第五章化学平衡

合集下载

第五章 化学平衡

第五章 化学平衡

第五章化学平衡授课时数:8学时主要内容:1. 化学反应的等温方程式和化学反应的亲的势2. 理想气体化学反应的标准平衡常数3. 温度对标准平衡常数的影响4. 其它因素对理想气体化学平衡的影响5. 同时反应平衡6. 真实气体反应及混合物和溶液中反应的化学平衡重点:1. 化学反应标准平衡常数的定义;2. 平衡常数和平衡组成的计算;3. 化学反应的等温方程式和等压方程式及其应用;4. 温度、压力及惰性气体等因素对化学平衡的影响。

难点:1. 利用等温方程式判断一定条件下化学反应可能进行的方向;2. 范特霍夫方程式的推导及其应用。

教学方式:1. 采用CAI 课件与黑板讲授相结合的教学方式;2. 合理运用问题教学或项目教学的教学方法;3. 作业:1,3,4,5,8,10,11,14,15,18,20,21,22,24,26,27,28;4. 答疑:(a) 课后答疑;(b) 通过网络答疑。

5.1化学反应的等温方程1.摩尔反应吉布斯函数和化学反应亲和势在一定的温度、压力和非体积功为零的条件下,化学反应B0BB ∑=ν的摩尔反应吉布斯函数为⎪⎭⎫ ⎝⎛=∆<=自发平衡0m r G定义化学反应的亲和势A 为m r G A ∆-=A 代表在恒温、恒压和'0W =的条件下反应的推动力。

A >0反应能自动进行;A =0反应处于平衡态;A < 0反应不能自动进行。

2.摩尔反应吉布斯函数与反应进度的关系,平衡条件对于化学反应B0BB ∑=ν,随着反应的进行,各物质的量均发生变化,对多组分系统BBB d d d d n p V T S G ∑++-=μ如果在恒温恒压下BBB d d n G ∑=μ根据反应进度的定义 BBd d νξn =,得ξνd n B B d =,代入上式,则ξμνd d BB B ∑=Gmr BB B ,)/(G G P T ∆=∑=∂∂μνξ式中的()pξ∂∂T,G 表示在T ,p 及组成一定的条件下,反应系统的吉布斯函数随反应进度的变化率, 恒温恒压下均相反应的G -ξ曲线示意图称为摩尔反应吉布斯函数变。

第五章吉布斯自由能和化学平衡

第五章吉布斯自由能和化学平衡
• 平衡常数可由实验的方法测定。即:当反应达到平衡后, 分别测出各反应物质的分压(或浓度),再计算出平 衡常数的数值。
• 在同一温度下,平衡常数的数值,不随压力(浓度)的变化 而改变,是一个定值(常数)。
• 平衡常数与反应的标准摩尔吉布斯自由能相关,是 化学反应的热力学性质之一。
2、平衡常数与温度的关系
2 KClO3 = 2 KCl + O2
2、什么是化学平衡?
——所谓化学平衡,指的是这样一种状态,此时: •正向反应的速度与逆向反应的速度相等 •参与反应的物质的浓度保持一定 •动态的平衡,而非化学反应停止
化学反应的可逆性的定量表征:平衡常数
二、平衡常数
1、什么是“平衡常数”?
对于一个特定化学反应 aA + bB
ΔS体系 + ΔS环境 > 0
三、吉布斯自由能
?吉布斯自由能变与自发反应的方向
? 化学反应的标准摩尔吉布斯自由能变 ? 温度对化学反应的吉布斯自由能变 及
化学反应方向的影响
? 压力、浓度对反映吉布斯自由能变的影响
1 、吉布斯自由能变与自发反应的方向
既然熵作为自发反应方向判据的一个前提条件是体系必须 是一个孤立体系,而一般的化学反应都不是在孤立体系中进行 的,计算体系和环境的总的熵变也是非常困难的,故实际情况 中,以熵变作为判据并不方便。
什么情况下,混乱度过增加?
• 物质的三态
固态 < 液态 < 气态
• 溶解的过程 溶质的分子与溶剂的分子混合到一起
• 化学反应
反应前后,气态物质的总分子数增加
CaCO3 = CaO + CO2
• 温度
温度越高,混乱度越大,熵值越大
自发过程,往往是混乱度增加的过程

化学平衡

化学平衡

p
B
B
neq
B' B'
p
B
B
Kn
neq
B' B'
例1 已知反应
1 2
N
2
3 2
H
2
NH
3
在400℃、
30.4MPa时Kp=18.1×10-5kPa-1,原料气中N2
与H2的物质的量之比为1:3,试求N2的理论
转化率与平衡时NH3的摩尔分数。
解:
初始 1mol
3mol
0
平衡 (1-α)mol 3(1-α)mol
d
B
B
def
Kf
B
(
f
eq B
) B
( fGeq )g ( fReq )r L
(
f
eq D
)d
(
fEeq
)e
L
量纲为: p
B
B
以逸度表示 的平衡常数
K f =K d
pd
B
B
exp
ΔrGmd RT
pd
B
B
K f 只决定于反应本性和温度,与总压以及各物
质的平衡组成无关,也不受 pd 选取的影响
0
B
BB
DDEE
GG RR
B
B
B
DD
EE
GG
RR
< 0;未达到平衡 = 0;达到平衡 > 0;未达到平衡
1.标准平衡常数
K d def exp
B
B
Bd
RT
d B
BB
量纲为一
Bd
exp Bd
RT
K d 仅决定于反应本性和温度 p d 的不同取法也会影响 K d 的数值

