,∴AE=EM=MF=AF ,∴四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②, 设AE=x ,则EM=x ,CE=4﹣x , ∵四边形AEMF 为菱形, ∴EM ∥AB ,∴△CME ∽△CBA , ∴==,即==,解得x=,CM=, 在Rt △ACM 中,AM===,∵S 菱形AEMF =EF •AM=AE •CM ,∴EF=2×=;(3)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.26.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE 交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【解析】(1)用待定系数法求出抛物线解析式;(2)先求出GH,点F的坐标,用三角形的面积公式计算即可;(3)设出点M,用勾股定理求出点M的坐标,从而求出MD,最后求出时间t;(4)由∠PBF被BA平分,确定出过点B的直线BN的解析式,求出此直线和抛物线的交点即可.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,∴∴,∴抛物线解析式为y=﹣x2+x﹣2=﹣(x﹣2)2+;(2)如图1,过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,﹣2),∵B(0,3),∴直线BC解析式为y=x﹣2,∵H(1,y)在直线BC上,∴y=﹣,∴H(1,﹣),∵B(3,0),E(0,﹣1),∴直线BE解析式为y=﹣x﹣1,∴G(1,﹣),∴GH=,∵直线BE:y=﹣x﹣1与抛物线y=﹣x2+x﹣2相较于F,B,∴F(,﹣),∴S△FHB =GH×|xG﹣xF|+GH×|xB﹣xG|=GH×|xB ﹣xF|=××(3﹣)=.(3)如图2,由(1)有y=﹣x2+x﹣2,∵D为抛物线的顶点,∴D(2,),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,AB2=9,∵∠OMB=90°,∴OM2+BM2=AB2,∴m2+4+m2+1=9,∴m=或m=﹣(舍),∴M(0,),∴MD=﹣,∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴t=﹣;(4)存在点P,使∠PBF被BA平分,如图3,∴∠PBO=∠EBO,∵E(0,﹣1),∴在y轴上取一点N(0,1),∵B(3,0),∴直线BN的解析式为y=﹣x+1①,∵点P在抛物线y=﹣x2+x﹣2②上,联立①②得,或(舍),∴P(,),即:在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,).包头市2016年中考数学试卷一、选择题1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.2.下列计算结果正确的是()A.2+=2B. =2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+13.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣14.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和45.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.186.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A. B. C. D.7.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B. C.﹣或D.18.化简()•ab,其结果是()A. B. C. D.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.10.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE二、填空题13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为.14.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.15.计算:6﹣(+1)2= .16.已知一组数据为1,2,3,4,5,则这组数据的方差为.17.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.18.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.19.如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB=BO ,反比例函数y=(x <0)的图象经过点A ,若S △ABO =,则k 的值为 .20.如图,已知△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且CD=CE ,连接DE 并延长至点F ,使EF=AE ,连接AF ,CF ,连接BE 并延长交CF 于点G .下列结论:①△ABE ≌△ACF ;②BC=DF ;③S △ABC =S △ACF +S △DCF ;④若BD=2DC ,则GF=2EG .其中正确的结论是 .(填写所有正确结论的序号)三、解答题21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.如图,已知四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC 的延长线与AD 的延长线交于点E .(1)若∠A=60°,求BC 的长;(2)若sinA=,求AD 的长.(注意:本题中的计算过程和结果均保留根号)23.一幅长20cm 、宽12cm 的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm ,图案中三条彩条所占面积为ycm 2.(1)求y 与x 之间的函数关系式; (2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.24.如图,在Rt △ABC 中,∠ABC=90°,AB=CB ,以AB 为直径的⊙O 交AC 于点D ,点E 是AB 边上一点(点E 不与点A 、B 重合),DE 的延长线交⊙O 于点G ,DF ⊥DG ,且交BC 于点F .(1)求证:AE=BF ;(2)连接GB ,EF ,求证:GB ∥EF ;(3)若AE=1,EB=2,求DG 的长.25.如图,已知一个直角三角形纸片ACB ,其中∠ACB=90°,AC=4,BC=3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA .①试判断四边形AEMF 的形状,并证明你的结论;②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN=1,CE=,求的值.26.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE 交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
2016年武汉市中考数学试卷-(校对word版带答案)
2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2) 2=2a 4D .6a 8÷3a 2=2a 44.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +96.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( )A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示:日加工零件数4 5 6 7 8 人数 26543这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( ) A .π2B .πC .22D .210.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算5+(-3)的结果为___________.12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________.13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________.14.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ′E 处,AD ′与CE 交于点F .若∠B =52°,∠DAE =20°,则∠FED ′的大小为___________.15.将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x+b |(b 为常数)的图象.若该图象在直线y =2下方的点的横坐标x 满足 0<x <3,则b 的取值范围为___________.16.如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =55,则BD 的长为___________.三、解答题(共8题,共72分)17.(本题8分)解方程:5x +2=3(x +2)18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图. 请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________.(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(本题8分)已知反比例函数xy 4.(1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E .(1) 求证:AC 平分∠DAB ;(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值.22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙201040+0.05x 280其中a 为常数,且3≤a ≤5.(1) 若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式; (2) 分别求出产销两种产品的最大年利润;(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本题10分)在△ABC中,P为边AB上一点.(1) 如图,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(本题12分)抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x轴下方.(1) 如图1,若P(1,-3)、B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2) 如图2,已知直线P A、PB与y轴分别交于E、F两点.当点P运动时,OCOFOE是否为定值?若是,试求出该定值;若不是,请说明理由.xy图1A BC POxy图2FPCBA O武汉中考2016数学答案一.选择题1 2 3 4 5 6 7 8 9 10B C B A C D A D BA二.填空题11. 2 12. 6.3×10413. 1314. 36°15. -4≤b≤-2 16.24110.【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。
2016年湖北省武汉市中考数学试卷及解析答案word版
