高数定义
高数入门知识点
高数入门知识点高等数学(简称"高数")是大学数学的一门重要基础课程,为后续学习更高级数学及其他理工科学科打下坚实的基础。
本文将介绍一些高数的入门知识点,帮助初学者快速了解和掌握这门学科。
一、极限极限是高等数学的核心概念之一。
它描述的是函数在某一点无限接近于某个特定值的性质。
例如,当自变量x趋近于某个值时,函数f(x)的极限为L,可以用符号表示为:lim(x→a) f(x) = L在求解极限时,常常用到一些基本的极限公式,如:- 极限的四则运算法则:假设lim(x→a) f(x) = A,lim(x→a) g(x) = B,则(1) lim(x→a) [f(x) ± g(x)] = A ± B(2) lim(x→a) [f(x) · g(x)] = A · B(3) lim(x→a) [f(x) / g(x)] = A / B (如果B≠0)- 常见函数的极限:(1) lim(x→∞) 1/x = 0(2) lim(x→0) sin(x)/x = 1二、导数导数是高数中另一个重要概念。
它描述的是函数在某一点的变化率。
对于函数y = f(x),其导数可以表示为dy/dx,也可以用f'(x)来表示。
导数的求解可以通过计算函数的导函数来实现。
常见的一些导数公式包括:(1) 常数函数的导数为0(2) 形如y = x^n的函数的导数为ny'(x) = nx^(n-1)(3) 指数函数、对数函数和三角函数的导数公式导数在实际应用中具有广泛的意义,例如可以用来求解函数的最值、描绘函数的切线等。
三、积分积分是高数中的另一个重要概念,它描述的是函数与自变量之间的关系。
对于函数y = f(x),其积分可以表示为∫f(x)dx,表示对函数f(x)的自变量x进行求和。
常见的一些积分公式包括:(1) 基本积分法则:∫f(x)dx = F(x) + C,其中F(x)是f(x)的一个原函数,C是常数。
数学高数定理定义总结
数学高数定理定义总结高数定理是数学分析中的重要定理之一,它统一了微积分的各个概念和工具,形成了系统完备的理论体系。
高数定理包括极限定理、连续性定理、导数与微分定理、积分定理等。
首先是极限定理。
极限是研究函数变化趋势的重要工具,极限定理给出了计算极限的有用方法。
其中包括夹逼准则、单调有界数列的极限、函数极限的保号性等等。
这些定理可以用来证明一些重要的极限,如正弦函数的极限、指数函数的极限等。
其次是连续性定理。
连续性是函数的一个重要特性,连续性定理给出了一些充分条件和必要条件。
其中包括闭区间上连续函数的性质、有界函数的连续性、连续函数的保号性等等。
这些定理可以用来证明一些重要的连续函数,如多项式函数的连续性、指数函数的连续性等。
导数与微分定理是高阶微积分理论的核心内容,它们给出了函数的变化率和微分的相关性质。
其中包括导数的定义和性质、微分的定义和性质、函数递增和递减的判定方法等等。
这些定理可以用来证明一些重要的导数和微分公式,如常数函数的导数、幂函数的导数等。
积分定理是微积分中的另一个重要分支,它研究的是函数的区间上的积累性质。
其中包括不定积分的基本定理、定积分的基本定理、微积分基本定理等等。
这些定理可以用来计算一些重要的积分,如多项式函数的不定积分、定积分的性质等。
高数定理的最终目标是建立一个完整的微积分体系,使得我们能够更好地理解和处理实际问题。
在应用中,高数定理可以用来解决诸如曲线的弧长、区域的面积、体积、质心等问题。
同时,高数定理还在其他学科领域发挥重要作用,如物理学中的运动学、力学等。
总之,高数定理是微积分理论的核心内容,它们给出了一些重要的概念和工具,为我们理解函数和计算变化率提供了重要的基础。
通过深入学习和应用高数定理,我们可以提高数学思维能力和问题解决能力,为其他学科领域的研究和应用提供有力支持。
《高数基础知识》课件
CHAPTER
空间解析几何
空间直角坐标系是描述空。
空间直角坐标系
在空间直角坐标系中,点的位置可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴。
点的坐标表示
在空间解析几何中,向量可以用三个坐标来表示,这三个坐标分别对应于三个坐标轴上的分量。
平面与直线的交点
如果一条直线和一个平面相交,那么它们的交点可以用直线和平面的方程联立求解得到。
平面与平面的交线
如果两个平面相交,那么它们的交线可以用两个平面的方程联立求解得到。
06
CHAPTER
多项式函数与插值法
多项式的定义
多项式是数学中一个基本概念,由一个或多个项通过加法或减法组合而成。
多项式的根
总结词
详细描述
总结词
掌握极限的四则运算法则,理解极限运算的基本方法
详细描述
极限的四则运算法则包括加减乘除和复合运算,是研究函数极限行为的基础。极限运算的基本方法包括利用极限的四则运算法则、等价无穷小替换、洛必达法则等,这些方法可以帮助我们求解各种极限问题,并进一步研究函数的性质和变化规律。
03
CHAPTER
样条插值法的应用
THANKS
感谢您的观看。
详细描述
总结词
高数的发展历程
详细描述
高数的发展可以追溯到17世纪,随着微积分学的发展,高数逐渐形成并完善。在18世纪和19世纪,高数的发展取得了巨大的进步,许多数学家如欧拉、高斯等都为高数的发展做出了杰出的贡献。
总结词
高数在日常生活和科学中的应用
详细描述
高数在日常生活和科学中有着广泛的应用。例如,在物理学中,高数被用于描述和解决力学、电磁学、光学等领域的问题;在经济学中,高数被用于研究金融、投资、贸易等问题;在工程学中,高数被用于设计、分析、优化各种系统和结构。
高数知识点总结
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y =a x ),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x 2+x x=lim =13、无穷小:高阶+低阶=低阶例如:lim x →0x →0xx sin x4、两个重要极限:(1)lim =1x →0x (2)lim (1+x )=ex →01x⎛1⎫lim 1+⎪=ex →∞⎝x ⎭g (x )x经验公式:当x →x 0,f (x )→0,g (x )→∞,lim [1+f (x )]x →x 0=e x →x 0lim f (x )g (x )例如:lim (1-3x )=e x →01x⎛3x ⎫lim -⎪x →0⎝x ⎭=e -35、可导必定连续,连续未必可导。
例如:y =|x |连续但不可导。
6、导数的定义:lim∆x →0f (x +∆x )-f (x )=f '(x )∆x x →x 0limf (x )-f (x 0)=f '(x 0)x -x 07、复合函数求导:df [g (x )]=f '[g (x )]•g '(x )dx例如:y =x +x ,y '=2x =2x +12x +x 4x 2+x x1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dxx 2+y 2=1,2x +2yy '=0⇒y '=-例如:解:法(1),左右两边同时求导xy dy x法(2),左右两边同时微分,2xdx +2ydy ⇒=-dx y9、由参数方程所确定的函数求导:若⎨⎧y =g (t )dy dy /dt g '(t )==,则,其二阶导数:dx dx /dt h '(t )⎩x =h (t )d (dy /dx )d [g '(t )/h '(t )]d y d (dy /dx )dt dt ===2dx dx dx /dt h '(t )210、微分的近似计算:f (x 0+∆x )-f (x 0)=∆x •f '(x 0)例如:计算sin 31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y =sin x(x=0x是函数可去间断点),y =sgn(x )(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f (x )=sin ⎪(x=0是函数的振荡间断点),y =数的无穷间断点)12、渐近线:水平渐近线:y =lim f (x )=cx →∞⎛1⎫⎝x ⎭1(x=0是函x 铅直渐近线:若,lim f (x )=∞,则x =a 是铅直渐近线.x →a斜渐近线:设斜渐近线为y =ax +b ,即求a =lim x →∞f (x ),b =lim [f (x )-ax ]x →∞x x 3+x 2+x +1例如:求函数y =的渐近线x 2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高数知识点
高数知识点总结1.函数定义:x 经过对应法则f 唯一确定y三要素:定义域、值域和对应法则基本性质:单调性、奇偶性、周期性、有界性基本初等函数:反对幂指三复合函数:函数套函数y =f(g (x ))(注意复合次序及取值范围) 初等函数:由常数和基本的初等函数经过有限次的四则运算和有限次的复合步骤形成的一个式子的函数2.极限(1)定义:当自变量在某个变化的过程中,函数无限的接近某一个常数A ,则收敛,lim x→?f (x )=A (2)左右极限:左右极限存在且相等,则极限存在。