物理化学 第五章 化学平衡

物理化学 第五章 化学平衡
B
压力商Jp: 前式中的后一项的加和Σ υ BRTln(pB/pθ )可以用 乘积的形式表示: Σ υ BRTln(pB/pθ )=RTΣ υ Bln(pB/pθ ) B B =RTlnП (pB/pθ )υ B B 式中,П (pB/pθ )υ B为各反应物及反应产物的 B (pB/pθ )υ B的连乘积,称为压力商,用Jp表示。
←Δ rGm=(əG/əξ )T,p
0
1
图5.1.1 恒温、恒压下G随ξ 的变化
由图中曲线可以看出,在反应开始即ξ =0时,G 值最大;随着反应的进行,反应系统的G值逐渐 降低。曲线上任一点处的斜率(əG/əξ )T,p代表 在 T、p一定且反应进度为ξ 处的反应Δ rGm: Δ rGm=(əG/əξ )T,p 随着反应的进行,ξ 渐渐增大,曲线斜率的绝对 值渐渐变小。反应达平衡时,Δ rGm=0,即反应系 统的G达到极小。所以,恒温恒压不作非体积功 条件下,化学反应的平衡条件为: Δ rGm=(əG/əξ )T,p=0
代入摩尔反应吉布斯函数的关系式中,可得: Δ rGm=(əG/əξ )T,p=Σ υ Bμ θ B+Σ υ BRTln(pB/pθ ) B B 标准摩尔反应吉布斯函数Δ rGθ m: 上式中Σ υ Bμ θ B为各反应组分均处于标准态 B (pθ =100kPa的纯理想气体)时每摩尔反应进度吉 布斯函数变,以Δ rGθ m表示,称为标准摩尔反应 吉布斯函数,即: Δ rGθ m=Σ υ Bμ θ B
调节Jp改变反应方向和反应产率的局限性: Jp的可调性提供了控制、甚至改变反应方向的可 能性。但是对于Δ rGθ m«0的反应,Kθ »1,反应达 到平衡时反应物的分压几乎为0,因此可以认为 反应能进行到底;而Δ rGθ m»0的反应,Kθ «1,反 应达到平衡时反应产物的分压几乎为0,可以认 为反应不能发生;只有Δ rGθ m接近于0的反应, Kθ 与1相差不太大时,才有可能通过调节Jp来改 变化学反应的方向和影响反应的产率。

物理化学:05 化学平衡

物理化学:05   化学平衡

B(T )
RT
ln
fB P
K
f
fG P
fD P
g
d
fH P
fE P
h
e
(2)液相反应
a) aA(l) bB(l) gG(l) hH(l)
如果参加反应的物质是构成理想溶液,物质的化学势
表示式:
B
B
RT
ln
B
代入
K
G g H h A a B b
如果参加反应的物质均溶于一溶剂中,而溶液为稀
2、用作判据
化学反应等温式主要用作判据。等温方程式可以判断
一个化学反应是否能自发进行。因为用 rGm 作判据,
在等温、等压、只作膨胀功(体积功)不作其它功的情况
下,如果一热力学过程的:
G 0 G 0 G 0
能自发进行 达平衡 反应不能自发进行
将此结论推广应用于任意一气相反应,则从 等温方程式可以看出:
平衡时:CaO(s) CO2 ( g ) CaCO3 (s) 0
对于凝聚相(液体或固体),其化学势随压力变化不
大,并且凝聚相均处于纯态不形成固溶体或溶液。则
CaO(s)
CaO( s )
CaCO3 (s)
CaCO3 (s)
CO2 ( g )
CO2 (T )
RT
ln
PCO2 P
P )
P2 SO3
P P 2
SO2
O2
(1/
(1/ P )2 P )2 (1/ P )
KP
1 P
2 ( 2 1)
KP
(P
B )B
B
PB P
B
B=产物的系数和-反应物的系数和 B
K

第五章化学平衡教程

第五章化学平衡教程
a. 表达式:
=
Ky

c d yC yD
y y
a A
b B
y
B
B B
b. Ky与 K
Kp,Kc关系 : K K y ( p / p ) B
B Ky p
Kp
Kc
B Ky p
( RT )
B
c. Ky是?函数: Ky=f(T,p)
01:02:20
(4)Kn ——用物质的量表示的平衡常数
(1) 化学反应的方向和限度;
(2) 平衡常数的热力学计算; (3) 各种因素(温度、压力等)对平衡的影响。
01:02:20
§ 1 化学反应的平衡条件和平衡常数的推导
§ 2 理想气体化学反应的等温方程
§ 3 平衡组成的计算
§ 4 化学反应的标准摩尔吉布斯函数与平衡常数的计算 § 5 温度对平衡常数的影响 § 6 影响化学平衡的其它因素 § 7 同时反应平衡组成的计算
ν
p 其中的 B p
/ B
是反应物及产物的 p p
νB
/ B
的连乘积。
νB
因为反应物计量系数 vB 为负,产物计量系数vB 为正,所以它 的形式是
p p
产物
/p
反应物
/p
ν产 物 ν反 应 物
,所以它被称作压力商 Jp 。
01:02:20
a. 表达式: K n
=
c d nC nD
n n
a A
b B
n
B
B B
b. Kn与 K

