初等数学建模课件

合集下载

第2讲 数学建模初等模型优秀课件

第2讲 数学建模初等模型优秀课件
2、室内温 度T1与户外温 度T2均 为常数。 3、玻璃是均匀的,热传导系数 为常数。
室 设玻璃的热传导系数 为k1,空气的

内 热传导系数 为k2,单位时间通过单

Ta
位面积由温度高的一侧流向温度低 T1 的一侧的热量为Q
T2
Tb
由热传导公式 Q =kΔT/d
dl d
Q
k1
T1
d
Ta
k2 Ta
x y 其分中 别为(x和ix,yi和i) yi
的平均值
x O
解相应方程组,求得:
a
b
y
n i 1
(xi
n
i1
x)( (xi
yi x)
2
ax
y)
例1(举重成绩的比较)
举重重量是级一(种上限一体般人都能看懂成的绩运动,它共分
九个重量重级),有两抓种举(主公要斤的) 比赛挺举方(法公:斤)抓举
Tb l
k1 Tb
T2 d
解得:
Ta
1 k1l k2d T1 T2
2 (k1l) /(k2d )
Q
k1
T1
(1
k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1 2
T2 k1l k2d
f(h)
1室
室 外
0.9 0.8
内 T1
类似有
Q
Q'
k1
T1 T2 2d
2
T2 0.7 0.6
和挺举。52 表中给出了1到09 1977年底为14止1 九个
重量级的56世界纪录。120.5
151
60
130
161.5

第2章初等模型精品PPT课件

第2章初等模型精品PPT课件

Qk1T 1(12 k1 ldk k1 2 ldk )T 2d 1T2k1d2T 1k 1lT2k2d

f(h)
1



0.9
T1
T2
0.8
0.7
0.6
0.5
d
d 0.4
0.3 记h=l/d并令f(h)=
0.2
类似有
Q
k1
T1 T2 2d
Q
2
Q 2(k1l)/(k2d)
一般 k1 16 ~ 32 故 k2
O B(0,-b)
令:
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
汇合点由p此必关位系于式此即圆可上求。出P点的坐标和
θ2 的值。
y(ta)nxb(航母的路线方程) 本模型虽简单,但分析极清晰且易
再一步深入考虑
还应考虑回声传回来所需要的时间。为此,令石块下落 的真正时间 为t1,声音传回 来的时间记 为t2,还得解一个方程组:
h
g k
( t1
1 k
e kt 1
)
g k2
h 340 t2
这一方程组是非线性 的,求解不太容易, 为了估算崖高竟要去 解一个非线性主程组 似乎不合情理
t1
最小二乘法 插值方法
最小二乘法
设经实际测量已得 到n组数据(xi , yi),i=1,…, n。将数据画在平面直角坐标系中,见 图。 如果建模者判断 这n个点很象是分布在某条直线附近,令 该直线方程 为y=ax+b,进而利 用数据来求参 数a和b。由于该直线只是数据近似满足的关系式,故 yi-(axi+b)=0一般不成 立,但我们希望

第二章初等模型.ppt

第二章初等模型.ppt

1032
632
Q1
2
5304.5,Q2
1984.5, 2
Q3

342 2
578,
由此,第4个席位应该给甲系,此时n1 2, 再计算Q1
值:
2019-10-10
感谢你的欣赏
21
1032 Q1 2 3 1768.17,
而Q2 , Q3 值没有变化,因此得到第5个席位给乙系. 由
3.玻璃材料均匀,热传导系数是常数。
2019-10-10
感谢你的欣赏
28
建模
由假设,热传导过程遵从下面的物理定律:
厚度为d的均匀介质,两侧温度差为T ,则单位时间
由温度高的一侧流过单位面积的热量 Q与T 成正比,与
d 成反比,即
Q k T .