2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=33.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+96.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣17.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .8.(3分)某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.210.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为.12.(3分)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.2016年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【解答】解:∵1<<2,∴实数的值在:1和2之间.故选:B.2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a4【解答】解:A、原式=a3,错误;B、原式=2a2,正确;C、原式=4a4,错误;D、原式=2a6,错误,故选B4.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【解答】解:(x+3)2=x2+6x+9,故选:C.6.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.7.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.8.(3分)某车间20名工人日加工零件数如表所示:这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选D.9.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.2【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF 为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.10.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选A二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为2.【解答】解:原式=+(5﹣3)=2,故答案为:2.12.(3分)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为 6.3×104.【解答】解:将63 000用科学记数法表示为6.3×104.故答案为:6.3×104.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【解答】解:∵一个质地均匀的小正方体有6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为:﹣4≤b≤﹣2.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)【解答】解:去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2.18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50名学生,其中最喜爱戏曲的有3人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【解答】解:(1)解得kx2+4x﹣4=0,∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,∴△=16+16k=0,∴k=﹣1;(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【解答】解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=(+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y=x2﹣;②如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);当点D在OP右侧时,延长PD交x轴于点G.作PH⊥OB于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣1.在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.∴点G(5,0).∴直线PG的解析式为y=x﹣解方程组得,.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣1,﹣3)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。
2016年武汉市中考数学试卷和答案
2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数 2 的值在()A.0 和1 之间B.1 和2 之间C.2 和3 之间D.3 和4 之间1实数范围内有意义,则实数x 的取值范围是()2.若代数式在x 3A.x<3 B.x>3 C.x≠3 D.x=33.下列计算中正确的是()4.不透明的袋子中装有性状、大小、质地完全相同的 6 个球,其中 4 个黑球、 2 个白球,从袋子中一次摸出 3 个球,下列事件是不可能事件的是()A.摸出的是 3 个白球B.摸出的是 3 个黑球C.摸出的是 2 个白球、 1 个黑球D.摸出的是 2 个黑球、 1 个白球2 的结果是()5.运用乘法公式计算(x+3)2+9 B.x2-6x+9 C.x2+6x+9 D.x2+3x+9A.x6.已知点A( a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=-5,b=1 C.a=5,b=-1 D.a=-5,b=-1 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()8.某车间20 名工人日加工零件数如下表所示:日加工零件数 4 5 6 7 8人数 2 6 5 4 3这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.如图,在等腰Rt△ABC 中,AC =BC=2 2 ,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点 A 运动至点 B 时,点M 运动的路径长是()A.2πB.πC.2 2 D. 210.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点 C 的个数是()A.5 B.6 C.7 D. 8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________12.某市2016 年初中毕业生人数约为63 000,数63 000 用科学记数法表示为___________ 13.一个质地均匀的小正方体, 6 个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是 5 的概率为___________14.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD′与CE 交于点F.若∠B=52°,∠DAE =20°,则∠FED ′的大小为___________15.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x <3,则 b 的取值范围为___________16.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5 5 ,则BD 的长为___________三、解答题(共8题,共72分)17.(本题8 分)解方程:5x+2=3( x+2)18.(本题8 分)如图,点B、E、C、F 在同一条直线上,AB=DE,AC=DF ,BE=CF,求证:AB∥DE19.(本题8 分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1) 本次共调查了__________ 名学生,其中最喜爱戏曲的有__________ 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2) 根据以上统计分析,估计该校2000 名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数y 4 x(1) 若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k 的值(2) 如图,反比例函数y 4x(1≤x≤4)的图象记为曲线C1,将C1 向左平移 2 个单位长度,得曲线C2,请在图中画出C2,并直接写出C1 平移至C2 处所扫过的面积21.(本题8分)如图,点 C 在以AB 为直径的⊙O 上,AD 与过点 C 的切线垂直,垂足为点D,AD 交⊙O 于点 E(1) 求证:A C 平分∠DAB(2) 连接BE 交AC 于点F,若cos∠CAD =45,求A FFC的值22.(本题10 分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a 20 200乙20 10 40+0.05x2 80其中 a 为常数,且3≤a≤ 5(1) 若产销甲乙两种产品的年利润分别为y1 万元、y2 万元,直接写出y1、y2 与x 的函数关系式(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10 分)在△ABC 中,P 为边A B 上一点2=AP·AB(1) 如图,若∠ACP=∠B,求证:A C(2) 若M 为CP 的中点,AC=2①如图2,若∠PBM =∠ACP,AB=3,求BP 的长②如图3,若∠ABC=45°,∠A=∠BMP =60°,直接写出BP 的长2+c 与x 轴交于A、B 两点,顶点为C,点P 为抛物线上,且位24.(本题12 分)抛物线y=ax于x 轴下方(1) 如图1,若P(1,-3)、B(4,0)①求该抛物线的解析式②若D 是抛物线上一点,满足∠DPO =∠POB,求点 D 的坐标(2) 如图2,已知直线PA、PB 与y 轴分别交于E、F 两点.当点P 运动时,O EOFOC是否为定值?若是,试求出该定值;若不是,请说明理由参考答案。
2016包头中考数学试卷及解析
2016年内蒙古包头市中考数学试卷一、选择题:本大题共有12小题,每小题3分,共36分。
1.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.2.下列计算结果正确的是()A.2+=2B. =2 C.(﹣2a2)3=﹣6a6D.(a+1)2=a2+13.不等式﹣≤1的解集是()A.x≤4 B.x≥4 C.x≤﹣1 D.x≥﹣14.一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和45.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.186.同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A. B. C. D.7.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是()A.﹣B. C.﹣或D.18.化简()?ab,其结果是()A. B. C. D.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.10.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE二、填空题:本大题共有8小题,每小题3分,共24分13.据统计,2015年,我国发明专利申请受理量达1102000件,连续5年居世界首位,将1102000用科学记数法表示为.14.若2x﹣3y﹣1=0,则5﹣4x+6y的值为.15.计算:6﹣(+1)2= .16.已知一组数据为1,2,3,4,5,则这组数据的方差为.17.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.18.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.19.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=(x<0)的图象经过点A,若S△ABO=,则k的值为.20.如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分。
2016年内蒙古包头市青山区中考数学模拟试卷试题解析