Kp,Kc关系 : K K p / p n
B nB
c. Kn是?函数:Kn=f(T,p)

第五章 化学平衡

第五章 化学平衡

(2) Hg(l) + S(cr) = HgS(s)
∑ ΔrH m = νB ΔfH B.m= -58.16 kJ·mol-1
B/
99
∑ ΔrS m =
νBS B.m = -25.78 kJ·mol-1
B
ΔrG m= ΔrH m - TΔrS m = -50.35kJ·mol-1
P
∫ ∑ (∂ G/∂ξ)T P =ΔrGm + νBV∗B.mdP = P0 B

∑ (∂G/∂ξ)T.P = ν BμB B
95
∑ ∑ −
(∂G/∂ξ)T.P 是定 T、P 下体系 G 随ξ的变化率(或对 G =
G nB
=
B
nBμB 两边微分,
B
பைடு நூலகம்
B
∑ ∑ 结合 nBdμ B = 0 亦可得 dGT.P= μB dnB)
B
B
aA + dD amolA+dmolD
gG + hH gmolG+hmolH
P
∏ ∫ ∑ + RT ln ( mB γB,m/ m )νB +
νB V B.m dP
B
P0 B
∏ (∂ G/∂ξ)T P =ΔrGm + RT ln ( mB γB,m/ m )νB B
例 1:已知ΔfGm , Au2O3(s) = 54.141kJ⋅mol-1, ΔfGm , Ag2O(s) = -1084kJ⋅mol-1。 请问室温下,人们所佩带的金、银饰品能否被空气中的氧所腐蚀? 解:
因定 T、P 下,G 大→G 小 是自发的,达最小值即达限度,如何去表征?就 自发方向而言,用ΔrG、ΔrGm 何偿不可(一般是这样)。但比较而言,用(∂G/∂ξ)T.P 似乎更简便些(因(∂G/∂ξ)T.P 是一个点,而其它需两点比较)。此外,(∂G/∂ξ)T.P =0 就是限度。若用其它,从意义上来看,只有ξ1=ξe、ξ2=ξe 时,ΔrG=0。而ΔrGm 不可能为零。故,化学反应的通式应是:

第5章 化学平衡原理要点

第5章 化学平衡原理要点
=-42.066 J·mol-1·K-1 ≈-0.042 kJ·mol-1·K-1
上一内容 下一内容 回主目录
rGmΘ
r
H
Θ m
Tr SmΘ
41.16 673 (0.042 )
12.89kJ mol 1
②求Kθ
lnK(T) ΔrGm T
RT
12.89 103 2.304 8.314 673
=-41.16kJ·mol-1 △Sθ(298.15K)={Sθ(CO2, g, 298.15K) + Sθ(H2, g, 298.15K)}
-{Sθ(CO, g, 298.15K) + Sθ(H2O, g, 298.15K)} ={213.64+130.574-197.56-188.72)}J·mol-1·K-1
用符号KΘ表示。
上一内容 下一内容 回主目录
标准平衡常数
K
pEeq pAeq
p e pFeq p a pDeq
p p
f d
B
pBeq p vB
0 rGm (T ) RT ln K
rGm (T ) RT ln K 或 ln K rGm (T ) RT
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
如合成氨的反应:
N2(g) + 3H2(g)
2NH3(g)
K1
p p eq
2
NH3
peq N2
p
peq H2
p 3
1/2N2(g) + 3/2H2(g)
NH3(g)
K
2
peq N2
p p eq
NH3
1
p p 2 eq H2

05章 化学平衡

05章  化学平衡



例:N2O4(g) ⇌ 2 NO2(g) 无色 红棕色 在 373K 恒温槽中反应一段时间后,反应 混合物颜色不再变化,显示已达平衡,测 得平衡时N2O4、NO2浓度


N2O4(g) ⇌ 2 NO2(g)
N2O4-NO2体系的平衡浓度(373K) 0.100 0 0 0.100 0.100 0.100 -0.060 +0.120 +0.014 -0.028 -0.030 +0.060 0.040 0.120 0.014 0.072 0.072 0.160
三、与“平衡常数”有关的计算


例:C2H5OH + CH3COOH ⇌ CH3COOC2H5 + H2O 若起始浓度c (C2H5OH) = 2.0 mol.dm-3 , c (CH3COOH ) = 1.0 mol.dm-3 , 室温测得经验平衡常数Kc =4.0 , 求平衡时C2H5OH的转化率α。 解:反应物的平衡转化率 α% = (反应物起始浓度 - 反应物平衡浓度) / (反应物起始浓度) × 100
C2H5OH + CH3COOH ⇌ CH3COOC2H5 + H2O 起始浓度/ 2.0 1.0 0 0 平衡浓度/ 2.0- 1.0- Kc = 2 / [(2.0- ) (1,得 = 0.845 mol.dm-3 C2H5OH平衡转化率
pi = ciRT , 代入KP表达式 KP = ( pDd pEe) / ( pAa pB b)
经验平衡常数存在两大问题 : ①多值性; ②△n≠0时,量纲≠1. (2)相对平衡常数:Kr (或标准平衡常数Kø )