d
其中k 为热传导系数。
2019-10-10
都达到最小.
2019-10-10
感谢你的欣赏
14
解模
设 A单位已有席位nA ,B单位有席位 nB,并假定 A吃
亏,即kA kB,因而rA nA, nB 有意义.
现考虑下一个席位的分配:
⑴席位分配给 A仍然是 A 吃亏,即 pA pB , nA 1 nB
毫无疑问,该席位应该分配给 A.
感谢你的欣赏
29
记双层窗内层玻璃的外侧温度是 Ta,外层玻璃的内侧
温度是Tb,玻璃的热传导系数为 k1,空气的热传导系数

k
,则由⑴式,单位时间单位面积的热量传导(热
2
量流失)为
Q1

k1
T1
d
Ta
k2 Ta
Tb l
k1 Tb

数学建模初等模型ppt课件

数学建模初等模型ppt课件
2.1.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
理学院 4
模型构成
xx
用数学语言把椅子位置和四只脚着地的关系表示出来
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
理学院 7
xx
2.1.2 分蛋糕问题
妹妹过生日,妈妈做了一块边界形状任意的 蛋糕,哥哥也想吃,妹妹指着蛋糕上的一点 对哥哥说,你能过这一点切一刀,使得切下 的两块蛋糕面积相等,就把其中的一块送给 你。哥哥利问题用归高结等为数如学下知一识道证解明决题了:这个问题,
11
理学院
xx
数学模型为
10
y y1 y2 10 x 41.6 10 x 5 2.4 15 41.6
0 x4
4 x 15 15 x

0.8
t 2.5
计算起来很简单。
理学院 12
xx
2.1.4 蚂蚁逃跑问题
数学建模
(Mathematical Modeling)
1
xx
第二章 初等模型
理学院 2

第二章 初等模型


生活中的问题


极限、最值、积分问题的初等模型

数学模型经典ppt_第二章(初等模型) 2

数学模型经典ppt_第二章(初等模型) 2

当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A rA, rB的定义
p22

p12
该席给A
n2 (n2 1) n1(n1 1) 否则, 该席给B
定义
Qi

pi2 ni (ni 1)
,
i 1,2, 该席给Q值较大的一方
推广到m方 分配席位
计算
Qi

pi2 , ni (ni 1)
m
2 (r wi) vt
i 1
[(r wkn)2 r 2 ] wvt
(r wkn)2kdn vdt
t wk 2 n2 2rk n
v
v
但仔细推算会发现稍有差别,请解释。
思 考 模型中有待定参数 r, w, v, k,
一种确定参数的办法是测量或调查,请设计测量方法。
v
v
模型建立
2. 考察右轮盘面积的 变化,等于录像带厚度 乘以转过的长度,即
3. 考察t到t+dt录像带在 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt


t wk 2 n 2 2rk n
v
v
思 考 3种建模方法得到同一结果
i 1,2,, m
该席给Q值最大的一方 Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
第20席
Q1

1032 1011

初等数学模型(一PPT课件

初等数学模型(一PPT课件

数学建模的意义
1、培养创新意识和创造能力 2、训练快速获取信息和资料的能力 3、锻炼快速了解和掌握新知识的技能 4、培养团队合作意识和团队合作精神 5、增强写作技能和排版技术 6、荣获国家级奖励有利于保送研究生 7、荣获国际级奖励有利于申请出国留学 8、更重要的是训练人的逻辑思维和开放性思考方式
数学建模应当掌握的十类算法
• 8、一些连续离散化方法(很多问题都是实际来的,数据 可以是连续的,而计算机只 认的是离散的数据,因此将 其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的)
• 9、数值分析算法(如果在比赛中采用高级语言进行编程 的话,那一些数值分析中常 用的算法比如方程组求解、 矩阵运算、函数积分等算法就需要额外编写库函数进行调 用)
• 模型应用:应用方式因问题的性质和建模 的目的而异。
应该注意的是:数学建模不只是数学成绩好的
学生的专利,我们每个同学都能利用所学的数学 知识建立相应的模型解决一些实际问题的。同时 数学建模遵循简单化原则:也就是建立的模型越 简单越好,并不一定需要高深的数学知识。数学 建模需要创新精神,需要创造,需要有奇异的想 法,没有不能做,只有不敢想,我们同学的年龄 正处在异想开天的时段,正是进行数学建模的黄 金时段,发挥我们的优势,拼搏一下又没有多少 损失,充其量就是牺牲了一定的休息时间吧!不 尝试谁也不知道自己有没有这方面的长处的!当 然数学建模也培养同学们的团队合作精神,考验 团队的集体智慧!
• 模型求解:利用获取的数据资料,对模型 参数做出计算(或近似计算)或估计。
• 模型分析:对所得的结果进行数学分析。
• பைடு நூலகம்型检验:将模型分析的结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该修 改假设,再次重复建模过程。