2016年内蒙古包头市青山区中考数学模拟试卷试题解析一、选择题(本题共12小题,每题3分,共36分)1.下列无理数中,在﹣1与2之间的是()A.﹣B.﹣C.D.【考点】估算无理数的大小.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.﹣<﹣1,故错误;B.﹣<﹣1,故错误;C.﹣1<,故正确;D.>2,故错误;故选:C.2.下列图案中,轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选;D.3.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.4.下列运算正确的是()A.4ab÷2a=2ab B.(3x2)3=9x6C.a3•a4=a7D.【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方;二次根式的乘除法.【分析】A、原式利用单项式除以单项式法则计算得到结果,即可做出判断;B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D、原式利用二次根式的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2b,错误;B、原式=27x6,错误;C、原式=a7,正确;D、原式=,错误,故选C5.如图,在平面直角坐标系中,直线OA过点(2,1),则sinα的值是()A.B.C.D.2【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据勾股定理求出OB的长,根据正弦的定义计算即可.【解答】解:作BD⊥x轴于D,由题意得,OD=2,BD=1,由勾股定理得,OB==,则sinα==,故选:B.6.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12B.15C.18D.21【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15.故选:B.7.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3<b≤﹣2C.﹣3≤b≤﹣2D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.8.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2﹣r2=a2B.a=2Rsin36°C.a=2rtan36°D.r=Rcos36°【考点】正多边形和圆;解直角三角形.【分析】根据圆内接正五边形的性质求出∠BOC,再根据垂径定理求出∠1=36°,然后利用勾股定理和解直角三角形对各选项分析判断即可得解.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠BOC=×360°=72°,∴∠1=∠BOC=×72°=36°,R2﹣r2=(a)2=a2,a=Rsin36°,a=2Rsin36°;a=rtan36°,a=2rtan36°,cos36°=,r=Rcos36°,所以,关系式错误的是R2﹣r2=a2.故选A.9.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为()A.n B.(n﹣1)C.()n D.()n﹣1【考点】正方形的性质.【分析】根据正方形的对角线等于边长的倍依次求解,然后根据指数的变化求出第n个正方形的边长即可.【解答】解:∵四边形ABCD是边长为1的正方形,∴第二个正方形ACEF的边长AC=,第三个正方形AEGH的边长AE=AC=()2,…,第n个正方形的边长=()n﹣1.故选D.10.如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A.B.13πC.25πD.25【考点】弧长的计算;矩形的性质;旋转的性质.【分析】连接BD,B′D,首先根据勾股定理计算出BD长,再根据弧长计算公式计算出,的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可.【解答】解:连接BD,B′D,∵AB=5,AD=12,∴BD==13,∴==,∵==6π,∴点B在两次旋转过程中经过的路径的长是:+6π=.故选:A.11.已知下列命题:(1)若x=a,则x2﹣(a+b)x+ab=0(2)若a>b,则a2>b2(3)平行四边形是中心对称图形(4)圆内接四边形的对角互补.其中原命题与逆命题均为真命题的有()个.A.0B.1C.2D.3【考点】命题与定理.【分析】先判断出原命题的正误,再把正确的命题写出其逆命题,判断出其正误即可.【解答】解:(1)原命题是真命题,其逆命题是:若x2﹣(a+b)x+ab=0,则x=a,也是真命题,故本小题正确;(2)当0>a>b时,a2<b2,原命题是假命题,故本小题错误;(3)原命题是真命题,其逆命题是:中心对称图形是平行四边形,是假命题,故本小题错误;(4)原命题是真命题,其逆命题是:对角互补的四边形是圆内接四边形,也是真命题,故本小题正确.故选C.12.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x,0),且1<<2,与y轴的正半轴的交点在(0,2)的下方,下列结论正确的是()x1①4a﹣2b+c=0②a<b<0③2a+c>0④2a﹣b+1>0.A.①②③B.②③④C.①③④D.①②③④【考点】二次函数图象与系数的关系.【分析】①由函数图象过点(﹣2,0),将点(﹣2,0)代入到抛物线解析式即可得知①正确;②结合函数图象与x轴的交点横坐标可以得知抛物线对称轴﹣<﹣<0,再由抛物线与y 轴的交点在y 轴正半轴得知a<0,解不等式即可得知②正确;③令ax 2+bx+c=0,由根与系数的关系即可得出关于的不等式,解不等式得出c 与a 之间的关系,将其代入2a+c 即可得知③正确;④由抛物线与y 轴交点坐标的范围可找出c 的范围,结合③中c 与a 的关系可得出a 的取值范围,再结合②结论即可得知④正确.综上即可得出结论.【解答】解:①∵二次函数y=ax 2+bx+c 的图象经过点(﹣2,0),∴0=4a ﹣2b+c,①正确;②∵二次函数y=ax 2+bx+c 的图象与x 轴交于点(﹣2,0),(x,0),且1<x 1<2,∴抛物线的对称轴﹣<x=﹣<0.∵抛物线图象与x 轴的两交点分别在原点两侧,与y 轴的交点在y 轴正半轴,∴抛物线开口向下,即a<0,∵﹣<﹣<0,∴a<b<0,即②正确;③令ax 2+bx+c=0,则方程的两个解为:1<x 1<2,x 2=﹣2,∴=x 1•x 2,即﹣4<<﹣2,又∵a<0,∴﹣2a<c<﹣4a,∴2a+c>0,即③正确;④∵抛物线图象与y 轴的正半轴的交点在(0,2)的下方,且﹣2a<c<﹣4a,∴﹣4a≤2,解得:a≥﹣.∵a<b<0,∴2a+1﹣b≥﹣b>0,即④正确.故选D.二、填空题(本题共8小题,每题3分,共24分)13.(﹣)×=10.【考点】二次根式的混合运算.【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【解答】解:原式=(3﹣)×=×2=10.故答案为10.14.如图点A、B、C在⊙O上,CO延长线交AB于点D,∠A=60°,∠B=30°,则∠ADC的度数为90°.【考点】圆周角定理.【分析】根据圆周角定理求得∠BOC=120°,进而根据三角形的外角的性质求得∠BDC=90°,然后根据邻补角求得∠ADC的度数.【解答】解:∵∠A=60°,∴∠BOC=2∠A=120°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=120°﹣30°=90°,∴∠ADC=180°﹣∠BDC=90°,故答案为:90°.15.(+2﹣x)÷=﹣.【考点】分式的混合运算.【分析】先计算括号内分式的加法,再将除法转化为乘法,最后计算乘法即可.【解答】解:原式=[+]•=[+]•=•=﹣.故答案为:﹣.16.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为6.【考点】中位数;算术平均数.【分析】首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.【解答】解:∵两组数据:3,a,2b,5与a,6,b的平均数都是6,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,6,8,8,8,一共7个数,第四个数是6,所以这组数据的中位数是6.故答案为6.17.已知:m、n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+2m=10.【考点】根与系数的关系.【分析】由根与系数的关系可找出“m+n=﹣=﹣2,mn==﹣5”,在算式m2﹣mn+2m中,提取m得到m(m﹣n+2),将2换成﹣(m+n),再进行计算即可得出结论.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴m+n=﹣=﹣2,mn==﹣5.∵m2﹣mn+2m=m(m﹣n+2)=m[(m﹣n)﹣(m+n)]=﹣2mn=﹣2×(﹣5)=10.故答案为:10.18.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为y=﹣x+.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=(4﹣t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式.【解答】解:∵A(0,4),B(3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+22=(4﹣t)2,解得t=,∴C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得,∴直线BC的解析式为y=﹣x+.故答案为:y=﹣x+.19.如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k=.【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】首先根据点A在双曲线y=(x>0)上,设A点坐标为(a,),再利用含30°直角三角形的性质算出OA=2a,再利用菱形的性质进而得到B点坐标,即可求出k的值.【解答】解:因为点A在双曲线y=(x>0)上,设A点坐标为(a,),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,),可得:k=,故答案为:20.菱形ABCD中,AE⊥BC于E,交BD于F点,下列结论:(1)BF为∠ABE的角平分线;(2)DF=2BF;(3)2AB2=DF•DB;(4)sin∠BAE=.其中正确的结论为(1)(3)(4)(填序号)【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)正确.根据菱形性质即可判定.(2)错误.假设成立推出矛盾即可.(3)正确.由△ADO∽△FDA,得=,AD2=DO•DF,两边乘2即可得到证明(4)正确.由AD∥BC,得==,又sin∠BAE=,由此即可证明.【解答】解:连接AC交BD于点O,∵四边形ABCD是菱形,∴BD平分∠ABC,BD⊥AC,DO=OB,故(1)正确,∵AD∥BC,AE⊥BC,∴AD⊥AE,∵∠ADO=∠ADF,∠AOD=∠DAF=90°,∴△ADO∽△FDA,∴=,∴AD2=DO•DF,∴2AD2=2DO•DF,∵AB=AD,BD=2DO,∴2AB2=DF•DB,故(3)正确,∵AD∥BC,∴==,∵sin∠BAE=,∴sin∠BAE=,故(4)正确.∵=,如果DF=2BF,那么AD=2BE,所以BE=EC,这个显然不可能,故②错误,∴正确的有(1)(3)(4)故答案为(1)(3)(4).三、解答题(本题共6小题,共60分)21.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.【考点】列表法与树状图法;扇形统计图.【分析】(1)根据三等奖所在扇形的圆心角的度数求得总人数,然后乘以一等奖所占的百分比即可求得一等奖的学生数;(2)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)∵三等奖所在扇形的圆心角为90°,∴三等奖所占的百分比为25%,∵三等奖为50人,∴总人数为50÷25%=200人,∴一等奖的学生人数为200×(1﹣20%﹣25%﹣40%)=30人;(2)列表:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,∴P(选中A、B)==.22.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求出问题即可.【解答】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)解得:x≈13,∴大树的高度为:13米.23.