定义:“标准压力”为p ø
“标准(物质的量)浓度”为c ø SI制规定:p ø= 1 ×105 Pa(旧:101325 Pa) c ø = 1 mol· dm-3

第五章 化学平衡

第五章 化学平衡

物理化学电子教案
大部分化学反应可以几乎同时朝正、反两个方 向进行, 在一定条件 (温度, 压力, 浓度)下, 当正反两 个方向的反应速度相等时, 体系就达到了平衡状态, 平衡状态就是反应的限度.
◆平衡后, 体系中各物质的数量按一定的比例关系不再 改变. 一旦外界条件改变, 平衡状态就要发生变化. ◆ 平衡状态从宏观上看是静态,实际上是一种动态平衡. ◆ 实际生产中需要知道: ①如何控制反应条件, 使反应 按人们所需要的方向进行; ②在给定条件下, 反应进行的最 高限度是什么?
θ rGm (T ) RT ln kfθ
rGm RT ln kfθ RT ln Qf
对理想气体反应:
则有:
Qf Qp
θ p
θ kfθ kp
rGm RT ln k RT ln Qp
第五章 化学平衡
物理化学电子教案
用化学反应等温式判断反应方向
化学反应等温式也可表示为:
物理化学电子教案
fG θ ) h ( H RT ln θ p fD θ θ [d ( D RT ln θ ) e( E RT ln p
fH ) ] θ p fE ) ] θ p
θ θ θ θ [( gG hH ) (d D eE )]
只有逆反应与正反应相比小到可以忽略不计的 反应,可以粗略地认为可以进行到底。这主要是由 于存在混合Gibbs自由能的缘故。
第五章 化学平衡
物理化学电子教案
如反应 D E 2F 为例,在反应过程中Gibbs自 由能随反应过程的变化如图所示。 R点,D和E未混合时Gibbs 自由能之和;
P点,D和E混合后Gibbs自 由能之和;
1 0

第五章化学平衡常数

第五章化学平衡常数
K杂r = ( [p Er ]e) / ( [p Ar ]a [c Br ]b)
Kc r 、Kpr 、K杂r 统一为 K r(或 K ø):
优点:①量纲为1; ②在SI制中单值。
反应的自由能变化与平衡常数的关系
由范特霍夫等温方程:
rG m (T ) r G (T) RTlnJ m
平衡状态: △G = 0, Jp r = K r △G ø = - RT ln K r (△G ø K r) 而 △G ø = ∑i △fG iø (二)Van’t Hoff等温式的应用 把△G ø = - RT ln K r 代入 △G = △G ø + RT lnJp r 得:△G = - RT ln K r + RT lnJp r △G = RT ln(Jp r /K r )
(3) 计算平衡时各物种的组成
实验平衡常数
平衡常数的获得除了由热力学计算外,还可以通过实验测定。 实验平衡常数(经验平衡常数) —— 由实验得到的平衡常数。
表6-1 500oC下的合成氨实验测定的平衡浓度与实验平衡常数(Kc)
[ H 2 ] / mol.dm
3
[ N 2 ] / mol.dm
3
第5章 化学平衡
Chapter 5 Equilibrium
本章要求
1、建立化学平衡常数的概念。 2、掌握反应产率或反应物转化为产物的转化率的计算。 3、学会讨论浓度、分压、总压和温度对化学平衡的影响。
内容提要
● 化学平衡状态
● 平衡常数
● 浓度对化学平衡的影响 ● 压力对化学平衡的影响 ● 温度对化学平衡的影响
H2(g) + I2(g) = 2 HI (g) K = 50.3 (713 K)

第五章 化学平衡

第五章 化学平衡

• 反应: SO2(g)+0.5O2(g) SO3(g) SO2分子与O2分子会化合生成 SO3分子;但同 时, SO3分子也会分解为SO2和O2分子.
• 若体系的初始组成是原料SO2和O2, 那么在反应初期, 体系中主要 为SO2和O2分子, 它们之间的碰撞频率较高, 而SO3的分子数很少, 其分解的速率自然较低, 故在宏观上,反应向正方进行. • 随着反应进行, SO3分子的浓度逐步提高, 其分解速率也随之提高; SO2和O2的浓度逐步降低, 故合成SO3的速率也随之降低, 当达到 一定程度时, 两者的速率相等。此时,从宏观上看,体系的组成 不再变化,化学反应达到了平衡。
• rGm的单位是: J.mol-1.
• 化学反应通常在恒温、恒压下进行, rGm 可作为反应 过程进行方向的判据 。 1、若 rGm < 0 ,即∑B B < 0
反应物的化学势大于产物的化学势,反应自发正向进行; 2、若 rGm > 0 ,即∑B B > 0
反应物的化学势小于产物的化学势,反应自发逆向进行; 3、若 rGm = 0 ,即∑B B = 0
• 产物与反应物的标准态化学势之差决定了反应在给定条件下的反
应限度,即 eq的大小。
当反应进度 大于 0而小于 1时,由于反应物及产物以混合的方 式存在,产生了负值的混合吉布斯自由能改变量,使G总对的曲 线表现为有最低点的曲线而不是一条直线。 • 若反应物与产物并不相混合,则反应是有可能进行到底的,如一 定条件下碳酸钙的热分解反应或爆炸性反应。
底的=1处,而是在其左侧= eq<1的某处。
• 当反应进行到总自由能达到最低值,就达到了化学平衡而不能使 再加大了. 因为假若反应继续进行,就形成了自发地进行一个dG>