(3)求极限的方法:①四则运算(直接代入)②C 0或C ∞型:利用无穷大与无穷小的关系C 0=∞,C ∞=0 ③00型:去零因子(因式分解或有理化)、洛必达法则(上下求导) ④∞∞型:看最高次项、洛必达法则 ⑤无穷小的性质(有界变量与无穷小量的乘积是无穷小量) ⑥等价无穷小替换(只能乘积因子)0~sin ~arcsin ~tan ~arctan ~ln(1)~1x x x x x x x x e →+-当时,,211cos ~.2x x -⑦两个重要极限:lim x→0sinx x=1(适用于含三角函数的00) lim x→∞(1+1x)x =e (1∞ 型的幂指函数) 3.函数的连续性(1)定义:0lim 0x y ∆→∆=,极限值=函数值 (2)单侧连续:左连续且右连续⇔连续(3)间断点:①第一类间断点:左右极限都存在可去间断点(左右相等但不等于此处函数值)、 跳跃间断点(左右不相等)②第二类间断点:(左右极限至少有一个不存在) 无穷间断点、振荡间断点4.导数(变化率问题):(1)定义:增量比值取极限,极限存在即可导lim △x→0△y △x =A几何意义:切线的斜率单侧导数:左导右导存在且相等,则可导(2)常用导数公式(基本的初等函数求导) 复合函数求导: x u x y y u '''=⋅(外导*内导)隐函数求导: 参数方程求导:''d ()=d ()t t y y t x t x ψϕ'='5.导数的应用(1)单调性:()0f x '>单增,()0f x '<单减(2)极值:(驻点和不可导点为可能极值点) 法一:f ′(x )左负右正取极小,f ′(x )左正右负取极大 法二:f ′′(x 0)<0时, f(x)在x 0处取得极大值;f ′′(x 0)>0时, f(x)在x 0处取得极小值(3)最值:比较端点值和极值出最值(4)凹凸性:()0f x ">,则在[],a b 上为凹的;()0f x "<,则在[],a b 上为凸的. 拐点:其横坐标是()0f x "=的点或()f x 二导不存在的点. 微分:00|()()x x dy f x x f x dx =''=∆=6.不定积分:(1)定义:原函数的全体()d ()f x x F x C =+⎰几何意义:积分曲线族(2)不定积分的计算:①直接积分法②换元积分法:第一类还原法(凑微分法)()()(())()d (())d ()()d ()(())u x g x dx f x x x f x x f u u F u C F x Cϕϕϕϕϕϕ='====+=+⎰⎰⎰⎰第二类还原法 1()()d (())()d t x f x x f t t tψψψ-='=⎰⎰(根式代换、三角代换、倒数代换)③分部积分法: d d u v uv v u =-⎰⎰(反对幂指三,谁在前谁设为u )7.定积分:(1)定义:分割、近似、求和、取极限,极限存在即可积01()d lim ()nb i i a i I f x x f x λξ→===∆∑⎰ 几何意义:曲边梯形的面积(2)性质:线性性、依区间可加性:()d ()d ()d b c ba a c f x x f x x f x x =+⎰⎰⎰ 几何度量性:∫cdx =c(b −a)ba保号性、保序性、积分绝对值不等式、估值定理:()()d ()b a m b a f x x M b a -≤≤-⎰ 积分中值定理:至少存在一点[,]a b ξ∈,使得 ()d ()()ba f x x fb a ξ=-⎰.(3)定积分的计算:(求原函数,算增量)直接积分法、换元积分法、分部积分法+微积分基本公式 ()()|()()bba a f x dx F x Fb F a ==-⎰。
有关高数的知识点总结高一
有关高数的知识点总结高一高数(即高等数学)是大学必修的一门重要课程,它对于培养学生的逻辑思维能力和数学建模能力具有重要意义。
而在高中阶段,学生们也开始接触和学习高数。
接下来,我将对高一学生需要了解的高数知识点进行总结。
一、导数与微分导数是高数中的重要概念,它描述的是一个函数在某一点上的变化率。
在高中阶段,我们主要学习了常用函数(如多项式函数、指数函数、对数函数等)的导数求法,以及导数的几何意义。
微分是导数的一个重要应用,它用于计算函数在某一点上的近似变化量。
在高中阶段,我们主要学习了一阶导数和二阶导数的概念,以及利用微分求极值和拐点的方法。
二、函数与极限函数是高数中的另一个重要概念,它描述了变量之间的关系。
在高中阶段,我们学习了多项式函数、指数函数、对数函数、三角函数等各种基本函数的性质和图像。
极限是高数中的核心概念之一,它用于研究无穷小量和无穷大量的性质。
在高中阶段,我们主要学习了极限的定义、性质以及常用的极限计算方法(如极限的四则运算、夹逼准则等)。
三、曲线与积分曲线是高数中的一个重要概念,它是由函数的图像所描述的几何图形。
在高中阶段,我们学习了曲线的方程、性质以及相关的几何意义。
积分是导数的逆运算,它描述的是曲线下的面积或者函数的累积变化量。
在高中阶段,我们主要学习了不定积分和定积分的概念,并通过反常积分了解了积分的一些特殊性质。
四、微分方程与数列微分方程是高数中的一个重要内容,它描述了函数之间的关系以及变化规律。
在高中阶段,我们学习了常微分方程的基本概念、解法和应用,如一阶线性微分方程、二阶常系数齐次线性微分方程等。
数列是数学中的一个重要概念,它是由一些按照一定规律排列的数所组成的序列。
在高中阶段,我们主要学习了数列的概念、性质以及常用数列的求和公式。
以上只是高一阶段高数知识点的一个概述,每个知识点都有其具体的定义、性质和应用。
而在高一的学习过程中,我们更应该注重理解和掌握概念的本质,培养数学思维和解决问题的能力。
(完整word版)高数定义
邻域:设a 和δ是两个实数,且0δ>,满足不等式x a δ-<的实数x 的全体称为a 的δ邻域。
绝对值:数轴上的点a 到原点的距离称为a 的绝对值,记为a 。
正间:即正区间 数轴:规定了原点、正方向和长度的直线称为数轴。
实数:实数由有理数和无理数组成。
有理数包括整数和分数。
函数:设x 和y 是两个变量,若当变量x 在其变动区域D 内取任一数值时,变量y 依照某一法则f 总有一个确定的数值与x 值对应,则称变量y 为变量x 的函数,记作()y f x =。
奇函数:设函数()y f x =在关于原点对称的集合D 上有定义,如果对任意的x D ∈,恒有()()f x f x -=-,则称函数()f x 为奇函数。
偶函数:设函数()y f x =在关于原点对称的集合D 上有定义,如果对任意的x D ∈,恒有()()f x f x -=,则称函数()f x 为偶函数。
定义域:在函数的定义中,自变量x 的变动区域,称为函数的定义域。
值域:在函数的定义中,y 的取值的集合称为函数的值域。
初等函数:由基本初等函数经过有限次的四则运算或复合运算而得到的函数称为初等函数。
三角函数:正弦函数,余弦函数,正切函数,余切函数,正割函数,余割函数合称三角函数。
指数函数:函数xy a =(0,1)a a >≠,称为指数函数。
复合函数:设y 是u的函数()y f u =,u是x 的函数()u x φ=,如果()u x φ=的值哉包含在()y f u =的定义域中,则y 通过u 构成x 的函数,记作()()y f x φ=,这种函数称为复合函数,其中u 称为中间变量。
对数函数:函数log a y x=(0,1)a a >≠,称为对数函数。
反函数:设设y 是x 的函数()y f x =,其值域为G ,如果对于G 中的第一个y 值,都有有一个确定的且满足()y f x =的x值与它对应,则得到一个定义在G 上的以y 为自变量,x 为因变量的新函数,称它为()y f x =的反函数,记作1()x f y -=,并称()y f x =为直接函数。
高数知识点
高数知识点高数知识点是指高等数学的基本概念、定理和方法,它们具有重要的实践价值,为后续学习提供了重要的基础。
一、函数的概念函数是一类由定义域和值域决定的关系,它是将定义域上的元素映射到值域上的元素,从而形成一种对应关系,即y=f(x)。
其中,x为定义域,y为值域,f(x)为函数式,也就是函数的表达式。
二、方程的概念方程是一种数学表达式,表示不定数及其之间的某种关系。
一般情况下,方程的形式为ax+b=0,其中a和b为常数,x为未知数,表达的意思是“a×未知数+b=0”。
三、微积分的概念微积分是一类数学的基本概念,它可以用来研究连续、可微的函数的变化情况。
它主要包括微分学和积分学两部分,分别研究函数作图时对应点的斜率及函数在一定区间内的积分。
四、空间几何的概念空间几何是一类数学概念,它包括平面几何和立体几何,它研究的是空间中的点、直线、平面和立体的特征和性质,以及它们之间的关系,如直线的斜率、曲线的曲率等。
五、概率论的概念概率论是一类数学的概念,它研究的是随机事件的发生的概率,它的发展主要依赖于实验手段,使人们能够通过观察实验结果来估计某一事件发生的概率。
六、线性代数的概念线性代数是一类数学概念,它是研究线性方程组和线性变换的数学分支,它可以用来解决矩阵的运算、向量的运算等问题,线性代数中还提出了多种矩阵的定义,如正交矩阵、对称矩阵等。
七、复变函数的概念复变函数是一类数学概念,它是研究复数变量的函数的数学分支,它用来研究复数变量x,y,z的变化规律,比如其中的实部函数Re(z)和虚部函数Im(z),以及复数z的模函数|z|等。
八、极限的概念极限是一类数学概念,它是指数学中的某种特殊的情况,当某个变量的值趋近于某个特定的值时,就称为这个变量的极限。
极限的概念是高等数学中的重要概念,可以用来分析函数在某一点的特性,从而得出函数的性质和特征。
高数简要概述
高数简单表述去心邻域:把开区间(a−δ,a+δ)称为点a的δ邻域,记为N(a,δ),并称点a为该邻域的中心,正数δ为该邻域的半径,还可表示为|x-a|<δ,a-δ< a+δ,在上述邻域内挖去中心点a后所成的集合,称为点a的去心δ邻域,也可表示为0<x−a<δ.分段函数有符号函数。