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:国外品牌国内品牌进价(元/部)44002000售价(元/部)50002500该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可毛获利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.【解答】解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,=3.15,∴当a=5时,w最大答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.24.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB 的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.【考点】圆的综合题.【分析】(1)由垂直的定义可得∠EBF=∠ADF=90°,于是得到∠C=∠BFE,从而证得△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证得∠DBO=90°,即可得到BD与⊙O相切;(3)如图2,连接CF,HE,有等腰直角三角形的性质得到CF=BF,由于DF垂直平分AC,得到AF=CF=AB+BF=1+BF=BF,求得BF=,有勾股定理解出EF=,推出△EHF是等腰直角三角形,求得HF=EF=,通过△BHF∽△FHG,列比例式即可得到结论.【解答】(1)证明:∵∠ABC=90°,∴∠EBF=90°,∵DF⊥AC,∴∠ADF=90°,∴∠C+∠A=∠A+∠AFD=90°,∴∠C=∠BFE,在△ABC与△EBF中,,∴△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证明如下:∵OB=OF,∴∠OBF=∠OFB,∵∠ABC=90°,AD=CD,∴BD=CD,∴∠C=∠DBC,∵∠C=∠BFE,∴∠DBC=∠OBF,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD与⊙O相切;(3)解:如图2,连接CF,HE,∵∠CBF=90°,BC=BF,∴CF=BF,∵DF垂直平分AC,∴AF=CF=AB+BF=1+BF=BF,∴BF=,∵△ABC≌△EBF,∴BE=AB=1,∴EF==,∵BH平分∠CBF,∴,∴EH=FH,∴△EHF是等腰直角三角形,∴HF=EF=,∵∠EFH=∠HBF=45°,∠BHF=∠BHF,∴△BHF∽△FHG,∴,∴HG•HB=HF2=2+.25.如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm<BC=4cm,AB=5cm,从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s 时,y=2cm 2;当x=s 时,y=9cm 2;(2)当5≤x≤14时,求y 与x 之间的函数关系式;(3)直接写出在整个运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.【考点】四边形综合题.【分析】(1)当x=2s 时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y 的值,当x=s 时,三角形PAQ 的高就是4,底为4.5,由三角形的面积公式可以求出其解.(2)当5≤x≤14时,求y 与x 之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.(3)利用相似三角形的性质,相似三角形的对应线段成比例就可以求出对应的x 的值.【解答】解:(1)当x=2s 时,AP=2,BQ=2∴y=2当x=s 时,AP=4.5,Q 点在EC 上∴y=9故答案为:2;9(2)当5≤x≤9时y=S 梯形ABCQ ﹣S △ABP ﹣S △PCQ =(5+x ﹣4)×4﹣×5(x ﹣5﹣(9﹣x)(x ﹣4)y=x 2﹣7x+当9<x≤13y=(x ﹣9+4)(14﹣x)y=﹣x 2+x ﹣35当13<x≤14时y=×8(14﹣x)y=﹣4x+56;(3)设运动时间为x 秒,当PQ∥AC 时,BP=5﹣x,BQ=x,此时△BPQ∽△BAC,∴,∴,解得x=;当PQ∥BE时,PC=9﹣x,QC=x﹣4,此时△PCQ∽△BCE,∴,∴,解得x=;当PQ∥BE时,EP=14﹣x,EQ=x﹣9,此时△PEQ∽△BAE,∴,∴,解得x=.由题意得x的值为:x=、或.26.已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x 的增大而减小.(1)求抛物线的解析式,并写出y<0时,对应x的取值范围;(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.①当BC=1时,直接写出矩形ABCD的周长;②设动点A的坐标为(a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值?如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式,根据函数的增减性,可得符合条件的函数解析式,根据函数与不等式的关系,可得答案;(2)①根据BC关于对称轴对称,可得A点的纵坐标,根据矩形的周长公式,可得答案;②分类讨论A在对称轴左侧,A在对称轴右侧,根据对称,可得BC的长,AB的长,根据周长公式,可得函数解析式,根据函数的增减性,可得答案.【解答】解:(1)∵抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点(0,0),∴m2﹣1=0,∴m=±1∴y=x2+x或y=x2﹣3x,∵当x<0时,y随x的增大而减小,∴y=x2﹣3x,由函数与不等式的关系,得y<0时,0<x<3;(2)①如图1,当BC=1时,由抛物线的对称性,得点A的纵坐标为﹣2,∴矩形的周长为6;②∵A的坐标为(a,b),∴当点A在对称轴左侧时,如图2,矩形ABCD的一边BC=3﹣2a,另一边AB=3a﹣a2,=,A点坐标为(,﹣),周长L=﹣2a2+2a+6.其中0<a<,当a=时,L最大当点A在对称轴右侧时如图3,矩形的一边BC=3﹣(6﹣2a)=2a﹣3,另一边AB=3a﹣a2,周长L=﹣2a2+10a﹣6,其中<a<3,当a=时,L=,A点坐标为(,﹣);最大综上所述:当0<a<时,L=﹣2(a﹣)2+,=,A点坐标为(,﹣),∴当a=时,L最大当<a<3时,L=﹣2(a﹣)2+,=,A点坐标为(,﹣).∴当a=时,L最大2016年6月27日。
2016年湖北省武汉市中考数学试卷及详细答案
2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 4 4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +96.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-1 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示:日加工零件数4 5 6 7 8 人数26543这些工人日加工零件数的众数、中位数、平均数分别是( ) A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )A .π2B .πC .22D .210.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为_______.12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________.13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为_______.14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE 交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD 的长为_______.三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2) .18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:18430%8%6%动画新闻体育娱乐戏曲节目类型戏曲娱乐动画体育新闻人数2468101214161820请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(本题8分)已知反比例函数xy 4=. (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值.22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本题10分)在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOFOE 是否为定值?若是,试求出该定值;若不是,请说明理由.参考答案与试题分析一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间 B .1和2之间 C .2和3之间 D .3和4之间【解析】∵1<2<412.2.若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =3【解析】要使31-x 错误!未找到引用源。
内蒙古包头市青山区2016年中考数学二模试卷含答案解析
内蒙古包头市青山区2016年中考数学二模试卷(解析版)一、选择题:每题3分,共36分.1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣2.如图是正方形切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.3.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠14.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()A.B.C.D.5.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件C.“明天降雨的概率为”表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方法6.下列方程中有实数根的是()A.x2+2x+3=0 B.x2+1=0 C.x2+3x+1=0 D.7.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级学生对“分组合作学习”方式非常喜欢和喜欢的人数约为()A.216 B.324 C.288 D.2528.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣9.将抛物线y=﹣3x2﹣1向右平移1个单位长度,再向上平移1个单位长度后所得的抛物线的解析式为()A.y=﹣3(x﹣1)2B.y=﹣3(x+1)2C.y=﹣3(x﹣1)2+2D.y=﹣3(x﹣1)2﹣210.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB 的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定11.已知下列命题:(1)如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1.(2)如果两个有理数相等,那么它们的平方相等;(3)菱形的对角线互相垂直、平分;(4)圆的两条平行弦所夹的弧相等.其中原命题与逆命题均为真命题的个数为()A.1 B.2 C.3 D.412.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4 B.3 C.2 D.1二、填空题:每题3分,共24分.13.(﹣5)0+cos30°﹣()﹣1=.14.分式方程的解为.15.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是.16.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是.17.如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为.18.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为.19.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是.三、解答题:共6小题,共60分.21.