初中数学建模(第一课) PPT课件 图文

初中数学建模(第一课) PPT课件 图文

二、解答数学模型问题的一般步骤
(1)明确实际问题,并熟悉问题的背景; (2)构建数学模型(例如:方程模型、不等式模型、函数模
型、几何模型、概率模型、统计模型等); (3)求解数学问题,获得数学模型的解答; (4)回到实际问题,检验模型,解释结果。
三、初中数学建模的几种题型
1、建立“方程(组)”模型 2、建立“不等式(组)”模型 3、建立“函数”模型 4、建立“几何”模型 5、建立“概率”与“统计”模型
数学建模(第一课)

一、数学模型思想在初中数学中的意义
所谓数学模型,是指通过抽象和模拟,利用数学语言和方 法对所要解决的实际问题进行的一种刻画 。一般地,通过建立 数学模型来解决实际问题的过程称为数学建模。
数学教学要让学生亲身经历将实际问题抽象成数学模型并 进行解释与应用的过程,进而使学生获得对数学理解的同时, 在思维能力、情感态度与价值观等多方面得到进步和发展。
现实生活中同样也广泛存在着数量之间的 不等关系。如市场营销、生产决策、统筹 安排、核定价格范围等问题,可以通过给出 的一些数据进行分析,将实际问题转化成 相应的不等式问题,利用不等式的有关性 质加以解决。
例9、小明准备用50元钱买甲、乙两种饮料 共10瓶。已知甲饮料每瓶7元,乙饮料每瓶 4元,则小明最多能买多少瓶甲饮料?
所以,放入一个小球水面升高2cm,放入一个大球水面升 高3cm;
(2)设应放入大球m个,小球n个.由题意,
得:
解得: m 4

n

6
答:如果要使水面上升到50cm,应放入大球4个,小球6
个.
方法归纳:本题考查了列一元一次方程和列二元 一次方程组解实际问题的运用,二元一次方程组

初等数学方法建模PPT资料25页

初等数学方法建模PPT资料25页

甲 103 10 103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

系别 人数 席位数 每席位代表的人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9
丙 34 3
34/3=11.33
公平程度 中 好 差
一般地,
单位 人数
A
p1
B p2
席位数
n1 n2
3.1 公平的席位分配
某校有200名学生,甲系100名,乙系60名,
丙系40名,若学生代表会议设20个席位,问三系各
有多少个席位?
1 问题的提出
按惯例分配席位方案,即按人数比例分配原则
mq p N
m 表示某单位的席位数 p 表示某单位的人数
N 表示总人数 q 表示总席位数
20个席位的分配结果
系别 甲 乙 丙
103 2
Q1
1 768 2(2 1)
p1 p2 , 说明即使给A 单位增加1席,仍对A n1 1 n2 不公平,所增这一席必须给A单位。
p1 p2 , 说明当对A 不公平时,给A 单位增 n1 1 n2 加1席,对B 又不公平。
计算对B 的相对不公平值
r B (n 1 1 ,n 2 ) p 2n p 2 1 (n p 1 1 (1 n ) 1 1 ) p 2 ( p n 1 1 n 21 ) 1 情形3 p1 p2 , 说明当对A 不公平时,给B 单位增
n1 n2 1 加1席,对A 不公平。
计算对A 的相对不公平值
r A (n 1 ,n 2 1 ) p 1n p 1 2 ( p n 2 2 (n 1 2 ) 1 ) p 1 (p n 2 2 n 11 ) 1