有界性:∃M>0,∀x∈X使f x≤M→f x有界;∀M>O,∃x0∈X使f x0>M→f x无界sinα±sinβ=2sin 1α±βcos1α∓βcosα+cosβ=2cos 1α+βcos1α−βsinαcosβ=12[sin α+β +sin α−β ]cosαsinβ=12[sin α+β −sin α−β ]cosαcosβ=12[cos α+β +cos α−β ]sinαsinβ=−12[cos α+β −cos(α−β)]复合函数:设y=f(u)中u∈U,u=φ(x)中x∈X,其值域U∗∩U≠∅,则y=f(φ(x)),x∈X叫复合函数。
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数。
初等函数:由基本初等函数与常数经有限次四则运算及有限次复合所得函数叫初等函数,包括幂指函数,双曲函数和反双曲函数。
双曲函数及其运算性质:双曲正弦:shx=12(e x−e−x)双曲余弦:chx=12(e x+e−x)双曲正切:thx=shxchx =e x−e−xe+e双曲余切:cthx=chxshx =e x+e−xe−ech2x−sh2x=1ch2x=sh2x+ch2xsh2x=2shxchx ch x±y=chxchy±shyshy sh x±y=shxchy±chxshy反双曲函数:反双曲正弦函数y=arshx=ln(x+x2+1)反双曲余弦函数y=archx=ln(x+x2−1)反双曲正切函数y=arthx=12ln1+x1−x非初等函数:不可解隐函数和参数方程曲线切线:曲线割线的极限位置。
考研数学高数定理定义总结
考研数学高数定理定义总结高数定理是大学数学中的重要内容,包括了极限、连续性和可微性、中值定理、导数与微分以及积分和微分方程几个方面。
以下是这些定理的定义总结:1.极限:极限是函数论中最基本的概念之一、设函数$f(x)$在$x_0$的邻域内有定义,如果存在常数$A$,对于任意给定的正数$\varepsilon$,都存在正数$\delta$,使得当$0<,x-x_0,<\delta$时,有$,f(x)-A,<\varepsilon$,则称函数$f(x)$当$x$趋于$x_0$时极限为$A$,记作$\lim_{x \to x_0} f(x) = A$。
2.连续性和可微性:函数$f(x)$在点$x_0$处连续的定义是:$\lim_{x \to x_0} f(x) = f(x_0)$。
函数在点$x_0$处可微的定义是:如果函数$f(x)$在$x_0$的一些邻域内有定义,并且存在常数$A$,使得$$f(x)=f(x_0)+(x-x_0)A+o(x-x_0),x\to x_0$$则称函数$f(x)$在$x_0$处可微。
3.中值定理:中值定理是微积分中的重要定理之一、设函数$f(x)$在闭区间$[a,b]$上连续,在开区间$(a,b)$上可微。
则在$(a,b)$内至少存在一点$c$,使得$f(b)-f(a)=f'(c)(b-a)$,其中$f'(c)$是$f(x)$在点$c$处的导数。
4.导数与微分:设函数$f(x)$在点$x$处有定义。
如果极限$\lim_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$存在,那么称此极限为函数$f(x)$在点$x$处的导数,记作$f'(x)$。
函数$f(x)$在点$x$处的微分定义为$df=f'(x)dx$。
5.积分:积分是微积分中的重要概念之一、设函数$f(x)$在区间$[a,b]$上有定义,将区间$[a,b]$分成$n$个小区间$[x_{i-1},x_i]$,其中$a=x_0<x_1<x_2<\cdots<x_n=b$。
高数定理定义总结
高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果l im(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
大三高数知识点
大三高数知识点高等数学是一门具有重要理论和应用价值的学科,对于大学理工类专业的学生来说,尤为重要。
在大三学年,高等数学进入到了一个更深入和复杂的阶段,涉及到了更多的知识点和概念。
本文将为你详细介绍大三高数的几个重要知识点。
1. 极限与连续极限与连续是高等数学的基础概念,也是大三高数课程的重点内容。
在极限的学习中,我们主要学习了函数极限、数列极限以及无穷小和无穷大的概念。
在连续的学习中,我们需要了解函数的连续性、间断点以及导数的连续性等重要内容。
2. 一元函数微分学一元函数微分学是大三高数中的一个重要分支,主要涉及到函数的导数和微分问题。
在这一部分的学习中,我们需要深入了解导数的定义、求导法则和高阶导数等内容,还需要学习一元函数的凹凸性、最大最小值以及函数的导数在图像上的应用。
3. 一元函数积分学一元函数积分学是高等数学中的另一个重要分支,与微分学相对应。
在这一部分的学习中,我们主要学习了不定积分和定积分的概念与性质,以及积分的基本公式和求法等内容。
同时,我们还需要了解定积分的几何意义和一元函数的平均值定理等重要知识点。
4. 二元函数微分学二元函数微分学是大三高数中的一个扩展部分,该部分主要学习了二元函数的偏导数和全微分,以及二元函数的极值和条件极值等内容。
在这一部分的学习中,我们需要掌握偏导数的定义和求导法则,还需要学习二元函数的一阶和二阶偏导数以及函数的最大最小值判定方法等重要知识。
5. 二重积分与曲线积分二重积分与曲线积分是高等数学中的另外两个重要内容,与一元函数积分学相对应。
在二重积分的学习中,我们需要掌握二重积分的概念与性质,以及直角坐标系和极坐标系下的二重积分计算方法。
在曲线积分的学习中,我们需要学习曲线积分的定义与性质,以及曲线积分的计算方法和应用等内容。
以上所述只是大三高数课程中的一部分重要知识点,希望能对你的学习有所帮助。
在学习中,我们应该注重理论与实践相结合,加强练习与应用能力的培养,从而更好地掌握和应用这些高数知识点。
高数公式与定义高级
高数公式与定义高级版————————————————————————————————作者:————————————————————————————————日期:第一章 函数、极限和连续 一、函数:五大类基本初等函数幂函数,指数函数,对数函数 反函数(与原函数关于Y=X 相对称) 三角函数:正割函数,余割反三角函数:arcsin y x =(收敛) arctan y x =(发散) [,]22ππ-(,)22ππ-arccos y x =(收敛) cot y arc x =(发散)[0,]π(,)22ππ-收敛的界限是(-1,1)函数特性:单调性 奇偶性 有界性 周期性 二、 极限1、数列的极限(收敛·发散)收敛数列的性质(唯一·有界·保号·) Ps:函数化简到哪一步可以带数值?(化简到只余一个X 项或上下X 的次数一致)2、 函数的极限·极限存在的充要条件是左右极限都存在并且相等 ·函数极限的性质(唯一·局部有界·局部保号) ·夹逼准则·单调有界函数必有极限(1)两个重要极限 ·()0sin ()lim1()x x x ϕϕϕ→=·1()()0lim (1())x x x e ϕϕϕ→+=(2)无穷小:·()f x 当0x x →(或x →∞)时的极限为零 高阶,低阶,同阶,等价 无穷小的性质:(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小等价无穷小:·0x →时.sin ()~()x x ϕϕ ·sin ()~()arc x x ϕϕ ·tan ()~()x x ϕϕ ·()1~()x e x ϕϕ- ·ln(1())~()x x ϕϕ+·211cos ()~()2x x ϕϕ-·11()1~()n x x nϕϕ+- Ps:无穷小可以在()0x ϕ→使用,无论0x x →、x →∞还是0x →三、 连续1.连续条件:·自变量变化量趋于零函数值变化量也趋于零 ·00lim ()()x x f x f x →=2.间断点:第一类, 左右极限都存在; 可去间断点,跳跃间断点第二类无穷间断点,振荡间断点一切初等函数在定义区间内都连续。
大一高数知识点基本定义
大一高数知识点基本定义高等数学(高数)作为大学数学课程的重要组成部分,是一门基础性课程。
在大一学习高数的过程中,我们需要掌握一些基本的知识点和定义。
本文将依次介绍大一高数中的基本定义,包括函数、极限、导数和微分等方面的知识。
一、函数的定义函数是一种数学映射关系,它将自变量的取值通过一个对应关系映射到因变量的值上。
函数可以用数学表达式或者图形来表示。
在高数中,我们常常用f(x)来表示函数,其中x是自变量,f(x)是因变量。
二、极限的定义在高数中,极限是指当自变量趋近于某个特定值时,函数的取值接近于某个确定的值。
极限可以用数学符号表示,例如lim(x→a) f(x) = L,表示当x趋近于a时,f(x)的极限是L。
三、导数的定义导数是函数在某一点上的变化率,表示为函数值对自变量的微小变化比例的极限。
导数可以用数学符号表示,例如f'(x)或者dy/dx,其中f'(x)表示函数f(x)的导数。
四、微分的定义微分是导数的一个应用,它常常用于研究函数在某一点上的局部性质。
微分可以用数学符号表示,例如df(x)或者dy,其中df(x)表示函数f(x)的微分。
五、连续的定义在高数中,连续是指函数在某一点上存在极限,并且这个极限与函数在该点的取值相等。
换句话说,如果函数在某一点连续,则函数值与极限值是相等的。
总结:大一高数知识点基本定义包括函数、极限、导数和微分等方面的内容。
在学习高数的过程中,我们需要理解这些基本定义的含义,并能够用数学符号来表示和应用。
只有掌握了这些基本概念,才能够深入学习和理解更高级的数学知识。
通过不断的练习和实践,我们可以逐渐提高对这些知识点的理解和运用能力。
希望本文对大一学习高数的同学有所帮助。
高等数学(上)定义定理归纳(同济六版)