我市某中学举行“中国梦校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和告知给你代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写表格;平均数/分中位数/分众数/分初中代表队85高中代表队85 100(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.22.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)23.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O 在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B 匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.26.已知直线y=kx+1经过点M(d,﹣2)和点N(1,2),交y轴于点H,交x轴于点F.(1)求d的值;(2)将直线MN绕点M顺时针旋转45°得到直线ME,点Q(3,e)在直线ME上,①证明ME∥x轴;②试求过M、N、Q三点的抛物线的解析式;(3)在(2)的条件下,连接NQ,作△NMQ的高NB,点A为MN上的一个动点,若BA将△NMQ的面积分为1:2两部分,且射线BA交过M、N、Q三点的抛物线于点C,试求点C的坐标.2016年内蒙古包头市青山区中考数学二模试卷参考答案与试题解析一、选择题:每题3分,共36分.1.﹣2016的绝对值是()A.2016 B.﹣2016 C.D.﹣【分析】根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.【解答】解:∵﹣2016的绝对值等于其相反数,∴﹣2016的绝对值是2016.故选A.【点评】本题考查了绝对值,解决本题的关键是明确绝对值的定义.2.如图是正方形切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个正方形,正方形的左上角是一个三角形,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线都画实线.3.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【分析】先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【解答】解:∵代数式+有意义,∴,解得x≥0且x≠1.故选D.【点评】本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()A.B.C.D.【分析】首先根据∠B=90°,BC=2AB,可得AC==,然后根据余弦的求法,求出cosA的值是多少即可.【解答】解:∵∠B=90°,BC=2AB,∴AC==,∴cosA=.故选:D.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(2)此题还考查了直角三角形的性质,以及勾股定理的应用,要熟练掌握.5.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件C.“明天降雨的概率为”表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方法【分析】结合选项根据概率的意义、全面调查与抽样调查和随机事件的概念进行求解即可.【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是随机事件,本选项错误;B、“直角三角形三条边中垂线的交点是斜边的中点”这是必然事件,本选项正确;C、“明天降雨的概率为”表示明天有50%的概率有降雨,本选项错误;D、了解一批电视机的使用寿命,适合用抽样调查的方法,本选项错误.故选B.【点评】本题考查了概率的意义、全面调查与抽样调查和随机事件的知识,解答本题的关键在于熟练掌握各知识点的概念.6.下列方程中有实数根的是()A.x2+2x+3=0 B.x2+1=0 C.x2+3x+1=0 D.【分析】本题是根的判别式的应用试题,不解方程而又准确的判断出方程解的情况,那只有根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.【解答】解:由题意可知x2+2x+3=0△=b2﹣4ac=4﹣12=﹣8<0,所以没有是实数根;同理x2+1=0的△=b2﹣4ac=0﹣4<0,也没有实数根;x2+3x+1=0的△=b2﹣4ac=9﹣4=5>0,所以有实数根;而最后一个去掉分母后x=1有实数根,但是使分式方程无意义,所以舍去.故选C.【点评】本题是对方程实数根的考查,求解时一要注意是否有实数根,二要注意有实数根时是否有意义.7.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级学生对“分组合作学习”方式非常喜欢和喜欢的人数约为()A.216 B.324 C.288 D.252【分析】直接利用条形统计图得出学习方式中非常喜欢和喜欢的人数所占比例,进而求出八年级学习方式中非常喜欢和喜欢的总人数.【解答】解:由条形统计图可得:非常喜欢和喜欢的人数为:360×=252(人).故选:D.【点评】此题主要考查了用样本估计总体以及条形统计图的应用,正确求出样本中学习方式中非常喜欢和喜欢的人数所占比例是解题关键.8.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解.【解答】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积为:﹣×2×1=π﹣.故选:A.【点评】考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积.9.将抛物线y=﹣3x2﹣1向右平移1个单位长度,再向上平移1个单位长度后所得的抛物线的解析式为()A.y=﹣3(x﹣1)2B.y=﹣3(x+1)2C.y=﹣3(x﹣1)2+2 D.y=﹣3(x﹣1)2﹣2【分析】直接根据平移规律“左加右减,上加下减”作答即可.【解答】解:抛物线y=﹣3x2﹣1向右平移1个单位长度后的解析式为:y=﹣3(x﹣1)2﹣1,再向上平移1个单位长度后所得的抛物线的解析式为:y=﹣3(x﹣1)2﹣1+1=﹣3(x﹣1)2,故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB 的面积分别为S、S1、S2,若S=2,则S1+S2=()A.4 B.6 C.8 D.不能确定【分析】过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP 都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC 面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.【解答】解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=2,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.故选:C.【点评】此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.11.已知下列命题:(1)如果单项式3a4b y c与2a x b3c z是同类项,那么x=4,y=3,z=1.(2)如果两个有理数相等,那么它们的平方相等;(3)菱形的对角线互相垂直、平分;(4)圆的两条平行弦所夹的弧相等.其中原命题与逆命题均为真命题的个数为()A.1 B.2 C.3 D.4【分析】首先判断该命题的真假,然后写出其逆命题判断其真假即可.【解答】解:(1)如果单项式3a4b y c与2a x b3c3是同类项,那么x=4,y=2,z=1,正确,其逆命题为如果x=4,y=3,z=1,那么单项式3a4b y c与2a x b3c z是同类项.正确,为真命题.(2)如果两个有理数相等,那么它们的平方相等,正确,为真命题;其逆命题为如果两个有理数的平方相等,那么它们相等,错误,为假命题;(3)菱形的对角线互相垂直、平分,正确,为真命题;其逆命题为对角线垂直、平分的四边形为菱形,正确,为真命题;(4)圆的两条平行弦所夹的弧相等,正确,为真命题;其逆命题为圆中两条弦所夹的弧相等,那么这两条弦平行,为假命题,原命题与逆命题均为真命题的个数为2,故选B.【点评】本题考查了命题与定理的知识,解题的关键是能够正确的写出该命题的逆命题,难度不大.12.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4 B.3 C.2 D.1【分析】根据正方形对角线的性质可得出当E移动到与C重合时,F点和D点重合,此时G点为AC中点,故①错误;求得∠BAE=∠CBF,根据正方形的性质可得AB=BC,∠ABC=∠C=90°,然后利用“角角边”证明△ABE和△BCF全等,根据全等三角形对应角相等可得AE=BF,判断出②正确;根据题意,G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,然后求出弧的长度,判断出③错误;由于OC 和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,根据勾股定理求出最小CG 长度.【解答】解:∵在正方形ABCD中,BF⊥AE,∴∠AGB保持90°不变,∴G点的轨迹是以AB中点O为圆心,AO为半径的圆弧,∴当E移动到与C重合时,F点和D点重合,此时G点为AC中点,∴AG=GE,故①错误;∵BF⊥AE,∴∠AEB+∠CBF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴故②正确;∵当E点运动到C点时停止,∴点G运动的轨迹为圆,圆弧的长=π×2=π,故③错误;由于OC和OG的长度是一定的,因此当O、G、C在同一条直线上时,CG取最小值,OC==,CG的最小值为OC﹣OG=﹣1,故④正确;综上所述,正确的结论有②④.故选C.【点评】本题考查了正方形的性质,全等三角形的判定与性质,弧长的计算,勾股定理的应用,熟记性质并求出△ABE和△BCF全等是解题的关键,此题求运动轨迹有一定的难度.二、填空题:每题3分,共24分.13.(﹣5)0+cos30°﹣()﹣1=1.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+2×﹣3=1+3﹣3=1,故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.分式方程的解为x=.【分析】方程两边都乘以3(x﹣1)化为整式方程,然后求解,再检验即可.【解答】解:方程两边都乘以3(x﹣1)得,3x=2,解得x=,检验:当x=时,3(x﹣1)=3(1﹣)=1≠0,所以,x=是方程的解,所以,原分式方程的解是x=.故答案为:x=.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是m<4.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=∵方程有负数解,∴解得m<4.故答案为:m<4.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.16.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与能组成分式的情况数,然后根据概率公式求解即可求得答案.【解答】解:画树状图得:∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,∴能组成分式的概率是=.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,在平面直角坐标系中,点A(﹣1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=﹣x+b上,则b的值为2.【分析】先把点A坐标代入直线y=2x+3,得出m的值,然后得出点B的坐标,再代入直线y=﹣x+b解答即可.【解答】解:把A(﹣1,m)代入直线y=2x+3,可得:m=﹣2+3=1,因为线段OA绕点O顺时针旋转90°,所以点B的坐标为(1,1),把点B代入直线y=﹣x+b,可得:1=﹣1+b,b=2,故答案为:2【点评】此题考查一次函数问题,关键是根据代入法解解析式进行分析.18.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为4.【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,=底×高=2×2=4,S菱形ABCD故答案为4.