大学物理化学核心教程第二版(沈文霞)课后参考答案第5章

大学物理化学核心教程第二版(沈文霞)课后参考答案第5章

第五章 化学平衡一.基本要求1.掌握化学反应等温式的各种形式,并会用来判断反应的方向和限度。

2.了解标准平衡常数的定义,掌握标准平衡常数的各种表示形式和计算方法。

3.掌握标准平衡常数K 与r m G ∆在数值上的联系,熟练用热力学方法计算r m G ∆,从而获得标准平衡常数的数值。

4.了解标准摩尔生成Gibbs 自由能f m G ∆的定义和它的应用。

5.掌握温度对化学平衡的影响,记住van ’t Hoff 公式及其应用。

6.了解压力和惰性气体对化学平衡的影响。

二.把握学习要点的建议!把本章放在多组分系统之后的目的,就是要利用多组分系统中介绍的化学势的概念和各种表示方式,来导出化学反应等温式,从而用来判断化学反应的方向与限度。

本章又用到了反应进度的概念,不过其值处在0 1 mol -的区间之内。

因为在利用化学势的表示式来计算反应的Gibbs 自由能的变化值时,是将化学势看作为一个定值,也就是在有限的反应系统中,化学进度为d ξ,如果在一个很大的系统中, 1 mol ξ=。

严格讲,标准平衡常数应该用绝对活度来定义,由于本教材没有介绍绝对活度的概念,所以利用标准态化学势来对标准平衡常数下定义,其含义是一样的。

从标准平衡常数的定义式可知,标准平衡常数与标准化学势一样,都仅是温度的函数,因为压力已指定为标准压力。

对于液相反应系统,标准平衡常数有其相应的形式。

对于复相化学反应,因为纯的凝聚态物质本身就作为标准态,它的化学势就是标准态化学势,已经归入r m G ∆中,所以在计算标准平衡常数时,只与气体物质的压力有关。

学习化学平衡的主要目的是如何判断反应的方向和限度,知道如何计算平衡常数,了解温度、压力和惰性气体对平衡的影响,能找到一个经济合理的反应条件,为科研和工业生产服务。

而不要过多地去考虑各种浓度表示式和各种平衡常数表示式之间的换算,否则会把自己搞糊涂了,反而没抓住主要内容。

由于标准平衡常数与r m G ∆在数值上有联系,r m ln p G RT K ∆=-,所以有了r m G ∆的值,就可以计算p K 的值。

第五章化学平衡要点

第五章化学平衡要点

K = B(pB /p )B K c = B(cB /c )B K y = B yB B Kn = B nB B
(c = 1moldm-3)
K K c : K = B(pB /p ) B
K = B ((cB /c) c RT/p )B = K c (c RT / p ) B
2. 摩尔反应Gibbs函数与化学反应进度的 关系,平衡条件
对任一反应 0 BB
B
设恒T、p且W’ = 0,有 dG μBdnB
B
因为:dnBBdξ
所以: d G T,p = (BB B ) d
( G / ) T,p = BB B
= rG m
对如下反应: N2 (g) + H2 (g) = NH3(g)
式中第二项 BB RT ln (pB/p )
= RT BB ln (pB/p )
= RT lnB (pB /p )B

压力商Jp = B (pB /p )B
rG m = BB B + BB RT ln (pB/p ) = rG m + RT ln Jp
此即理想气体反应的等温方程。
2.标准平衡常数
K Ky: K = B(pB /p ) B = B(ptotal yB /p ) B = B yB B (ptotal /p ) B = K y (ptotal /p ) B (ptotal为总压)
K Kn: K = B(pB /p ) B = B(ptotal yB /p ) B
Jp = K 处于平衡;
Jp > K 反应逆向进行。
K 与化学计量式的写法有关。例如合成氨:
1. N2(g)+3H2(g) = 2NH3(g);

物理化学04-第五章化学平衡

物理化学04-第五章化学平衡

仅是T的函数
( pG / p ) ( pH / p ) 常数 K a b ( p A / p ) ( pB / p )
Kө标准平衡常数
无量纲

gG hH a A bB r Gm
g h





( pG / p ) ( pH / p ) 1 ln ( g h a b G H A B) a b ( p A / p ) ( pB / p ) RT
3. 化学反应的平衡常数和等温方程P347
理气化学反应: aA(g)+bB(g)=gG(g)+hH(g) 平衡时
(产物) (反应物)
i i i i
gG+hH=aA+bB 理气混合物中某一组分的化学势:
B B RT ln(PB / P )
g[ G RT ln( pG / p )] h[ H RT ln( pH / p )] a[ A RT ln( p A / p )] b[ B RT ln( pB / p )]
纯物质:GB=μ*B
G nA A nB (*:纯态) * * (1 ) A B
* * * B
A ( A )
* * B *
但是实际上A、B是混合在一起的,因此还要考虑混合 过程对系统吉布斯自由能的影响
mixG RT (nA ln xA nB ln xB )
平衡常数还有其他的表示形式,反应达平衡时,用反 应物和生成物的实际压力、摩尔分数或浓度代入计算, 得到的平衡常数称为经验平衡常数。 一. 气相反应(理想气体) aA+bB=gG+hH