高等数学(上)定义、定理及一些重要结论归纳(按照同济第六版上册第一章到第六章,不含第七章微分方程,定理证明从略)第一章函数与极限(1)(数列极限的定义){}{}{}lim ,()n n n n n n n x a N n N x a a x x a x a x a n εε→∞>−<=→→∞设为一数列,如果存在常数,对于任意给定的正数(不论它多么小),总存在正整数,使得当时,不等式都成立,那么就称常数是数列的极限,或者称数列收敛于,记为或(2)(数列极限的唯一性){}n x 如果数列收敛,那么它的极限唯一.(3)(收敛数列的有界性){}{}n n x x 如果数列收敛,那么数列一定有界。
(4)(收敛数列的保号性)n lim ,0(0),0,,0(0).n n n x a a a N n N x x →∞=><>>><如果且或那么存在正整数当时都有或(5)(收敛数列保号性的推论){}00lim ,0(0).n n n n n x x x x a a a →∞≥≤=≥≤如果数列从某项起有(或),且那么或(6)(收敛数列与其子数列间的关系){},.n x a a 如果数列收敛于那么它的任一子数列也收敛,且极限也是(7)(自变量趋于有限值时函数极限的定义)0000(),0,0()(),()lim ()()()x x f x x A x x x f x f x A A f x x x f x A f x Ax x εδδε→><−<−<→=→→设函数在点的某一去心邻域内有定义.如果存在常数对于任意给定的正数(不论它多么小),总存在使得当满足不等式时,对应的函数值都满足不等式那么常数就叫做函数当时的极限,记作或当(8)(函数极限存在的条件)000()()().f x x x f x f x −+→=函数当时极限存在的充分必要条件是左极限及右极限各自存在并且相等,即(9)(自变量趋于无穷大时函数极限的定义)().,,()(),()lim ()()().x f x x A X x x X f x f x A A f x x f x A f x Ax εε→∞>−<→∞=→→∞设函数当大于某一正数时有定义如果存在常数对于任意给定的正数(不论它多么小),总存在正数使得当满足不等式时,对应的函数值都满足不等式那么常数就叫做函数当时的极限,记作或当(10)(函数极限的唯一性)lim ().x x f x →如果存在,那么这极限唯一(11)(函数极限的局部有界性)0lim (),00,0().x x f x A M x x f x M δδ→=>><−<<如果那么存在常数和使得当时,有(12)(函数极限的局部保号性1)0lim (),0(0)00()0(()0).x x f x A A A x x f x f x δδ→=><><−<><如果且或,那么存在常数,使得当时,有或(13)(函数极限局部的保号性2)000lim ()(0),().2x x f x A A x U x x U x Af x →=≠∈>��如果那么就存在着的某一去心邻域(),当()时,就有(14)(函数极限局部保号性的推论)0()0(()0),lim (),0(0).x x x f x f x f x A A A →≥≤=≥≤如果在的某一去心邻域内或而且那么或(15)(函数极限与数列极限的关系){}{}000lim (),(),(),()lim ()lim ().n n x x n n n x x f x x f x x x x n N f x f x f x →+→∞→≠∈=如果极限存在为函数的定义域内任一收敛于的数列且满足:那么相应的函数值数列必收敛,且(16*)(Heine 归并定理){}000lim (),()(),lim ().n n n x x n n f x x x x n x x n N f x →+→∞→→∞≠∈极限存在的充分必要条件是:对任何数列满足且有存在(17)(无穷小的定义)0()()lim ()0,()().x x x f x f x f x x x x →→∞=→→∞如果函数的极限那么称函数为当或时的无穷小(18)(无穷小与函数极限的关系)0()()lim ()(),.x x x x x x f x A f x A αα→→∞→→∞==+在自变量的同一变化过程或中,函数的充分必要条件是其中是无穷小(19)(无穷大的定义)000()0(),0(0),0()(),()().f x x x M X x x x X f x M f x x x x δδ∀>∃>∃><−<>>→→∞设函数在的某一去心邻域内有定义(或大于某一正数时有定义).如果对于不论它有多大或使得当或时,总有成立则称函数为当或是的无穷大(20)(无穷大与无穷小之间的关系)1,(),;()()1()0,.()f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大则为无穷小反之,如果为无穷小,且则为无穷大�以下为一些极限运算法则的相关定理(21).有限个无穷小的和也是无穷小(22).有界函数与无穷小的乘积是无穷小(23).常数与无穷小的乘积是无穷小(24).有限个无穷小的乘积也是无穷小(25)(函数极限运算法则)[]lim (),lim (),(1)lim ()()lim ()lim ();(2)lim[()()]lim ()lim ();lim ()()(3)0,lim .()lim ()x x x x x x x x x x x f x A g x B f x g x f x g x A B f x g x f x g x A B f x f x A B g x g x B→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞==±=±=±⋅=⋅=⋅≠==如果那么若有则(26)(数列极限运算法则){}{}n .lim ,lim ,1lim();(2)lim ;(3)0(),0,lim.n n n n n n n n n n n n n x y A B x y A B x y A B x Ay n N B y B→∞→∞→∞→∞+→∞==±=±⋅=⋅≠∈≠=设有数列和如果那么()当且时(27)[]lim (),,lim ()lim ().x x x f x c cf x c f x →∞→∞→∞=如果存在而为常数则(28)[]lim (),lim ()lim ().nnx x x f x n N f x f x +→∞→∞→∞⎡⎤∈=⎣⎦如果存在,而则(29)()(),lim (),lim (),.x x x x x a x b a b ϕψϕψ→∞→∞≥==≥如果而那么(30)(复合函数的极限运算法则)000000[()]()()[()]lim (),lim (),0,(,),(),lim [()]lim ().x x u u x x u u y f g x u g x y f u f g x x g x u f u A x U x g x u f g x f u A δδ→→→→=====∃>∈≠==�设函数是由函数与函数复合而成,在点的某一去心邻域内有定义,若且当时有则(31)(数列极限的夹逼准则极限存在准则I ){}{}{}{}001,,2lim ,lim ,lim .n n n n n n n n n n n n n x y z n N n n y x z y a z a x x a →∞→∞→∞∃∈>≤≤===如果数列、及满足下列条件:()当时,有()那么数列的极限存在,且(32)(函数极限的夹逼准则极限存在准则I ’)0()()()()1(,)()()()()(2)lim (),lim ,lim ()lim ().x x x x x x x x x x U x r x M g x f x h x g x A A f x f x A →→∞→∞→∞→∞→∞→∞→∞∈>≤≤===�如果()当或时,那么存在,且(33)(数列极限存在准则极限存在准则II ).单调有界数列必有极限(34)(函数极限存在准则极限存在准则II II’’)00000()()().(,,,)f x x f x x f x x x x x x x −−+→→→−∞→+∞设函数在点的某个左邻域内单调且有界,则在的左极限必定存在类似(35)(柯西极限存在准则){}00,,.n n m x N N N m N n N x x εε+∀>∃∈>>>−<数列收敛的充分必要条件是:对于,且使得当时,就有(36)(两个无穷小之间的比较)0:lim 0,lim ,lim 0,;(4)lim 0,0,.(5)lim 1,x x x k x x c c k k αβαββαβοααββααββααββααββααβα→∞→∞→∞→∞→∞≠==∞=≠=≠>=∼已知和是在同一个自变量的变化过程中的无穷小,且(1)如果就说是比高阶的无穷小,记作=();(2)如果就说是比低阶的无穷小.(3)如果就说与是同阶无穷小如果就说是关于的阶无穷小如果就说与是等价无穷小,记作.(37)().βαβαοα=+与是等价无穷小的充分必要条件是(38)(等价无穷小替换定理)''',',limlim lim .''x x x βββααββααα→∞→∞→∞=∼∼设且存在,则(39)(函数连续性的定义1)[]00000()lim lim ()()0,().x x y f x x y f x x f x y f x x ∆→∆→=∆=+∆−==设函数在点的某一邻域内有定义,如果那么就称函数在点连续(40)(函数连续性的定义2)000()lim ()(),().x x y f x x f x f x f x x →==设函数在点的某一邻域内有定义,如果那么就称函数在点连续(41)(连续函数的和、差、积、商的连续性)000()(),(()0).ff xg x x f g f g g x gx ±⋅≠设函数和在点连续则它们的和(差)、积及商当时都在点连续(42)(反函数的连续性){}1()()(),().x y x y f x I x f y I y y f x x I −====∈如果函数在区间上单调增加(或单调减少)且连续,那么它的反函数也在对应的区间上单调增加或单调减少且连续(43)(复合函数的连续性1)[][]00000()()(),().lim (),(),lim ()lim ()().f g x x x x u u y f g x u g x y f u U x D g x u y f u u u f g x f u f u →→→===⊂=====��设函数由函数与函数复合而成若而函数在连续则(44)(复合函数的连续性2)[][][][]000000000()()(),().