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.19.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=ACBC=ABCE,∴ACBC=ABCE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.20.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是①③④.【分析】观察函数图象,根据二次函数图象与系数的关系找出“a<0,c>0,﹣>0”,再由顶点的纵坐标在x轴上方得出>0.①由a<0,c>0,﹣>0即可得知该结论成立;②由顶点纵坐标大于0即可得出该结论不成立;③由OA=OC,可得出x A=﹣c,将点A(﹣c,0)代入二次函数解析式即可得出该结论成立;④结合根与系数的关系即可得出该结论成立.综上即可得出结论.【解答】解:观察函数图象,发现:开口向下⇒a<0;与y轴交点在y轴正半轴⇒c>0;对称轴在y轴右侧⇒﹣>0;顶点在x轴上方⇒>0.①∵a<0,c>0,﹣>0,∴b>0,∴abc<0,①成立;②∵>0,∴<0,②不成立;③∵OA=OC,∴x A=﹣c,将点A(﹣c,0)代入y=ax2+bx+c中,得:ac2﹣bc+c=0,即ac﹣b+1=0,③成立;④∵OA=﹣x A,OB=x B,x A x B=,∴OAOB=﹣,④成立.综上可知:①③④成立.故答案为:①③④.【点评】本题考查了二次函数图象与系数的关系以及根与系数的关系,解题的关键是观察函数图象逐条验证四条结论.本题属于基础题,难度不大,解决该题型题目时,观察函数图形,利用二次函数图象与系数的关系找出各系数的正负是关键.三、解答题:共6小题,共60分.21.我市某中学举行“中国梦校园好声音”歌手大赛,初、高中部根据初赛成绩,各选出5名选手组成初中代表队和告知给你代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写表格;平均数/分中位数/分众数/分初中代表队8585 85高中代表队85 80100(2)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.【分析】(1)根据统计图中的具体数据以及平均数、中位数和众数的概念分别进行计算即可;(2)由方差的公式计算两队决赛成绩的方差,然后由方差的意义进行比较分析.【解答】解:(1)初中代表队:平均数=(75+80+85+85+100)÷5=85(分),众数为85(分);高中代表队:中位数为80(分);故答案为:85,85,80;(2)= [(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,= [(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160,∵<,∴初中队选手成绩较稳定.【点评】本题考查的是条形统计图的综合运用、平均数、中位数、众数以及方差的意义.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由:过C作CH⊥MN,∵∠CBN=60°,BC=200米,∴CH=BCsin60°=200×=100(米),BH=BCcos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.【点评】此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.23.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.24.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O 在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到=,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH 是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE=BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴=即=,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B 匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.【分析】(1)利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN为等腰三角形即可.【解答】解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN∥AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,=AEGC=3×4=12,∴S四边形AFGE∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,∵cosA==,∴=,解得AD=5,∴AD=t=5.③如图3,当DN=MN=3时,AC=DC,连接MC,则CM⊥AD,∵cosA==,即=,∴AM=,∴AD=t=2AM=,综上所述,当t=5或6或时,△DMN为等腰三角形.【点评】本题主要考查了相似形综合题,涉及等腰三角形的性质,平行四边形的面积及中位线,解题的关键是分三种情况讨论△DMN是等腰三角形.26.已知直线y=kx+1经过点M(d,﹣2)和点N(1,2),交y轴于点H,交x轴于点F.(1)求d的值;(2)将直线MN绕点M顺时针旋转45°得到直线ME,点Q(3,e)在直线ME上,①证明ME∥x轴;②试求过M、N、Q三点的抛物线的解析式;(3)在(2)的条件下,连接NQ,作△NMQ的高NB,点A为MN上的一个动点,若BA将△NMQ的面积分为1:2两部分,且射线BA交过M、N、Q三点的抛物线于点C,试求点C的坐标.【分析】(1)把点N(1,2)代入y=kx+1,得k,再把M点坐标代入已知直线解析式得d;。
青山区2019年中考备考数学训练题(二)参考答案
青山区2019年中考备考数学训练题(二)参考答案一、 选择题(本大题共10个小题,每小题3分,共30分.)在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11.32 ; 12. 91.5 ; 13. ;14.78°; 15.(-1,0)、(5,0)、(0,1)、(0,5) 16.1022+.三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.) 17、原式= …………………………………………… 6分 = …………………………………………… 8分 18、∵∠A=∠C=90°,∠A+∠C+∠ABC +∠ADC=360° ∴∠ABC +∠ADC=180°.…………………………………2分 ∵BE 平分∠ABC ,DF 平分∠ADC ,∴∠1=∠2=∠ABC ,∠3=∠4=∠ADC .……………4分 ∴∠1+∠3=(∠ABC +∠ADC )=×180°=90° 又∠1+∠AEB=90°,∴∠3=∠AEB .……………………………………6分 ∴BE ∥DF ……………………………………………8分19、(1)a=8,b=0.08 ……………………………………4分 (2)……………………………6分(3)4808.0600=⨯(名)答:该校本次竞赛成绩不低于90分的学生共有48人。
……………………………8分20.解:(1) △ADC 是等腰直角三角形………………………3分题号1 2 3 4 5 6 7 8 9 10 答案 B A D C C A C C B A 8884a a a ++86a 8654321DAyy x -3(2) 如图所示,A 1(2+22,1—22)、D 1(2,122-)、 C 1(3222-,3122-) ………………………8分(三个坐标一个1分,图形1分,如图所示1分) 21.⑴连接DE.∵AB=AC ,BD=CD ,∴AD ⊥BD又E 是边AB 的中点,∴ED=EA ,∴∠EDA=∠EAD ,……………………1分∵∠PFA=∠EDP , …………………………2分∴∠PFA=∠EAD ,即∠PFA=∠FAP ,∴PA=PF …………………3分 ⑵连接DO 并延长,设交圆O 于M ,连GM. ∵AB=AC ,BD=CD ,∴∠BAD=∠CAD ,由⑴知∠PFA=∠FAP ,∴∠PFA=∠CAD , ……………………………4分 ∵tan ∠PFA=63,∴tan ∠CAD=63, ……………5分 设CD=t 3,则AD=6t.∴AC=t AD CD 3922=+ ∴sin ∠DCA=13392396==tt AC AD , ……………………6分 ∵∠DMG=∠DCG ,∴sin ∠DMG=13392, ∴1339221==DM DM DG ,∴DM=291, ………………………7分 ∴圆O 的半径为491……………………………………………8分 22、解:(1)设A 、B 两种商品的单价分别是x 元,y 元,则答:A 、B 两种商品的单价分别是16元,4元'3'2416'1880205010803060 ⎩⎨⎧==⎩⎨⎧=+=+y x y x y x 解得:(2)设A 、B 两种商品的单价分别是a 元,(30-a)元,则即:该商店共有4种购买方案'7 (3)购买这两种商品所需的费用为y 元,则()'102.5.2235.51076120124-9013,5.22,04-902107612012)490(10101310,5.220,04-90107412012,5.22,04-90'812012)490(390412016)30)(34(16y =<==++><==++-=∴≤≤<<>≠+==++-=-+-+-=-++-=m m m m m m m m m x x x y m m m m m m a m ama m am m m a m a 综上所述:舍去解得:)(即若解得:时,当的增大而增大,随即若即若24、解:(1) ①21212--=x x y ; …………………………3分 ②如图,作CQ ⊥AC 交AM 延长线于Q ,构建三垂直相似, 则△AGC ∽△CHQ , …………………………4分 ∵cos ∠MAC=1717, 13,12,11,10'6'51310'4276)30(4162a -30=∴≤≤⎩⎨⎧≤-+≥x x a a a a为整数又解得:x yMQHG 图 1EO CBA∴tan ∠QAC=4,则Q(2,23), …………………………5分 ∴AQ :10353+=x y , …………………………6分 联立2335101122y x y x x ⎧=+⎪⎪⎨⎪=--⎪⎩ ,得M(85,6350) …………………………7分 (2)EF 所在直线的纵坐标为定值-1,理由如下:作PR ⊥EF 于R ,则△PRF ∽ERP ,则2PR FR ER =⋅, …………………………8分设E F y y t ==,联立2y x bx c y t⎧=++⎪⎨=⎪⎩,整理得:20x bx c t ++-=,∴E F x x b +=-,E F x x c t ⋅=-, …………………………10分∵2PR FR ER =⋅,则2(2)()()F E t x m m x +=--,又22m bm c ++=-,∴(2)(1)0t t ++=,∴t=-2(舍)或t=-1, …………………………11分∴EF 所在直线的纵坐标为-1. …………………………12分xyR 图 2O PFE。
青山区2016~2017学年度上学期九年级期中学考试试数学试卷(word版有问题详解)