物理化学-第五章化学平衡

物理化学-第五章化学平衡

ΔG1=0
ΔG2=RTln(bθ/b)
C4H6O4(饱和溶液, b=0.715 mol/kg)
G
f
G
θ m
(aq)
f
G
θ m
(s)
G1
G2
ΔfG
θ m
(aq)
Δf
G
θ m
(s)
RTln(bθ /b)
5.4 各种因素对化学平衡的影响 问题:
1. 对于已经达到平衡的反应,可否改变其平衡位置?
2. 如何选择最适宜的反应条件? 工业合成氨 3H2(g) + N2(g) = 2NH3(g) 工业生产中的工艺条件一般是在520ºC, 30MPa,
B
pBeq
vB

平衡分压积
标准平衡常数, 简称平衡常数
rGmθ RT ln K θ 标准平衡常数Kθ热
力学定义式
K θ exp( rGmθ )
适用于任何类型的 化学反应
RT
任意化学反应
0 B BB
当化学反应处于平衡时:rGmeq
v
B
eq
B
0
B
化学势通式:
μB μBθ RTlnaB FB
(1) 根据反应的ΔrHmθ 和ΔrSmθ 计算
rGmθ
r
H
θ m
Tr Smθ
其中:
r
H
θ m
vB
f
H
θ m,
B
标准摩尔生成焓
B
Δr Smθ
vB Smθ , B
B
标准摩尔规定熵
由表中298.15K数据如何求T 下的ΔrGmθ?
T
r
H
θ m

物理化学-第五章-化学平衡

物理化学-第五章-化学平衡



( g )
3. 增加反应物的量对平衡移动的影响
aA bB yY zZ 恒温恒容条件下增加反应物量对反应平衡的影响:
在已达到平衡的系统中,加入反应物A,瞬间A的分压增加,其他组分分压不变,结果Jp减小, 温度一定,Kϴ不变,反应右移。 恒温恒压条件下增加反应物量并不总是使平衡右移: 当起始反应物配比1:1时,平衡后加入反应物,会使平衡左移。
Kθ的实验测定和平衡组成的计算
Kθ的计算 1. Kθ可由热力学计算得到,由△rGθm=-RTlnKθ计算 2. Kθ 可由实验测定得到,由平衡时Kθ= ∏(PB/Pθ)vB( 理想气 体)可得
平衡组成的特点
1. 反应条件不变,平衡组成不变 2. 一定温度下,正向与逆向反应平衡组成算出的Kθ应一致 3. 温度不变,改变原料配比所得的Kθ应相同


注意:溶剂A和溶质B的标准态不同。
A
B
B
(r b
B
B B
/ b )B
习题
五氯化磷分解反应 在200℃时的Kθ =0.312,计算: (1)200℃、200kPa下PCl5的离解度; ( 2 )组成 1 ∶ 5 的 PCl5 与 Cl2 的混合物,在 200 ℃ 、 101.325kPa下PCl5的离解度。
上式中△rHθ m=∑vB△fHθ m,B=-∑vB△cHθ m,B,△rSθ m=∑vBSθ m,B (2)通过△fGθ m来计算△rGθ m
△rGθ m=∑vB△fGθ m
(3)由相关线性反应计算,如果一个反应可由其他反应线 性组合得到,那么该反应的△rGm也可由相应反应的△rGm线
性组合得到
如 (3)=(1)+ 2*(2),那么 △rGθ m,3=△rGθ m,1+2△rGθ m,2

物理化学第五章 化学平衡

物理化学第五章 化学平衡

K
J
eq p
p / p eq B(g)
vB( g )
B
举例: 碳酸钙的分解反应
CaCO3 (s) CaO(s) CO2 (g) K p(CO2 ) / p
p(CO2): CO2的平衡压力,亦称碳酸钙的分解压力 分解压力越小,稳定性越高
分解温度 pgeq pamb
如果产生的气体不止一种,则所有气体压力的总和
4. Ag可能受到H2S(理想气体)的腐蚀而发生如下反应: H2S(g) +2Ag(s)==Ag2S(s) +H2(g)
今在298K、100kPa下,将Ag放在等体积的H2和H2S组 成的混合气体中。 试问⑴Ag是否可能发生腐蚀而生成Ag2S?
⑵在混合气体中,H2S的百分数低于多少才不致发 生腐蚀?
§5.1 化学反应的方向及平衡条件
化学反应通常发生在多相多组分系统中
化学反应 0 vB B
B
dG SdT Vdp B ()dnB () B
恒T、恒p,W’=0
dG B ()dnB () B[ dnB ( )] BdnB
B
B
B
相平衡 B () B ( ) ... B
反应进度
rGm <0,故在该条件下,Ag能被腐蚀而生成Ag2S
比较KΘ和Jp的大小判断: rGΘm = –RTln KΘ = fGΘ(Ag2S,s) - fGΘ(H2S,g)
则 ln KΘ =(– 40.25+32.93)×10-3/( – 8.315×298.2)
= 2.953 KΘ = 19.15 而 Jp=1 ∴ Jp <KΘ , rGm<0,正向反应自发,即Ag能被腐 蚀而生成Ag2S。
vB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 化学平衡 考研辅导题答案说明:如果答案有问题,请及时联系1、化学反应体系的ΔrGmθ是指( B )。