(),(),(),(),lim ()lim ()()().f g x x u u y f g x u g x y f u U x D u g x x x g x u y f u u u y f g x x x f g x f u f u f g x →→===⊂==========�设函数是由函数与函数复合而成若函数在连续且而函数在连续则复合函数在也连续即(45)(初等函数的连续性)..基本初等函数在它们的定义域内都是连续的一切初等函数在其定义区间内都是连续的(46)(有界性与最大值最小值定理)在闭区间上连续的函数在该区间上有界,且一定能取得它的最大值和最小值.(47)(零点定理)[]()(),,()()0,,()0.f x a b f a f b a b f ξξ⋅<=设函数在闭区间上连续且那么在开区间内至少有一点,使得(48)(介值定理)()[,],()(),(,),(,)().f x a b f a A f b B C A B a b f C ξξ==∀∈∃∈=设函数在闭区间上连续且在这区间的端点取不同的函数值及那么对于使得(49)(介值定理的推论).M m 在闭区间上连续的函数必取得介于最大值与最小值之间的任何值(50)(一致连续性的定义)121212().0,0,,,,()().().f x I x I x I x x f x f x f x I εδδε∀>∃>∀∈∀∈−<−<设函数在区间上有定义如果对于使得对于和当时就有那么就称函数在区间上是一致连续的(51)(一致连续性定理)()[,],.f x a b 如果函数在闭区间上连续那么它在该区间上一致连续第二章导数与微分(1)(导数的定义)000000000000000()(),()();lim(),(),(),()()()lim lim lim x x x x x y f x x x x x x x yy f x x f x xy f x x y f x x f x f x x f x f yf x x x ∆→∆→∆→→=∆+∆∆∆=+∆−∆′==+∆−∆′===∆∆设函数在点的某个邻域内有定义,当自变量在处取得增量点仍在该邻域内时相应的函数取得增量如果存在,则称函数在点处可导并称这个极限为函数在点处的导数记为即0000()(),,().x x x x x x x f x dyy x x dxdf x dx===−′−也可记作或(2)(函数可导的充分必要条件)000000()()()()()().f x x f x f x f x f x f x −+−+′′′′′==函数在点处可导的充分必要条件是左导数和右导数都存在且相等,即(3)(可导与连续的关系)(),.y f x x =如果函数在点处可导则函数在该点必连续(4)(函数的和、差、积、商的求导法则)[]2()(),(1)()()()()(2)[()()]()()()()()()()()()(3)(()0).()()u u x v v x x x u x v x u x v x u x v x u x v x u x v x u x u x v x u x v x v x v x v x ==′′′±=±′′′=+′′′⎡⎤−=≠⎢⎥⎣⎦如果函数及都在点具有导数,那么它们的和、差、积、商(除分母为0的点外)都在点具有导数且(5)(反函数的求导法则){}11()()0,()11(),,().()y x y x f y I f y y f x dy I x x f y y I f x dx f y dxdy−−′=≠=′⎡⎤==∈==⎣⎦′如果函数在区间内单调、可导且则它的反函数在区间内也可导且或(6)(复合函数的求导法则)[](),()(),(),()().u g x x y f u u g x y f g x x dy dy dy du f u g x dx dx du dx====′′=⋅=⋅如果在点可导而在点可导则复合函数在点可导且其导数为或(7)(微分的定义)000000(),,()()(),,()(),,.y f x x x x y f x x f x y A x x A x y f x x A x y f x x x dy dy A x ο=+∆∆=+∆−∆=∆+∆∆=∆=∆=∆设函数在某区间内有定义及在这区间内如果增量可表示为其中是不依赖于的常数那么称函数在点是可微的,而叫做函数在点相应于自变量增量的微分记作即(8)(可微与可导的关系)0000()(),(),(),().f x x f x x f x x dy f x dx dy f x dx ′′==函数在点可微的充分必要条件是函数在点可导且当在点可微时其微分一定是即函数微分的表达式(9)(函数和、差、积、商的微分法则)()()2()(),(1)(2)(3)(0).u u x v v x x x d u v du dv d uv vdu udv u vdu udvd v v v ==±=±=+−⎛⎞=≠⎜⎟⎝⎠如果函数及都在点可微,那么它们的和、差、积、商(除分母为0的点外)都在点可微且(10)(复合函数的微分法则)[]()()()()(),().x u y f u u g x x f g x dy y dx f u g x dx dy f u du dy y du ==′′′′′====设函数及都在点处可导,则复合函数的微分为也可以写成或第三章微分中值定理与导数的应用(1)(费马引理)0000000()(),,(),()()(()()),()0.f x x U x x x U x f x f x f x f x f x ∀∈′≤≥=设函数在点的某邻域内有定义并在处可导如果对有或那么(2)(罗尔定理)[]()()(),(2),;(3),()().,()()0.f x a b a b f a f b a b a b f ξξξ=′<<=如果函数满足:(1)在闭区间上连续;在开区间上可导在区间端点处的函数值相等即那么在内至少有一点,使得(3)(拉格朗日中值定理)[]()()()(1),;(2),;,(),()()()().f x a b a b a b a b f b f a f b a ξξξ′<<−=−如果函数满足:在闭区间上连续在开区间上可导那么在内至少有一点使等式成立(4)()0,().f x I f x I 如果函数在区间上的导数恒为那么在区间上是一个常数(5)(柯西中值定理)[]()()()()()(1),;(2),;(3),,()0;()()(),,.()()()f x F x a b a b x a b F x f b f a f a b F b F a F ξξξ′∀∈≠′−=′−如果函数及满足:在闭区间上连续在开区间上可导对那么在内至少有一点使等式成立(6)(洛必达法则)000000()()()()()0()()()(1)lim ()0lim ()0,lim ()lim ()lim()0;0(2)(),()(),()0;()(3)lim ,()limx x x x x x x x x x x x x x x x x x x x x f x f x g x f x g x g x f x g x U x x X g x f x g x f →→→→→→∞→∞→∞→∞→∞→→∞→→∞===∞=∞∞∞′>≠′∞′�且或者且,即极限为未定式或在某去心邻域或时可导且存在或为则0()()()lim .()()x x x x f x g x g x →→∞′=′(7)(泰勒中值定理泰勒公式)()()()()0()20000000(1)10(1)0(),(1),,,()()()()()()()()(),2!!()()()().(1)!,,(),()n n n n n n n n f x x a b n a b f x f x f x f x f x x x x x x x R x n f R x x x a b n x a b f x M R x x x ξξο++++∀∈′′′=+−+−++−+=−<<+∈≤=−⋯如果函数在含有的某个开区间内具有直到阶的导数则对x 恒有其中称为拉格朗日型余项.如果当时则有.n⎡⎤⎣⎦,称为佩亚诺型余项(8)(麦克劳林公式)()20(0)(0)0,()(0)(0)(),2!!n nn f f x f x f f x x x R x n ′′′==+++++⋯在泰勒公式中,当时称为麦克劳林公式.(9)(函数单调性的判定定理)[]()()[]()[](),,,.(1),()0,(),.(2),()0,(),.y f x a b a b a b f x y f x a b a b f x y f x a b =′>=′<=设函数在上连续在内可导如果在内那么函数在上单调增加如果在内那么函数在上单调减少将闭区间换成其他各种区间(包括无穷区间),结论也同样成立.