2016-2017学年度青山区期中考试数学试题一、选择题:1.将方程x 2-1=5x 化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别为( )A. -5、-1B. -5、1C. 5、-1D. 5、1 2.下列图形是中心对称图形的是( )DC BA3.抛物线y=x 2+2x+2的顶点坐标是( )A.(-1,1)B. (1,-1)C. (-2,2)D.(2,-2)4.如图,将△ABC 顺时针旋转50°后得到△A 1B 1C 1,若∠A=40°,∠B 1=110°,则∠BCA 1的度数为( )A. 90°B. 80°C. 50°D. 30°5.将抛物线y=-x 2向左平移3个单位后,得到抛物线的解析式是( )A.y=-(x+3)2B.y=-x 2+3C.y=-(x-3)2D.y=-x 2-36.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的分支,主干、支干和小分支总数是21,则每个支干长出( )A.5根小分支B.4根小分支C.3根小分支D.2根小分支 7.二次函数y=x 2+2x+3,对于下列命题不正确的是( )A. 抛物线开口向上B.对称轴为x=-1C.经过定点(0,3)D.与x 轴有两个交点8.如图,OA 为⊙O 半径,点P 为OA 中点,Q 为⊙O 上一点,且∠APQ=135°,若OA=2,则PQ 的长为( )A.25B. 14C.32D. 2214第9题图 第10题图 第12题图 9.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 处发出,把球看成点,其运行的高度y(m)与运行水平距离x(m)满足关系式y=a(x-h)2+h.已知球与O 点的水平距离为6m 时,达到高度2.6m,球网与O 点的水平距离为9m,高度为2.43m,球场的边界距O 点的水平距离为18m,则下列判断正确的是( )A.球不会过网.B.球会过网但不会出界.C.球会过网并会出界.D.无法确定.10.如图,等边△OPQ 的边长为2,以点O 为圆心,AB 为直径的半圆经过点P 、点Q.连接AQ 、BP 交于点C,将等边△OPQ 从OA 与OP 重合的位置开始,绕点O 顺时针旋转120°,则交点CA A 1B A运动的路径是( ) A.长度为23的线段 B.半径为32的一段圆弧. C.半径为334的一段圆弧 D.无法确定.二、填空题:11.在平米直角坐标系中,坐标为点A(-4,1)关于原点对称的点的坐标为______. 12.如图,AB 、CD 为⊙O 的直径,∠AOC=46°,连接AD,则∠BAD 的度数为_____. 13.已知方程:(m+2)x |m|-3x+1=0是关于x 的一元二次方程,那么m 的值为______.14.“武汉樱花节”观赏人数逐年增加,据有关部门统计,2014年约为30万人次,2016年约为43.2万人次,则观赏人数年增长率为_____.15.如图,抛物线y=-x 2-2x+3与x 轴交于点A 、B,把抛物线在x 轴及其上方的部分记作C 1,将C 1关于点B 成中心对称的另一个图形记作C 2, C 2与x 轴交于另一点C,将C 2关于点CC 1与C 3的顶点,则图中阴影部分面积为_______.16.如图,AB 是⊙O 直径,AB=4,∠BAP=40°,点Q 为PB 的中点,点C 是直径AB 上一动点,则PC+QC 的最小值为______. 三、解答题:17.(8分)解一元二次方程:(1) x 2-2x-2=0 (2)x(x-4)+5(x-4)=018.(满分8分)如图,已知正方形ABCD 的边长为3,E 是AB 边上的点,将△ADE 绕点D 逆时针旋转得到△CDF. (1)∠EDF=_____; (2)若AE=1,求DF 和EFA ABC E19.(满分8分),某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为AB=x 米.(1)用含x 的式子表示BC,并写出x 的取值范围; (2)若苗圃园的面积为72平方米,求AB 的长;2:(2)抛物线y=-x 2+bx+c 与直线y=2x+m 没有交点,求m的取值范围.21.(8分)如图,正方形ABCD 内接于⊙O,E 为CD 上任意一点,连接DE 、AE. (1)求∠AED 的度数;(2)如图2,过点B 作BF//DE 交⊙O 于F,AF=1,AE=4,求DE 的长.图1E 图2FE22.(10分)某电商销售某品牌手表,其成本为每件80元(80<m<240),9月份的销售量为m 件,10月份电商对该手表的售价作了调整,在9月份的基础上打9折销售,结果销售量增加了50件,销售额增加了5000元.(销售额=销售量×售价价).(1)求该电商9月份销售该品牌手表的销售单价.(2)11月11日“双十一购物节”,该电商在9月售价的基础上打促销(但不亏本),销售的数量y(件)与打折的折数x满足一次函数y=-50x+600.问电商打几折时利润最大,最大利润为多少?(3)在(2)的条件下,在保证电商利润不低于1.5万元,且能够最大限度帮助电商去库存,则该电商应该在9月份售价的基础上打几折?3.(10分)给出如下定义:若一个四边形中存在相邻的两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为_____.(填写序号即可)①矩形;②有一个角为直角的任意凸边形; ③有一个角为60°的菱形;(2)如图1,将△ABC绕点C按顺时针方向旋转n°得到△EDC,①n=60,∠BAD=30°时,连接AD.求证:四边形ABCD是勾股四边形;②如图2,将DE绕点E顺时针方向旋转得到EF,连接BF与AE交于P,连接CP,若∠DEF=(180-n)°,CP=4,AE=10,求AC的长.EAE A24.已知抛物线C1:y=x2+3x-4.(1)如图1,抛物线C1与x轴交于A、B两点(A在B的左侧)与y轴交于C,求AB和OC长;(2)将抛物线C1平移(上下或左右)得抛物线C2,抛物线C2与直线x=2交于E,E在第一象限且E关于原点的对称点F也在抛物线C2上,EF=45,求抛物线C1平移至抛物线C2的路径;(3)抛物线C3:y=(x-m)2+(x-m)+2m+1经过点P(m,n)①n=____;(用含m的式子表示);点P一定在定直线l上运动,则直线l的解析式为______.②抛物线C3与直线l的另一个交点为Q,以PQ为直径的圆经过原点O,求m的值;xxx2016~2017学年度上学期期中试题九年级数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.) 11.(4,-1) 12. 23° 13. 2 14. 20% 15. 32 16.32三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.) 17.(1) 2220x x --= 解:a =1,b =-2,c =-2∴24b ac ∆=-4=4-4×1×(-2)=4+8=12>0…………(2分)∴2221b x a -±±=⨯4=…………(3分)1x =,2x =………… (4分) (2)()()0454=-+-x x x解:()()054=+-x x …………(6分)41=x , 52-=x ………… (8分)注:本题其它解法参照评分18.解:(1)∠EDF = 90° ; …………(3分) (2)∵AE =1,AD =3∴ DE =10………… (5分)∵∠EDF =90°,DF =DE =10 ∴EF =52………… (8分)19.解:(1)BC =x 230-……… (2分)∵182300≤-<x ∴156<≤x …………(3分)(2)()30272x x -=…………(6分)036152=+-x x ()()0312=--x x121=x , 32=x …………(7分)∵156<≤x ∴32=x (舍) ∴12x =…………(8分) 答:AB 的长度为12米20.解:(1)将(1,0),(2,-5)代入得:⎩⎨⎧-=++-=++-52401c b c b …………(2分) 解得:⎩⎨⎧=-=32c b …………(3分)将x =-1代入得:4=n …………(4分)(2)由 2--232y x x y x m⎧=+⎨=+⎩得2+430x x m +-=…………(5分)()241643b ac m ∆=-=--…………(6分)∵抛物线2y x bx c =-++与直线m x y +=2没有交点, ∴()16430m --<………… (7分)∴7m >………… (8分)21.证(1)连接AC ,BD ∵∠ABC =∠BCD =90°∴AC 和BD 为⊙O 的直径…………(1分) 又∵正方形ABCD 的对角线互相垂直平分∴点O 为AC ,BD 的交点,∠AOD =90°………… (3分) ∴∠E =45°…………(4分)(2)连接DF 交AE 于G在四边形BCDF 中,∠C =90° ∴BD 为⊙O 的直径∴∠BFD =90°………… (5分) ∵BF ∥DE∴∠FDE =180°-∠BFD =90°=∠FAE 又∠E =45°∴∠AFG =45°……… (6分)∴△AFG 和△DEG 均为等腰直角三角形 ∴AG =AF =1,EG =3………… (7分) ∴DE =223………… (8分) 22.解:(1)据题意可得:()509.050002+=+m m m …………(2分) 解得:2001=m ,2502=m (舍).…………(3分) 答:9月份每件销售200元.(2)设商场在11月11日购物节销售该品牌的利润为W 元,则:W =200×10x (﹣50x +600)﹣80(﹣50x +600)(x ≥4),…………(4分)=﹣1000(x ﹣8)2+16000,…………(5分) ∵01000<-=a ,∴抛物线开口向下,图像有最高点,函数有最大值 ∴当x =8时,最大利润为16000元.…………(6分) 答:商场打8折时利润最大,最大利润是16000元;(3)200×10x (﹣50x +600)﹣80(﹣50x +600)=15000,…………(7分)解得71=x ,92=x .…………(8分) ∵01000<-=a ,对称轴:8=x∴当7≤x ≤9时,利润不低于15000元…………(9分) 又∵函数y =﹣50x +600中,k=-50<0, ∴函数值y 随着x 的增大而减小∴当x =7时,利润不低于15000元,且又能够最大限度减少厂家库存.…………(10分)23.证:(1) ① ② …………(2分) (2)连接AE ∵n =60,AC =CE ,∴△ACE 为等边三角形…………(3分) ∴∠ACE =60° ∵∠BAD =30° ∴∠CAD +∠CED =30° ∴∠DAE +∠AED =90° ∴∠ADE =90°…………(4分) ∴222AE DE AD =+ ∵AE =AC ,DE =AB222AC AB AD =+∴四边形ABCD 是勾股四边形 …………(5分)(3)由旋转的性质得:AC =CE ,∠ACE =n ° ∴∠CAE =∠CEA =︒⎪⎭⎫⎝⎛-2180n …………(6分)设∠CAB =∠CED =a ° ∴∠BAP =︒⎪⎭⎫⎝⎛+-a n 2180,∠DEA =︒⎪⎭⎫⎝⎛--a n 2180…………(7分)∵∠DEF =(180-n )° ∴∠FEP =︒⎪⎭⎫ ⎝⎛+---a n n 2180180=︒⎪⎭⎫⎝⎛+-a n 2180=∠BAP …………(8分) ∵EF =DE =AB ,∠APB =∠FPE ∴△APB ≌△EPF …………(9分) ∴AP =EP =AE 21=5,CP ⊥AE ∴AC =414522=+…………(10分)24.(1)解:由0432=-+x x解得:4-1=x ,12=x .…………(1分)AB =5 …………(2分) OC =4 …………(3分)(2)∵点E 、F 关于原点对称,EF =54 ∴OE =52 ∵E x =2∴E (2,4) …………(4分) ∴F (-2,-4)设C 2:c bx x y ++=2,过点E ,F ,则有:244244b c b c ++=⎧⎨-++=-⎩解得:24b c =⎧⎨=-⎩∴C 2:422-+=x x y …………(5分)整理:C 1:425232-⎪⎭⎫ ⎝⎛+=x y ;C 2:()512-+=x y∴抛物线C 1平移至抛物线C 2的路径为:向右平移21个单位,向上平移45…………(6分)(3)① n =2m +1; y =2x +1 …………(8分)()()⎩⎨⎧++-+-=+=12122m m x m x y x y 解得:m x P =,1+=m x Q ∴Q (m +1,2m +3)…………(9分) ∵以PQ 为直径的圆经过原点O ∴OQ ⊥OP设OP ’ ⊥OP ,OP ’=OP ∴OP ’所在的直线:x m my 12+-=…………(10分)又Q 在直线OP ’上 ∴()11232++-=+m m mm∴03952=++m m ∴10219±-=m∴m 的值为10219+-或10219-- …………(12分)。
2016武汉中考数学含简单答案