《初等模型》课件

《初等模型》课件
根据收集到的数据,估计模型的参数,使模型能够更好地拟合实际数据。
模型验证
验证方法
选择合适的验证方法,如交叉验证、Bootstrap等,以评估模型的预测能力和可 靠性。
结果评估
根据验证结果,评估模型的性能,如准确率、误差率等,以便进一步优化和完善 模型。
REPORT
CATALOG
DATE
ANALYSIS
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
初等模型的建立
确定研究问题
明确目的
在建立初等模型之前,首先需要 明确研究的目的和目标,以便有 针对性地收集数据和建立模型。
选择主题
根据研究目的,选择一个具有实 际意义和价值的主题进行深入研 究。主题应具有代表性,能够反 映所研究领域的核心问题。
案例三:决策树模型
01
3. 对决策树进行剪枝以防止过拟合;
02
4. 应用决ห้องสมุดไป่ตู้树进行分类或回归预测。
03
注意事项:决策树模型容易过拟合,因此需要采取适当的措施来控制模型的复 杂度,例如限制树的深度或使用剪枝技术。此外,决策树模型对特征的划分可 能过于简单或复杂,需要根据实际情况进行调整和优化。
REPORT
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
《初等模型》ppt课 件
目录
CONTENTS
• 初等模型简介 • 初等模型的建立 • 初等模型的分析 • 初等模型的实践案例 • 初等模型的未来发展
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y

数学建模之初等模型市公开课金奖市赛课一等奖课件

数学建模之初等模型市公开课金奖市赛课一等奖课件

甲 103 10
103/10=10.3

乙 63 6
63/6=10.5

丙 34 4
34/4=8.5

第17页
系别 人数 席位数 每席位代表 人数
甲 103 11 103/11=9.36
乙 63 7
63/7=9
丙 34 3 普通地,
34/3=11.33
单位 人数 席位数 每席位代表
A
p1 n1
人p1数
n1
B p2 n2
p2 n2
公平程度
中 好 差

p1 p2 n1 n2
席位分派公平
第18页
但通常不一定相等, 席位分派不公平程度用下列原则来判 断。
1) p1 p2 称为“绝对不公平”标准。 n1 n2
此值越小分派越趋于公平, 但这并不是一个好衡量原则。
单位
人数p 席位数n 每席 位代 表人 数
n1
ቤተ መጻሕፍቲ ባይዱ
p2n1 1 p1n2
对B 相对不公 平值;
建立了衡量分派不公平程度数量指标 rA , rB
制订席位分派方案标准是使它们尽也许小。
3 建模
若A.B两方已占有席位数为 n1, n2 , 用相对不公平值
讨论当席位增长1 个时, 应当给A 还是B 方。
不失普通性, 若 p1 p2 , 有下面三种情形。 n1 n2
v
能够看出: 淋雨量与降雨方向和行走速度相关。
问题转化为给定 ,如何选择 v 使得 C 最小。
情形1 90
C 6.95 104 (0.8 1.5) v
结果表明: 淋雨量是速度减函数,当速度尽也许大时 淋雨量达到最小。 假设你以6米/秒速度在雨中猛跑,则计算得

[精品]数学建模课件初等模型69页PPT

[精品]数学建模课件初等模型69页PPT
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
60、人民的幸福是至高无个的法。— —西塞 罗
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生命是活 动。——卢 梭
[精品]数学建模课件初等模型
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(初等模型)
1.以下是一个数学游戏:
(1)甲先说一个不超过6的正整数,乙往上加一个不超过6的正整数,甲再往上加一个正整数,...,如此继续下去。

规定谁先加到50谁就获胜,问甲、乙各应怎样做?(2)如将6改为n,将50改为N,问题又当如何回答?
2.甲乙两人约定中午12:00至1:00之间在市中心某地见面,但两人讲好到达后只等待对方10分钟,求这两人能相遇的概率。

3.某人由A处到位于某河流同侧的B处去,途中需要去河边取些水,问此人应如何走才能使走的总路程最少?
4.敏感问题的调查
5.地面是球面的一部分,(直径约为12.72×10公里),显然,如果高层建筑的墙是完全垂直于地面的则它们之间必不会平行。

设一建筑物高为400米,地面面积为2500平方米,问顶面面积比地面面积大多少?
6.建一模型说明当你在雨中行走又想少淋雨时,应当如下做:(1)若你行走的方向是顺风且雨的夹角至少为,你应以雨速水平分量的速度行走,以便使雨相对于你是垂直下落的(2)在其他情况下,你都应以最快的速度行走。

7.消防队员救火时不应离失火的房屋太近,以免发生危险。

请建模分析并求出消防队员既安全又能发挥效应的最佳位置。

8.已知在气体中音速V与气压P、气体的密度ρ有关,试求它们之间的关系。

9.风车的功率P与风速v、叶面的顶风面积S及空气的密度ρ有关,试求它们之间的关系。

相关文档
最新文档