(10)(曲线凹凸性的定义)1212121212(),,()(),()()();22()()(2),()()().22f x I I x x x x f x f x f f x I x x f x f x f f x I ++⎛⎞<⎜⎟⎝⎠++⎛⎞>⎜⎟⎝⎠设在区间上连续对上任意两点(1)如果恒有那么称在上的图形是向上凹的或凹弧如果恒有那么称在上的图形是向上凸的或凸弧(11)(曲线凹凸性的判定定理)[]()()[]()[](),,,,(1),()0,(),;(2),()0,(),f x a b a b a b f x f x a b a b f x f x a b ′′>′′<设在上连续在内具有一阶和二阶导数那么若在内则在上的图形是凹的若在内则在上的图形是凸的.(12)(函数极值的定义)000000()(),(),()()(()()),()()f x x U x U x x f x f x f x f x f x f x <>�设函数在点的某邻域内有定义如果对于去心邻域内的任意一点有或那么就称是函数的一个极大值(或极小值).(13)(可导函数取得极值的必要条件)000(),,()0.f x x x f x ′=设函数在处可导且在处取得极值那么(14)(判定极值的第一充分条件)()()()()()()000000000000000(),,.(1),,()0,,,()0,();(2),,()0,,,()0,();(3),,(),().f x x x U x x x x f x x x x f x f x x x x x f x x x x f x f x x x U x f x f x x δδδδδδ′′∈−>∈+<′′∈−<∈+>′∈��设函数在处连续且在的某去心邻域内可导若时而时则在处取得极大值若时而时则在处取得极小值若时的符号保持不变则在处没有极值(15)(判定极值的第二充分条件)0000000()()0,()0,(1)()0,();(2)()0,()f x x f x f x f x f x x f x f x x ′′′=≠′′<′′>设函数在处具有二阶导数且那么当时函数在处取得极大值当时函数在处取得极小值.(16)(区间内单一极值时最值的判定)000000()(,),()(),()();(2)()()().f x x x f x f x f x f x f x f x f x 函数在一个区间有限或无限开或闭内可导且只有一个驻点并且这个驻点是函数的极值点,那么(1)当是极大值时就是在该区间上的最大值当是极小值时,就是在该区间上的最小值第四章~第六章一元函数积分学(1)(原函数的定义),()(),,()()()(),()()(()).I F x f x x I F x f x dF x f x dx F x f x f x dx I ′∀∈==如果在区间上可导函数的导函数为即对都有或那么函数就称为或在区间上的原函数(2)(原函数存在定理)(),(),()()..f x I I F x x I F x f x ∀∈′=如果函数在区间上连续那么在区间上存在可导函数使对都有即连续函数一定有原函数(3)(原函数之间的关系){}()().()()(),()()(),(),().f x I f x F x x f x x F x C C f x F x C C ΦΦ−=+−∞<<+∞如果在区间上有一个原函数,那么就有无限多个原函数假设和均为的原函数则为某个常数且的全体原函数所组成的集合就是函数族(4)(不定积分的定义),()()(()),().,(),(),.I f x f x f x dx I f x dx f x f x dx x ∫∫在区间上函数的带有任意常数项的原函数称为或在区间上的不定积分记作其中记号称为积分号称为被积函数称为被积表达式称为积分变量(5)(不定积分的性质1)[]()(),()()()().f xg x f x g x dx f x dx g x dx ±=±∫∫∫设函数及的原函数存在则(6)(不定积分的性质2)(),()().f x k kf x dx k f x dx =∫∫设函数的原函数存在为非零常数,则(7)(不定积分的凑微分法第一类换元法)[]()(),(),()()()u x f u u x f x x dx f u du ϕϕϕϕ==⎡⎤′=⎣⎦∫∫设具有原函数可导则有换元公式(8)(不定积分的代入法第二类换元法)[]11()(),()0.[()](),()()(),()().t x x t x f x x f x dx f t t dt x x t ψψψψψψψψψ−−=′′=≠⎡⎤′==⎣⎦∫∫设是单调的、可导的函数并且又设具有原函数则有换元公式其中是的反函数(9)(不定积分的分部积分法)()(),.u u x v v x udv uv vdu ===−∫∫设函数及具有连续导数那么(10)(定积分的定义)[][][][][][]{}[][][]012101121112111(),,,,,,,,,,,max ,,,,,,()0,n n n n i i i n i i i ni i i i i i f x a b a b a x x x x x b a b n x x x x x x x x x x x x x x a b f x x x λξξλξ−−−−−==<<<<<=∆=−=∆∆∆∈∆→∈∑⋯⋯⋯设函数在有界闭区间上有定义,在中任意插入若干个分点把区间分成个小区间各个小区间的长度依次为记,令若无论区间怎么分划,在时总存在与选取无关的确定的[][][]01(),(),(),()lim (),(),(),,,,,nbi i ai I f x a b I f x a b f x dx I f x f x f x dx x a b a b λξ→===∆∑∫极限,则称函数在上是可积的,这个极限称为函数在区间上的定积分简称积分记作其中叫做被积函数叫做被积表达式叫做积分变量叫做积分下限叫做积分上限叫做积分区间.(11)(函数可积的条件1)[][](),,(),.f x a b f x a b 设在区间上连续则在上可积(12)(函数可积的条件2)[][](),,,(),.f x a b f x a b 设在区间上有界且只有有限个间断点则在上可积(13)(定积分的性质1)[]()()()()bbbaaaf xg x dx f x dx g x dx±=±∫∫∫(14)(定积分的性质2)()()()bbaa kf x dx k f x dx k =∫∫是常数(15)(定积分的性质3),()()()bcbaaca cb f x dx f x dx f x dx<<=+∫∫∫设则(16)(定积分的性质4)[],()1,1.b baaa b f x dx dx b a ≡==−∫∫如果在区间上则(17)(定积分的性质5)[],,()0(()0),()0(()0).b baaa b f x f x f x dx f x dx a b ≥≤≥≤<∫∫如果在区间上或则或 ()(18)(定积分性质5的推论1)[],,()(),()()().b baaa b f x g x f x dx g x dx a b ≤≤<∫∫如果在区间上则 (19)(定积分性质5的推论2)()()bbaaf x dx f x dx a b ≤<∫∫ ().(20)(定积分的性质6)[](),,()()())baM m f x a b m b a f x dx M b a a b −≤≤−<∫设及分别是函数在区间上的最大值和最小值则((21)(定积分中值定理积分中值公式)[][](),,,()()().baf x a b a b f x dx f b a ξξ=−∫如果函数在积分区间上连续则在上至少存在一个点,使得成立(22)(积分上限函数的可导性)[][](),,()(),,()()()xaxa f x ab x f t dt a b d x f t dt f x a x b dxΦ=′Φ==≤≤∫∫如果函数在区间上连续则积分上限的函数在上可导并且它的导数 ().(23)[][](),,()()(),.xaf x a b x f t dt f x a b Φ=∫如果函数在区间上连续则函数就是在上的一个原函数(24)(牛顿(Newton)-莱布尼兹(Leibniz)公式微积分基本公式)()()[,],()()().baF x f x a b f x dx F b F a =−∫如果函数是连续函数在区间上的一个原函数则(25)(定积分的换元法)[][][]()()()(1)(),();(2)(),(,)()()().bay f x x t t x t a b t f x dx f t t dt βαϕαβϕϕαϕβϕαββαϕϕ==≤≤===′=∫∫假设函数在函数的值域上连续(),函数满足条件:在或上具有连续导数,则有(26)[][]0(1)(),,()2().(2)(),,()0.aaaaaf x a a f x dx f x dx f x a a f x dx −−−=−=∫∫∫若在上连续且为偶函数则若在上连续且为奇函数则(27)[]2200()0,1,(1)(sin )(cos );(2)(sin )(sin ).2f x f x dx f x dx xf x dx f x dx πππππ==∫∫∫∫若在上连续则(28)(),,(1)()();(2)()()().a T Taa nTTaf x T f x dx f x dx f x dx n f x dx n N ++==∈∫∫∫∫设是连续的周期函数周期为则(29)(定积分的分部积分法)[][],()(),.bbba aaa b u x v x udv uv vdu =−∫∫设在区间上函数和可导则(30)(无穷限的反常积分的定义)[)[)[)(),,,lim (),(),,(),()lim ().();,(),(),()tat taaat aaf x a t a f x dx f x a f x dx f x dx f x dx f x dx f x a f x dx f x →+∞+∞+∞→+∞+∞+∞+∞>+∞=+∞∫∫∫∫∫∫(1)设函数在区间上连续取如果极限存在则称此极限为函数在无穷区间上的反常积分记作即这时也称反常积分收敛如果上述极限不存在则函数在无穷区间上的反常积分没有意义习惯上称为反常积分(](],().