2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( ) A .B .C .D .4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +9 6.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示: 日加工零件数4 5 6 7 8 人数 26543这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( ) A .π2B .πC .22D .210.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为___________.12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________.13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________.14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为___________.15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x <3,则b的取值范围为___________.5,则BD的16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5长为___________.三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2)18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________.(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(本题8分)已知反比例函数xy 4=. (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值.22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙201040+0.05x 280其中a 为常数,且3≤a ≤5.(1) 若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式; (2) 分别求出产销两种产品的最大年利润;(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本题10分)在△ABC中,P为边AB上一点.(1) 如图,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(本题12分)抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1) 如图1,若P(1,-3)、B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2) 如图2,已知直线P A、PB与y轴分别交于E、F两点.当点P运动时,OCOFOE是否为定值?若是,试求出该定值;若不是,请说明理由.答案:1-10 BCBAC DBDBB11. 2 12. 6.3×10413. 1/3 14. 36°15. -4,<b<-2 16.xy图1A BC POxy图2FPCBA O。
青山区2019年中考备考数学训练题(二)参考答案
青山区2019年中考备考数学训练题(二)参考答案6a 818、•••/ A=Z C=90° / A+Z C+Z ABC+Z ADC=360° •••Z ABC+Z ADC=180 .1 = Z 2= Z ABC,Z 3=Z 4= Z ADC.……2 2 1+Z 3= (Z ABC+Z ADC ) = X 180° =90° 2 21+Z AEB=90 , 3=Z AEB. • BE// DF19、 (1) a=8, b=0.08 ..................... .......................... 4分(2)(3) 600 0.08 =48 (名) 答:该校本次竞赛成绩不低于90分的学生共有48人。
620.解:(1) △ ADC 是等腰直角三角形3分题号 1 234 5 6 78 9 10 答案BAD C C ACCBA填空题(本大题共 .) 一、 选择题(本大题共10个小题,每小题 3分,共30分.) 在每小题给出的四个选项中,只有一项是符合题目要求的 •请将正确答案的标号填在下面的表格中 .)6个小题,每小题3分,共18分.把答案填在题中横线上 311 . 2.3 ; 12.91.5 ; 14. 78 °; 15. (-1,0)、(5,0)、(0,1)、( 0,5)三、解答题: 17、原式= (本大题共8个小题•共72分•解答应写出文字说明、 a 8 a 8 ■ 4a 8 .............................................证明过程或演算步骤 .) 005 ?. 8 —一――8 ■l< II I'1 IIHi| L5 79.5 9.6 5 9. 5 5 49642O•/ BE 平分Z ABC, DF 平分Z ADC, i【yDA .- AfeJ-J.—4分8分⑵如图所示,A i (2+— , 1 — — )、D i (2,1 —2富)、2 23 3C i ( 2 ….2 , 1 …,2 )2 2.............................. 8分(三个坐标一个1分,图形1分,如图所示1分) 21.⑴连接DE.•/ AB=AC, BD=CD ••• AD 丄 BD 又E 是边AB 的中点,• ED=EA•••/ EDA=Z EAD, ................................ 1 分 •••/ PFA=Z EDP,.................................. 2 分•••/ PFA=Z EAD,即/ PFA=Z FAP,「. PA=PF ............................... 3 分⑵连接DO 并延长,设交圆0于M ,连GM. •/ AB=AC, BD=CD•••/ BAD=Z CAD,由⑴知/ PFA=Z FAP, •••/ PFA=Z CAD,..................................... 4 分•/ tan / PFA=£ , • tan / CAD=—3 ,6 6设 CD=、. 3t ,贝U AD=6t. • AC=、. CD 2 AD 2」39t寸91•••圆O 的半径为」1............................................................ 8分422、解:(1)设A 、B 两种商品的单价分别是x 元,y 元,贝U(60x 十30 y =1080................................................................................... 1' Q0 x + 20 y = 880解得…x - 16 ......................................................... 2'』=4• sin / DCA=ADAC6t 39t•// DMG=/ DCG, DG DM13• sin / DMG=.21 _ 2 39DM 132、39 • DM=13答:A 、B 两种商品的单价分别是16元,4元3'第21题图1717(2)设A B 两种商品的单价分别是a 元,(30-a)元,则'30 - a 兰 2a丿........................ 4'16a +4(30 - a)兰 276解得:10乞a 乞13 ........................................ 5' 又;x 为整数 ........................... 6'x =10,11,12,13即:该商店共有4种购买方案 (7)'(3)购买这两种商品所需的费用为 y 元,则 y = 16 - a m (43a)(30 - m)=16m - am 120 - 4m 90a - 3am = (90 -4m)a 12m 1208'若 90-4m =0,即 m = 22.5,12m 120 = 1074 若90-4m0,即0 ::: m . 22.5, y 随x 的增大而增大, 10 _ x _13.当x=10时,10(90—4m) 12m 120 =1076 解得:m = 2若90-4m :0, m 22.5,即13(90-4m ) 12m 120=1076 解得:m =5.35 : 22.5.舍去 综上所述:m=2 .......................................... 10'3分(2 ) SCffCM 丄AD I'M. sinZCDM=sinZBAF-y设AB=CL)=6a 二 CM =2a,DM =472a 7AE*AC =AB =36a J 、4 分AE AF AF 1 1 ” 77?=77;7-^77=了,/. AE^-AC, /. AC= 12a ?AE=3a,CE=9a (5)分LL nC AJJ 34/. AM^^AC -CM : =2 -,.'35 a, r. AD —(2 j35~4、/i)比 6 分竺2竹5十4扭了分24、解:2 1 1(1)① y 二 x x ;................... 3 分2 223, (1)证明:略 AD 9 ⑶¥石■…1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青山区2016年中考备考数学训练题(二)参考答案
一、选择题(共10小题,每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10 答案
B
C
D
B
C
A
C
A
B
D
9.提示:4个
二、填空题(共6小题,每小题3分,共18分) 11.-16 12.7×1012 13.
5
2
14.75°
15.3
16.4
1313=
≤<-n n ,或 15.提示:△BEG ∽△BAC
三、解答题(共8题,共72分) 17.解:x =4 18.解:略
19.解:(1) 总数为21÷21%=100
第四组频数为:100-10-21-40-4=25 (2) m =40,14.4° (3) 870人
20.解:(1) k =-4
(2) 过点A 作AE ⊥y 轴于点E ,过点D 作DF ⊥x 轴于F 延长AB 交x 轴于G ∴∠DCF =∠AGF =∠BAE ∴△BAE ≌△DCF
∴DF =BE =5 ∴D 点的纵坐标为5 当y =5时,x =5
5
4- ∴D (5
5
4-
,5) 21.证明:(1) ∵AC =BD
∴弧AC =弧BD ∴弧BC =弧AD
∴∠BAC =∠ABD =∠BDC 又∠ACD =∠ABD =45° ∴△CDE 为等腰直角三角形 ∴CD =2DE
(2) 延长AO 交BC 于F ,连结OC 、OD 、OB ∵∠BAC =∠BDC ,∠BAC =2
1
∠BOC 又∠COF =
2
1
∠BOC ∴COF =BDC
∵sin ∠BDC =sin ∠COF =
13
2 设FC =12,OC =13,则OF =5
∵∠ABD =45° ∴∠AOD =90° 设AF 与BD 交于点G ∴△BFG ∽△DOG ∴
1312==OD BF OG GF ,5
12
2512=
=OF FG ∴tan ∠CBD =
5
1
=BF GF 22.解:(1) 过点P 作PE ⊥BC 于E
∴CA
CP
AB PE =
即
10
2106t PE -=
,PE =5630t
-
∴S 1=t t t t 353
5630212+-=-⨯⨯
(2) 2435
3
22+-=t t S
∵S 2=9S 1
∴243532+-t t =9(t t 35
3
2+-),t =1或4 (3) 4
81)25(5324353222+-=+-=t t t S
当25=
t 时,S 2有最小值为4
81 23.证明:(1) ∵E 为AC 的中点
∴CE =AE 又AC =2BC ∴BC =CE ∵CF ⊥BE ∴CF 平分∠BCE
过点B 作BF 交CD 的延长线于F ∴△BCF 为等腰直角三角形 ∴BF =BC =
2
1
AC ∵△BDF ∽△ADC ∴
2==BF
AC
BD AD 即AD =2BD
(2) ∵∠CFE =90°,∠ECF =30° ∴AE =CE =2,EF =1,CF =3 ∵∠CBF =30° ∴BF =3CF =3
过点B 作BH ⊥BC 交AG 的延长线于H ∴3==EF
BF
AE BH ,BH =6 ∴
2
3
==AC BH CG BG (3) 八年级的题目,一类是三垂直,一类是对角互补
102、132、23
24.解:(1) y =x +2
(2) 设P (a ,a 2-2a +2)
过点P 作PQ ∥y 交轴交AB 于Q ∴Q (a ,a +2)
∴PQ =(a +2)-(a 2-2a +2)=-a 2+3a =4
9
)23(2+--a
当2
3=
a 时,PQ 有最大值为49
过点P 作PM ⊥AB 于M
∵直线AB 与竖直方向的夹角为45° ∴△PQM 为等腰直角三角形 ∴PM =
8
2
9 即P 到AB 的距离的最大值为
8
2
9 方法2:P 在平行于AB 且于抛物线相切的切点处 (3) 直线AD 的解析式为y =-x +2 设D (n ,-n +2) ∴C 2:y =(x -n )2-n +2
∵E (m ,m 2-2m +2)同时也在C 2上 ∴(m -n )2-n +2=m 2-2m +2
整理得:(2m -n )(n -1)=0,n =2m 或n =1(舍去) ∴D (2m ,-2m +2) 接下来使用K 字型
过点E 作MN ∥x 轴交y 轴于M ,过点D 作DN ⊥MN 于N ∴△DNE ∽△EMA ∴DN ·AM =ME ·EN
即[(m 2-2m +2)-(-2m +2)]·[(m 2-2m +2)-2]=m 2,m 2-2m -1=0 解得21±=m ∵m >0 ∴21+=m。