天津工业2006A 、 反应体系处于平衡状态下,体系G 的改变量;B 、由标准状态下各自独立的反应物变为标准状态下各自独立的产物,Δξ=1mol 假想变化中体系G 的改变量;C 、与ΔrGm 有相同的物理含义及数值;D 、总压力为101.325kPa 下,Δξ=1mol 的化学反应体系G 的改变量。

2、根据某一反应的ΔrGmθ,下列( D )不能确定。

浙江工业2005A 、 标准状态下,反应自发变化的方向;B 、在ΔrGmθ下所对应的平衡位置;C 、在标准状态下,系统所能做的最大非膨胀功;D 、提高温度反应速率的变化趋势。

3、摩尔反应吉布斯函数变∆rGm 不仅是___T__ 的函数,而且还是__P__ 的函数。

在G-ξ曲线上的最低点处∆rGm__=0_,此点即为系统的平衡点。

在平衡点的左边∆rGm<0_;在平衡点的右边∆rGm_>0__。

4、在恒T 、恒P 、非体积功为零的条件下,某反应的△G 负值很大,表明该反应进行的程度大,反应速度也快 ( 错 )5、在 中, 是化学反应达到平衡时的摩尔吉布斯函数的变化值。

( 错 )6、在T 、P 条件下化学反应2A(g)+B(g)⇔3C(g)自发地由反应物变为产物,则反应体系中化学势之间应满足( A )A 、 2μA+μB >3μC B 、2μA+μB <3μC C 、2μA+μB=3μCD 、 μA+μB >μC 7、在恒T ,恒P ,非体积功为零的条件下,反应2O3 =3O2在任何温度下都能自发进行,这说明该反应的( C )A 、 △H>0△S>0B 、△H>0 △S<0C 、△H<0 △S>0D 、△H<0 △S<0 8. 若某一化学反应的ΣνBμB <0,那该反应能自发向正反应方向进行,此叙述能成立的条件是体系处于( C )A 、等温B 、等压.等温C 、等温等压,除膨胀功外无其它功D 、等温无非膨胀功9、化学反应CaCO3=CaO+CO2,在某温度下若将CO2的压力保持在这样一个值,使得µ(CaCO3 )> µ(CaO) + µ(CO2),则CaCO3将_分解_.10、恒温恒压下,某反应的 =5kJ/mol ,无法判断该反应是否自发。

( 对 )θθK RT G m r ln -=∆θm r G ∆θm r G ∆11、反应器中盛有液态Sn 和SnCl 2,相互溶解度可以忽略,在900 K 通入总压为101.325 kPa的H 2—Ar 混合气体。

H 2与SnCl 2起反应,实验测出逸出反应器的气体组成是:50% H 2,7% HCl ,43% Ar(均为体积分数),试问在反应器中气相与液相达到平衡没有?已知: H 2+Cl 2==== 2HCl(g) Θ∆m r G =(-188289-13.134T)J·mol -1Sn (l)+Cl 2==== SnCl 2 (l) Θ∆m r G =(-333062+118.4T)J·mol -1解:反应:H 2+Cl 2==== 2HCl(g) (1)Θ∆m1r G = -188289-13.134×900= -200109.6 J=-200110JSn (l)+Cl 2==== SnCl 2 (l) (2)Θ∆m2r G = -333062+118.4×900= -226502 JSnCl 2(l) +H 2(g)= Sn (l)+2HCl(g) (3)Θ∆m3r G =?由(1)-(2)得(3):∴Θ∆m3r G = -200110-(-226502)= 26392 J lnK 3Θ=-26392/(8.314×900)=-3.5271 K 3Θ=2.94×10-2J P =(P HCl /P Θ)2/(P H2/P Θ)=0.072/(0.5)= 9.8×10-5∵ K Θ与 J P 相差很远∴ 未达平衡。

12、反应CO(g)+H2O(g)=CO2(g)+H2(g)在973K 时压力平衡常数Kp=0.71,若各物质分压为CO 100kPaH2O 50kPa,CO2和H2各10kPa ,则反应( A )浙江工业2003 A 、向右进行 B 、向左进行 C 、处于平衡 D 、反应方向难确定13、某反应A(s) == Y(g) + Z(g)的ΔrGm 与温度的关系为ΔrGm = (-45000+110 T/K)J ·mol-1,在标准压力下,要防止该反应发生,温度必须 ( A )A 、高于136 ℃B 、低于184 ℃C 、高于184 ℃D 、低于136 ℃ 14、在T = 600K ,总压p = 3×105Pa ,反应A(g) + B(g)= 2D(g),达平衡时,各气体物质的量之比为n A/n B = n B/n D =1,则此反应的 ( 0 ); ( 0 ) ( 1 ) r m G ∆=r m Gθ∆=K θ=15、16、Ag 可能受到H2S(g)的腐蚀,发生下列反应H2S(g)+2Ag(s)=Ag2S(s)+H2(g)25℃,将Ag(s)放到总压为p θ的H2与H2S 混合气体中,求在什么浓度下H2S 不使Ag 腐蚀。