(2)(),,,lim (),(),,(),()lim ().();,().(aabtt bbbtt b bdx f x dxf x b t b f x dx f x b f x dx f x dx f x dx f x dx f x dx +∞+∞→−∞−∞−∞→−∞−∞−∞−∞<−∞=∫∫∫∫∫∫∫∫发散这时记号不再表示数值设函数在区间上连续取如果极限存在则称此极限为函数在无穷区间上的反常积分记作即这时也称反常积分收敛如果上述极限不存在则称反常积分发散()()03)(),,()(),(),(),()()()lim ()lim (),();t tt t f x f x dx f x dx f x f x dx f x dx f x dx f x dx f x dx f x dx f x dx +∞−∞+∞−∞+∞+∞−∞−∞→+∞→−∞+∞−∞−∞+∞−∞+∞=+=+∫∫∫∫∫∫∫∫∫设函数在区间上连续如果反常积分和都收敛则称上述两反常积分之和为函数在无穷区间上的反常积分,记作即这时也称反常积分收敛否则就称反常积分().f x dx +∞−∞∫发散(31)(瑕点的定义)()()().f x a a f x 如果函数在点的任一邻域内都无界,那么点称为函数的瑕点也称为无界间断点(32)(无界函数的反常积分的定义)(](][)(),,(),lim (),(),,(),()lim ().().,().(2)(),,()btt ab b baatt ab baaf x a b a f x t a f x dx f x a b f x dx f x dx f x dx f x dx f x dx f x a b b f x ++→→>=∫∫∫∫∫∫(1)设函数在上连续点为的瑕点.取如果极限存在则称此极限为函数在上的反常积分仍然记作即这时也称反常积分收敛如果上述极限不存在则称反常积分发散设函数在上连续点为的瑕点.取[],lim (),()lim ().().(3)(),(),().()()()()()lim ()l tat bbt baaat bc abbcbtcaacat ct b f x dx f x dx f x dx f x dx f x a b c a c b c f x f x dx f x dx f x dx f x dx f x dx f x dx −−−→→→<=<<=+=+∫∫∫∫∫∫∫∫∫∫如果极限存在则定义否则,就称反常积分发散设函数在上除点外连续点为的瑕点如果两个反常积分与都收敛,则定义im ().().btt cbaf x dx f x dx +→∫∫否则,就称反常积分发散(33)(无穷限反常积分的审敛法1)[)[)(),,()0.()(),()xaaf x a f x F x f t dt a f x dx +∞+∞≥=+∞∫∫设函数在区间上连续且若函数在上有上界,则反常积分都收敛.(34)(无穷限反常积分的审敛法2比较审敛原理)[)()(),.0()()(),(),()0()()(),(),().aaaaf xg x a f x g x a x g x dxf x dxg x f x a x g x dx f x dx +∞+∞+∞+∞+∞≤≤≤<+∞≤≤≤<+∞∫∫∫∫(1)设函数和在区间上连续如果并且收敛则也收敛;(2)如果并且发散则也发散(35)(无穷限反常积分的审敛法3比较审敛法1)[)(),(0),()0.(1)01,()(),();0,()(),().p a a f x a a f x MM p f x a x f x dx xNN f x a x f x dx x+∞+∞+∞>≥>>≤≤<+∞>≥≤<+∞∫∫设函数在区间上连续且如果存在常数及使得则反常积分收敛(2)如果存在常数使得则反常积分发散(36)(无穷限反常积分的审敛法4极限审敛法1)[)(),,()0.1,lim (),()(2)lim ()0(lim ()),().p a x ax x f x a f x p x f x f x dx xf x d xf x f x dx +∞→+∞+∞→+∞→+∞+∞≥>=>=+∞∫∫设函数在区间上连续且(1)如果存在常数使得存在则反常积分收敛;如果或则反常积分发散(37)(无穷限反常积分的审敛法5)[)(),.(),().().aaaf x a f x dx f x dx f x dx +∞+∞+∞+∞∫∫∫设函数在区间上连续如果反常积分收敛则反常积分也收敛即绝对收敛的反常积分必定收敛(38)(无界函数的反常积分的审敛法1比较审敛法2)(](),,()0().(1)01,()(),();()(2)0()(),().b q a b a f x a b f x x a f x MM q f x a x b f x dx x a NN f x a x b f x dx x a≥=>>≤<≤−>≥<≤−∫∫设函数在区间上连续且,为的瑕点如果存在常数及使得则反常积分收敛如果存在常数,使得则反常积分发散(39)(无界函数的反常积分的审敛法2极限审敛法2)(](),,()0,().(1)01,lim ()()();(2)lim ()()0(lim ()()),().bq a x abax ax af x a b f x x a f x q x a f x f x dx x a f x d x a f x f x dx +++→→→≥=<<−−=>−=+∞∫∫设函数在区间上连续且为的瑕点如果存在常数使得存在,则反常积分收敛如果或则反常积分发散(40)(Γ函数的相关性质)21101220(1):()(0).0.(2)(1)()(0).,(1)!(3)0,().(4)()(1)(01).sin (5)(),,()2x s x s xs u s e x dx s e x dx s s s s s n N n n s s s s s ss e x dx x u s eu ππ+∞+∞−−−−+++∞−−−ΓΓ=>>Γ+=Γ>∈Γ+=→Γ→+∞ΓΓ−=<<Γ==Γ=∫∫∫函数定义 反常积分对任意都收敛递推公式: 当时当时余元公式:在中作代换有2100.11121,()(1).222s u tdu t t s t s e u du t +∞−+∞−++−===Γ>−∫∫再令或即有 (41).光滑曲线弧是可求长的。
高数极限定义
高数极限定义嘿,朋友们!今天咱来聊聊高数里特别重要的极限定义呀!这玩意儿就像是一把神奇的钥匙,能打开好多数学大门呢!你想想看,极限就像是一场追逐游戏。
比如说,一个数一直在靠近另一个数,就像你追着一个目标拼命跑呀跑,越来越近,越来越近,虽然可能永远也追不上,但那种靠近的趋势是实实在在的。
这就是极限呀!举个例子哈,就像你要去够一个高高挂着的苹果,你可能跳起来也够不着,但你每次跳都比上一次更接近它,这就是一种极限的感觉呀。
那高数里的极限定义呢,就是把这种感觉用严谨的数学语言给描述出来啦。
咱说这极限定义啊,就像是给这个追逐游戏定了个规则。
它告诉我们,怎么才算真的接近了,接近到什么程度才行。
这可不是随便说说的哦,这是很严肃很重要的呢!你说要是没有这个极限定义,那数学世界得乱成啥样呀?就好像没有交通规则的马路,大家都乱开一气,那还不撞个稀巴烂呀!有了极限定义,我们就能清楚地知道,哦,原来这个数是这样趋近于那个数的呀。
比如说,当一个数列慢慢地靠近一个固定的值,我们就能通过极限定义来判断它到底有没有真的趋近到了。
这就好比是在茫茫人海中找到了那个对的人,嘿嘿,是不是很有意思呀?再想想看,极限定义还像是一个裁判呢!它能公正地判断谁达到了极限,谁还差那么一点儿。
它可不会偏袒谁,一就是一,二就是二,丁是丁卯是卯的。
哎呀呀,真的很难想象没有极限定义的高数会是什么样子。
那肯定就像没了方向的船,在大海上漂呀漂,不知道该往哪儿走啦!所以说呀,这极限定义可真是太重要啦!总之呢,极限定义就是高数里的宝贝呀,有了它,我们才能在数学的海洋里畅游无阻呀!它让我们看到了数字之间那奇妙的趋近关系,让我们感受到了数学的魅力和神奇。
大家可一定要好好理解它,掌握它呀,这样才能在高数的世界里玩得转哦!。
数学高数定理定义总结
数学高数定理定义总结高中数学中的高数定理是指一套基本定理和公式,包括中值定理、洛必达法则、微分学基本定理、积分学基本定理、拉格朗日中值定理、罗尔中值定理、柯西中值定理等,这些定理和公式可以帮助我们简化和解决复杂的数学问题。
下面将对这些定理进行定义和总结。
1.中值定理:中值定理是微分学中的一个重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理。
这些定理都与函数在一些区间内取得特定值或通过其中一点的斜率有关。
-拉格朗日中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,则在(a,b)内至少存在一点c,使得f'(c)等于[f(b)-f(a)]/(b-a)。
-柯西中值定理:设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导且g'(x)不为零,则在(a,b)内至少存在一点c,使得[f(b)-f(a)]/[g(b)-g(a)]=f'(c)/g'(c)。
-罗尔中值定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),则在(a,b)内至少存在一点c,使得f'(c)=0。
2.洛必达法则:洛必达法则是一种求极限的方法,用于计算形如[0/0]、[∞/∞]、[0*∞]、[∞-∞]等不定型的极限。
- 洛必达法则:设函数f(x)和g(x)在特定点x=a附近都可导,且g'(x)不为零,若lim[x→a]f(x) = lim[x→a]g(x) = 0或∞,则lim[x→a]f(x)/g(x) = lim[x→a]f'(x)/g'(x)。
- 微分学基本定理:设函数f(x)在[a, b]上连续,则函数F(x) = ∫[a,x]f(t)dt在(a, b)内可导且F'(x) = f(x),其中[a,x]表示对f(t)在区间[a,x]上的积分。
- 积分学基本定理:设函数f(x)在[a, b]上连续,则该区间上的定积分∫[a,b]f(x)dx可以通过求该函数的一个原函数F(x)在区间[a, b]上的差F(b) - F(a)来求得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邻域:设a 和δ是两个实数,且0δ>,满足不等式x a δ-<的实数x 的全体称为a 的δ邻域。
绝对值:数轴上的点a 到原点的距离称为a 的绝对值,记为a 。
正间:即正区间 数轴:规定了原点、正方向和长度的直线称为数轴。
实数:实数由有理数和无理数组成。
有理数包括整数和分数。
函数:设x 和y 是两个变量,若当变量x 在其变动区域D 内取任一数值时,变量y 依照某一法则f 总有一个确定的数值与x 值对应,则称变量y 为变量x 的函数,记作()y f x =。
奇函数:设函数()y f x =在关于原点对称的集合D 上有定义,如果对任意的x D ∈,恒有()()f x f x -=-,则称函数()f x 为奇函数。
偶函数:设函数()y f x =在关于原点对称的集合D 上有定义,如果对任意的x D ∈,恒有()()f x f x -=,则称函数()f x 为偶函数。
定义域:在函数的定义中,自变量x 的变动区域,称为函数的定义域。
值域:在函数的定义中,y 的取值的集合称为函数的值域。
初等函数:由基本初等函数经过有限次的四则运算或复合运算而得到的函数称为初等函数。
三角函数:正弦函数,余弦函数,正切函数,余切函数,正割函数,余割函数合称三角函数。
指数函数:函数xy a =(0,1)a a >≠,称为指数函数。
复合函数:设y 是u的函数()y f u =,u是x 的函数()u x φ=,如果()u x φ=的值哉包含在()y f u =的定义域中,则y 通过u 构成x 的函数,记作()()y f x φ=,这种函数称为复合函数,其中u 称为中间变量。
对数函数:函数log a y x=(0,1)a a >≠,称为对数函数。
反函数:设设y 是x 的函数()y f x =,其值域为G ,如果对于G 中的第一个y 值,都有有一个确定的且满足()y f x =的x值与它对应,则得到一个定义在G 上的以y 为自变量,x 为因变量的新函数,称它为()y f x =的反函数,记作1()x f y -=,并称()y f x =为直接函数。
幂函数:函数y xα=(α为实数)称为幂函数。
常数函数:函数y c =(c 为实数)称为常数函数,它的定义域是().-∞+∞。
常量:一类量在考察的过程中不发生变化,只取一个固定的值,我们称它为常量。
变量:一类量在考察的过程中是变化的,可以取不同的数值,我们称它为变量。
初等数学:由基本数学等函数过有限次的四则运算式复合运算而得到的函数成为初等函数。
极限:极限分为数列极限和函数极限。
无穷小量:极限为0的变量称为无穷小量,简称无穷小。
连续:函数()y f x =在0x 及其邻域有定义,且()00lim ()x x f x f x →=成立,则称函数()y f x =在点0x 处连续。
否则称()y f x =在点0x 处不连续,或称间断,点0x 称为间断点。
数列极限:对于数列n x ,如果当n 无限增大时,n x 无限地靠近一个常数A ,则称数列n x 以A 为极限,记为:lim n n x A →∞=。
函数极限:对于函数()y f x =在0x (此可为∞)的邻域内有定义,且当0x x →时,()f x 无限地靠近一个常数A ,则称()y f x =在0x 处有极限A ,记为:0lim ()x x f x A →=。
无穷大量:如果当0x x →(x →∞)时,|()|f x 的值无限地增大,则称()f x 是无穷大量,简称无穷大,记为lim ()x x f x →=∞或()f x →∞。
导数:设函数()y f x =在点0x 的某领域内有定义,给x 以改变量x ∆,则函数的相应改变量为00()()y f x x f x ∆=+∆-,如果当0x ∆→时,两个改变量比的极限:0lim x y x∆→∆∆存在,则称这个极限为函数()f x 在0x 可导或具有导数,也称为()f x 在0x 可微。
平均变化率:设函数()y f x =在点0x 的某领域内有定义,给x 以改变量x ∆,则函数的相应改变量为00()()y f x x f x ∆=+∆-,则称y x∆∆为平均变化率瞬时变化率:设函数()y f x =在点0x 的导数,称为在在点0x 的瞬时变化率导函数:若函数()y f x =在点x 可导,导数为'()f x ,则可建立一个函数'':()f x f x →,这就是导函数高价导数:()(1)''()('())','''()(''())',,()(())'n n f x f x f x f x f x f x -=== ,都称为高阶导数。
驻点:若函数()y f x =在某一点0x 的导数0'()f x =0,则称0x 为函数()y f x =的驻点。
极值:若函数()y f x =在点0x 的领域()00,x x δδ-+内有定义,若对任意的()00,x x x δδ∈-+,都有()00()()()()f x f x f x f x ≤≥或,则称0()f x 为函数()f x 的极大值(或极小值)。
微分:设()y f x =在点x 处可导,则'()f x x ∆称为函数()y f x =在点x 处的微分,记作dy ,即'().d y f x d x =函数的一阶微分不变性:设()u x φ=在点x 处可微,()y f u =在对应的u 处可微,且复合函数()y f x φ=⎡⎤⎣⎦在点x 处的可微,且'().dy f u du =微分的线性化:因为y dy ∆≈,所以000()()'()f x x f x f x x +∆-≈∆,000()()'(),f x x f x f x x+∆≈+∆令00,x x x x x x =+∆∆=-,则有()000()()'(),y f x f x f x x x =≈+-这个能常驻称为()y f x =的一次近似或线性近似。
原函数:如果函数()f x 与()F x 定义在同一区间(,)a b ,并且处处都有'()()F x f x =或()()dF x f x dx =,则称()F x 是()f x 的一个原函数。
不定积分:函数()f x 的原函数的全体称为()f x 的不定积分,记为()f x dx ⎰。
不定积分几何意义:不定积分的几何意义就是曲线族,由一条曲线上下平移而得到,它们在同一点的切线斜率相等。
定积分:设函数()f x 在区间[,]a b 上连续,用分点01n a x x x b=<<<= 把区间[,]a b 分为n 个小区间1[,]i i x x +,其长度为1,1,2,,1,i i i x x x i n +∆=-=-在每个小区间1[,]i i x x +任取一点1[,]i i i x x ξ+∈,求出它们的部分和()10n n i i i S f x ξ-==∆∑,记{}max i x λ=∆,当0λ→时,若n S 有极限S ,并且值S 在区间[,]a b 的分法无关,与中间值i ξ的取法无关,则称此极限值S 为()f x 在[,]a b 上的定积分,记作()baf x dx ⎰。
定积分的几何意义:若()0f x ≥,则()baf x dx ⎰表示由曲线()y f x =,直线,x a x b ==及x 轴所围成的曲边梯形的面积。
定积分中值定理:设函数()f x 在区间[,]a b 上连续,则在[,]a b 上至少存在一点ξ,使得()()()baf x dx f b a ξ=-⎰。
微积分基本定理:设函数()f x 在区间[,]a b 上连续,()F x 是其的一个原函数,那么()baf x d x F b=-⎰。
牛顿—莱布厄兹公式:设函数()f x 在区间[,]a b 上连续,()F x 是其的一个原函数,那么公式()()()baf x dx F b F a =-⎰称为牛顿—莱布厄兹公式。
微分方程的定义:含有末知函数的导数的等式叫做微分方程。
何谓微分方程的通解、特解,何谓微分方程的初始条件:含有任意常数C 的解叫做微分方程的通解。
确定了常数C 的解称为方程的特解。
使任意常数确定为确定的数的条件称为初始条件。
何谓变量可分离的微分方程:把可以通过分离变量法的微分方程称为可分离的微分方程。
微分方程和建模有何关系:数学建模中的数学模型常常是一个微分方程,进而求解数学问题是求解微分方程的问题。
建模思想和步骤是什么:建立数学模型,并用以解决实际问题的步骤分为以下五步:(1) 明确实际问题熟悉问题的背景;(2) 形成数学模型;(3) 求解数学问题;(4) 研究算法并尽量使用计算机;(5) 回到实际中去,解释结果。
微分方程:微分方程论是数学的重要分支之一。
大致和微积分同时产生,并随实际需要而发展。
含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。
连续:假设f:X->Y 是一个拓扑空间之间的映射,如果f 满足下面条件,就称f 是连续的:对任何Y 上的开集U, U 在f 下的原像f^(-1)(U)必是X 上的开集。
对于一定区间上的任意一点,其本身有定义,且其左极限与右极限相等且均存在,则称函数在这一区间上是连续的。