已知此温度下 分别为Ag2S(s)=-40.25kJ/mol ,H2S=-32.93kJ/mol 解:得p(H2S)≤4.96kPa所以混合气体中H2S 的摩尔分数应低于x(H2S) ≤0.049617、反应 MgO(s)+H 2O(g)=== Mg(OH)2(s), Θ∆m r G =(-46024+100.42T) J·mol -1,试问:(1)在298 K 、相对湿度64%的空气中MgO(s)是否会水解成Mg(OH)2(s)?(2)在298 K ,为避免MgO 的水解,允许的最大相对湿度为多少? 已知298 K 时水的饱和蒸气压为2338 Pa 。

解: (1) MgO(s)+H 2O(g)=== Mg(OH)2(s)οrGm ∆=-46024+100.42T=-46024+100.42×298=-16098.8 J·mol -1相对湿度 RH=P H2O /P’H2O =0.64 P H2O =0.64 P’H2O =0.64×2338=1496.3 ParGm ∆=οrGm ∆+RTln(P o /P H2O )=-16098.8+8.314×298ln(100000/1496.3) =-5687.6 J·mol -1 rGm ∆<0 故 MgO(s)会水解(2) rGm ∆=οrGm ∆+RTln (P o /P H2O )≥0-16098.8+8.314×298ln(100000/ P H2O ) ≥0 ln P H2O ≤5.015, P H2O ≤150.66即相对湿度 RH= P H2O /P’H2O =150.66/2338=0.0644=6.44%18、潮湿的Ag 2CO 3在383 K 时于空气流中干燥,为防止分解,空气中CO 2的分压应为多少?已查得有关热力学数据如下:ΘmS /(J·mol -1·K -1)Θ∆mf H /(J·mol -1)m,p C /(J·mol -1·K -1)θm f G ∆)2()2(100ln 1015.298314.893.3225.40)()(ln)()(/)(/)(ln)()(0ln 322222222S H p S H p S H p H p RT S H G S Ag G p S H p p H p RT S H G S Ag G J RT G G m f m f m f m f p m r m r -⨯⨯⨯++-=+∆-∆=+∆-∆=≥+∆=∆-θθθθθθθ解:232Θ∆mr H (298)=-393510-30543+501660=77607 JΘ∆mr S (298)=213.68+121.75-167.4=168.03 J/KCp ∆=37.6+65.7-109.6=-6.3 J/K∴ Θ∆m r G (298)=77607-168.03×298=27534 J因为:Θ∆m r H (T)= 77607+⎰-TdT298)3.6(= 79484-6.3TΘ∆mr G /T=27534/298+⎰--TdTT T 2982/)3.679484(=79484/T+6.3lnT-210.22T∴ Θ∆m r G (T)=79484+6.3TlnT-25.48RT则:Θ∆m r G (383)= 13322 J, Kp o (383)=0.01524=P(CO 2)/P o所以Ag 2CO 3(s)的分解压为:P(CO 2)=1545Pa ,故CO 2的压力应大于1545 Pa 。

求Θ∆m r G 还有另外一种方法,想想?19、固体化合物A 放入抽空的容器中,发生分解反应:A(s)=B(g)+C(g).298K 测得系统总压(分解压)为90kPa,假设B 、C 为理想气体,则该条件下反应的标准平衡常数为(0.2025 )20、某反应的 =0,则该反应的标准平衡常数 =( 1 )21、已知反应:FeO(s)+H 2(g)=== Fe(s)+ H 2O(g) 的 Θ∆m r G =(13180-7.74T)J·mol -1;CO 2(g)+H 2(g)=== CO(g)+ H 2O(g) 的Θ∆m r G =(35982-32.63T)J·mol -1 (1)试计算1000 K 时下列反应的平衡常数:FeO(s)+CO(g)==== Fe(s)+CO 2(g)(2) 如果薄钢板在1000 K 下于含有10% CO 、2% CO 2和88% N 2(均为体积分数)的气氛中退火,会不会生成FeO? 解:(1) 已知 1000K 时:FeO(s)+H 2(g)==== Fe(s)+ H 2O(g) (1)ο1rGm ∆=13180-7.74×1000=5440 JCO 2(g)+H 2(g)==== CO(g)+ H 2O(g) (2)ο2rGm ∆=35 982-32.63×1000=3350 Jθm r G ∆θK由(1)-(2) 得 (3):FeO(s)+CO 2(g) ==== Fe(s)+CO(g) (3)∴ ο3rGm ∆=ο1rGm ∆-ο2rGm ∆=5440-3352=2088 JlnK 3o = -ο3rGm ∆/(RT)= -2088/(8.314×1000)= -0.2511K 3o =0.778(2) rGm ∆=οrGm ∆+RTln[(P CO /P o )/(P CO2/P o )]=οrGm ∆+ RTln (P CO / P CO2)=2088+8.314×1000ln(0.1/0.02)= 15.469kJ·mol -1rGm ∆>0∴ 钢板在所给气氛下退火会生成FeO 。

相关文档
最新文档